

1 **Response to reviews**

2 **Reviewer #1**

3 We would like to thank Lieke Melsen for her constructive comments. We will try to improve
4 on the raised issues.

5

6 *The first thing that struck me when getting introduced to the catchments that were used in this*
7 *study (Table 1) is that the water balances are not closing. For the Hubbard catchments this is*
8 *hard to check since only PET is given and AET will be lower, for the HJ Andrews catchments,*
9 *on the other hand, water is 'lost'. Of course it is not a big surprise that a water balance is not*
10 *closing, given the uncertainty in the observations, but it becomes tricky when the water*
11 *balance is used to determine the moisture storage capacity (although you could say that this*
12 *is also the case for hydrological models that are based on the water balance and that are*
13 *calibrated on such data). The potential 'disinformation' in observations might influence your*
14 *estimation of $S_{u,max}$. I would at least expect a discussion of this potential source of*
15 *uncertainty, and an estimate of the influence on the results.*

16

17 This is a very valid point. We relate the fact that the water balance does not close mainly to
18 the calculation of the potential evaporation, which here, due to data availability, was
19 estimated from temperature only. We will add a paragraph in the discussion on the
20 consequences of these uncertainties for the estimation of S_R .

21

22 *Lines 7-18 on page 10 show a difficulty of the water-balance method to identify $S_{u,max}$; you*
23 *have to assume no storage change. The Introduction describes the importance of flexible*
24 *$S_{u,max}$ for changing conditions; e.g. land-use change and climate change. And this is where*
25 *it becomes difficult; under a changing climate (no steady state conditions) you can no longer*
26 *assume that there is no storage change. In other words; to me it seems that the method to*
27 *identify $S_{u,max}$ based on the water balance is not applicable in a changing climate.*

28

29 We agree with the statement that under changing conditions storage may change.
30 Nevertheless, in the applied method the water balance is merely used to derive an estimate of
31 average transpiration rates. Therefore, we argue that under changing conditions, this estimate
32 is an upper limit of the actual transpiration, whereas in reality it may be lower.

1 In addition, a long-term water balance would not reflect the yearly variations in climate,
2 whereas rather short term water balances may be influenced by storage changes. This is also
3 why, in a trade-off and to keep the effects of storage change as low as possible, the water
4 balances over 2-year periods were used. To substantiate this, to put into context and to assess
5 the effect of storage change, please see Figure 1 below, where, for comparative reasons, we
6 additionally estimated $S_{u,max}$ using a 5-year window to further reduce the influence of
7 storage changes. It can be noted here that the green shaded area, representing the water
8 balance-based estimates, is flatter compared to the results obtained with the 2-year water
9 balance (maximum 500mm compared to 600mm in Figure 4 of the manuscript). This is due to
10 more averaging by taking a longer period for the water balance estimation. In spite of that, the
11 general patterns hold, and in our opinion supports our results.

12 Eventually, we would like to point at the results obtained in the undisturbed reference (or
13 control) watersheds, in Figure S8 of the Supplementary Material. These results are obtained in
14 absence of any land use change, and thus reflect only the changes due to climatic variability
15 (and are thus a proxy for climate influenced inter-annual storage changes). The different
16 pattern compared to the deforested catchments then indicates the isolated effects of storage
17 change due to deforestation and thus transpiration (under the assumption that both control and
18 deforested catchments were subject to the same climate variability). Thus, we would argue
19 that the changes in storage that may occur, are relatively small compared to the annual fluxes
20 of precipitation and discharge.

HJ Andrews WS1

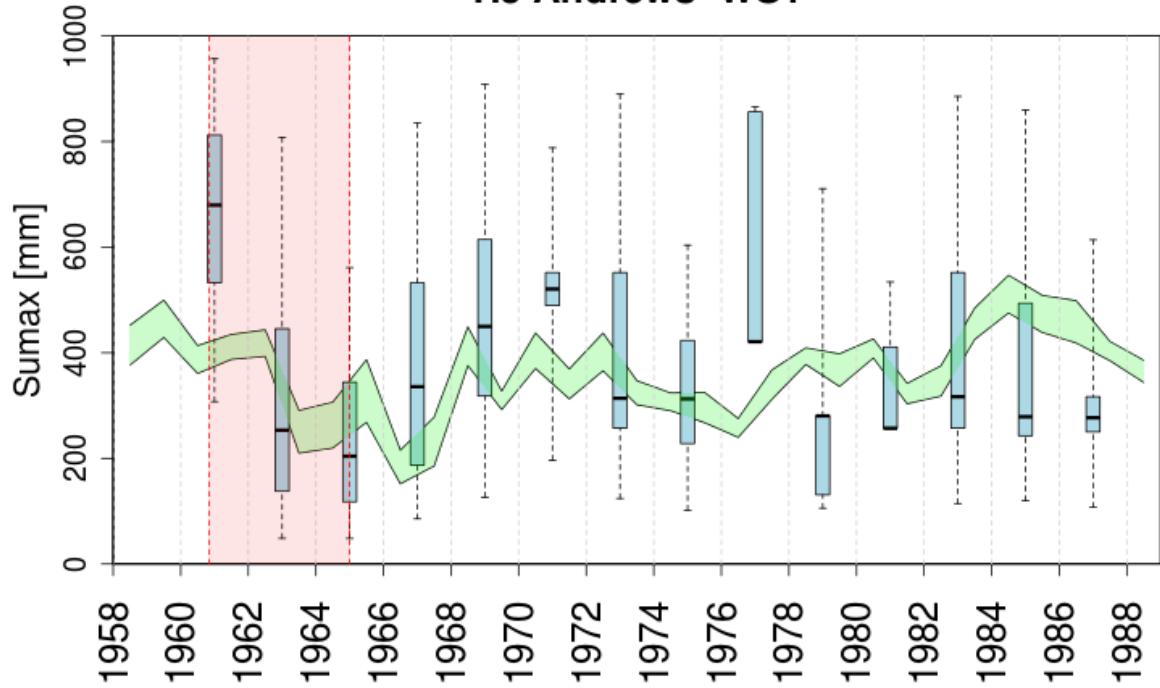


Figure 1. Evolution of root zone storage capacity $S_{R,1yr}$ from a 5-year water balance-based estimation (green shaded area, a range of solutions due to the sampling of the unknown interception capacity) compared with $S_{u,max,2yr}$ estimates obtained from the calibration of FLEX (blue boxplots) for HJ Andrews WS1. Red shaded areas are periods of deforestation.

As a proof of concept, a model was included with a dynamic $S_{u,max}$, which was calibrated by expert-eye to fit the $S_{R,1yr}$ -values that were obtained by the water balance method. I agree that a proof of concept is a first step in increasing the process representation in hydrological models. I would, however, appreciate it if the authors would provide the reader with some suggestions on how to incorporate a dynamic $S_{u,max}$ 'more correctly' in hydrological models. Generally, I am in favor in improving realism in hydrological models, but, extra parameters imply extra uncertainty and the uncertainty should not overwhelm the (hopefully) improved model efficiency. The water balance method seems not feasible in non-steady-state conditions. Do the authors have any suggestions on how to include a dynamic $S_{u,max}$, or suggestions on observations that could help in this respect?

We would like to suggest simple conceptual formulations of growth dynamics, similar to the growth function applied in this case. This would lead to the addition of, at most, three new parameters. These could be free calibration parameters, but we agree that this may lead to additional uncertainty. And even though the water balance method may only give an

1 estimation of the dynamics of the root zone storage capacity, this method may prove valuable
2 to derive at least some information about the *shape* of the growth curve.

3 It can also be noted that transpiration estimates are derived from the water balance in this
4 case, but there are also (remote-sensed) products available to estimate the transpiration. In this
5 way, issues with water balances that may not close are fully avoided.

6
7 *Based on the remarks above, I would suggest to add a separate section to place the results in*
8 *context (a sort of Discussion, but then different from the one that is included now in the*
9 *Results section).*

10
11 We will add a separate section in the discussion about the uncertainties that are introduced by
12 1) data used in the water balance, 2) storage changes affecting the water balance. In addition,
13 we will elaborate in Section 4.4 on how to explicitly apply our findings in conceptual
14 modelling.

15
16 *I know that in the work op Gao and de Boer-Eusink it is shown that climate mainly dictates*
17 *Su,max rather than the soil. It is, however, maybe valuable to have a look at some of the work*
18 *of Ilja van Meerveld, who investigated the effect of land use change on soil properties, where*
19 *it is discussed that the hydraulic conductivity changes as a result of land use change. Could it*
20 *be possible that the changes in Su,max that you find could actually be assigned to the wrong*
21 *assumption that the Ksat does not change after land-use change? There are, of course, more*
22 *parameters in a hydrological model besides a constant moisture storage capacity, that might*
23 *actually not be completely constant. How can you be sure that the effect you find can only be*
24 *assigned to the root zone storage and not other parameters?*

25
26 Indeed, there is no absolute certainty that other parameters are not affected by the land use
27 change. Nevertheless, when vegetation is removed, it is not inconceivable to assume that the
28 vegetation-related parameters are considerably affected. This can also be seen from the
29 posterior-distributions of the other parameters, see the Supplementary Material. In the 2-year
30 window calibration, all parameters were left for calibration, and they all had the freedom to
31 change over time. Nevertheless, the root zone storage capacity showed the most dynamical
32 character, whereas others remained more constant in time. In addition, we would expect that
33 changes in hydraulic conductivity are tightly linked to changes in porosity. In other words, an

1 increase of porosity is not unlikely to decrease the flow resistances and thus increase Ksat,
2 while simultaneously reducing the storage capacity. It must also be noted that hydraulic
3 conductivity Ksat cannot be compared directly to any of the catchment scale conceptual
4 model parameters applied here.

5
6 *In the calibration of the four hydrological models, two Kling-Gupta terms and the Volumetric
7 Efficiency are used as objective function. As far as I can see, the volume error is already
8 included in the KGE by means of the bias (Beta-term), which would mean that in your
9 calibration strategy, you put extra emphasize on the volume error by explicitly including this
10 term twice (or actually, three times since you use KGE twice). Why is that justified?*

11
12 This is a valid point; we will compare the outcomes with a calibration based on a combination
13 of KGE and logKGE to test how much this influences our results.

14
15 *In your dynamic model, you included extra parameters to describe $S_{u,max}$, and concluded
16 that it improved the model performance for several indicators. How can you make sure that
17 this improvement is caused by including this process in the model? I would say that for many
18 models you can obtain a (marginal) improvement in model performance by including an extra
19 degree of freedom (an extra parameter), independent of the process that this parameter
20 describes or the realism of the parameterization.*

21
22 To avoid this, both model approaches were given the same number of degrees of freedom. In
23 other words, both models had the same number of free calibration parameters. This is why the
24 growth functions were fixed, and not left for calibration.

25
26 *I think the research questions in the summary do not exactly reflect the research question in
27 the manuscript (Line 1-5 on page 6).*

28
29 We will rephrase it to be more consistent throughout the manuscript.

30
31

1 **Review #2**

2 We would like to thank Anonymous Referee #2 for his/her feedback. We will try to improve
3 on the raised issues.

5 **General comments**

7 *In general, I find the paper too long. Maybe some details of the methodology can be moved
8 into the Supplementary Material.*

10 Agreed. We will shorten some parts of the manuscript.

12 *I suggest to be more precise in the title. First, ending the title by “under change” seems quite
13 strange to me. Is it still land use change, or climate change or other ? (same remark at line 10
14 of page 2). Then, “predictions” is too vague because it can be applied to many processes
15 (prediction of discharge, of flood, of vegetation dynamics...). In addition, more discussion on
16 the potential applications with this kind of method is needed in the conclusion and
17 perspectives.*

19 We rephrased the title to: “The evolution of root zone moisture capacities after deforestation: a
20 step towards hydrological predictions under land use change?”. In addition, we will add a
21 discussion on practical applications of the method in conceptual modelling (also suggested by
22 Referee #1).

24 *The results and the figures, which include many hydrological signatures, are not always
25 simple to read and to analyze. Then, the interest of the discussion can be lost during the
26 reading of Section 4. Thus, I would recommend to split this section in 2 sections to distinguish
27 Results and Discussion.*

29 We decided to merge the results and discussion in order to avoid repetition and to make the
30 article more concise. We still prefer to keep it like this, also with regard to the first comment
31 (the paper is still rather long). Nevertheless, we will have a critical look at the figures and
32 discussion, and will try to clarify wherever we can.

1 **Specific comments**

2

3 **Abstract**

4 *1/ “long-term data” => you can be more precise*

5 *2/ line 24 of page 2: “better representations of high flows and peak flows” => what about the*
6 *low flows ?*

7

8 *1./ We changed it to “long-term data (30-40 years of observations)”*

9 *2./ The low flows improved for the Hubbard Brook catchments, whereas the low flows did*
10 *not show improvements in the HJ Andrews catchment. See also page 24, line 13-26.*

11

12 **Introduction**

13 *3/ To be more precise, the vegetation partitions first precipitation into interception, stemflow*
14 *and throughfall. Then, the fraction of rainfall that reaches the surface is partitioned into*
15 *evapotranspiration, drainage and also surface runoff.*

16 *4/ line 28 of page 3: the year is missing for Vose et al. and also in the References section.*

17 *5/ line 10 of page 4: interception/soil evaporation/transpiration and surface runoff/drainage*

18 *6/ line 21 of page 4: “system” is unclear. Please reformulate.*

19 *7/ lines 30-32 of page 4: The sentence is difficult to read. Please rewrite.*

20 *8/ lines 6-7 of page 5: SR has already been defined in page 3, line 15. The best is to combine*
21 *“sometimes also referred to as plant available water holding capacity” with the text in line*
22 *15 of page 3.*

23 *9/ lines 18-21 of page 5: the sentences are very unclear. Please reformulate.*

24 *10/ lines 3-4 of page 6: words are missing in the 2nd hypothesis formulation, please check.*

25

26 *3/ We fully agree, and we will rephrase the first sentence to be more correct.*

27 *4/ We corrected this.*

28 *5/ We rephrased it into “runoff components and evaporation”, as we tried to lump the terms*
29 *together that you refer to.*

1 6/ We changed it to “hydrological system”
2 7/ We rephrased this.
3 8/ We changed this and placed the text at page 3, line 15.
4 9/ We rephrased this.
5 10/ We checked and rephrased the sentence.
6

7 **Section 2**

8 *11/ In each sub-sections, the references to Table 1 for watershed characteristics should be*
9 *merged and written once in the section, just before sub-section 2.1. Then, the references at*
10 *lines 12, 19-20 of page 6 and lines 1-2 of page 7 can be removed.*

11
12 11/ We agree with the suggestion and changed this.
13

14 **Section 3**

15 *12/ lines 14-17 of page 9: For long-term mean variables: $Et \Rightarrow Et$. The same for Q and Ep .*
16 *13/ line 5 of page 10: “obtained by equation 6” \Rightarrow “obtained by equation 7”*
17 *14/ lines 7-9 of page 10: this is a strong assumption, especially under climate change where*
18 *the water storage changes. This point should be more discussed when the method based on*
19 *the water balance is applied.*
20 *15/ line 11 of page 11: “FLEX-based model” \Rightarrow “The FLEX-based model”*
21 *16/ line 1 of page 12: this process is not represented in Figure S2.*
22 *17/ line 9 of page 12: what are the fluxes ? Moreover, transpiration is indicated in the text but*
23 *“Evaporation” is written in Figure S3. Please, check the coherency between the text and the*
24 *Figure.*
25 *18/ line 11 of page 13: what is n ?*
26 *19/ line 4 page 14: Z95 should be Zp95*
27 *20/ line 2 page 16: “Table 2” \Rightarrow “Table 3”*

1
2 12/ We changed this.
3 13/ We changed this.
4 14/ We agree with this and will add a discussion on this (see also the Response to Referee #1)
5 15/ We changed this.
6 16/ This is not the case for the current set-up. We will remove the sentence.
7 17/ We rephrased it to make it more consistent.
8 18/ n is a weighing exponent. We will clarify this in the text.
9 19/ We changed this.
10 20/ We changed this.

