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Abstract. We studied physical controls on spatial patterns of pan-European flow signatures by exploring similarities in 16 

flow signatures and 35 catchment descriptors for 35,215 catchments and 1,366 river gauges across Europe. Correlation 

analyses and stepwise regressions were used to identify the best explanatory variables for each signature. Catchments were 10 

clustered and analyzed for similarities in flow signature values, physiography and for the combination of the two. We found: 

(i) a 15 to 33% (depending on the classification used) improvement in regression model skills when combined with 

catchment classification versus simply using all catchments at once. (ii) 12 out of 16 flow signatures were mainly controlled 

by climatic characteristics, especially those related to average and high flows. For the base-flow index, geology was more 

important and topography was the main the main control for the flashiness of flow. For most of the flow signatures, the 15 

second most important descriptor is generally land cover (mean flow, high flows, runoff coefficient, ET, variability of 

reversals). (iii) Using a classification and regression tree (CART), we further show that Europe can be divided into ten 

classes with both similar flow signatures and physiography. The most dominant separation found was between energy-

limited and moisture-limited catchments. The CART analyses also separated different explanatory variables for the same 

class of catchments. For example, the damped peak response for one class was explained by the presence of large 20 

waterbodies for some catchments, while large flatland areas explained it for others catchments in the same class. In 

conclusion, we find that this type of comparative hydrology is a helpful tool for understanding hydrological variability, but is 

constrained by unknown human impacts on the water cycle and by relatively crude explanatory variables. 
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1 Introduction 

Hydrological systems exhibit a tremendous variability in their physical properties and in the hydrological variables we 

observe such as streamflow and soil moisture patterns (Bloeschl et al., 2013). At the catchment scale, we assume (or at least 

hope) that the aggregated response behavior, e.g. the hydrograph, is related to average or dominating characteristics and that 

smaller scale differences are less relevant. Although the extent of validity of this assumption can be questioned (Beven, 5 

2000; Oudin et al., 2010), it is the basis for statistical hydrology where it allows us to regionalize certain flow characteristics 

related to floods or low flows. We generally make the same assumption in the search for a catchment classification 

framework where our aim is to group catchments that somehow exhibit similar hydrologic behavior (McDonnell and Woods, 

2004). While the preferred classification system will depend to a degree on the specific objective of a study or the data 

availability, it is generally agreed upon that even the search for such an organizing principle is an important undertaking for 10 

hydrology (Wagener et al., 2007).  

Many studies have attempted to organize the catchments we find across our landscape. Approaches include the use of 

physical and climatic characteristics (e.g. Winter 2001; Brown et al., 2013; Buttle, 2006; Leibowitz et al., 2016), the use of 

hydrologic signatures (e.g. Ley et al., 2011, Olden et al., 2012; Sawicz et al., 2011; Singh et al., 2016), or by also including 

water quality (Arheimer et al., 1996; Arheimer and Lidén, 2000). The advantage of the first approach is that physical 15 

characteristics such as topography and land cover are now available for any location on earth (though with varying quality of 

the data available), while the second approach groups catchments directly by the characteristic we mainly care about, i.e. 

their hydrologic behavior (see discussion in Wagener et al., 2007). The disadvantages are that the first framework does not 

ensure that physically/climatically similar catchments also behave similarly, while the second is not directly applicable to 

ungauged catchments. Furthermore, the two approaches do not necessarily group catchments in the same way since the data 20 

sets used for the classification are different. Therefore, one needs to derive functions that link flow characteristics and 

catchment attributes within each group of catchments classified in either way. Ultimately, we believe that a catchment 

classification framework has to achieve the advantages both approaches offer to be useful, i.e. it has to be applicable to any 

catchment and provide insight into its expected hydrological behavior.  

Here we assume that flow signatures are one relevant way towards quantifying hydrological behavior and therefore form a 25 

sensible basis for a classification framework. They condense hydrologic information derived from streamflow observations 

(alone or in combination with other variables) (Sivapalan, 2005). The choice of the specific signatures used for classification 

can be guided by: (i) the attempt to describe basic hydrological behavior (e.g. Ley et al., 2011, Sawicz et al., 2011; Trancoso 

et al., 2016); (ii) the need to relate to societally relevant issues such as floods and droughts (Wagener et al., 2008); (iii) the 

objective to characterize ecologically relevant characteristics of the catchment response (e.g. Olden et al., 2012); or (iv) in 30 

relation to subsequent hydrologic modeling (Euser et al., 2012; Hrachowitz et al., 2014; Donnelly et al., 2016). Studying 

differences and similarities in flow signatures as well as in catchment characteristics can also improve our understanding of 

hydrological processes under potential future conditions (Sawicz et al., 2014; Berghuijs et al., 2014; Pechlivanidis and 
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Arheimer, 2015; Rice et al., 2015). Linking catchment descriptors (physical and climatic) and hydrological response 

signatures enables the inclusion of ungauged basins and provides the potential for assessing environmental change impacts 

across large domains. 

Despite the significant world-wide research performed during many decades to both understand and predict hydrologic 

variability using physiography, work has largely addressed small or medium-sized and pristine catchments when delineating 5 

regions of similar flow controls (e.g. Yaeger et al., 2012; Ye et al. 2012, Patil and Stieglitz, 2012). Often different studies 

have resulted in conflicting relationships between some catchment responses and some of their physiographic controls, as a 

result of catchment size and geographical location. For instance, some studies have found that forest cover reduces 

catchment streamflow (e.g. Hundecha and Bárdossy, 2004; Brown et al., 2005; Buytaert et al., 2007), while an increase in 

streamflow has been found in some others (e.g. Bruijnzeel, 2004). It would, therefore, be worthwhile to identify the 10 

physiographic controls of catchment responses and their relationships using a consistent approach across a larger geographic 

domain, which is subdivided into catchments of different spatial scales. A large sample of observed data from different 

physiographical and hydrological conditions, enable comparative analysis of dominant drivers for flow generation 

(Falkenmark and Chapman, 1989). No study so far, to our knowledge, has applied comparative hydrology at the continental 

scale, therefore including large rivers with human alteration and ungauged basins. 15 

Our study aims at exploring and understanding the physical controls on spatial patterns of pan-European flow signatures by 

taking advantage of large open datasets. We explore the relationships between catchment descriptors and flow signatures by 

analyzing 35,215 catchments which cover a wide range of pan-European physiographic and anthropogenic characteristics. A 

database of catchment descriptors for all catchments and of hydrologic signatures using 1,366 flow gauges across Europe has 

been gathered. Based on this database, we make use of a set of established classification and regression approaches to learn 20 

more about physical controls of flow generation. 

Our study is guided by the following science questions:  

1. To what extent can physiography explain similarities in flow signatures across Europe? 

2. What spatial pattern can be derived from combining similarity in flow signatures and physiography across the 

European continent? 25 

3. Which flow generating processes can be attributed to regions with similar flow signatures? 
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2 Data and Methods 

This paper summarizes a complex workflow including numerous datasets, calculations, analyses and interpretations, which 

are summarized in Fig. 1. The data and methods are described in the following sub-sections. 

 

 5 

Figur 1: Flow chart of the different steps followed in the study. 

 

2.1. Database of catchment descriptors and flow signatures 

A database of catchment descriptors (climate, physical and human alteration) was compiled for 35,215 European catchments 

with a median size (total upstream area of the outlet) of 493 km
2
, ranging from 1 to 800,000 km

2
 (Fig. 2). The geographical 10 

domain (8.8 million km
2
) was delineated according to plate tectonics boarders and catchment boarders all the way down to 

the European coast and to the Ural Mountains in the East.  
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Figure 2: Spatial extent of the study showing catchments division and selected river gauges. 

For each catchment, 48 catchment descriptors were assigned using upstream topography, climate, soil types, land cover 

(including human alterations) as well as geology from open data sources (Table 1). Descriptors were estimated as spatial 

means of the upstream area and assigned to each catchment outlet. 5 

Flow signatures were compiled using daily hydrograph time-series of the Global Runoff data Center (GRDC) and European 

Water Archive (EWA) databases from initially 2,690 flow gauges across our study domain selected based on agreement 

between catchment size in metadata and the delineation in the pan-European hydrological model E-HYPE (Donnelly et al, 

2012). A subsample of this database was selected for this study according to data availability. In order to ensure the 

reliability of the analyses on flow signatures, only gauging stations with at least five whole calendar years of continuous 10 

daily data have been selected (2016 stations). Others subsamples with longer time series (such as 10, 15, 20, 25, and 30 

years) were extracted for result evaluation. No missing data was allowed over the period and the longest continuous time-

series was used at each gauge. This means that time periods differ between gauging stations but consistent descriptors of 

precipitation and temperature were always used to match the observed period. Finally, all hydrographs of the resulting subset 

of flow gauges were visually checked for a 10-year period. This quality assurance mainly eliminated heavily regulated 15 

stations, obviously erroneous hydrographs or wrong time steps (e.g. monthly), still keeping stations with moderately altered 

flow. After this selection, the final set of streamflow stations used in the study included 1,366 gauging stations.  

For each river gauge, 16 flow signatures were computed (Table 2). The choice of flow signatures has been guided by a study 

by Olden and Poff (2003), which provides recommendations for selection of nine indices describing flow regimes with 

importance to hydro-ecology. In addition, five flow signatures commonly used in hydrology have been added for 20 

comparability (Qsp, CVQ, Q5, Q95, RBFlash) and two variables describing catchment response were calculated (RunoffCo 

and ActET).  
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Table 1. Catchment descriptors and the original source of information. Type of descriptor is indicated in brackets after variable 

name (T=topography; LC=land cover; S=soil type; G=geology; C=climate). Variables marked with grey color were removed from 

the analysis because no significant correlation was found between these and the flow signatures (see Section 2.3). 

Variable Unit Data source Description 

Area (T) Km
2
 SMHI: E-HYPE (Donnelly et al., 2016) 

http://hypeweb.smhi.se/  
Total upstream area of catchment outlet 

meanElev (T) m USGS: Hydrosheds and Hydro 1K 
(for latitude >60°) (Lehner et al., 
2008) 

Mean elevation 

stdElev (T) m (same as above) Standard deviation of elevation 
meanSlope 
(T) 

- (same as above) Mean slope 

Drainage 
density (T) 

Km
-2

 (same as above) 
 

𝑇𝑜𝑡𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑡𝑟𝑒𝑎𝑚𝑠

𝐴𝑟𝑒𝑎
 

10 Land 
cover 
variables (LC) 

- CORINE; GLC2000 (Bartholomé et 
al., 2005) (for areas not covered by 
CORINE); 
GGLWD (lake area, distribution, 
Lehner and Döll, 2004); 
EIM (EU scale irrigation, Wriedt et 
al. 2009); GMIA (global scale 
irrigation, Siebert et al. 2005) 

% of catchment area covered by the following land cover 
types: water / glacier / urban / forest / agriculture / 
pasture / wetland / open with vegetation / open without 
vegetation / irrigated 

7 soil 
variables (S) 

- ESD (Panagos 2006); DSMW % of catchment area covered by the following soil types: 
coarse soil / medium soil / fine soil / peat / no texture / 
shallow / moraine 

21 geological 
variables (G) 

- USGS Geological maps of Europe 
and the Arabian Peninsula 
(Pawlewicz et al, 1997, Pollastro et 
al., 1999) 

% of catchment area covered by the following geological 
classes: Cenozoic (Cz), Cenozoic-Mesozoic (CzMz), 
Cenozoic-Mesozoic intrusive (CzMzi), Cenozoic volcanic 
(Czv), Mesozoic (Mz), Mesozoic-Paleozoic (MzPz), 
Mesozoic-Paleozoic metamorphic (MzPzm), Mesozoic 
intrusive (Mzi), Mesozoic metamorphic (Mzm), Mesozoic 
volcanic (Mzv), Paleozoic (Pz), Paleozoic intrusive (Pzi), 
Paleozoic metamorphic (Pzm), Paleozoic-Precambrian 
(PzpCm), Paleozoic-Precambrian metamorphic (PzpCmm), 
Paleozoic volcanic (Pzv), intrusive (i), metamorphic (m), 
Precambrian (pCm), Precambrian intrusive (pCmi), 
Precambrian volcanic (pCmv) 

Karst (G) - World Map of Carbonate Soil 
Outcrops V3.0 

% of catchment area marked as “carbonate outcrop” in 
the World Map of Carbonate Soil Outcrops V3.0 

Pmean (C) mm WFDEI (Weedon et al., 2014) Mean annual precipitation 

SI.Precip (C) -  Seasonality index of precipitation: 

𝑆𝐼 =  
1

𝑅̅
∙ ∑ |𝑥̅𝑛 −

𝑅̅

12
|

12

𝑛=1

 

𝑥̅𝑛 : mean rainfall of month 𝑛, 𝑅̅ : mean annual rainfall  
Tmean (C) °C WFDEI (Weedon et al., 2014) Mean annual temperature 

AI (C) - Precipitation, Temperature and 
wind from WFDEI (Weedon et al., 
2014) 

Aridity Index: PET/P where PET is the potential 
evapotranspiration calculated with Jensen-Haise algorithm 
(Jensen and Haise, 1963) 
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Table 2. Description of the 16 flow signatures studied. 