11

12 **Section 4**

13 21/ *lines 23-24 of page 17: this is not particularly obvious in Figure 2f.*
14 22/ *lines 20-21 of page 24: I do not see this improvement on Figure 10, maybe due to the
15 scale of the plots.*

16

17 21/ We do agree that the pattern is rather variable over time, but comparing the highest peaks
18 before deforestation with the peaks after deforestation show that the values were higher before
19 deforestation. The same applies to the lower values. Calculating the mean autocorrelation
20 before deforestation and after also confirm this; 0.65 before deforestation and 0.58 after
21 deforestation.

22 22/ More specifically, we are referring to the parts of the hydrograph at the end of June until
23 August. Please note the white space between observation and model in the case of a constant
24 root zone storage capacity, whereas for the dynamic model they overlap.

25

26 **Table/Figures**

27 23/ *Table 1:*

28 • *I would add a column for the abbreviations of each catchment, as used in figure 9 (see
29 my comment hereafter for the whole text).*

1 • “*Precip*” should be “*Precipitation*”.

2 • what is “*Pot.*”? It is the potential evaporation?

3 • remove “%” from 87% in the last line.

4 24/ Table 3: the reference for Jothityangkoon et al. (2001) is missing in the References
5 section.

6 25/ Figure 1: in the label of y-axis, “*P*” should be “*PE*”

7

8 23/ We agree with the suggestions/corrections and will change it. “*Pot*” refers indeed to
9 potential evaporation.

10 24/ We corrected this.

11 25/ We corrected this.

12

13 **Supplementary material**

14 26/ Table S1: please check the *Imax* values (Min=Max=0 !)

15 27/ Figure S2:

16 • replace “*Snow*” term in the figure by “*S*”.

17 • *Peff* and interception are not represented in the Figure.

18 • *q3* should be replaced by *q2* in the figure.

19 28/ Table S2: the wilting point cannot be higher than the field capacity. Please check the max
20 values.

21 29/ Figure S3:

22 • replace “*Snow*” term in the figure by “*S*”.

23 • *q3* should be replace by *q2* in the figure.

24 • *Q* should be replace by *Qf*.

25 • what is *dq* ?

26 30/ Figure S4: the surface runoff is missing.

27

1 26/ This should be 0 – 5 mm
2 27/ We changed this.
3 28/ These percentages should be added up (they do not represent the actual wilting point and
4 field capacity). Thus, when wcep is 0.2, and wcfc 0.5, the wilting point is at 0.2 of the soil
5 depth and the field capacity at 0.7 (0.2+0.5).
6 29/ We corrected this and added the missing description of dq.
7 30/ Correct, this model structure does not take overland flow into account.

8

9 **In the whole text**

10

11 –choose between “parameterization” and “parametrization”

12

13 We changed it throughout the whole manuscript to “parameterization”

14

15 –I suggest to use the abbreviations of the catchments in the text, as used in figure 9. It will
16 facilitate the reading of the paper.

17

18 We will consider this, though this is just a matter of taste. Personally, a text with too many
19 abbreviations may also become harder to read.

20

21 –there is a confusion all along the text when the term “evaporation” is used. The term
22 “Evapotranspiration”, which is the sum of soil evaporation, interception evaporation and
23 transpiration, is more adequate.

24

25 We tried to be consistent throughout the manuscript and refer to evaporation when we mean
26 all the evaporative fluxes. We actually believe that the term “evapotranspiration” should not
27 be used and we would like to refer to Savenije (2004) for arguments to not use this term.
28 Briefly, transpiration is a bio-physical process, with different timescales and characteristics

1 thereby being distinct to all other evaporative fluxes, which are purely physical processes.
2 The term “evapotranspiration” is therefore a misleading definition, adding up different kinds
3 of processes.

4

5 **References**

6 Savenije, H. H. G.: The importance of interception and why we should delete the term
7 evapotranspiration from our vocabulary, Hydrological Processes, 18, 1507-1511,
8 10.1002/hyp.5563, 2004

9

10

1 **Review #3**

2 We would like Dr. Ducharne for her feedback on the manuscript. We will try to improve on
3 the comments and raised issues.

4

5 ***1. We lack a lot of information regarding the models and their use. The main idea is to***
6 ***propose evolutions of the root zone moisture capacity (RZMC) at a yearly time step by a kind***
7 ***of inverse modelling using the observed river discharge of the perturbed and unperturbed***
8 ***catchments as input.***

9 *1.a) The simple “water balance model” allows a direct inversion of the RZMC, given*
10 *parameters describing the canopy interception processes and the vegetation recovery time,*
11 *and restricting the water balance to only 5 months between May and October, to get rid from*
12 *the influence of snow (the experimental catchments are located in Oregon and New*
13 *Hampshire):*

14 - *Unless vegetation growth is really restricted to these 5 months, this tends to underestimate*
15 *the RZMC, and could explain why the Hubbard Brook estimates are so small for forested sites*
16 *(23 mm on Figure 1)*

17

18 We agree with it that vegetation growth is not restricted to these 5 months, but we argue that
19 droughts are restricted to these 5 months. Changing the approach to the full year will indeed
20 result in higher values, but only because water will be stored in the root zone (the simple
21 method does not account for snow), whereas it is actually snow storage. Nevertheless, the
22 actual dry periods are generally in July – August for these catchments. Thus, the deficit of E_t – P ,
23 which actually controls the storage capacity in the root zone, will be the largest in these
24 periods. We would like to clarify here, that for the estimation of the mean E_t the full two year
25 period is considered, only the calculation of daily deficits of E_t – P was taken over the 5
26 month summer period.

27

28 - *The total evaporation seems to comprise only transpiration and interception loss, and*
29 *neglect soil evaporation: is it justified?*

30

1 It is correct that we do not treat soil evaporation as individual process. Rather, we lump the
2 physical process of evaporation using one interception storage. This will without doubt
3 introduce some uncertainty, but separating the processes is not really warranted by the
4 available data and will result in increased parameter equifinality and thus considerable
5 additional uncertainty. In addition, we argue that our transpiration estimates represent upper
6 limits of transpiration, assuming a negligible amount of soil evaporation. In reality, the
7 transpiration will indeed be lower due to soil evaporation. We will add a paragraph about this
8 in the discussion.

9

10 *- Transpiration depends on a potential evaporation, which is not explained in the paper: does
11 potential evaporation depend on the development of the canopy, as could be quantified by the
12 Leaf Area Index (LAI)? This dependence is well known fact, and can be described for instance
13 by the crop coefficient when following the FAO guidelines of Allen et al. (1986), or as a
14 function of LAI like in the SVAT (Soil-Vegetation-Atmosphere Transfers) models. If such
15 dependence exists in the experimental catchments, it should lead transpiration to decrease
16 after deforestation, and recover with vegetation regrowth, with opposite effects on runoff, in
17 agreement with Figure 2(a-c). In this case, if the model overlooks the positive link between
18 vegetation development and the magnitude of transpiration, it should lead to underestimate
19 the decrease of transpiration after deforestation, and to overestimate the decrease of the
20 RZCM to match the increased observed runoff.*

21

22 The potential evaporation was determined based on a temperature based method (Hargreaves
23 equation), and thus did not depend on vegetation. We will add this information in the Methodology.
24 Also, the water balance based model used transpiration estimates, which were exclusively based on the
25 observed water balance. Here, potential evaporation is thus not needed to determine the mean
26 transpiration and was only used to scale the long-term mean value of transpiration to a daily time
27 series.

28

29 *- A Monte-Carlo approach is used to assess the effect of the 3 parameters involved in the
30 model (see Table 2) and this allows deriving a very useful uncertainty range around the
31 estimated RZCM. Yet, no justification is given regarding the selected range for these
32 parameters, which is a strong constrain to the uncertainty.*

1 We would like to refer to Figures S9-S26 in the Supplement. Here, all posterior distributions
2 of the parameters are shown. It can be seen that none of the parameters has an extremely
3 narrow posterior distribution close to one of the bounds of the prior distributions (i.e. upper
4 and lower limits), which would point towards too narrow prior distributions. Only in a few
5 instances, the distributions are close to values of zero, but negative values are not possible for
6 these parameters (e.g. Figure S9b and S9f.) Thus, in general the applied parameter ranges
7 were sufficient for the calibration.

9
10 *1.b) The other four models are published conceptual hydrological models, and are calibrated over*
11 *consecutive 2-yr windows to match the observed water discharge. These models seem to describe the*
12 *full hydrological year, including the periods of snow, which is a significant difference with the*
13 *previous approach. Even if some information is given in the Supplementary (but not at the same level*
14 *for all the models), the reader should find in the main text if the snow is explicitly described, and how*
15 *the evapotranspiration is calculated (in particular how it depends on the vegetation development, for*
16 *the same reasons as explained above).*

17
18 The conceptual models applied here all use similar functions as originally proposed by Feddes
19 et al. (1978), with the resistance for transpiration as a part of the model (see equations in
20 model descriptions in supplementary material S2). Thus, the models reflect the vegetation
21 influence on transpiration, whereas the potential evaporation exclusively reflects the total
22 energy available for evaporation, which is common practice in the vast majority of
23 hydrological models. All models also used a snow module, as we described in the manuscript
24 (p11, line 12 ; p11, line 27; p12, line 8). Nevertheless, we will try to state more clearly in the
25 model descriptions how evaporation and snow are determined.

26
27 *Some details should also be given regarding the calibration itself: How many parameters are*
28 *calibrated in addition to RZCM (Su,max) for each model? Can all of them change in each 2-*
29 *yr window, or does only Su,max change? How many tested parameter sets? How many*
30 *parameter sets are kept at the end of the calibration (equifinality) and what are the*
31 *corresponding performances to fit the observed discharge? There is a long paragraph from*
32 *p12L27 to p13L14 which is rather hard to follow for non-specialists of optimization, and*

1 could usefully be replaced by objective information regarding the qualities and weakness of
2 the resulting calibration.

3

4 We will add the number of free parameters for calibration in the model descriptions.
5 Generally, almost all parameters were left as free calibration parameters. All parameters in
6 HYMOD (8 parameters) and TUW (15) were free calibration parameters. The 9 parameters of
7 FLEX were all free for calibration, only the slow reservoir coefficient K_s was sampled
8 between narrower bounds, which were based on a recession analysis. The HYPE model used
9 15 parameters for calibration. We will also add information about the number of initial model
10 runs (100,000 runs) and the number of final feasible parameter sets. The performances for
11 three calibration objective functions (KGE, logKGE and VE) are summarized in Figures S5-
12 S7, for each sub-period of calibration.

13

14 *1.c) Another model is used, and presented in 3.5. It's an adaptation of FLEX, one of the above
15 four models, in which an a priori rule for RZCM recovery with time after deforestation is
16 added. First, it would probably be clearer if this model was presented just after the others.
17 Second, much information, again, is lacking:*

18 - *How is the evolution I_{max} described since it also varies with time (p15L17-18)?*

19

20 We will clarify how I_{max} changes in time in that model. We applied the same growth
21 function (Equation 11), with growth parameters a and b set to respectively $0.001 \text{ [day}^{-1}]$ and 1
22 [-].

23

24 - *How are the parameters a and b of Eq. 11 selected? The resulting values are only given in
25 the caption of Fig8, but don't they deserve some analysis? Do they relate logically to the
26 recovery times that are discussed in section 4.3?*

27

28 We will clarify this, but we would also like to refer to lines 12-16 of page 15. The parameters
29 were determined based on a qualitative judgement (thus, just with the 'expert-eye') as it was
30 just meant as a proof-of-concept. We fully acknowledge (p.15, 1.20-27) that this is a mere

1 exploratory analysis and a more thorough analysis, which may also include explicit and more
2 detailed process understanding on root development, may be needed to have more adequate
3 values for the growth parameters.

4

5 - *How is decided when is RZCM minimum, and which is the minimum value, since Eq. 11 only*
6 *describes the increasing part of the variations shown on Figure 8?*

7

8 The minimum and constant values are determined in the same way as the shape of the curve,
9 with qualitative judgement.

10

11 - *Fig 8 shows performance criteria with and without the dynamic formulation of Su,max: to*
12 *which period do they correspond? We must assume that the period is the full observed period*
13 *for each catchment, but does it make sense for HB5, where half of the full period is before*
14 *deforestation? Couldn't it be interesting to test the proposed function over the recovery*
15 *period only?*

16

17 The performance criteria in Fig. 8 correspond to the period just before the treatment until 15
18 years after the treatment. Therefore, it was not for the full observation period, also for
19 Hubbard Brook WS5. To be more precise, HJ Andrews WS1 was evaluated from 01-10-1960
20 until 30-09-1981, Hubbard Brook WS2 from 01-10-1962 until 30-09-1983, Hubbard Brook
21 WS5 was evaluated from 01-10-1982 until 30-09-1999. In this way, we tried to 'zoom in' on
22 the recovery period, just as you suggested, see also page 14, lines 22-25. We will make this
23 clearer in the revision.

24

25 **2. The conclusions are too frequently not supported by the Figures. Examples:**

26 - *p17,L3-4: "the three deforested catchments in the two research forests show generally*
27 *similar response dynamics after the logging of the catchments (Fig.2)." No, for each of the*
28 *rows/signatures, you can find one outlier over the three catchments.*

29

1 This is why we stated it as ‘generally similar response dynamics’. We never claim the
2 responses are exactly the same for all the catchments. We will rephrase this to ‘on balance
3 similar response dynamics’.

4

5 - *p18, L24-26 (regarding Figure 4): “Comparing the water balance and model-derived*
6 *estimates of root zone storage capacity SR and Su,max, respectively, then showed that they*
7 *exhibit very similar patterns in the study catchments.” This is abusive since TUW and*
8 *HYMOD completely miss the difference between HJA and HB, and HB5 doesn’t show a clear*
9 *response to deforestation against inter-annual variability for most models. When discussing*
10 *Figure 4, the focus is put on the differences in RZCM due to deforestation and recovery. Yet,*
11 *these differences are much smaller than the ones between the sites, and have a similar*
12 *magnitude as the inter-annual variability for the two Hubbard Brook catchments. This should*
13 *be taken in consideration in the discussion.*

14

15 We would like to point out that we discuss the pattern, thus the dynamics, not the absolute
16 values. Especially TUW and HYMOD show a bias (mostly due to the absence of an
17 interception storage) compared with the water-balance method, but still show similar
18 dynamics (decreasing during deforestation and a gradual increase afterwards). We discussed
19 the possible reasons for the difference between the HJ Andrews and Hubbard Brook
20 catchments (p19, line 5-11 and p20 line 16-18), but we will elaborate more on this in the
21 revision. Briefly, HJ Andrews has a strong seasonal regime, whereas in Hubbard Brook the
22 precipitation is more equally spread throughout the years. Therefore, HJ Andrews has a high
23 need of large root zone storage capacities to allow access to sufficient water throughout the
24 relatively long dry summer period, whereas the Hubbard Brook catchments can survive with
25 much smaller storage volumes, due to significant summer rainfall and thus shorter dry periods
26 that need to be bridged. We agree that inter-annual variability is high, but this is also the
27 reason why we carried out the trend analysis with the undisturbed reference watersheds. In
28 this way, the influence of inter-annual climatic variabilities should be filtered out.

29

30 - *p20, L23-26: “It can be argued, that a combination of a relatively long period of low*
31 *rainfall amounts and high potential evaporation, as can be noted by the relatively high mean*

1 annual potential evaporation on top of Figure 4b, led to a high demand in 1985". But the top
2 three plots on Fig 4 are so small we can't see much!

3

4 We will make the plots bigger for clarity.

5

6 - p21, L3-4: "Generally, the models applied in Hubbard Brook WS2 show similar behavior as
7 in the HJ Andrews catchment." It's far from being obvious for HB5.

8

9 This is absolutely correct and therefore, we do not state this.

10

11 - p22, L16-17: "The results shown in Figure 4 indicate that these catchments had a rather
12 stable root zone storage capacity during deforestation" (for HJA and HB2). Deforestation is
13 indicated by a red band, and we clearly show a decreasing, not stable, RZCM during
14 deforestation in HJA; for HB2, we don't see anything because the y-axis range is too large.

15

16 We will rephrase this; we basically meant from more or less halfway the period of
17 deforestation (for HJ Andrews just after 1964, and Hubbard Brook WS2 1967). We will try to
18 make the plots clearer as well.

19

20 - p23, L24-28: "Evaluating a set of hydrological signatures suggests that the dynamic
21 formulation of $S_{u,max}$ allows the model to have a higher probability to better reproduce most
22 of the signatures tested here (54% of all signatures in the three catchments) as shown in
23 Figure 9a. A similar pattern is obtained for the more quantitative SRP (Figure 9b), where in
24 52% of the cases improvements are observed." This is abusive because you get degradation
25 of the performance for 46% of the signatures in Fig9a, and 48% in Fig 9b, which is far from
26 being negligible. If you look at HB5 only, the degraded signatures dominate, which
27 contradicts the conclusion at p24, L27-29.

28

1 We only stated what we found and never deny that 46% and 48% of the signatures show a decrease in
2 performance for the two metrics. Moreover, it is also for these decreasing performances that we added
3 the discussion starting from p24, line 13 until p25, line3, where we explained the origins of these
4 decreases. The statement on p24, line 27-29, also refers to the rather light colors of red and blue,
5 which indicate probabilities around 0.5 and S_{RP} values around 0, thus not a strong preference for one
6 of the two models. We will further clarify this in the revision.

7

8 - *p24, L6-7: "In addition, a dynamic formulation of $S_{u,max}$ permits a more plausible*
9 *representation of the variability in land-atmosphere exchange following land use change".*
10 *Where does this come from? Provided that no signature in Fig 9 and Table 3 addresses the*
11 *variability of land-atmosphere exchanges (all the signatures describe elements of the*
12 *streamflow time series).*

13

14 We will remove this sentence.

15

16 - *p24, L9-10: "Fulfilling its function as a storage reservoir for plant available water,*
17 *modelled transpiration is significantly reduced post-deforestation, which in turn results in*
18 *increased runoff coefficients": if I see well on the very small Fig 2c, the results show exactly*
19 *the opposite for HB5.*

20

21 We agree with this, but please note that in the line referred to in this comment to (p24, line9-
22 10) we exclusively discuss the results for HJ Andrews. The two Hubbard Brook catchments
23 are discussed in the following paragraphs.

24

25 - *p24, L19-21: "This can also be clearly seen from the hydrographs (Figure 10), where the*
26 *later part of the recession in the late summer months is much better captured by the time-*
27 *dynamic model." Personally, I see exactly the opposite, as the time-varying RZCM model in*
28 *Fig 10b overestimates the peaks, which is not the case of the constant RZCM model in Fig*
29 *10a.*

30

1 We are confused by this comment, as we clearly see the same considering the peaks in Figure
2 10b, which we also discuss at page 21, line21-26. We agree that the improvement in the lower
3 parts of the recession (thus not the peaks), is hard to see in Figure 10b, but we still believe this
4 statement is supported by the figure. Please note the additional white space between observed
5 and modelled discharge in the recession of July – August in Figure 10a (time constant model)
6 compared to Figure 10b (time-varying model). To clarify, we will add insets into figs.10a and
7 b, zooming in to a selected low flow period.

8

9 *- Finally, the conclusion relies on a selection of the results that support the assumption of the*
10 *authors, without considering the results that contradict it, and without a hint of doubt. The*
11 *limits of the approach (including the model dependency, the small sample of observations*
12 *which are not perfectly consistent) are not all discussed, nor any alternative frameworks. The*
13 *authors could for instance consider the possibility that the RZCM could remain unchanged*
14 *but not fully exploited by the vegetation. This is typically what helps some types of vegetation*
15 *to resist to drought conditions.*

16

17 We tried to keep the discussion brief and stated here the general findings. We believe there
18 are good reasons the results in Hubbard Brook WS5 were less clear, which we also discussed
19 (e.g. p21, line 14 until p22, line 3). Nevertheless, we will add in the discussion and conclusion
20 sections more on several shortcomings and limitations, additional to what we already state in
21 the discussion. We find the remark that root zone storage capacity could remain unchanged
22 very interesting, and we use exactly this argument in our discussion on p19, line 29 until
23 p20, line 6. We will make this clearer in the revision.

24

25 **3. Abstract:**

26 *The abstract is not very clear regarding the methods (the proposed method is not solely based*
27 *on climate data as written at L8-9, but it requires information on the deforestation, based on*
28 *inverting the discharge observation in the present case). Like the conclusion, it builds too*
29 *much on overstatement, but there is also an annoying circular reasoning, since the main*
30 *conclusion comes from the beginning (L5-7: “Often this parameter [RZCM] is considered to*

1 remain constant in time. This is not only conceptually problematic, it is also a potential
2 source of error under the influence of land use and climate change.”)

3

4 We will clarify the abstract with the remarks made here. Again, we tried to generalize, which
5 is unfortunately interpreted as an overstatement. Nevertheless, we will add more on the
6 methods and try to clarify.

7

8 **4. Other comments:**

9 - *Trend analysis (method in 3.4, results in 4.3): is it really about trends or about variability?*
10 *Can we really speak of “trends” on sub-periods as short as those highlighted in blue and*
11 *green in Fig 7o and 7r? Couldn’t these two periods be lumped together? Some references*
12 *should be given where to find more details on the extraction and interpretation of the 95%-*
13 *confidence ellipses. Finally, Fig 7 is much too small.*

14

15 We agree, at first the method is applied to detect a trend. In the second step, it is used to detect
16 homogeneous sub-periods without a clear trend. We applied the differentiation between sub-periods as
17 objectively as possible, based on the break points in Figures 7d-f. For the construction of the 95%-
18 confidence ellipse, we refer to Equations 9 and 10, and the FAO-guidelines (Allen et al., 1998).

19

20 - *Some sentences I did not find clear, although the paper is generally well written:*

21 - *p3, L13-15: “By extracting plant available water between field capacity and wilting point,*
22 *roots create moisture storage volumes within their range of influence.”*

23 - *p 4, L7-8: “other species with different water demands may be more in favor in the*
24 *competition for resources”*

25 - *p4, L15: “These studies found that deforestation often leads to higher seasonal flows”. Do*
26 *you mean higher peak flows?*

27 - *p4, 30-31: “More systematic approaches, thus incorporation the change in the model*
28 *formulation itself”*

1 - p14, L28-29: “the calibration was run with a series temporally evolving root zone storage
2 capacities”

3 - p26, L27: I suggest using attributed to rather than caused by, unless a clear causality can be
4 demonstrated.

5 We will rephrase the sentences mentioned here.

6

7 **References**

8 Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for
9 computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300,
10 D05109, 1998.

11 Feddes, R. A., Kowalik, P. J., and Zaradny, H.: Simulation of field water use and crop yield,
12 Centre for Agricultural Publishing and Documentation., 1978

13

1 **List of changes**

2 -Change in title to: "The evolution of root zone moisture capacities after deforestation: a step
3 towards hydrological predictions under change?"

4 -Abstract: The methodology is more extensively described, as suggested by reviewer #3.

5 -Introduction: Several textual changes based on comments of the three reviewers

6 -Study sites: Information on the potential evaporation is added, just as descriptions of the data
7 and the references to it.

8 -Methodology:

9 - several textual changes as suggested by the reviewers

10 - Change in calibration from KGE, logKGE and VE to KGE and logKGE, as suggested
11 by reviewer #1.

12 - Model descriptions updated with the number of free parameters and descriptions of
13 snow and evaporation calculations.

14 -Results and Discussion is split into two different sections.

15 -Additional paragraph in the discussion about "General limitations".

16 -Conclusions: The conclusions are made less general, and are more about the results per
17 catchment. The reasons for the less obvious results in Hubbard Brook WS5 are also added.

18 -Table 3: The signatures are renamed, with one symbol and a subscript.

19 -Figures 4-10 are replaced as the calibration changed slightly. We also tried to make Figures 4
20 and 7 clearer and added insets in Figure 10.

21 -Supplement: Additional table with the number feasible parameter sets. A figure was added
22 with the method applied with a 5-year period for the water balance (instead of 2 years), for HJ
23 Andrews WS1 in comparison with the FLEX model. This figure was originally made for
24 Review #1.

25 -Replacement of Figures 1 and 8, based on Editor Comments of 12-11-2016

26

1 **The evolution of root zone moisture capacities after ~~land~~
2 ~~use~~ ~~change~~ ~~deforestation~~: a step towards hydrological
3 predictions under change?**

4
5 **Remko Nijzink¹, Christopher Hutton², Ilias Pechlivanidis⁴, René Capell⁴, Berit
6 Arheimer⁴, Jim Freer^{2,3}, Dawei Han², Thorsten Wagener^{2,3}, Kevin McGuire⁵,
7 Hubert Savenije¹, Markus Hrachowitz¹**

8 [1] Water Resources Section, Faculty of Civil Engineering and Geosciences, Delft University
9 of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands

10 [2] Department of Civil Engineering, University of Bristol, Bristol, UK

11 [3] Cabot Institute, University of Bristol, BS8 1UJ, Bristol, UK

12 [4] Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden

13 [5] Virginia Water Resources Research Center and Department of Forest Resources and
14 Environmental Conservation, Virginia Tech, Blacksburg, VA, USA

15 Correspondence to: R. C. Nijzink (r.c.nijzink@tudelft.nl)

16

17

1 **Abstract**

2 The core component of many hydrological systems, the moisture storage capacity available to
3 vegetation, is impossible to observe directly at the catchment scale and is typically treated as a
4 calibration parameter or obtained from a priori available soil characteristics combined with
5 estimates of rooting depth. Often this parameter is considered to remain constant in time.

6 Using long-term data (30-40 years) from three experimental catchments that underwent
7 significant land cover change, we tested the hypotheses that: (1) the root zone storage capacity
8 significantly changes after deforestation, (2) changes in the root zone storage capacity can to a
9 large extent explain post-treatment changes to the hydrological regimes and that (3) a time-
10 dynamic formulation of the root zone storage can improve the performance of a hydrological
11 model.

12 ~~This is not only conceptually problematic, it is also a potential source of error under the~~
13 ~~influence of land use and climate change. In this paper we test the potential of a~~
14 ~~A~~ recently
15 introduced method to ~~robustly~~ estimate catchment-scale root zone storage capacities
16 ~~exclusively~~ based on climate data (i.e. observed rainfall distribution and an estimate of
17 evaporation transpiration) was used to reproduce the temporal evolution of root zone storage
18 capacity under change. Briefly, the maximum deficit that arises from the difference between
19 cumulative daily precipitation and transpiration can be considered as a proxy for root zone
20 storage capacity. This value was compared to the value obtained from four different
21 conceptual hydrological models that were calibrated for consecutive 2-year windows. - Using
22 long-term data from three experimental catchments that underwent significant land use
23 change, we tested the hypotheses that: (1) root zone moisture storage capacities are
24 essentially controlled by land cover and climate, (2) root zone moisture storage capacities are
25 dynamically adapting to changing environmental conditions, and (3) simple conceptual yet
26 dynamic parametrization, mimicking changes in root zone storage capacities, can improve a
27 model's skill to reproduce observed hydrological response dynamics.

28 It was found that water-balance derived root zone storage capacities were similar to the values
29 obtained from calibration of ~~four different conceptual~~ the hydrological models. A sharp
30 decline in root zone storage capacity was observed after deforestation, followed by a gradual
31 recovery, for two of the three catchments. Trend analysis suggested hydrological recovery
32 periods between 5 and 13 years after deforestation. In a proof-of-concept analysis, one of the

1 hydrological models was adapted to allow dynamically changing root zone storage capacities,
2 following the observed changes due to deforestation. Although the overall performance of the
3 modified model did not considerably change, ~~it provided significantly better representations~~
4 ~~of high flows and peak flows, underlining the potential of the approach. In 514%~~ of all the
5 evaluated hydrological signatures, considering all three catchments, improvements were
6 observed when adding a time-variant representation of the root zone storage to the model.

7 In summary, it is shown that root zone moisture storage capacities can be highly affected by
8 deforestation and climatic influences and that a simple method exclusively based on climate-
9 data can not only provide robust, catchment-scale estimates of this critical parameter, but also
10 reflect its time-dynamic behavior after deforestation, crucial and dynamic parameter.

11

12

1 1 Introduction

2 Vegetation ~~is~~ a core component of the water cycle, ~~it~~ shapes the partitioning of water fluxes
3 on the catchment scale into drainage-runoff components and evaporation, thereby controlling
4 fundamental processes in ecosystem functioning (Rodriguez-Iturbe, 2000; Laio et al., 2001;
5 Kleidon, 2004), such as flood generation (Donohue et al., 2012), drought dynamics
6 (Seneviratne et al., 2010; Teuling et al., 2013), groundwater recharge (Allison et al., 1990;
7 Jobbágy and Jackson, 2004) and land-atmosphere feedback (Milly and Dunne, 1994;
8 Seneviratne et al., 2013; Cassiani et al., 2015). Besides increasing interception storage
9 available for evaporation (Gerrits et al., 2010), vegetation critically interacts with the
10 hydrological system in a co-evolutionary way by root water uptake for transpiration, towards
11 a dynamic equilibrium with the available soil moisture to avoid water shortage (Donohue et
12 al., 2007; Eagleson, 1978, 1982; Gentile et al., 2012; Liancourt et al., 2012) and related
13 adverse effects on carbon exchange and assimilation rates (Porporato et al., 2004; Seneviratne
14 et al., 2010). ~~By extracting plant available water between field capacity and wilting point,~~
15 ~~R~~oots create moisture storage volumes within their range of influence, from which they
16 extract water that is stored between field capacity and wilting point. This ~~water holding or~~
17 root zone storage capacity, S_R , sometimes also referred to as plant available water holding
18 capacity, in the unsaturated soil is therefore the key component of many hydrological systems
19 (Milly and Dunne, 1994; Rodriguez-Iturbe et al., 2007).

20 There is increasing theoretical and experimental evidence that vegetation dynamically adapts
21 its root system, and thus S_R , to environmental conditions, balancing between to secure, on the
22 one hand, securing access to sufficient moisture to meet the canopy water demand and, on the
23 other hand, to minimizing the carbon investment for sub-surface growth and maintenance of
24 the root system (Brunner et al., 2015; Schymanski et al., 2008; Tron et al., 2015). In other
25 words, the hydrologically active root zone is optimized to guarantee productivity and
26 transpiration of vegetation, given the climatic circumstances (Kleidon, 2004). Several studies
27 already previously showed the strong influence of climate on this hydrologically active root
28 zone (e.g. Reynolds et al., 2000; Laio et al., 2001; Schenk and Jackson, 2002). Moreover,
29 droughts are often identified as critical situations that can affect ecosystem functioning
30 evolution (e.g. Allen et al., 2010; McDowell et al., 2008; Vose et al.).