Component of flow regime variable Unit Description 

Magnitude 
of flow 
events 

Average flow 
conditions 

skew 
Qsp 
CVQ 

- 
L.s

-1
.km

-2
 

- 

skewness = mean/median of daily flows 
mean specific flow 
coef. of variation = st. deviation / mean of daily flows 

Low flow 
conditions 

BFI 
 
Q5 

- 
 
L.s

-1
.km

-2
 

Base flow index: 7-day minimum flow divided by 
mean annual daily flow averaged across years 
5th percentile of daily specific flow 

High flow 
conditions 

HFD 
 
Q95 

- 
 
L.s

-1
.km

-2
 

High Flow discharge: 10th percentile of daily flow 
divided by median daily flow 
95th percentile of daily specific flow 

Frequency 
of flow 
events 

Low flow 
conditions 

LowFr year
-1

 total number of low flow spells (threshold equal to 
5% of mean daily flow) divided by the record length 

High flow 
conditions 

HighFrVar - coef. of var. in annual number of high flow 
occurrences (threshold 75th percentile) 

duration of 
flow 
events 

Low flow 
conditions 

LowDurVar - coef. of var. in annual mean duration of low flows 
(threshold 25th percentile) 

High flow 
conditions 

Mean30dMax - mean annual 30-day maximum divided by median 
flow 

timing of flow events Const - Constancy of daily flow (see Colwell, 1974) 
rate of change in flow 
events 

RevVar 
 
RBFlash 

- 
 
- 

Coef. of var. in annual nb of reversals (= change of 
sign in the day-to-day changes time-series) 
Richard-Baker flashiness: sum of absolute values of 
day-to-day changes in mean daily flow divided by the 
sum of all daily flows 

Catchment response RunoffCo 
 
ActET 

- 
 
mm.year

-1
 

Runoff ratio: mean annual flow (in mm/year) divided 
by mean annual precipitation 
Actual evapotranspiration: mean annual 
precipitation less mean annual flow (in mm/year) 

 

2.2 Cluster analysis for catchment classification 

We classified the catchments based on their similarities in 1) flow signatures for gauged sites only, 2) catchment descriptors, 

and 3) catchment descriptors selected from regression tree analysis on the classes identified using method 1.  5 

For the first two analyses, we used the same clustering method. The catchments were grouped into classes of similar 

characteristics (of physiography or flow signatures, respectively) using a hierarchical minimum-variance clustering method. 

The method groups clustering objects (catchments) so that the within class variability is minimized using a combination of 

the k-means algorithm (Hartigan and Wong, 1979) and Ward’s minimum variance method (Ward Jr., 1963). Clustering 

started with the k-means algorithm with a large number of classes (50) and classes were merged hierarchically using Ward’s 10 

minimum variance method. Two classes are merged in such a way that the increase in the sum of the within class variance of 

the classification variables weighted by the respective class size across all classes is minimal. After each merging step, the k-

means algorithm was applied to the reduced number of classes. The optimum number of classes was established by 
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evaluating the changes in the sum of the weighted variance of the variables across all classes between successive merging 

steps. The point where the rate of change becomes steeper was set as the optimum number of classes.  

We performed classification using 16 flow signatures and 35 of the catchment descriptors, which have some correlation to 

flow signatures (correlation significance tested on Pearson correlation using a t distribution with a threshold of 0.05). In 

order to reduce the effect of possible correlations between the different catchment descriptors or flow signatures, we applied 5 

principal component analysis (PCA). PCA enables derivation of a set of independent variables, which could be much fewer 

than the original variables, thereby reducing the dimensionality of the problem. The number of principal components 

selected for further classification was fixed so that they account for at least 80% of the total variance of the original 

variables. 

The third classification was done for all catchments – both gauged and ungauged, using a predictive regression tree, so called 10 

CART (Breiman et al., 1984), calibrated to match the classes identified with method 1. CART stands for Classification And 

Regression Trees and gathers algorithms based on recursive partitioning, aiming either at classifying a sample or at 

predicting a dependent variable (here the class of the flow stations classification) based on a set of explanatory variables 

(here the set of catchment descriptors). At the different consecutive levels (nodes of the tree), two groups of catchments are 

divided based on a logical expression using one of the explanatory variables (dominant catchment descriptors). Our idea was 15 

to obtain a classification close to the one based on the flow signatures but available for the whole set of catchment. Using 

CART, a regression tree was first adjusted to predict the classes of the flow signature classification using criteria based on 

catchment descriptors, and then this tree was used in a predictive way to classify all catchments in the domain. It was 

calibrated using an automatic recursive partitioning based on methods described by Breiman et al. (1984) and provided in the 

R package “rpart” (see Atkinson and Therneau, 2000). CART has been used previously for understanding controls on 20 

groupings of catchments in relation to their hydrologic behavior (e.g. Sawicz et al., 2014) or of hydrologic model parameters 

or model input and their regional predictors (e.g. Singh et al., 2014; Deshmukh and Singh, 2016). 

2.3. Analysis of physiographic controls of flow characteristics 

To examine the link between physiography and flow regimes across our geographical domain, matrices of correlation 

coefficients between all pairs of catchment descriptors and flow signatures were computed using three different correlations: 25 

Pearson correlation, Spearman correlation and distance correlation (e.g. Székely and Rizzo, 2009). Significance of 

correlations was tested based on a t distribution with a threshold of 0.05. This analysis, which results are presented in section 

A of the supplementary material, revealed significant correlations between some of the variables, generally consistent with 

our a priori knowledge (e.g. Donnelly et al, 2016). However, a number of catchment descriptors did not show any significant 

relationship with any of the flow signatures and were thus removed from the set of variables for the rest of the analyses. 30 

These variables are written in grey color in Table 1.  