31 In addition to the general adaption to environmental conditions, vegetation has some potential
32 to adapt roots to such periods of water shortage (Sperry et al., 2002; Mencuccini, 2003; Bréda

1 et al., 2006). In the short term, stomatal closure and reduction of leaf area will lead to reduced
2 transpiration. In several case studies for specific plants, it was also shown that plants may
3 even shrink their roots and reduce soil-root conductivity during droughts, while recovering
4 after re-wetting (Nobel and Cui, 1992; North and Nobel, 1992). In the longer term, and more
5 importantly, trees can improve their internal hydraulic system, for example by recovering
6 damaged xylem or by allocating more biomass for roots (Sperry et al., 2002; Rood et al.,
7 2003; Bréda et al., 2006). Similarly, Tron et al. (2015) argued that roots follow groundwater
8 fluctuations, which may lead to increased rooting depths when water tables drop. ~~In addition,~~
9 ~~as circumstances change, other~~ Such changing environmental conditions may also provide
10 other plant species with different water demands, ~~than the ones present under given~~
11 ~~conditions, with an~~ ~~may be more in favor~~ advantage in the competition for resources, as for
12 example shown by Li et al. (2007).

13 The hydrological functioning of catchments (Black, 1997; Wagener et al., 2007) and thus the
14 partitioning of water ~~fluxes~~ into ~~evaporation/transpiration~~ evaporative fluxes and
15 ~~drainage/runoff components~~ is not only affected by the continuous adaption of vegetation to
16 changing climatic conditions. Rather, it is well understood that anthropogenic changes to land
17 cover, such as deforestation, can considerably alter hydrological regimes. This has been
18 shown historically through many paired watershed studies (e.g. Bosch and Hewlett, 1982;
19 Andréassian, 2004; Brown et al., 2005; Alila et al., 2009). These studies found that
20 deforestation often leads to generally higher seasonal flows and/or an increased frequency of
21 high flows in streams, while decreasing evaporative fluxes. The time scales of hydrological
22 recovery after such land ~~use cover~~ disturbances were shown to be highly sensitive to climatic
23 conditions and the growth dynamics of the regenerating species (e.g. Jones and Post, 2004;
24 Brown et al., 2005) .

25 Although land-use change effects on hydrological functioning are widely acknowledged, it is
26 less well understood, which parts of the hydrological system are affected in which way and
27 over which time scales. As a consequence, most catchment-scale models were originally not
28 developed to deal with such changes in the system, but rather for ‘stationary’ ~~situations~~
29 conditions (Ehret et al., 2014). This is ~~valid true~~ for both top-down hydrological models, such
30 ~~as e.g.~~ HBV (Bergström, 1992) or GR4J (Perrin et al., 2003), and bottom-up models, such
31 ~~as e.g.~~ MIKE-SHE (Refsgaard and Storm, 1995) or HydroGeoSphere (Brunner and Simmons,
32 2012). Several modelling studies have in the past incorporated temporal effects of land use

1 change to some degree (Andersson and Arheimer, 2001; Bathurst et al., 2004; Brath et al.,
2 2006), but they mostly rely on ad hoc assumptions about how hydrological parameters are
3 affected (Legesse et al., 2003; Mahe et al., 2005; Onstad and Jamieson, 1970; Fenicia et al.,
4 2009). ~~More systematic approaches, thus Approaches which~~ incorporate~~ation~~ the change in the
5 model formulation itself, are rare and have only recently gained momentum (e.g. Du et al.,
6 2016; Fatichi et al., 2016; Zhang et al., 2016). This is of critical importance as on-going land
7 ~~use cover~~ and climate change dictates the need for a better understanding of their effects on
8 hydrological functioning (Troch et al., 2015) and their explicit consideration in hydrological
9 models for more reliable predictions under change (Hrachowitz et al., 2013; Montanari et al.,
10 2013).

11 As a step towards such an improved understanding and the development of time-dynamic
12 models, we argue that ~~the~~ root zone storage capacity S_R , ~~sometimes also referred to as plant~~
13 ~~available water holding capacity~~, is a core component determining the hydrological response,
14 and needs to be treated as dynamically evolving parameter in hydrological modelling as a
15 function of climate and vegetation. Gao et al. (2014) recently demonstrated that catchment-
16 scale S_R can be robustly estimated exclusively based on long-term water balance
17 considerations. Wang-Erlandsson et al. (2016) derived global estimates of S_R using remote-
18 sensing based precipitation and evaporation products, which demonstrated considerable
19 spatial variability of S_R in response to climatic drivers. In traditional approaches, S_R is
20 typically determined either by the calibration of a hydrological model (e.g. Seibert and
21 McDonnell, 2010; Seibert et al., 2010) or based on soil characteristics and sparse, averaged
22 estimates of root depths, often obtained from literature (e.g. Breuer et al., 2003; Ivanov et al.,
23 2008). This does neither reflect the dynamic nature of the root system nor does it consider to a
24 sufficient extent the actual function of the root zone: providing plants with continuous and
25 efficient access to water. ~~The main reason for this is that due to the lack of detailed estimates~~
26 ~~of root depths and their evolution over time, some average values obtained from literature are~~
27 ~~typically used.~~ This leads to the situation that soil porosity often effectively controls the
28 values of S_R used in a model. Consider, as a thought experiment, two plants of the same
29 species growing on different soils. They will, with the same average root depth, then have
30 access to different volumes of water, which will merely reflect the differences in soil porosity.
31 This is in strong contradiction to the expectation that these plants would design root systems
32 that provide access to similar water volumes, given the evidence for efficient carbon
33 investment in root growth (Milly, 1994; Schymanski et al., 2008; Troch et al., 2009) and

1 posing that plants of the same species have common limits of operation. This argument is
2 supported by a recent study, in which was shown that water balance derived estimates of S_R
3 are at least as plausible as soil derived estimates (de Boer-Euser et al., 2016) in many
4 environments and that the maximum root depth controls evaporative fluxes and drainage
5 (Camporese et al., 2015).

6 Therefore, using water balance based estimates of S_R in several deforested as well as in
7 untreated reference sites in two experimental forests, we test the hypotheses that (1) the root
8 zone storage capacity S_R significantly changes after deforestation, (2) ~~changes the evolution~~
9 in S_R can ~~to a large extent~~ explain post-treatment changes to the hydrological regimes and that
10 (3) a time-dynamic formulation of S_R can improve the performance of a hydrological model.

11

12 **2 Study sites**

13 ~~The catchments under consideration are part of the H.J. Andrews Experimental Forest and the~~
14 ~~Hubbard Brook Experimental Forest. A summary of the main catchment characteristics can~~
15 ~~be found in Table 1. Daily discharge~~ (Campbell, 2014a; Johnson and Rothacher, 2016),
16 ~~precipitation~~ (Campbell, 2014b; Daly and McKee, 2016) ~~and temperature time series~~
17 (Campbell, 2014c, 2014d; Daly and McKee, 2016) ~~were obtained from the databases of the~~
18 ~~Hubbard Brook Experimental Forest and the HJ Andrews Experimental Forest. Potential~~
19 ~~evaporation was estimated by the Hargreaves equation~~ (Hargreaves and Samani, 1985).

20 **1.12.1 H.J. Andrews Experimental Forest**

21 The H.J. Andrews Experimental Forest is located in Oregon, USA (44.2°N , 122.2°W) and
22 was established in 1948. The catchments at H.J. Andrews are described in many studies (e.g.
23 Rothacher, 1965; Dyrness, 1969; Harr et al., 1975; Jones and Grant, 1996; Waichler et al.,
24 2005) ~~and an overview of the site is presented in Table 1.~~

25 Before vegetation removal and at lower elevations the forest generally consisted of 100- to
26 500-year old coniferous species, such as Douglas-fir (*Pseudotsuga menziesii*), western
27 hemlock (*Tsuga heterophylla*) and western redcedar (*Thuja plicata*), whereas upper elevations
28 were characterized by noble fir (*Abies procera*), Pacific silver fir (*Abies amabilis*), Douglas-
29 fir, and western hemlock. Most of the precipitation falls from November to April (about 80%
30 of the annual precipitation), whereas the summers are generally drier, leading to signals of

1 precipitation and potential evaporation that are out of phase. ~~The catchment characteristics of~~
2 ~~the watersheds in H.J. Andrews (WS) are provided in Table 1.~~

3 Deforestation of H.J. Andrews WS1 started in August 1962 (Rothacher, 1970). Most of the
4 timber was removed with skyline yarding. After finishing the logging in October 1966, the
5 remaining debris was burned and the site was left for natural regrowth. WS2 is the reference
6 catchment, which was not harvested.

7 **1.22.2 Hubbard Brook Experimental Forest**

8 The Hubbard Brook Experimental Forest is a research site established in 1955 and located in
9 New Hampshire, USA (43.9°N, 71.8°W). The Hubbard Brook experimental catchments are
10 described in a many publications (e.g. Hornbeck et al., 1970; Hornbeck, 1973; Dahlgren and
11 Driscoll, 1994; Hornbeck et al., 1997; Likens, 2013). ~~An overview of the site and catchments~~
12 ~~used in this study are given in Table 1.~~

13 Prior to vegetation removal, the forest was dominated by northern hardwood forest composed
14 of sugar maple (*Acer saccharum*), American beech (*Fagus grandifolia*) and yellow birch
15 (*Betula alleghaniensis*) with conifer species such as red spruce (*Picea rubens*) and balsam fir
16 (*Abies balsamea*) occurring at higher elevations and on steeper slopes with shallow soils. The
17 forest was selectively harvested from 1870 to 1920, damaged by a hurricane in 1938, and is
18 currently not accumulating biomass (Campbell et al., 2013; Likens, 2013). The annual
19 precipitation and runoff is less than in H.J. Andrews (Table 1). Precipitation is rather
20 uniformly spread throughout the year without distinct dry and wet periods, but with snowmelt
21 dominated peak flows occurring around April and distinct low-flows during the summer
22 months due to increased evaporation rates (Federer et al., 1990). Vegetation removal occurred
23 in the catchment of WS2 between 1965-1968 and in WS5 between 1983-1984. Hubbard
24 Brook WS3 is the undisturbed reference catchment.

25 Hubbard Brook WS2 was completely deforested in November and December 1965 (Likens et
26 al., 1970). To minimize disturbance, no roads were constructed and all timber was left in the
27 catchment. On June 23, 1966, herbicides were sprayed from a helicopter to prevent regrowth.
28 Additional herbicides were sprayed in the summers of 1967 and 1968 from the ground.

29 In Hubbard Brook WS5, all trees were removed between October 18, 1983 and May 21, 1984,
30 except for a 2 ha buffer near an adjacent reference catchment (Hornbeck et al., 1997). WS5
31 was harvested as a whole-tree mechanical clearcut with removal of 93% of the above-ground

1 biomass (Hornbeck et al., 1997; Martin et al., 2000); thus, including smaller branches and
2 debris. Approximately 12% of the catchment area was developed as the skid trail network.
3 Afterwards, no treatment was applied and the site was left for regrowth.

4

5 **23 Methodology**

6 To assure reproducibility and repeatability, the executional steps in the experiment were
7 defined in a detailed protocol, following Ceola et al. (2015), which is provided as
8 supplementary material in Section S1.

9 **2.13.1 Water balance-derived root zone moisture capacities S_R**

10 The root zone moisture storage capacities S_R and their change over time were determined
11 according to the methods suggested by Gao et al. (2014), and subsequently successfully tested
12 by de Boer-Euser et al. (2016) and Wang-Erlundsson et al. (2016). Briefly, the long-term
13 water balance provides information on actual mean transpiration. In a first step, the
14 interception capacity has to be assumed, in order to determine the effective precipitation P_e [L
15 T^{-1}], following the water balance equation for interception storage:

$$16 \frac{dS_i}{dt} = P - E_i - P_e \quad , \quad (1)$$

17 With S_i [L] interception storage, P the precipitation [$L T^{-1}$], E_i the interception evaporation [L
18 T^{-1}]. This is solved with the constitutive relations:

19

$$20 E_i = \begin{cases} E_p & \text{if } E_p dt < S_i \\ \frac{S_i}{dt} & \text{if } E_p dt \geq S_i \end{cases} \quad (2)$$

$$21 P_e = \begin{cases} 0 & \text{if } S_i \leq I_{max} \\ \frac{S_i - I_{max}}{dt} & \text{if } S_i > I_{max} \end{cases} \quad (3)$$

22

23 With, additionally, E_p the potential evaporation [$L T^{-1}$] and I_{max} [L] the interception capacity.
24 Nevertheless As, I_{max} will also be affected by land use-cover change. This was addressed by

1 introducing the three parameters $I_{\max,eq}$ (long-term equilibrium interception capacity) [L],
 2 $I_{\max,change}$ (post-treatment interception capacity) [L] and T_r (recovery time) [T], leading to a
 3 time-dynamic formulation of I_{\max} :

$$I_{\max} = \begin{cases} I_{\max,eq} & \text{for } t < t_{\text{change}}, t > t_{\text{change},\text{end}} + T_r \\ I_{\max,eq} - \frac{I_{\max,eq} - I_{\max,change}}{t_{\text{change},\text{end}} - t_{\text{change},\text{start}}} (t - t_{\text{change},\text{start}}) & \text{for } t_{\text{change},\text{start}} < t < t_{\text{change},\text{end}} \\ I_{\max,change} + \frac{I_{\max,eq} - I_{\max,change}}{T_r} (t - t_{\text{change},\text{end}}) & \text{for } t_{\text{change},\text{end}} < t < t_{\text{change},\text{end}} + T_r \end{cases} \quad (4)$$

5 with $t_{\text{change},\text{start}}$ the time that deforestation started and $t_{\text{start},\text{end}}$ the time deforestation finished.

6 Following a Monte-Carlo sampling approach, upper and lower bounds of E_i were then
 7 estimated based on 1000 random samples of these parameters, eventually leading to upper and
 8 lower bounds for P_e . The interception capacity was assumed to increase after deforestation for
 9 Hubbard Brook WS2, as the debris was left at the site. For Hubbard Brook WS5 and HJ
 10 Andrews WS1 the interception capacity was assumed to decrease after deforestation, as here
 11 the debris was respectively burned and removed. Furthermore, in the absence of more detailed
 12 information, it was assumed that the interception capacities changed linearly during
 13 deforestation towards $I_{\max,change}$ and linearly recovered to I_{\max} over the period T_r as well. See
 14 Table 2 for the applied parameter ranges.