The correlation matrices were accompanied by a visual analysis of scatterplots of all pairs of variables for quality control to 

avoid disinformation. Statistical distributions of flow signatures were plotted for different subsets of stream gauges 
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according to the minimum length of the period of continuous daily data availability. Unrealistic values, such as runoff ratios 

above 1, identified gauging stations that were filtered out for the following analyses. Similarly, spatial distributions of all 

catchment descriptors and flow signatures were plotted as maps. Most of the maps show rather coherent patterns across 

Europe and could thus be compared to other sources and local knowledge for additional visual quality control. 

To evaluate the importance of catchment classification, we compared performance of multiple regression models when 5 

developed for the whole domain versus those where regressions were derived separately for each class of grouped 

catchments. For a given flow signature, models were explored using a forward regression, starting from a simple model 

using only the best correlated descriptor (according to Pearson’s linear correlation) and up to a model including all 

descriptors. At each step, the descriptor giving the best improvement with respect to BIC (Bayesian information criterion) is 

added, and the algorithm stops when no further improvement can be obtained. The coefficient of determination of each 10 

model was then plotted and the final number of variables was determined based on this plot. For a given classification, as 

many models as the number of classes in the classification were calibrated for each of the 16 flow signatures, and their joint 

performances were evaluated. To be consistent, regression models were only analyzed for clusters with more than 30 

gauging stations, and therefore 17 gauging stations (from 2 classes of the catchment descriptors classification and 1 class of 

the flow signatures classification) were removed from this analysis because they ended up in classes with fewer stations. In 15 

total, 480 regression models were developed in our analysis. For each classification method and flow signature, we explored 

the influence of different types of catchment descriptors by examining their partial correlations in the regression. 

To gain better understanding of processes behind the hydrologic variability, we further examined similarities in both flow 

signatures and catchment descriptors for each of the clusters based on the CART classification. Each cluster was described 

by geographical locations, most characteristic physiography and flow regime. Based on this analysis, hydrological 20 

interpretation was used to identify potential drivers of hydrological processes, which are dominant in each cluster. The 

analysis was assisted by several sources of information for classes and sub-classes, such as boxplots of variability in both 

flow signatures and catchment descriptors, matrices showing the median characteristics in each class, visualization of 

hydrographs in diagrams, and mapping spatial patterns geographically (most of this material is found in the supplementary 

material).  25 

3 Results and Discussion 

3.1 Catchment classifications 

An automatic clustering based on flow signatures was performed first as explained in section 2.2. We found that 11 classes 

were optimal for the database used in this study. The same number of classes was then chosen for the classification based on 

catchment descriptors. As described in section 2, the third classification (through CART analysis) was based on the classes 30 

from the classification of flow signatures. However, class no.2, which contains only 4 gauges (all situated in Cyprus), was 
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excluded from the CART analysis for consistency. As a result, the classification derived from the CART tree only contains 

10 classes (numbered 1, 3-11). 

During the CART analysis and classification, we found that 20 nodes in the tree was a good compromise to allow all 10 

classes to be predicted while minimizing the complexity of the tree (to make the relationships between catchment descriptors 

and signatures interpretable) and maximizing the probability for correct classification of catchments (relative error=0.59; 5 

minimum probability of correctly classified stations at a node = 0.35). The average percentage of correctly classified gauged 

catchments in each class was 60% (ranging between 35% and 88% across leaf node, see Table A in supplementary material). 

It should be noted that one node (node 3a, see Fig 6) contained more than a third of the catchments (13,645 catchments) and 

only 35% of the gauges in that node were correctly classified. Efforts to further classify catchments in this node through an 

increase of the complexity of the tree did not result in a good compromise. Indeed, to reach a level of 40% of correctly 10 

classified gauges at all nodes, the tree had to be detailed up to more than 400 nodes, making any hydrological interpretation 

of the splits impossible. 

The first two classifications, based on clustering of either the flow signatures or the catchment descriptors alone, resulted in 

very different spatial patterns of similarity across Europe (Fig. 3, note that there is no correspondence between the 

numbering of the catchment classes used in maps 3a and 3b). Correspondence between the two classifications is not 15 

expected as the two classifications were performed using different sets of data. The third classification – where we predict 

the flow-based classification from the catchment descriptors – exhibits spatial patterns that are rather similar to the flow 

signatures-based classification, which is expected since the former is derived from the later through a CART predictive 

regression tree. Detailed discussion of results in terms of the classification based on flow signatures will, therefore, be 

focused on results obtained from the CART based classification. 20 

 

 

Figure 3. Spatial patterns of catchment classification across Europe based on a) flow signatures at flow gauges, b) catchment 

descriptors, and c) CART predictive regression tree. 

 25 

In order to analyze the specific characteristics of the different clusters in terms of catchment descriptors and flow signatures, 

boxplots representing the distribution of each variable within the clusters were plotted (see sections D.1 and D.2 of the 

supplementary material). For the classification based on flow signatures (Fig. 3a), some clear distinctions appear between 
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clusters in terms of mean specific flow and coefficient of variation of daily flow. For example, clusters no. 7 and 10 have the 

highest mean specific flows while clusters no. 2 and 4 have the highest coefficients of variation. Concerning percentage of 

agricultural area, some clusters cover a wide range of values (no. 3, 4, 5, 11) while others contain mostly catchments with 

low percentages of area covered by agriculture (no. 1, 7). 

The spatial pattern in Figure 3b (based on catchment descriptors) shows geographically coherent patterns with for example 5 

cluster No 6 bringing together mainly mountainous areas, No 4 gathering southern warm catchments , No 7 representing 

plain regions of the Netherlands, northern Germany, Denmark and Poland. Analysis of the distribution of the different 

variables in the classes (see boxplots in section D.2 of the supplementary material) showed for example that cluster No 5, 

which is mainly located in Western Norway and Iceland, gathers catchments with low mean temperatures and high mean 

precipitations with high proportion of open areas without vegetation. In terms of flow signatures, these catchments have high 10 

mean and high flows, high runoff ratios and low actual evapotranspiration. Cluster No 11contains 323 catchments but none 

of them correspond to a stream gauge included in the study. Thus, no observations are available to characterize flow 

signatures for this class. Observations are limited as well for cluster No 3 as only 13 of the 152 catchments that belong to this 

class correspond to a flow station. These two classes were thus excluded from further analysis. 

Only clustering using catchment descriptors or CART can be applied for the whole domain, i.e. in ungauged catchments. The 15 

CART-based catchment classification (Fig. 3c) was chosen for more detailed analysis (in Section 3.3) on similarities in flow 

generation processes as the clusters were more homogenous. When looking at the classification based on catchment 

descriptors, the average standard deviations of each catchment descriptor within all clusters was estimated to be 0.71, and the 

average standard deviations the flow signatures was 0.78. For the CART classification, these numbers are 0.76 for catchment 

descriptors and 0.67 for flow signatures. Hence, the former discriminates classes more in terms of physiography (0.71 vs 20 

0.76 for the CART classification) and the CART classification discriminates classes more in terms of flow signatures (0.67 

vs 0.78). 

3.2 Using regression analysis to understand controls on individual signatures 

As explained in section 2.3, multiple regression models for signature prediction were developed both using the entire domain 

and within each group of the three classifications and their results were compared. The regression constants are given for 25 

each of the 480 calibrated linear models in section E of the supplementary material. This analysis step provides us with two 

insights: first, what are the dominant controls on individual signatures?; second, how predictable are individual signatures 

given available catchment/climate descriptors? Figure 4 shows that developing regressions for each of the classes derived 

leads to better predictive performance than developing an individual regression for each signature using all catchments at 

once. This could be expected as using 10 models instead of only one increases the degree of freedom as the number of 30 

calibrated parameters increases. This result is consistent with previous findings (e.g. Almeida et al., 2016), which also found 

that single high performing regressions across large domains are difficult to achieve. On average, classification using 

catchment descriptors and CART improved the model performance by 14.7% and flow signatures by 33%. The latter yields 
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the best results since this classification is based directly on the discriminating variables (flow signatures). There are few 

differences in terms of the performance of the models obtained using either the catchment descriptors or CART for 

classification, the later giving slightly better results for most of the variables (e.g. Q5, High Flow Discharge, high flow 

frequency variability, variability of reversals, flashiness, runoff ratio), but poorer results for base flow index and low flow 

frequency. The performance of the regression models for the different flow signatures will be further discussed in part 3.4.  5 

 

 

Figure 4. Performance of regression models when calibrated for each flow signature (Table 2) and applied over the whole domain 

with a general model or one per class, using catchment classification based on catchment descriptors (CD), flow signatures (FS) or 

regression tree (CART). Performance is evaluated over the whole set of flow gauges together even if different models are used in 10 
different classes.  

The partial correlation analysis of the regression models shows that there are different controls for the different flow 

signatures (Fig. 5). The highlighted controls are rather similar across the different classification methods, i.e. the patterns 

seen in all three plots are very similar (Fig. 5a-c). This suggests that the identification of controls is robust, while the 

performances of the different regressions vary. Climatic descriptors play the most important role for most of the flow 15 

signatures, especially those related to average and high flows. For the base-flow index, geology is more important and for the 

flashiness of flow, topography is the main control. Topography also plays an important role in low flows magnitude (Q5), 

being the main driver for this signature in some of the classes and for the global model. For most of the flow signatures, the 

second most important descriptor is generally land cover (mean flow, high flows, runoff coefficient, ET, variability of 

reversals). 20 

The importance of the different controls varies across the classes (length of the boxplots in Fig. 5) and the main drivers for a 

given variable can also differ between classes (not shown in the figure). For example, climate is a strong driver for almost all 
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signatures in class 4 (warm regions in southern Europe) while other drivers play an important role in other parts of Europe, 

for example in class 7 (topography, land cover and geology are important), 9 (topography) 10 (topography and land cover). 

This shows that the drivers behind hydrological responses vary between European regions. 

 

 5 

Figure 5. Partial R2 of different type of descriptors (Table 1) used in the regression models for flow signatures (partial R2 for the 

type of descriptors is the sum of partial R2 of variables from that type used in the regression model). The boxplots show the range 

of values among the models calibrated in the different classes using the different catchment classification methods: a) flow 

signatures at flow gauges, b) catchment descriptors, and c) CART predictive regression tree. The black point gives the value for 

the general model calibrated over the whole domain. 10 
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The identified controls for the different flow signatures are generally consistent with the findings of previous studies 

conducted in different parts of the world. For instance, Longobardi and Villani (2008) and Bloomeld et al (2009) found a 

strong relationship between the base flow index and geology for the Mediterranean area and the Thames basin, respectively. 

Similarly, Holko et al (2011) found out that the flashiness index is correlated with geology, catchment area and elevation as 

well as percentages of agricultural and forest landuses for catchments in Austria and Slovakia. For catchments across the US, 5 

Yaeger et al (2012) found out that the upper tail of the flow duration curve is controlled more by precipitation intensity while 

the lower tail is more controlled by catchment landscape properties, such as soils, geology, etc. For the same US dataset, 

Sawciz et al. (2011) showed that runoff coefficient was dominated by aridity, and that the baseflow index was controlled by 

soil and geological characteristics. The influence of topography on the magnitude of low flow was also found by Donnelly et 

al (2016) through a correlation analysis of a set of flow signatures and catchment descriptors across Europe. 10 

3.3 Hydrological interpretation of classes using CART  

The regression tree classification (CART) enabled us to understand the main controls driving the separation into classes 

(rather than individual signatures), as it predicts the classes of flow signature combinations from the available catchment 

descriptors. In the resulting tree (Fig. 6), the main variable separating the different classes is the Aridity Index (AI) with a 

separating value close to 1. This purely empirical finding is nice, because this value separates the energy-limited catchments 15 

(AI<1) from the moisture-limited catchments (AI>1). As expected for classification over such a large domain, we therefore 

find climate to the first order control. Mean temperature is the second separating variable; followed by variables describing 

soil types (peat, moraine), land cover (agriculture, open without vegetation, wetland, forest), topography (area, mean 

elevation) and climate (precipitation seasonality index, mean precipitation). This indicates the order of importance of 

catchment descriptors that control flow signatures moves from climate to other descriptors. 20 

 

Figure 6: CART tree adjusted on the FS classification and used as a predictive tree for the "CART" classification. 
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Some of the differences between the hydrographs within catchment classes and across catchment classes can be seen in 

Fig.7, where we show examples of the observed time-series. We found the following characteristics, which are summarized 

in Table 3 and further supported by results figures in section C of the supplementary material: 

Class 1 has a rather smooth flow, seasonal flow pattern with a very pronounced spring flood peak. These catchments are 

located in a cold northern part of Europe and some parts of the Alps and Caucasus, characterized by spring snowmelt with 5 

some dampening in lakes and wetlands. 

Class 3 is a very large (about 1/3 of the catchments) miscellaneous class without any distinct character. As explained in 

section 3.1, efforts to further classify catchments in this class (and more specifically in node 3a) did not succeed. 