15 Hereafter, the long term mean transpiration can be estimated with the remaining components
 16 of the long term water balance, assuming no additional gains/losses, storage changes and/or
 17 data errors:

$$18 \quad \bar{E}_t = \bar{P}_e - \bar{Q}, \quad (5)$$

19 where \bar{E}_t [L T⁻¹] is the long-term mean actual transpiration,
 20 \bar{P}_e [L T⁻¹] is the long-term mean effective precipitation and
 21 \bar{Q} [L T⁻¹] is the long-term mean catchment runoff. Taking into account seasonality, the
 22 actual mean transpiration is scaled with the ratio of long-term mean daily potential
 23 evaporation E_p over the mean annual potential evaporation E_p :

1

$$2 \quad E_t(t) = \frac{E_p(t)}{E_p} * \bar{E}_t \quad (6)$$

3 Based on this, the cumulative deficit between actual transpiration and precipitation over time
 4 can be estimated by means of an ‘infinite-reservoir’. In other words, the cumulative sum of
 5 daily water deficits, i.e. evaporation minus precipitation, is calculated between T_0 , which is
 6 the time the deficit equals zero, and T_1 , which is the time the total deficit returned to zero. The
 7 maximum deficit of this period then represents the volume of water that needs to be stored to
 8 provide vegetation continuous access to water throughout that time:

$$9 \quad S_R = \max \int_{T_0}^{T_1} (E_t - P_e) dt, \quad (7)$$

10 where S_R [L] is the maximum root zone storage capacity over the time period between T_0 and
 11 T_1 . See also Figure 1 for a graphical example of the calculation for the Hubbard Brook
 12 catchment for one specific realization of the parameter sampling. The $S_{R,20\text{yr}}$ for drought
 13 return periods of 20 years was estimated using the Gumbel extreme value distribution
 14 (Gumbel, 1941) as previous work suggested that vegetation designs S_R to satisfy deficits
 15 caused by dry periods with return periods of approximately 10-20 years (Gao et al., 2014; de
 16 Boer-Euser et al., 2016). Thus, the yearly maximum values of S_R ,for each year, as obtained
 17 by equation 76, were fitted to the extreme value distribution of Gumbel, and subsequently, the
 18 $S_{R,20\text{yr}}$ was determined.

19 For the study catchments that experienced logging and subsequent reforestation, it was
 20 assumed that the root system converges towards a dynamic equilibrium approximately 10
 21 years after reforestation. Thus, the equilibrium $S_{R,20\text{yr}}$ was estimated using only data over a
 22 period that started at least 10 years after the treatment. For the growing root systems during
 23 the years after reforesting, the storage capacity does not yet reach its dynamic equilibrium
 24 $S_{R,20\text{yr}}$. Instead of determining an equilibrium value, the maximum occurring deficit for each
 25 year was in that case considered as the maximum demand and thus as the maximum required
 26 storage $S_{R,1\text{yr}}$ for that year. To make these yearly estimates, the mean transpiration was
 27 determined in a similar fashion-way as stated by Equation 5. However, the assumption of no
 28 storage change may not be valid for 1-year periods. In a trade-off, to limit the potential bias
 29 introduced by inter-annual storage changes in the catchments, the mean transpiration was

1 determined based on the 2-year water balance, thus assuming ~~no-negligible~~ storage change
2 over these years.

3 The deficits in the months October-April are highly affected by snowfall, as estimates of the
4 effective precipitation are estimated without accounting for snow, leading to soil moisture
5 changes that spread out over an unknown longer period due to the melt process. Therefore, to
6 avoid this influence of snow, only deficits as defined by Equation 7, in the period of May –
7 September are taken into consideration, which is also the period where deficits are ~~caused~~
8 ~~significantly increasing due to by~~ relatively low rainfall ~~precipitation~~ and high transpiration
9 rates, thus causing soil moisture depletion and drought stress for the vegetation, ~~and which~~ in
10 turn, ~~shaping~~ the root zone.

11 **2.23.2 Model-derived root zone storage capacity $S_{u,\max}$**

12 The water balance derived equilibrium $S_{R,20\text{yr}}$ as well as the dynamically changing $S_{R,1\text{yr}}$ that
13 reflects regrowth patterns in the years after treatment were compared with estimates of the
14 calibrated parameter $S_{u,\max}$, which represents the mean catchment root zone storage capacity
15 in lumped conceptual hydrological models. Due to the lack of direct observations of the
16 changes in the root zone storage capacity, this comparison was used to investigate whether the
17 estimates of the root zone storage capacity $S_{R,1\text{yr}}$, ~~and~~ their sensitivity to land ~~use-cover~~
18 change ~~as well as and~~ their effect on hydrological functioning, can provide ~~similar plausible~~
19 results ~~as the model based root zone storage~~. Model-based estimates of root zone storage
20 capacity may be highly influenced by model formulations and parameterizations. Therefore,
21 four different hydrological models were used to derive the parameter ~~of~~ $S_{u,\max}$ in order to
22 obtain a set of different estimates of the catchment scale root zone storage capacity. The
23 major features of the model routines for root-zone moisture tested here are briefly
24 summarized below and detailed descriptions including the relevant equations are provided as
25 supplementary material (Section S2).

26 **2.2.13.2.1 FLEX**

27 ~~The~~A FLEX-based model (Fenia et al., 2008) was applied in a lumped way to the
28 catchments. ~~The model has 9 parameters, 8 of which are free calibration parameters, sampled~~
29 ~~from relatively wide, uniform prior distributions. In contrast, based on the estimation of a~~
30 ~~Master Recession Curve (e.g. Fenicia et al., 2006), an informed prior distribution between~~
31 ~~narrow bounds could be used for determining the slow reservoir coefficient K_s .~~

1 -The model~~H~~ consists of five storage components. First, a snow routine has to be run, which is
2 a simple degree-day module, similar as used in, for example, HBV (Bergström, 1976). After
3 the snow routine, before the precipitation enters the interception reservoir. Here, water
4 evaporates at potential rates or, when exceeding a threshold, continues directly reaches the
5 soil moisture reservoir. The soil moisture routine is modelled in a similar way as the
6 Xinanjiang model (Zhao, 1992). Briefly, it contains a distribution function that determines the
7 fraction of the catchment where the storage deficit in the root zone is satisfied and that is
8 therefore hydrologically connected to the stream and generating storm runoff. From the soil
9 moisture reservoir, water can further vertically percolate down to recharge the groundwater or
10 leave the reservoir through transpiration. Transpiration is a function of maximum root zone
11 storage $S_{u,\max}$ and the actual root zone storage, similar to the functions described by Feddes et
12 al. (1978).

13 Water that cannot be stored in the soil moisture storage then is split into preferential
14 percolation to the groundwater and runoff generating fluxes that enter a fast reservoir, which
15 represents fast responding system components such as shallow subsurface and overland flow.

16 ~~(Fenicia et al., 2006; Fenicia et al., 2008)~~

17 2.2.23.2.2 HYPE

18 The HYPE model (Lindström et al., 2010) estimates soil moisture for Hydrological Response
19 Units (HRU), which is the finest calculation unit in this catchment model. In the current set-
20 up, 15 parameters were left free for calibration. Each HRU consists of a unique combination
21 of soil and land-use classes with assigned soil depths. Water input is estimated from
22 precipitation after interception and a snow module at the catchment scale, after which the
23 water enters the three defined soil layers in each HRU. Evaporation and transpiration ~~takes~~
24 ~~place~~occurs in ~~from~~ the first two layers and fast surface runoff is produced when these layers
25 are fully saturated or when rainfall rates exceeds the maximum infiltration capacities. Water
26 can move between the layers through percolation or laterally via fast flow pathways. ~~The~~
27 ~~catchment can also receive input of lateral flow from upper sub-catchments.~~ The groundwater
28 table is fluctuating between the soil layers with the lowest soil layer normally reflecting the
29 base flow component in the hydrograph. The water balance of each HRU is calculated
30 independently and the runoff is then aggregated in a local stream with routing before entering
31 the main stream.

1

2 **2.2.33.2.3 TUW**

3 The TUW model (Parajka et al., 2007) is a conceptual model with a structure similar to that of
4 HBV (Bergström, 1976) and has 15 free calibration parameters. After a snow module, based
5 on a degree-day approach, water enters a soil moisture routine. From this soil moisture
6 routine, water is partitioned into runoff generating fluxes and transpiration evaporation. Here,
7 transpiration is determined as a function of maximum root zone storage $S_{u,\max}$ and actual root
8 zone storage as well. The runoff generating fluxes percolate into two series of reservoirs. A
9 fast responding reservoir with overflow outlet represents shallow subsurface and overland
10 flow, while the slower responding reservoir represents the groundwater.

11

12 **2.2.43.2.4 HYMOD**

13 HYMOD (Boyle, 2001) is similar to the applied model structure for FLEX, but only has 8
14 parameters. ~~•~~ Besides that, the interception module and percolation from soil moisture to the
15 groundwater are missing. Nevertheless, the model accounts similarly for the partitioning of
16 transpiration and runoff generation in a soil moisture routine. Also for this model,
17 transpiration is a function of maximum storage and actual storage in the root zone. The runoff
18 generating fluxes are then eventually divided over a slow reservoir, representing groundwater,
19 and a fast reservoir, representing the fast processes.

20 **2.33.3 Model calibration**

21 Each model was calibrated using a Monte-Carlo strategy within consecutive two year
22 windows in order to obtain a time series of root zone moisture capacities $S_{u,\max}$. FLEX, TUW
23 and HYMOD were all run 100,000 times, whereas HYPE was run 10,000 times and 20,000
24 times for HJ Andrews WS1 and the Hubbard Brook catchments respectively, due to the
25 required runtimes. The Kling-Gupta efficiency for flows (Gupta et al., 2009);and the Kling-
26 Gupta efficiency for the logarithm of the flows ~~and the Volume Error (Criss and Winston,~~
27 ~~2008)~~ were simultaneously used as objective functions in a multi-objective calibration
28 approach to evaluate the model performance for each window. These were selected in order to
29 obtain rather balanced solutions that enable a sufficient representation of peak flows, low
30 flows and the water balance. The unweighted Euclidian Distance D_E of the three objective

1 functions served as an informal measure to obtain these balanced solutions (e.g. Hrachowitz
2 et al., 2014; Schoups et al., 2005):

$$4 L(\theta) = 1 - \sqrt{(1 - E_{KG})^2 + (1 - E_{logKG})^2 + (1 - E_{VE})^2}$$

$$5 L(\theta) = 1 - \sqrt{(1 - E_{KG})^2 + (1 - E_{logKG})^2} \quad (8)$$

6
7 where $L(\theta)$ is the conditional probability for parameter set θ [-], E_{KG} the Kling-Gupta
8 efficiency [-], E_{logKG} the Kling-Gupta efficiency for the log of the flows [-], and E_{VE} the
9 volume error [-].

10 Eventually, a weighing method based on the GLUE-approach of Freer et al. (1996) was
11 applied. To estimate posterior parameter distributions all solutions with Euclidian Distances
12 smaller than 1 were maintained as feasible. The posterior distributions were then determined
13 with the Bayes rule (cf. Freer et al., 1996):

$$14 L_2(\theta) = L(\theta)^n * L_0(\theta) / C \quad (9)$$

15 where $L_0(\theta)$ is the uninformed prior parameter distribution [-], $L_2(\theta)$ is the posterior
16 conditional probability [-], n is a weighing factor (set to 5) [-], and C a normalizing constant
17 [-]. 5/95th model uncertainty intervals were then constructed based on the posterior
18 conditional probabilities.

19 2.43.4 Trend analysis

20 To test if $S_{R,1yr}$ significantly changes following de- and subsequent reforestation, which would
21 also indicate shifts in distinct hydrological regimes, a trend analysis, as suggested by Allen et
22 al. (1998), was applied to the $S_{R,1yr}$ values obtained from the water balance-based method. As
23 the sampling of interception capacities (Eq. 4) leads to $S_{R,1yr}$ values for each point in time,
24 which are all equally likely in absence of any further knowledge, the mean of this range was
25 assumed as an approximation of the time-dynamic character of $S_{R,1yr}$.

26 Briefly, a linear regression between the full series of the cumulative sums of $S_{R,1yr}$ in the
27 deforested catchment and the unaffected control catchment is established and the residuals

1 and the cumulative residuals are plotted in time. A 95%-confidence ellipse is then constructed
2 from the residuals:

3

$$X = \frac{n}{2} \cos(\alpha) \quad (10)$$

4

$$Y = \frac{n}{\sqrt{n-1}} Z_{p95} \sigma_r \sin(\alpha) \quad (11)$$

5 where X presents the x-coordinates of the ellipse [T], Y represents the y-coordinates of the
6 ellipse [L], n is the length of the time series [T], α is the angle defining the ellipse (0 - 2π)
7 between the diagonal of the ellipse and the x-axis [-], Z_{p95} is the value belonging to a
8 probability of 95% of the standard student t-distribution [-] and σ_r is the standard deviation of
9 the residuals (assuming a normal distribution) [L].

10 When the cumulative sums of the residuals plot outside the 95%-confidence interval defined
11 by the ellipse, the null-hypothesis that the time series are homogeneous is rejected. In that
12 case, the residuals from this linear regression where residual values change from either solely
13 increasing to decreasing or vice versa, can then be used to identify different sub-periods in
14 time.

15 Thus, in a second step, for each identified sub-period a new regression, with new (cumulative)
16 residuals, can be used to check homogeneity for these sub-periods. In a similar way as before,
17 when the cumulative residuals of these sub-periods now plot within the accompanying newly
18 created 95%-confidence ellipse, the two series are homogeneous for these sub-periods. In
19 other words, the two time series show a consistent behavior over this particular period.

20

21 **2.53.5 Model with time-dynamic formulation of $S_{u,max}$**

22 In a last step, the FLEX model was reformulated to allow for a time-dynamic representation
23 of the parameter $S_{u,max}$, reflecting the root zone storage capacity.

24 As a reference, the long-term water balance derived root zone storage capacity $S_{R,20yr}$ was
25 used as a static formulation of $S_{u,max}$ in the model, and thus kept constant in time. The
26 remaining parameters were calibrated using the calibration strategy outlined above over a
27 period starting with the treatment in the individual catchments until at least 15 years after the

1 end of the treatment. This was done to focus on the period under change (i.e. vegetation
2 removal and recovery), during which the differences between static and dynamic formulations
3 of $S_{u,\max}$ are assumed to be most pronounced.

4 To test the effect of a dynamic formulation of $S_{u,\max}$ as a function of forest regrowth, the
5 calibration was run with a ~~series~~ temporally evolving ~~series of~~ root zone storage capacity~~ties~~,
6 ~~similar to formulations of leaf area index and overstore height for the DHSVM model by~~
7 ~~Waichler et al. (2005)~~. The time-dynamic series of $S_{u,\max}$ were obtained from a relatively
8 simple growth function, the Weibull function (Weibull, 1951):

9

$$10 S_{u,\max}(t) = S_{R,20y} \left(1 - e^{-a*t^b}\right)$$
$$11 S_{u,\max}(t) = S_{R,20\text{yr}} \left(1 - e^{-a*t^b}\right) S_{u,\max}(t) = S_{R,20\text{yr}} \left(1 - e^{-at^b}\right)$$
$$12 \cancel{S_{u,\max}(t) = S_{R,20\text{yr}} \left(1 - e^{-a*t^b}\right)}, \quad (11)$$

13 where $S_{u,\max}(t)$ is the root zone storage capacity t time steps after reforestation [L], $S_{R,20\text{yr}}$ is
14 the equilibrium value [L], and a [T^{-1}] and b [-] are shape parameters. In the absence of more
15 information, this equation was selected as a first, simple way of incorporating the time-
16 dynamic character of the root zone storage capacity in a conceptual hydrological model. In
17 this way, root growth is exclusively determined dependent on time, whereas the shape-
18 parameters a and b merely implicitly reflect the influence of other factors, such as climatic
19 forcing in a lumped way. These parameters were estimated based on qualitative judgement so
20 that $S_{u,\max}(t)$ coincides well with the suite of $S_{R1\text{yr}}$ values after logging. In other words, the
21 values were chosen by trial and error in such a way, that the time-dynamic formulation of
22 $S_{u,\max}(t)$ shows a visually good correspondence with the $S_{R1\text{yr}}$ values. This approach was
23 followed to filter out the short term fluctuations in the $S_{R1\text{yr}}$ values, which is not warranted by
24 this equation. In addition, it should be notedNote that this rather simple approach is merely
25 meant as a proof-of-concept for a dynamic formulation of $S_{u,\max}$.