Class 4 is characterized by very spiky hydrographs with high peaks and low baseflow. The flow regime exhibits high winter 

flows and low summer flows. Catchments are located in the Mediterranean region characterized by arid climate, flow 10 

seasonality and human impacts. 

Class 5 shows relatively low flows with some influence of snow-melt (spring flood) for some catchments during some years. 

This is Northern part of central-eastern Europe characterized by low flashiness due to the large amount of water bodies, low 

topographic slopes and low elevation, which dampen the flow response. 

Class 6 has very high peaks especially during winter and high flow periods in general. Overall, flashy flow with a tendency 15 

to lower flow during summer and geographically scattered humid areas all over Europe. 

Class 7 shows in general high and flashy flows, for most catchments these are higher winter flows though for some 

catchments summer high flows instead, due to snow and glaciers melt (this is the class with most glaciers, see Fig. G of the 

supplementary material). This class encompasses wet and cold mountainous areas along the coasts in north-western Europe 

and some humid parts of the Alps. 20 

Class 8 is characterized by peaky flow throughout the year with higher peaks in winter. This class consists of smaller 

headwater catchments in some warm and humid parts of central, south-western and north-eastern Europe. 

Class 9 has rather low flow with a snow melt dominated spring flood. Low amplitude but frequent short term variability. 

These catchments are mainly in flat lands around the Baltic and Northern Sea further characterized by forests, lakes and 

wetlands. Some catchments exhibit similar geological structures (Pz, pCmi, see Fig. K in the supplementary material). 25 

Class 10 shows high flows with very high and frequent peaks, some tendency to peaks in spring, but also high flow during 

winter. Frequent short-term variability is common in these wet, high elevation and steep catchments across mountain ranges 

of Europe. 

Class 11 is characterized by sustained high baseflow and some tendency to spring season peaks in some catchments, but 

overall low seasonality of flow. These catchments are close to mountains or in lower parts of large river basins. We suspect 30 
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some outliers in this class when extrapolating the CART tree to the full European domain, as parts of the catchments in this 

class were not representative of the majority of river gauges in the same class (see Fig. M in the supplementary material, 

showing that the gauged catchments in node 11b have different characteristics than those in nodes 11a and 11c). 

 

Figure 7. 3-years hydrographs (left) and average annual hydrographs based on > 5 years daily flows (right) at the stream gauges of 5 
the CART classification classes. Grey->black: all stream gauges belonging to the class; red: stream gauge where the flow 

signatures are closest to the class median flow signatures. Note that the scales are different for classes 5 and 9 and that this 

classification doesn’t contain any class no. 2 as explained in part 3.2. 
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Table 3. Summary of findings when using the CART tree to classify catchments (CART classification shown in Fig. 3c) and extracting the main features for each cluster. Appointed 

flow signatures (Table 1) and catchment descriptors (Table 2) have median values in the 30% low/high percentile of the distribution over whole domain. Bold indicates median values 

in the 10% low/high percentile. Supporting figures with boxplots and matrices of flow signatures and catchment descriptors as well as detailed maps of spatial patterns are found in 

the supplementary material (resp. in sections C.1, C.2 and C.3). 

Class Sample size Flow signatures (FS) Catchment descriptors (CD) Spatial Pattern Dominant hydrological processes 

 No. of 
catchm. 

No. of 
gauges 

FS low FS high CD low CD high (% of map area)  

1 6878 112 RBFlash,  
ActET 

RunoffCo, 
HighFrVar, 
Mean30dMax
RevVar  

Urban, 
Agriculture, 
Pasture, Medium 
AI, DrainDens, 
Pmean, Tmean,  

Water, Forest, 
Wetland, 
OpwithVeg,, Peat, 
NoTexture, Moraine, 
PSI, pCm, PzpCmm 

N and center Scandinavia, 
W Iceland, Russia. (22.8%) 

Snow dominated flow regime with 
significant snow melt during spring but 
rather even flow during the rest of the 
year due to dampening in lakes, 
wetlands and low actual 
evapotranspiration. Flow influenced by 
some hydropower regulation. 

2 - -  - - - - - 

3 14282 536 -  -  - Agriculture, Moraine, 
PzpCmm 

Large coverage in 
Western, Central and 
Eastern Europe. (38.8%) 

- 

4 5112 91 Qsp, Q5, 
RunoffCo,  
BFI 

CVQ, const, 
RBFlash, HFD, 
LowFr, skew, 
Mean30dMax  

Forest, Pasture Agriculture, Irrigated, 
Moraine, Tmean, PSI, 
AI, PzpCmm 

Southern and Eastern part 
of Europe. (15.0%) 

High ET and high human alteration of 
natural processes. Winter flow is 
dominated by precipitation while 
summer flow is limited by 
evapotranspiration. 

5 1765 72 Qsp, CVQ,  
Q95, RBFlash , 
RunoffCo, 
skew, HFD,  
Mean30dMax 

BFI, 
HighFrVar, 
LowDurVar, 
RevVar 

meanElev, 
stdElev, 
meanSlope, 
Pmean  

area, Water, 
Agriculture, Coarse, 
Peat, Moraine , AI, 
Cz, PzpCmm  

Mainly Poland, Belarus, 
Lituania, some in S 
Sweden and Russia (5.6%) 

Water flow is dampened by large river 
channels and water bodies and flat 
lands. Some influence of snowmelt 
driven flows. One sub-class (5b) is more 
controlled by water bodies and the 
other (5a) by surrounding flood plains. 

6 3325 261 HighFrVar, 
RevVar 

Qsp, Q95, 
RBFlash, 
RunoffCo 

AI Pasture, Moraine, 
Pmean, PzpCmm,  

Rather scattered 
distribution: the Brittish 
Islands, S. Scandinavia, 
Russia, lower regions of 
mountainous areas. (6.3%) 

Precipitation driven frequent peak flows. 
One sub-class with rapid response due 
small area and high slope (6b). 
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7 678 33 ActET, 
HighFrVar, 
LowDurVar, 
RevVar 

Qsp, Q5, 
Q95, 
RBFlash, 
RunoffCo 

Urban, Forest, 
Agriculture, 
Medium , 
DrainDens, 
Tmean, AI  

stdElev, meanSlope, 
Wetland, Peat, 
OpwithVeg, Pmean, 
OpwithoutVeg, 
NoTexture , Shallow, 
Moraine, PzpCmm 

SE Iceland, Scotland, W 
Norway, some in the Alps. 
(2.4%) 

Low storage (in soil and water bodies) 
that generates quick response to 
rainfall. Most catchments have rainfall 
dominated flow but also some are snow 
and glaciers melt dominated. 