26 In addition, the remaining parameter directly related to vegetation, the interception capacity
27 (I_{max}), was also assigned a time-dynamic formulation. Here, the same growth function was
28 applied (Eq. 11), but the shape of the growth function was assumed fixed (i.e. growth
29 parameters a and b were fixed to values of 0.001 [day^{-1}] and 1 [-]) loosely based on the

1 posterior ranges of the window calibrations, with qualitative judgement as well. This growth
 2 function was used to ensure the degrees of freedom for both the time-variant and the time-
 3 invariant models, leaving the equilibrium value of the interception capacity as the only free
 4 calibration parameter for this process. Note that the empirically parameterized growth
 5 functions can be readily extended and/or replaced by more mechanistic, process-based
 6 descriptions of vegetation growth if warranted by the available data and was here merely used
 7 to test the effect of considering changes in vegetation on the skill of models to reproduce
 8 hydrological response dynamics.

9 To assess the performance of the dynamic model compared to the time-invariant formulation,
 10 beyond the calibration objective functions, model skill in reproducing 28 hydrological
 11 signatures was evaluated (Sivapalan et al., 2003). Even though the signatures are not always
 12 fully independent of each other, this larger set of measures allows a more complete evaluation
 13 of the model skill as, ideally, the model should be able to ~~perfectly and~~ simultaneously
 14 reproduce ~~each all~~ signatures. An overview of the signatures is given in Table 32. The results
 15 of the comparison were quantified on the basis of the probability of improvement for each
 16 signature (Nijzink et al., 2016):

$$17 P_{I,S} = P(S_{dyn} > S_{stat}) = \sum_{i=1}^n P(S_{dyn} > S_{stat} | S_{dyn} = r_i) P(S_{dyn} = r_i) \quad (12)$$

18 where S_{dyn} and S_{stat} are the distributions of the signature performance metrics of the dynamic
 19 and static model, respectively, for the set of all feasible solutions retained from calibration, r_i
 20 is a single realization from the distribution of S_{dyn} and n is the total number of realizations of
 21 the S_{dyn} distribution. For $P_{I,S} > 0.5$ it is then more likely that the dynamic model outperforms
 22 the static model with respect to the signature under consideration, and vice versa for $P_{I,S} < 0.5$.
 23 The signature performance metrics that were used are the relative error for single-valued
 24 signatures and the Nash-Sutcliffe efficiency (Nash and Sutcliffe, 1970) for signatures that
 25 represent a time series.

26 In addition, as a more quantitative measure, the Ranked Probability Score, giving information
 27 on the magnitude of model improvement or deterioration, was calculated (Wilks, 2005):

$$28 S_{RP} = \frac{1}{M-1} \sum_{m=1}^M \left[\left(\sum_{k=1}^m p_k \right) - \left(\sum_{k=1}^m o_k \right) \right]^2 \quad (13)$$

1 where M is the number of feasible solutions, p_k the probability of a certain signature
2 performance to occur and o_k the probability of the observation to occur (either 1 or 0, as there
3 is only a single observation). Briefly, the S_{RP} represents the area enclosed between the
4 cumulative probability distribution obtained by model results and the cumulative probability
5 distribution of the observations. Thus, when modelled and observed cumulative probabilities
6 are identical, the enclosed area goes to zero. Therefore, the difference between the S_{RP} for the
7 feasible set of solutions for the time-variant and time-invariant model formulation was used in
8 the comparison, identifying which model is quantitatively closer to the observation.

9

10 **34 Results and Discussion**

11 **3.14.1 Deforestation and changes in hydrological response dynamics**

12 We found that the three deforested catchments in the two research forests show on balance
13 generally similar response dynamics after the logging of the catchments (Fig.2). This supports
14 the findings from previous studies of these catchments (Andréassian, 2004; Bosch and
15 Hewlett, 1982; Hornbeck et al., 1997; Rothacher et al., 1967). More specifically, it was found
16 that the observed annual runoff coefficients for HJ Andrews WS1 and Hubbard Brook WS2
17 (Fig. 2a,b) change after logging of the catchments, also in comparison with the adjacent,
18 undisturbed reference watersheds. Right after deforestation, runoff coefficients increase, but
19 which is are followed by a gradual decrease. This change in runoff behavior points towards
20 shifts in the yearly sums of transpiration, which can, except for climatic variation, be linked to
21 the regrowth of vegetation that takes place at a similar pace as the changes in hydrological
22 dynamics. This coincidence of regrowth dynamics and evolution of runoff coefficients was
23 not only noticed by Hornbeck et al. (2014) for the Hubbard Brook, but was also previously
24 acknowledged for example by Swift and Swank (1981) in the Ceweeta experiment or Kuczera
25 (1987) for eucalypt regrowth after forest fires. The key role of vegetation in this partitioning
26 between runoff and transpiration (Donohue et al., 2012), or more specifically root zones
27 (Gentine et al., 2012), necessarily leads to a change in runoff coefficients when vegetation is
28 removed. Similarly, Gao et al. (2014) found a strong correlation between root zone storage
29 capacities and runoff coefficients in more than 300 US catchments, which lends further
30 support to the hypothesis that root zone storage capacities may have decreased in deforested
31 catchments right after removal of the vegetation.

1
2 The annual autocorrelation coefficients with a 1-day lag time are generally lower after logging
3 than in the years before the change, which can be seen in particular from Figures 2e and 2f as
4 here a long pre-treatment time series record is available. Nevertheless, the climatic influence
5 cannot be ignored here, as the reference watershed shows a similar pattern. Only for Hubbard
6 Brook WS5 (Fig. 2f), the autocorrelation shows reduced values in the first years after logging.
7 Thus, the flows at any time $t+1$ are less dependent on the flows at t , which points towards less
8 memory and thus less storage in the system (i.e. reduced S_R), leading to increased peak flows,
9 similar to the reports of, for example, Patric and Reinhart (1971) for one of the Fernow
10 experiments.

11 The declining limb density for HJ Andrews WS1 (Fig. 2g) shows increased values right after
12 deforestation, whereas longer after deforestation the values seem to plot closer to the values
13 obtained from the reference watershed. This indicates that for the same number of peaks less
14 time was needed for the recession in the hydrograph in the early years after logging. In
15 contrast, the rising limb density shows increased values during and right after deforestation
16 for Hubbard Brook WS2 and WS5 (Fig 2k-2l), compared to the reference watershed. Here,
17 less time was needed for the rising part of the hydrograph in the more early years after
18 logging. Thus, the recession seems to be affected in HJ Andrews WS1, whereas the Hubbard
19 Brook watersheds exhibits a quicker rise of the hydrograph.

20 Eventually, the flow duration curves, as shown in Figures 2m-2o, indicate a higher variability
21 of flows, as the years following deforestation plot with an increased steepness of the flow
22 duration curve, i.e. a higher flashiness. This increased flashiness of the catchments after
23 deforestation can also be noted from the hydrographs shown in Figure 3. The peaks in the
24 hydrographs are generally higher, and the flows return faster to the baseflow values in the
25 years right after deforestation than some years 1 later after some forest regrowth, all with
26 similar values for the yearly sums of precipitation and potential evaporation.

27

28 **3.24.2 Temporal evolution of S_R and $S_{u,max}$**

29 The observed changes in the hydrological response of the study catchments (as discussed
30 above) were also clearly reflected in the temporal evolution of the root zone storage capacities
31 as described by the catchment models (Fig. 4). The models all exhibited Kling-Gupta

1 efficiencies ranging between 0.5 and 0.8 and Kling-Gupta efficiencies of the log of the flows
2 between 0.2 and 0.8 (see the supplementary material Figures S5-7, with all posterior
3 parameter distributions in Figures S109-S267, and the number of feasible solutions in Tables
4 S5-S7). Comparing the water balance and model-derived estimates of root zone storage
5 capacity S_R and $S_{u,max}$, respectively, then showed that they exhibit very similar patterns in the
6 study catchments. Especially for HJ Andrews WS1 and Hubbard Brook WS2, In general,
7 ~~root zone storage capacities sharply decreased after deforestation and, when regrowth~~
8 ~~occurred, gradually recovered during regrowth~~ towards a dynamic equilibrium of climate and
9 vegetation, whereas the undisturbed reference catchments of HJ Andrews WS2 and Hubbard
10 Brook WS3 showed a rather constant signal over the full period (see the supplementary
11 material Figure S8).

12 ~~This in agreement with Mahe et al. (2005), who found in a modelling exercise that water~~
13 ~~holding capacities needed to be lowered after a reduction in vegetation.~~

14 The HJ Andrews WS1 shows the clearest signal when looking at the water balance derived
15 S_R , as can be seen by the green shaded area in Figure 4a. Before deforestation, the root zone
16 storage capacity $S_{R,1yr}$ was found to be around 400mm. ~~In spite of the high annual~~
17 ~~precipitation volumes, such comparatively high $S_{R,1yr}$ is plausible given the marked~~
18 ~~seasonality of the precipitation in the Mediterranean climate (Koeppen Geiger class Csb) and~~
19 ~~the approximately 6 months phase shift between precipitation and potential evaporation peaks~~
20 ~~in the study catchment, which dictates that the storage capacities need to be large enough to~~
21 ~~store precipitation falling mostly during winter throughout the extended dry periods with~~
22 ~~higher energy supply throughout the rest of the year (Gao et al., 2014).~~ During deforestation,
23 the $S_{R,1yr}$ required to provide the remaining vegetation with sufficient and continuous access to
24 water decreased from around 400 mm to 200 mm. For the first 4-6 years after deforestation
25 the $S_{R,1yr}$ increased again, reflecting the increased water demand of vegetation with the
26 regrowth of the forest. In addition, it was observed that in the period 1971- 1978 $S_{R,1yr}$ slowly
27 decreased again in HJ Andrews.

28 The four models show a similar pronounced decrease of the calibrated, feasible set of $S_{u,max}$
29 during deforestation and a subsequent gradual increase over the first years after deforestation.
30 The model concepts, thus our assumptions about nature, can therefore only account for the
31 changes in hydrological response dynamics of a catchment, when calibrated in a window
32 calibration approach with different parameterizations for each time frame. The absolute

1 values of $S_{u,\max}$ obtained from the most parsimonious HYMOD and FLEX models (both 8
2 free calibration parameters) show a somewhat higher similarity to $S_{R,1yr}$ and its temporal
3 evolution than the values from the other two models. In spite of similar general patterns in
4 $S_{u,\max}$, the higher number of parameters in TUW (i.e. 15) result, due to compensation effects
5 between individual parameters, in wider uncertainty bounds which are less sensitive to
6 change. It was also observed that in particular TUW overestimates $S_{u,\max}$ compared to $S_{R,1yr}$,
7 which ~~is caused by~~ can be attributed to the absence of an interception reservoir, leading to a
8 root zone that has to satisfy not only transpiration but all evaporative fluxes.

9 ~~It was observed that in the period 1971–1978 $S_{R,1yr}$ slowly decreased again in HJ Andrews.~~
10 ~~This pattern indicates that the storage demand in these years was lower as more rainfall~~
11 ~~reduced the need for storage in the system, which can be seen from the rainfall chart on top of~~
12 ~~Figure 4a. This reduced demand for storage could potentially indicate a contracting root~~
13 ~~system during that period, as an effort of vegetation to optimize its subsurface energy and~~
14 ~~carbon allocation for root maintenance in a trade-off for increased above surface growth.~~
15 ~~However, this conclusion is at this point not warranted by the available data and it can also be~~
16 ~~argued that the system is in a state of over capacity for that period, still maintaining the root~~
17 ~~systems for the dryer years to come. The hydrograph for the years 1978–1979 (Figure 5)~~
18 ~~rather support the latter. Even though the FLEX model calibrated for this period tended~~
19 ~~towards larger values of $S_{u,\max}$ (Figure 4a), still the modelled peaks are relatively high~~
20 ~~compared to the observed peaks. This suggests that the model requires a higher buffer in the~~
21 ~~root zone to reduce the peak flows rather than that root zones should have contracted in this~~
22 ~~time of reduced need. Thus, from 1980 and onwards the system can rather easily survive the~~
23 ~~period of growing demand caused by the relatively dry and warm years.~~

24 Hubbard Brook WS2 exhibits a similarly clear decrease in root zone storage capacity as a
25 response to deforestation, as shown in Figure 4b. The water balance-based $S_{R,1yr}$ estimates
26 approach values of zero during and right after deforestation. In these years the catchment was
27 treated with herbicides, removing effectively any vegetation, thereby minimizing
28 transpiration. ~~Low $S_{R,1yr}$ values are highly plausible in this catchment because the relatively~~
29 ~~humid climate and the absence of pronounced rainfall seasonality strongly reduces storage~~
30 ~~requirements (Gao et al., 2014).~~ In this catchment a more gradual regrowth pattern occurred,
31 which continued after logging started in 1966 until around 1983. ~~However, the marked~~
32 ~~increase in $S_{R,1yr}$ at that time rather points towards an exceptional year, in terms of~~

1 ~~climatological factors, than a sudden expansion of the root zone. It can also be observed from~~
2 ~~Figure 3a that the runoff coefficient was relatively low for 1985, suggesting either increased~~
3 ~~evaporation or a storage change. It can be argued, that a combination of a relatively long~~
4 ~~period of low rainfall amounts and high potential evaporation, as can be noted by the~~
5 ~~relatively high mean annual potential evaporation on top of Figure 4b, led to a high demand in~~
6 ~~1985. Parts of the vegetation may not have survived these high demand conditions due to~~
7 ~~insufficient access to water, which in turn can explain the dip in $S_{R,1yr}$ for the following year,~~
8 ~~which is in agreement with reduced growth rates of trees after droughts as observed by for~~
9 ~~example Bréda et al. (2006).~~

10 ~~The hydrographs of 1984–1985 (Figure 6a) and 1986–1987 (Figure 6b) also show that July–~~
11 ~~August 1985 was exceptionally dry, whereas the next year in August 1986 the catchment~~
12 ~~seems to have increased peak flows. This either points towards an actual low storage capacity~~
13 ~~due to contraction of the roots during the dry summer or a low need of the system to use the~~
14 ~~existing capacity, for instance to recover other vital aspects of the system.~~

15 Generally, the models applied in Hubbard Brook WS2 show similar behavior as in the HJ
16 Andrews catchment. The calibrated $S_{u,max}$ clearly follows the temporal pattern of $S_{R,1yr}$,
17 reflecting the pronounced effects of de- and reforestation. It can, however, also be observed
18 that the absolute values of $S_{u,max}$ exceed the $S_{R,1yr}$ estimates. While FLEX on balance exhibits
19 the closest resemblance between the two values, in particular the TUW model exhibits wide
20 uncertainty bounds with elevated $S_{u,max}$ values. Besides the role of interception evaporation,
21 which is only explicitly accounted for in FLEX, the results are also linked to the fact that the
22 humid climatic conditions with little seasonality reduces the importance of the model
23 parameter $S_{u,max}$, and makes it thereby more difficult to identify by calibration. The parameter
24 is most important for lengthy dry periods when vegetation needs enough storage to ensure
25 continuous access to water.

26 The temporal variation in S_R in Hubbard Brook WS5 does not show such a distinct signal as
27 in the other two study catchments (Figure 4c). Moreover, it can be noted that in the summers
28 of 1984 and 1985 the values of $S_{R,1yr}$ are relatively high. Nevertheless, the model based
29 values of $S_{u,max}$ show again similar dynamics as the water balance based $S_{R,1yr}$ values. TUW
30 and HYMOD show again higher model based values, but also FLEX is now overestimating
31 the root zone storage capacity. Here the forest was removed in a whole tree harvest in winter
32 '83-'84 followed by natural regrowth. The summers of 1984 and 1985 were very dry

1 summers, as also reflected by the high values of $S_{R,1yr}$. The young system had already
2 developed enough roots before these dry periods to have access to a sufficiently large water
3 volume to survive this summer. This is plausible, as the period of the highest deficit occurred
4 in mid July and lasted until approximately the end of September, thus long after the growing
5 season, allowing enough time for an initial growth and development of young roots from
6 April until mid July. In addition, the composition of the new forest differed from the old
7 forest with more pin cherry (*Prunus pensylvanica*) and paper birch (*Betula papyrifera*). This
8 supports the statements of a quick regeneration as these species have a high growth rate and
9 reach canopy closure in a few years. Furthermore, the forest was not treated with either
10 herbicides (Hubbard Brook WS2) or burned (HJ Andrews WS1), leaving enough low shrubs
11 and herbs to maintain some level of transpiration (Hughes and Fahey, 1991; Martin, 1988). It
12 can thus be argued, similar to Li et al. (2007), that the remaining vegetation experienced less
13 competition and could increase root water uptake efficiency and transpiration per unit leaf
14 area. This is in agreement with Hughes and Fahey (1991), who also stated that several species
15 benefited from the removal of canopies and newly available resources in this catchment.
16 Lastly, several other authors related the absence of a clear change in hydrological dynamics to
17 the severe soil disturbance in this catchment (Hornbeck et al., 1997; Johnson et al., 1991).
18 These disturbances lead to extra compaction, whereas at the same time species were changing,
19 effectively masking any changes in runoff dynamics.

20 **3.34.3 Process understanding - trend analysis and change in hydrological** 21 **regimes**

22 The trend analysis for water-balance derived values of $S_{R,1yr}$ suggests that for all three study
23 catchments significantly different hydrological regimes in time can be identified before and
24 after deforestation, linked to changes in $S_{R,1yr}$ (Fig. 7). For all three catchments, the
25 cumulative residuals plot outside the 95%-confidence ellipse, indicating that the time series
26 obtained in the control catchments and the deforested catchments are not homogeneous
27 (Figures 7g-7i).

28 Rather obvious break points can be identified in the residuals plots for the catchments HJ
29 Andrews WS1 and Hubbard Brook WS2 (Fig. 7d-7e). Splitting up the $S_{R,1yr}$ time series
30 according to these break points into the periods before deforestation, deforestation and
31 recovery resulted in three individually homogenous time series that are significantly different
32 from each other, indicating switches in the hydrological regimes. The results shown in Figure

1 4 indicate that these catchments developed a~~had a~~ rather stable root zone storage capacity
2 during sometime after the start of deforestation (for HJ Andrews WS1 after 1964, for
3 Hubbard Brook WS2 after 1967). Hence, recovery and deforestation balanced each other,
4 leading to a temporary equilibrium. The recovery signal then becomes more dominant in the
5 years after deforestation. The third homogenous period suggests that the root zone storage
6 capacity reached a dynamic equilibrium without any further systematic changes. This can be
7 interpreted in the way that in the HJ Andrews WS1 hydrological recovery after deforestation
8 due to the recovery of the root zone store capacity took about 6-9 years (Fig. 7p), while
9 Hubbard Brook WS2 required 10-13 years for hydrological recovery (Fig. 7q). This strongly
10 supports the results of Hornbeck et al. (2014), who reported changes in water yield for WS2
11 for up to year 12 after deforestation.

12 The identification of different periods is less obvious for Hubbard Brook WS5, but the two
13 time series of control catchment and treated catchment are significantly different (see the
14 cumulative residuals in Figure 7i). Nevertheless, the most obvious break point in residuals can
15 be found in 1989 (Figure 7f). In addition, it can be noted that turning points also exist in 1983
16 and 1985. These years can be used to split the time series into four groups (leading to the
17 periods of 1964-1982, 1983-1985, 1986-1989 and 1990-2009 for further analysis). The
18 cumulative residuals from the new regressions, based on the grouping, plot within the
19 confidence bounds again, and show a period with deforestation (1983-1985) and recovery
20 (1986-1989). Mou et al. (1993) reported similar findings with the highest biomass
21 accumulation in 1986 and 1988, and slower vegetation growth in the early years. Therefore,
22 full recovery took 5-6 years in Hubbard Brook WS5.

23 ~~The above results do in general suggest similar recovery periods for forest systems as reported~~
24 ~~in earlier studies, such as Brown et al. (2005) or Hornbeck et al. (2014), who found that~~
25 ~~catchments reach a new equilibrium with a similar timescale as reported here with the direct~~
26 ~~link to the parameter describing the catchment scale root zone storage capacity. The~~
27 ~~timescales are also in agreement with regression models to predict water yield after logging of~~
28 ~~Douglass (1983), who assumed a duration of water yield increases of 12 years for coniferous~~
29 ~~catchments. The timescales found here are around 10 years (here 5-13 years for the~~
30 ~~catchments under consideration), but will probably depend on climatic factors and vegetation~~
31 ~~type.~~

1 **3.44.4 Time-variant model formulation**

2 The adjusted model routine for FLEX, which uses a dynamic time series of $S_{u,\max}$, generated
3 with the Weibull growth function (Eq.11), resulted in a rather small impact on the overall
4 model performance in terms of the calibration objective function values (Figure 8b, 8d, 8f)
5 compared to the time-invariant formulation of the model. The strongest improvements for
6 calibration were observed for the dynamic formulation of FLEX for HJ Andrews WS1 and
7 Hubbard Brook WS2 (Figures 8b and 8d), which reflects the rather clear signal from
8 deforestation in these catchments.

9 Evaluating a set of hydrological signatures suggests that the dynamic formulation of $S_{u,\max}$
10 allows the model to have a higher probability to better reproduce most of the signatures tested
11 here (5154% of all signatures in the three catchments) as shown in Figure 9a. A similar
12 pattern is obtained for the more quantitative S_{RP} (Figure 9b), where in 52% of the cases
13 improvements are observed. Most signatures for HJ Andrews WS1 show a high probability of
14 improvement, with a maximum $P_{IS} = 0.69$ (for $S_{Q95,winter}$) and an average $P_{IS} = 0.55$.
15 Considering the large difference between the deforested situation and the new equilibrium
16 situation of about 200 mm, this supports the hypothesis that here a time-variant formulation of
17 $S_{u,\max}$ does provide means for an improved process representation and, thus, hydrological
18 signatures. Here, improvements are observed especially in the high flows in summer
19 ($S_{Q5,summer}$, $S_{Q50,summer}$) and peak flows (e.g. S_{Peaks} , $S_{Peaks,summer}$, $S_{Peaks,winter}$), that illustrates that
20 the root zone storage affects mostly the fast responding components of the system. ~~as also
21 suggested previously (e.g. de Boer Euser et al., 2016; Euser et al., 2015; Oudin et al., 2004),
22 by providing a buffer to storm response. In addition, a dynamic formulation of $S_{u,\max}$ permits a
23 more plausible representation of the variability in land atmosphere exchange following land
24 use change, which is a critical input to climate models (Entekhabi et al., 1996; Seneviratne et
25 al., 2010). Fulfilling its function as a storage reservoir for plant available water, modelled
26 transpiration is significantly reduced post deforestation, which in turn results in increased
27 runoff coefficients (cf. Gao et al., 2014), which have been frequently reported for post-
28 deforestation periods by earlier studies (e.g. Hornbeck et al., 2014; Rothacher, 1970; Swift
29 and Swank, 1981).~~

30 At Hubbard Brook WS2 a more variable pattern is shown in the ability of the model to
31 reproduce the hydrological signatures. It is interesting to note that the low flows (S_{Q95}
32 , $S_{Q95,summer}$, $S_{Q50,summer}$) improve, opposed to the expectation raised by the argumentation for

1 HJ Andrews WS1 that peak flows and high flows should improve. In this case, the peaks are
2 too high for the time-dynamic model. ~~Apparently, the model with a constant, and thus higher,~~
3 ~~$S_{u,\max}$ stores water in the root zone, reducing recharge to the groundwater reservoir that~~
4 ~~maintains the lower flows and buffering more water, reducing the peaks. This can also be~~
5 ~~clearly seen from the hydrographs (Figure 10), where the later part of the recession in the late-~~
6 ~~summer months is much better captured by the time-dynamic model. Nevertheless, the peaks~~
7 ~~are too high for the time-dynamic model, which here is linked to an insufficient representation~~
8 ~~of snow related processes, as can be seen from the hydrograph (April May) as well, and~~
9 ~~possibly by an inadequate interception growth function, both leading to too high amounts of~~
10 ~~effective precipitation entering the root zone. An adjustment of these processes would have~~
11 ~~resulted in less infiltration and a smaller root zone storage capacity.~~

12

13 The probabilities of improvement for the signatures in Hubbard Brook WS5 show an even
14 less clear signal, the model cannot clearly identify a preference for either a dynamic or static
15 formulation of $S_{u,\max}$ (~~relatively white colors in Fig. 9~~). This absence of a clear preference can
16 be related to the observed patterns in water balance derived S_R (Figure 4c), which does not
17 show a very clear signal after deforestation as well, indicating that the root zone storage
18 capacity is of less importance in this humid region characterized by limited seasonality.
19 ~~Nevertheless, a similar argument as for the Hubbard Brook WS2 can be made here, as can be~~
20 ~~noted that the low flow statistics (e.g. Q_{95} , LFR) slightly improve, and some statistics~~
21 ~~concerning peak flows deteriorate (e.g. Peaks, AC), indicating similar issues regarding the~~
22 ~~modelling of snow and interception.~~

23

24 ~~Wang-Erlandsson et al. (2016)~~

25 **5 Discussion**

26 **5.1 Deforestation and changes in hydrological response dynamics**

27 ~~The changes found in the runoff behavior of the deforested catchments point towards shifts in~~
28 ~~the yearly sums of transpiration, which can, except for climatic variation, be linked to the~~
29 ~~regrowth of vegetation that takes place at a similar pace as the changes in hydrological~~
30 ~~dynamics. This coincidence of regrowth dynamics and evolution of runoff coefficients was~~

1 not only noticed by Hornbeck et al. (2014) for the Hubbard Brook, but was also previously
2 acknowledged for example by Swift and Swank (1981) in the Coweeta experiment or Kuczera
3 (1987) for eucalypt regrowth after forest fires.

4 Therefore, the key role of vegetation in this partitioning between runoff and transpiration
5 (Donohue et al., 2012), or more specifically root zones (Gentine et al., 2012), necessarily
6 leads to a change in runoff coefficients when vegetation is removed. Similarly, Gao et al.
7 (2014) found a strong correlation between root zone storage capacities and runoff coefficients
8 in more than 300 US catchments, which lends further support to the hypothesis that root zone
9 storage capacities may have decreased in deforested catchments right after removal of the
10 vegetation.

11 **5.2 Temporal evolution of S_R and $S_{u,max}$**

12 The differences between the Hubbard Brook catchments and HJ Andrews catchments can be
13 related to climatic conditions. In spite of the high annual precipitation volumes, high $S_{R,1yr}$
14 values are plausible for HJ Andrews WS1 given the marked seasonality of the precipitation in
15 the Mediterranean climate (Koeppen-Geiger class Csb) and the approximately 6 months phase
16 shift between precipitation and potential evaporation peaks in the study catchment, which
17 dictates that the storage capacities need to be large enough to store precipitation falling mostly
18 during winter throughout the extended dry periods with higher energy supply throughout the
19 rest of the year (Gao et al., 2014). At the same time, low $S_{R,1yr}$ values in Hubbard Brook WS2
20 can be related to the relatively humid climate and the absence of pronounced rainfall
21 seasonality strongly reduces storage requirements.

22 It can also be argued that there is a strong influence of the inter-annual climatic variability on
23 the estimated root zone storage capacities. For example, the marked increase in $S_{R,1yr}$ in
24 Hubbard Brook WS2 in 1985 rather points towards an exceptional year, in terms of
25 climatological factors, than a sudden expansion of the root zone. It can also be observed from
26 Figure 3a that the runoff coefficient was relatively low for 1985, suggesting either increased
27 evaporation or a storage change. A combination of a relatively long period of low rainfall
28 amounts and high potential evaporation, as can be noted by the relatively high mean annual
29 potential evaporation on top of Figure 4b, may have led to a high demand in 1985. Parts of the
30 vegetation may not have survived these high-demand conditions due to insufficient access to
31 water, explaining the dip in $S_{R,1yr}$ for the following year, which is also in agreement with

1 reduced growth rates of trees after droughts as observed by for example Bréda et al. (2006).
2 The hydrographs of 1984-1985 (Figure 6a) and 1986-1987 (Figure 6b) also show that July-
3 August 1985 was exceptionally dry, whereas the next year in August 1986 the catchment
4 seems to have increased peak flows. This either points towards an actual low storage capacity
5 due to contraction of the roots during the dry summer or a low need of the system to use the
6 existing capacity, for instance to recover other vital aspects of the system.

7 Nevertheless, Hubbard Brook WS2 does not show a clear signal of reduced root zone storage,
8 followed by a gradual regrowth. Here, the forest was removed in a whole-tree harvest in
9 winter '83-'84 followed by natural regrowth. The summers of 1984 and 1985 were very dry
10 summers, as also reflected by the high values of $S_{R,1yr}$. The young system had already
11 developed enough roots before these dry periods to have access to a sufficiently large water
12 volume to survive this summer. This is plausible, as the period of the highest deficit occurred
13 in mid-July and lasted until approximately the end of September, thus long after the beginning
14 of the growing season, allowing enough time for an initial growth and development of young
15 roots from April until mid-July. In addition, the composition of the new forest differed from
16 the old forest with more pin cherry (*Prunus pensylvanica*) and paper birch (*Betula*
17 *papyrifera*). This supports the statements of a quick regeneration as these species have a high
18 growth rate and reach canopy closure in a few years. Furthermore, the forest was not treated
19 with either herbicides (Hubbard Brook WS2) or burned (HJ Andrews WS1), leaving enough
20 low shrubs and herbs to maintain some level of transpiration (Hughes and Fahey, 1991;
21 Martin, 1988). It can thus be argued, similar to Li et al. (2007), that the remaining vegetation
22 experienced less competition and could increase root water uptake efficiency and transpiration
23 per unit leaf area. This is in agreement with Hughes and Fahey (1991), who also stated that
24 several species benefited from the removal of canopies and newly available resources in this
25 catchment. Lastly, several other authors related the absence of a clear change in hydrological
26 dynamics to the severe soil disturbance in this catchment (Hornbeck et al., 1997; Johnson et
27 al., 1991). These disturbances lead to extra compaction, whereas at the same time species
28 were changing, effectively masking any changes in runoff dynamics.

29 **5.3 Process understanding - trend analysis and change in hydrological**
30 **regimes**

31 The found recovery periods correspond to recovery time scales for forest systems as reported
32 elsewhere (e.g. Brown et al., 2005; Hornbeck et al., 2014; Elliott et al., 2016), who found that

1 catchments reach a new equilibrium with a similar timescale as reported here with the direct
2 link to the parameter describing the catchment-scale root zone storage capacity. The
3 timescales are also in agreement with regression models to predict water yield after logging of
4 Douglass (1983), who assumed a duration of water yield increases of 12 years for coniferous
5 catchments.