8 670 63 BFI,  
HighFrVar 

CVQ, 
RBFlash, 
ActET, skew, 
LowFr,  

area, OpwithVeg, 
NoTexture 

Pasture, Moraine, 
Pmean, Tmean, Mz, 
PzpCmm,  

Close to class 6 regions in 
center of France, 
Carpathians and Russia. 
(1.6%) 

Fast response to precipitation since they 
are small headwater catchments with 
low storage capacity. 

9 969 52 Q5, RBFlash, 
ActET 

HFD, LowFr, 
LowDurVar, , 
Mean30dMax
, RevVar  

meanElev,, 
stdElev, 
meanSlope, 
Pasture, Pmean, 
Tmean  

Water, Forest, 
Wetland, Peat, 
NoTexture, Moraine, 
PzpCmm,  

Around Baltic Sea and 
along the Northern Sea 
and English Channel coast. 
(3.2%) 

Snow dominated flow regime with 
significant snow melt during spring. 
Indications of short-term regulations. 
Continuous contribution through lateral 
flow leading to a more sustained flow. 

10 762 79 CVQ, skew, 
HFD, 
HighFrVar, 
Mean30dMax, 
RevVar 

Qsp, Q5 , 
Q95, 
RunoffCo, 
BFI, const  

Agriculture, 
Tmean, AI  

meanElev, stdElev , 
meanSlope, Pmean, 
OpwithVeg, PzpCmm, 
OpwithoutVeg, 
Shallow, Moraine,  

Mountainous regions of W 
Norway, Pyreneous, Alps, 
Bosnia, Montenegro, few 
in Carpathians and 
Scotland. (2.3%) 

Regulated flow for hydropower 
production during winter but still with 
some tendency of spring flow. 

11 774 67 CVQ , RBFlash , 
skew , HFD, 
Mean30dMax 

Q5, BFI  - area, meanElev, 
stdElev, meanSlope , 
Water, Irrigated, 
OpwithoutVeg, 
Coarse, Moraine, 
DrainDens, Cz, pCm, 
Pzi, PzpCmm 

SE France, NE Italy, W 
Danmark, SE Norway, 
some in Sweden, large 
catchments of big rivers 
like Rhine and Danube. 
(2.0%) 

Flow is governed by continuous supply 
from upstream storages either from 
large upstream areas or upstream 
mountains. (Note: Some catchments (e.g 
in Denmark) are not representative to 
the gauges in this class) 
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The hydrological interpretations of the detected spatial patterns (Table 3) pointed to climate as the main control of the 

hydrological response in most classes (which is consistent with AI as the main control in Fig. 6). This is highlighted by the 

notable influence of rainfall-driven river flow in clusters No 6, 7, 8 (Western and Northern Europe) throughout the year, and 

during winter in 4 (Southern and Eastern Europe). The latter region is most obviously strongly affected by 

evapotranspiration, while snow-dominated regimes with a spring melt season are characteristic for clusters No 1, 7, 9 and to 5 

some extent also No 5 and 10. These clusters are found in the Northern and mountainous parts of Europe.  

Regarding landscape influence, dampening effects of river flow response are found in clusters No 1 and 5, due to the 

presence of many waterbodies and vast flatland areas. Continuously strong baseflow is found in clusters No 9 and 11 through 

lateral flow, large catchment sizes or upstream mountainous areas. On the other hand, clusters No 7, 8 and 6b show fast 

response and low storage capacity, which could be attributed to their thin soils, high slopes or small catchment sizes. 10 

Impact from hydropower production was found in clusters No 1, 9, 10, which were all snow dominated but showed 

redistribution of water during the year due to regulation and in some cases influence of short-term regulation. It should be 

noted that this effect was visible although the gauges from most regulated rivers were already excluded from the study 

(section 2.1). Human alteration was also assumed to dominate the hydrological response in cluster No 4, where the 

hydrographs did not look natural and irrigated areas are large (Southern and Eastern Europe). 15 

Interestingly, some clusters were found to have similar flow signatures but for different reasons. For instance, the damping 

of peak flows in cluster No 5 could be caused by either the presence of water bodies (5b) or floodplains with a wider river 

channel (5a).  

 

The insight gained from this classification analysis varies across the different parts of the European continent as the classes 20 

correspond to different percentage of area (Table 3) and for some classes we learned more than for others. The classification 

highlighted distinct patterns for most of the classes, some of them showing several outstanding signatures or physiography 

(e.g No 1, 4, 7, 10), while others had signatures with more average magnitude (e.g. No 6 and 8). On the other hand, about 1/3 

of the catchments, covering 39% of the studied area could not be interpreted hydrologically as they did not show similarities 

in flow signature values and showed only little similarity in catchment descriptors (within 30% percentile of agriculture, 25 

moraine and one geological feature, see Table 3). For this part of Europe, we need to search for other or more detailed data 

of catchment descriptors for understanding the physical controls. 

Previous studies have noted that large-scale databases are connected with uncertainties and may sometimes even be 

disinformative at high resolution (Donnelly et al., 2012; Kauffeldt et al., 2013), which may be a reason for some of the weak 

statistical relationships and difficulties in catchment classification. European hydrology is also very much affected by human 30 

alteration, which is probably not fully covered by the descriptors. Hence, there is still need for further investigations to better 

understand hydrologic variability across Europe. 
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3.4 Application of the results: predicting flow signatures over Europe 

Figure 8 shows the result of predicted flow signatures using the regression models calibrated within each class of the CART 

classification. As shown in Figure 4, the performances of these models are diverse: some flow signatures are well modelled 

(R
2
 above 0.8 for mean specific flow and 95

th
 quantile, above 0.7 for 5

th
 quantile, runoff ratio, skewness of daily flow, mean 

30-days maximum), but some other models perform very poorly (R
2
 below 0.2 for low flow frequency and variability of low 5 

flow duration). It is well recognized that modelling low flows can be difficult (e.g. Nicolle et al., 2014; Donnelly et al., 2016; 

Zhan et al., 2016) and the correlation matrices (see supplementary material) showed that these two flow signatures were 

poorly correlated to catchment descriptors. This indicates that we currently lack understanding of process and physical 

controls to predict low flows. 

 10 

 

Figure 8. Predicted flow signatures using the regression models calibrated within classes of the CART classification (Fig 3c). Note 

that the color intervals are adapted to each signature and do not have a constant size for a given signature: for a better readability 

they are based on the quartiles of the signature distribution. The coefficients of determination of these models are shown in Figure 

4. 15 

The performances also vary from class to class (not shown here). Models are generally poor (most R
2
 below 0.4, a few 

between 0.4 and 0.6) in class 3, which is a very large and miscellaneous class, but also for classes 6 and 8 which bring 
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together mostly humid catchments, rather scattered over the continent. On the other hand, the best performances are 

observed in classes 7, 10 and 11, containing a majority of mountainous or close to mountains catchments. Good 

performances were also observed for at least some of the flow signatures in classes 1, 4 and 5 covering both northern Europe 

and arid Mediterranean regions. 

Figure 8 shows that some negative values appear when applying the calibrated regression models to predict flow signatures. 5 

This is explained by the larger range of values of the predicting variables in the whole domain than in the subset of 1366 

catchments with flow stations. For example, the predicted values for the 5
th

 quantile of daily flow are negative in 2607 

catchments (over the 35215 modelled), most of them belonging to classes 3 and 4. In class 4, the regression for Q5 uses 

percentage of forest (positive coefficient) and mean temperature (negative coefficient) as the first two predictors. Some 

negative values appear when the model is applied to catchments with a low percentage of forest and a high mean 10 

temperature. 

These mitigated results emphasize the empirical nature of these regression models (without process controls) and that they 

should not be applied outside of the observed ranges of catchment descriptors. However, these regression models help us 

improving our understanding of European hydrological processes and identifying the dominant controls of the flow 

signatures in different parts of Europe (see section 3.2). This understanding can be useful when building models that include 15 

physical reasoning. 

One implication of the identified spatial pattern of flow characteristics and their dominant physiographic controls is that one 

can delineate regions of particular flow characteristics, for which part of the hydrograph is important. This could be related 

to the season or component of the hydrograph where the flow is more sensitive to the controlling physiographic attributes. In 

addition to establishing empirical relationships between the flow signatures and catchment descriptors, like we did in this 20 

work, this has a potential application in improving dynamical rainfall runoff models across Europe. Design and results of 

process-based models should be coherent to empirical findings and when applied on the large-scale, they should thus be 

evaluated against empirical observations of large-scale spatial patterns, like the ones we provided in this paper. 

Furthermore, our results could be applied to improve hydrological models, as patterns of flow signatures are used for 

defining regions globally for regional model calibration (Beck et al., 2016). We showed that regression predictions are 25 

improved by 15% when establishing regressions for separate classes of catchment with similar signatures and controls (see 

section 3.2). This knowledge could be valuable when estimating parameter values for continental-scale hydrological models. 

Currently, there is an emerging need for parameter estimation also in ungauged basins from several modelling communities 

(Archfield et al., 2015). For instance traditional catchment models have recently been applied on a pan-European scale, e.g. 

SWAT (Abbaspour et al., 2015) and HYPE (Donnelly et al, 2016). Accordingly, global hydrological models are starting to 30 

develop rigorous calibration procedures (e.g. Müller Schmied et al., 2014). The new empirical knowledge we gained in this 

work could, for instance, be incorporated in the processes description of such models. Processes that control the part of the 

hydrograph that is sensitive to given physiographic attributes can be parameterized and calibrated separately as functions of 
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the physiographic attributes for the different catchment classes (Hundecha et al., 2016). This could ultimately improve the 

predictive ability of dynamic models in ungauged basins. 

Conclusions 

We set out to better understand hydrological patterns and their controls across the European continent by exploring 

similarities in flow signatures and physiography. Using open datasets and statistical analysis we found it possible to attribute 5 

dominant flow generating processes to specific geographical domains. From the analysis of catchment classification using 

similarities in 16 flow signatures and 35 catchment descriptors across Europe, we can conclude that: 

 Physiography is significantly correlated to flow signatures at this large scale and catchment classification improves 

predictions of hydrologic variability across Europe (15 to 33% - depending on the classification used - improvement 

in regression model skills). Different physiographical variables control different flow signatures, though climatic 10 

variables play the most important role for most of the flow signatures (12 out of 16). Topography is more important 

for flashiness and low flow magnitude while geology is the main control for base flow index. All studied flow 

signatures were significantly correlated with at least one catchment descriptor. 

 

 Classes obtained by clustering of flow signatures can be predicted from catchment descriptors. On average, 60% of 15 

the catchments were correctly classified in each class. In total, Europe could be divided into ten hydrological classes 

with both similar flow signatures and physiography. The most important physiographic characteristic for predicting 

classes is the aridity index, which separates the energy-limited catchments from the moisture-limited catchments. 

Further explanatory variables include soil type, land cover, topography and other aspects of the climate/weather. 

The CART analyses also separated different explanatory variables for the same class of catchments. For example, 20 

the damped peak response for one class was explained by the presence of large waterbodies for some catchments, 

while large flatland areas explained it for others catchments in the same class. 

 

 Interpretation of dominant flow-generating processes and catchment behavior (such as rainfall response, snow-melt, 

evapotranspiration, dampening, storage capacity, human alterations) could explain the hydrologic variability across 25 

Europe to a large extent (61% of the studied domain area). Distinct patterns with characterized flow signatures and 

processes appeared for some European regions (e.g. Northern Europe, arid Mediterranean regions, mountainous 

areas), providing a useful information for predictions in ungauged catchments in these areas. On the other hand, 

flow signatures from 1/3 of the catchments (mainly situated in central Europe) could not be classified or understood 

based on the catchment descriptors available for this analysis. These limitations of our large-scale study call for 30 

more detailed analysis with additional data in these areas. 
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 Links between flow characteristics and physiography could potentially be used in spatial mapping of flow 

signatures (for instance mean specific flow, 5
th

 and 95
th

 quantiles, runoff ratio, skewness of daily flow, mean 30-

days maximum) for ungauged basins, which might be used in hydrological modeling in the future. The ten classes 

of similar catchments may facilitate model parameter estimation in pan-European hydrological models. 

 5 

 Open data sources enable new forms of comparative science and show large potential for research to generate new 

knowledge and hydrological insights encompassing variable environmental conditions. However, for Europe there 

is a lack of homogenous datasets for human impact on flows, such as local water management, abstractions and 

regulation schemes. There is thus still a need for opening up more public sector data for re-use and, especially, for 

compiling large-scale databases on the global or continental scales across administrative boarders.  10 
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