6 The timescales found here are around 10 years (here 5-13 years for the catchments under
7 consideration), but will probably depend on climatic factors and vegetation type. HJ Andrews
8 WS1 has a recovery (6-9 years) slightly shorter compared to Hubbard Brook WS2 (10-13
9 years), which could depend on the different climatological conditions of the catchments.
10 Nevertheless, it could also be argued that especially the spraying of herbicides had a strong
11 impact on the recovery of vegetation in Hubbard Brook WS2, as the Hubbard Brook WS5
12 does not show such a distinct recovery signal.

13 **5.4 Time-variant model formulation**

14 It was found that a time dynamic formulation of $S_{u,\max}$ merely improved the high and peak
15 flow signatures for HJ Andrews WS1. Other authors also suggested previously (e.g. de Boer-
16 Euser et al., 2016; Euser et al., 2015; Oudin et al., 2004) that that the root zone storage affects
17 mostly the fast responding components of the system, by providing a buffer to storm
18 response. Fulfilling its function as a storage reservoir for plant available water, modelled
19 transpiration is significantly reduced post-deforestation, which in turn results in increased
20 runoff coefficients (cf. Gao et al., 2014), which have been frequently reported for post-
21 deforestation periods by earlier studies (e.g. Hornbeck et al., 2014; Rothacher, 1970; Swift
22 and Swank, 1981)

23 Nevertheless, signatures considering the peak flows did not improve for the Hubbard Brook
24 catchments. Apparently, the model with a constant, and thus higher, $S_{u,\max}$ stored water in the
25 root zone, reducing recharge to the groundwater reservoir that maintains the lower flows and
26 buffering more water, reducing the peaks. This can also be clearly seen from the hydrographs
27 (Figure 10), where the later part of the recession in the late-summer months is much better
28 captured by the time-dynamic model. Nevertheless, the peaks are too high for the time-
29 dynamic model, which here is linked to an insufficient representation of snow-related
30 processes, as can be seen from the hydrograph (April-May) as well, and possibly by an
31 inadequate interception growth function, both leading to too high amounts of effective

1 precipitation entering the root zone. An adjustment of these processes would have resulted in
2 less infiltration and a smaller root zone storage capacity.

3 It was acknowledged previously by several authors that certain model parameters may need
4 time-dynamic formulations, like Waichler et al. (2005) with time-dynamic formulations of
5 leaf area index and overstore height for the DHSVM model. In addition, Westra et al. (2014)
6 captured long term dynamics in the storage parameter of the GR4J model with a trend
7 correction, in fact leading to a similar model behavior as with the Weibull growth function in
8 this study. Nevertheless, they only hypothesized about the actual hydrological reasons for
9 this, which aimed at the changing number of farmer dams in the catchment. The results
10 presented here indicate that vegetation, and especially root zone dynamics, has a strong
11 impact on the long term non-stationarity of model parameters. The simple Weibull equation
12 can be used as an extra equation in conceptual hydrological models to more closely reflect the
13 dynamics of vegetation. The additional growth parameters may be left for calibration, but can
14 also be estimated from simple water balance-based estimations of the root zone storage. In
15 this way, the extra parameters should not add any uncertainty to the model outcomes.

16

17 **5.5 General Limitations**

18 The results presented here depend on the quality of the data and several assumptions made in
19 the calculations. A limiting factor is that the potential evaporation is determined from
20 temperature only, leading to values that may be relatively low and water balances that may
21 not close completely. Generally, this would lead to a discrepancy between the modelled
22 $S_{u,max}$, where potential evaporation is directly used, and the water balance-estimates of S_R .
23 The models will probably generate higher root zone storages in order to compensate for the
24 rather low potential evaporation. This can also be noted when looking at Figure 4 for several
25 models.

26 In addition, the assumption that the water balance closes in the 2-year periods under
27 consideration may in reality be often violated. It can be argued that the estimated transpiration
28 for the calculation of S_R represents an upper boundary, when storage changes are ignored.
29 This would lead to estimates of S_R that may be lower than presented here. Nevertheless,
30 attempts with 5-year water balances to reduce the influence of storage changes (see the
31 Supplementary Material Figure S9), showed that similar patterns were obtained. Values here

were slightly lower due to more averaging in the estimation of the transpiration by the longer time period used for the water balance. Nevertheless, still a strong decrease after deforestation and gradual recovery can be observed.

The raised issues here can be fully avoided when, instead of a water balance-based estimation of the transpiration, remote sensing products are used to estimate the transpiration, similar to Wang-Erlandsson et al. (2016). However, water balance-based estimates may provide a rather quick solution.

The transpiration estimates were also only corrected for interception evaporation, thus assuming a negligible amount of soil evaporation. Making this additional separation is typically not warranted by the available data and would result in additional uncertainty. The transpiration estimates presented here merely represent an upper limit of transpiration and will be lower in reality due to soil evaporation. Thus, the values for $S_{R,1yr}$ may expected to be lower in reality as well.

46 Conclusion

In this study, three deforested catchments (HJ Andrews WS1, Hubbard Brook WS2 and WS5) were investigated to assess the dynamic character of root zone storage capacities using water balance, trend analysis, four different hydrological models and one modified model version. Root zone storage capacities were estimated based on a simple water balance approach. Results demonstrate a good correspondence between water-balance derived root zone storage capacities and values obtained by a 2-year moving window calibration of four distinct hydrological models.

~~There are significant changes in root zone storage capacity after deforestation, which were detected by both, a water-balance based method and the calibration of hydrological models. We found a good correspondence between water-balance derived root zone storage capacities and values obtained by a 2 year moving window calibration of four distinct hydrological models.~~ There are significant changes in root zone storage capacity after deforestation, which were detected by both, a water-balance based method and the calibration of hydrological models in two of the three catchments. More specifically, root zone storage capacities showed for HJ Andrews WS1 and Hubbard Brook WS2 a sharp decrease in root zone storage capacities immediately after deforestation with a gradual recovery towards a new equilibrium.

1 This could to a large extent explain post-treatment changes to the hydrological regime. -These
2 signals were however not clearly observed for Hubbard Brook WS5, probably due to soil
3 disturbance, a new vegetation composition and a climatologically exceptional year.
4 Nevertheless, This could to a large extent explain post treatment changes to the hydrological
5 regime. Trend analysis showed significant differences for all three catchments with their
6 corresponding, undisturbed reference watersheds. suggestedBased on this, recovery times
7 were estimated to be between 5-13 years for the three catchments under consideration.

8 These findings underline the fact that root zone storage capacities in hydrological models,
9 which are more often than not treated as constant in time, may need time-dynamic
10 formulations with reductions after logging and gradual regrowth afterwards. Therefore, one of
11 the models was subsequently formulated with a time-dynamic description of root zone storage
12 capacity. Particularly under climatic conditions with pronounced seasonality and phase shifts
13 between precipitation and evaporation, this resulted in improvements in model performance
14 as evaluated by 28 hydrological signatures.

15 Even though this more complex system behavior may lead to extra unknown growth
16 parameters, it has been shown here that a simple equation, reflecting the long-term growth of
17 the system, can already suffice for a time-dynamic estimation of this crucial hydrological
18 parameter. Therefore, this study clearly shows that observed changes in runoff characteristics
19 after land use-cover changes can be linked to relatively simple time-dynamic formulations of
20 vegetation related model parameters.

21

22 **Acknowledgements**

23 We would like to acknowledge the European Commission FP7 funded research project
24 “Sharing Water-related Information to Tackle Changes in the Hydrosphere– for Operational
25 Needs” (SWITCH-ON, grant agreement number 603587), as this study was conducted within
26 the context of SWITCH-ON as an example of scientific potential when using open data for
27 collaborative research in hydrology.

28 Open Data were provided by the the Hubbard Brook Ecosystem Study (HBES), which is a
29 collaborative effort at the Hubbard Brook Experimental Forest which is operated and
30 maintained by the USDA Forest Service Northern Research Station, Newtown Square, PA,
31 USA.

1 Open Data were provided by the HJ Andrews Experimental Forest research program, funded
2 by the National Science Foundation's Long-Term Ecological Research Program (DEB 08-
3 23380), US Forest Service Pacific Northwest Research Station, and Oregon State University.
4

1 **References**

2

3 Alila, Y., Kuraś, P. K., Schnorbus, M., and Hudson, R.: Forests and floods: A new paradigm
4 sheds light on age-old controversies, *Water Resources Research*, 45, n/a-n/a,
5 10.1029/2008WR007207, 2009.

6 Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M.,
7 Kitzberger, T., Rigling, A., Breshears, D. D., Hogg, E. H., Gonzalez, P., Fensham, R., Zhang,
8 Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S. W., Semerci, A., and Cobb,
9 N.: A global overview of drought and heat-induced tree mortality reveals emerging climate
10 change risks for forests, *Forest Ecology and Management*, 259, 660-684,
11 <http://dx.doi.org/10.1016/j.foreco.2009.09.001>, 2010.

12 Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration-Guidelines for
13 computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300,
14 D05109, 1998.

15 Allison, G. B., Cook, P. G., Barnett, S. R., Walker, G. R., Jolly, I. D., and Hughes, M. W.:
16 Land clearance and river salinisation in the western Murray Basin, Australia, *Journal of
17 Hydrology*, 119, 1-20, [http://dx.doi.org/10.1016/0022-1694\(90\)90030-2](http://dx.doi.org/10.1016/0022-1694(90)90030-2), 1990.

18 Andersson, L., and Arheimer, B.: Consequences of changed wetness on riverine nitrogen –
19 human impact on retention vs. natural climatic variability, *Regional Environmental Change*,
20 2, 93-105, 10.1007/s101130100024, 2001.

21 Andréassian, V.: Waters and forests: from historical controversy to scientific debate, *Journal
22 of Hydrology*, 291, 1-27, <http://dx.doi.org/10.1016/j.jhydrol.2003.12.015>, 2004.

23 Bathurst, J. C., Ewen, J., Parkin, G., O'Connell, P. E., and Cooper, J. D.: Validation of
24 catchment models for predicting land-use and climate change impacts. 3. Blind validation for
25 internal and outlet responses, *Journal of Hydrology*, 287, 74-94,
26 <http://dx.doi.org/10.1016/j.jhydrol.2003.09.021>, 2004.

27 Bergström, S.: Development and application of a conceptual runoff model for Scandinavian
28 catchments. SMHI Reports RHO, Norrköping, 1976.

29 Bergström, S.: The HBV model: Its structure and applications, Swedish Meteorological and
30 Hydrological Institute, 1992.

31 Black, P. E.: WATERSHED FUNCTIONS1, *JAWRA Journal of the American Water
32 Resources Association*, 33, 1-11, 10.1111/j.1752-1688.1997.tb04077.x, 1997.

33 Bosch, J. M., and Hewlett, J. D.: A review of catchment experiments to determine the effect
34 of vegetation changes on water yield and evapotranspiration, *Journal of Hydrology*, 55, 3-23,
35 [http://dx.doi.org/10.1016/0022-1694\(82\)90117-2](http://dx.doi.org/10.1016/0022-1694(82)90117-2), 1982.

36 Boyle, D. P.: Multicriteria calibration of hydrologic models, 2001.

37 Brath, A., Montanari, A., and Moretti, G.: Assessing the effect on flood frequency of land use
38 change via hydrological simulation (with uncertainty), *Journal of Hydrology*, 324, 141-153,
39 <http://dx.doi.org/10.1016/j.jhydrol.2005.10.001>, 2006.

1 Bréda, N., Huc, R., Granier, A., and Dreyer, E.: Temperate forest trees and stands under
2 severe drought: a review of ecophysiological responses, adaptation processes and long-term
3 consequences, *Ann. For. Sci.*, 63, 625-644, 2006.

4 Breuer, L., Eckhardt, K., and Frede, H.-G.: Plant parameter values for models in temperate
5 climates, *Ecological Modelling*, 169, 237-293, [http://dx.doi.org/10.1016/S0304-3800\(03\)00274-6](http://dx.doi.org/10.1016/S0304-3800(03)00274-6), 2003.

7 Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R. A.: A review of
8 paired catchment studies for determining changes in water yield resulting from alterations in
9 vegetation, *Journal of Hydrology*, 310, 28-61,
10 <http://dx.doi.org/10.1016/j.jhydrol.2004.12.010>, 2005.

11 Brunner, I., Herzog, C., Dawes, M. A., Arend, M., and Sperisen, C.: How tree roots respond
12 to drought, *Frontiers in Plant Science*, 6, 547, 10.3389/fpls.2015.00547, 2015.

13 Brunner, P., and Simmons, C. T.: HydroGeoSphere: A Fully Integrated, Physically Based
14 Hydrological Model, *Ground Water*, 50, 170-176, 10.1111/j.1745-6584.2011.00882.x, 2012.

15 Campbell, J.: Hubbard Brook Experimental Forest (USDA Forest Service): Daily Streamflow
16 by Watershed, 1956 - present, <http://www.hubbardbrook.org/data/dataset.php?id=2>, 2014a.

17 Campbell, J.: Hubbard Brook Experimental Forest (US Forest Service): Daily Precipitation
18 Standard Rain Gage Measurements, 1956 - present,
19 <http://www.hubbardbrook.org/data/dataset.php?id=13>, 2014b.

20 Campbell, J.: Hubbard Brook Experimental Forest (USDA Forest Service): Daily Maximum
21 and Minimum Temperature Records, 1955 - present,
22 <http://www.hubbardbrook.org/data/dataset.php?id=59>, 2014c.

23 Campbell, J.: Hubbard Brook Experimental Forest (USDA Forest Service): Daily Mean
24 Temperature Data, 1955 - present, <http://www.hubbardbrook.org/data/dataset.php?id=58>,
25 2014d.

26 Campbell, J. L., Bailey, A. S., Eagar, C., Green, M. B., and Battles, J. J.: Vegetation
27 treatments and hydrologic responses at the Hubbard Brook Experimental Forest, New
28 Hampshire, in: Long-term silvicultural & ecological studies: Results for science and
29 management, Volume 2, Yale University, Global Institute of Sustainable Forestry, Research
30 Paper 013: 011-019, 2013.

31 Camporese, M., Daly, E., and Paniconi, C.: Catchment-scale Richards equation-based
32 modeling of evapotranspiration via boundary condition switching and root water uptake
33 schemes, *Water Resources Research*, 51, 5756-5771, 10.1002/2015WR017139, 2015.

34 Cassiani, G., Boaga, J., Vanella, D., Perri, M. T., and Consoli, S.: Monitoring and modelling
35 of soil-plant interactions: the joint use of ERT, sap flow and eddy covariance data to
36 characterize the volume of an orange tree root zone, *Hydrol. Earth Syst. Sci.*, 19, 2213-2225,
37 10.5194/hess-19-2213-2015, 2015.

38 Ceola, S., Arheimer, B., Baratti, E., Blöschl, G., Capell, R., Castellarin, A., Freer, J., Han, D.,
39 Hrachowitz, M., Hundecha, Y., Hutton, C., Lindström, G., Montanari, A., Nijzink, R.,
40 Parajka, J., Toth, E., Viglione, A., and Wagener, T.: Virtual laboratories: new opportunities
41 for collaborative water science, *Hydrol. Earth Syst. Sci.*, 19, 2101-2117, 10.5194/hess-19-
42 2101-2015, 2015.

43 Criss, R. E., and Winston, W. E.: Do Nash values have value? Discussion and alternate
44 proposals, *Hydrological Processes*, 22, 2723-2725, 10.1002/hyp.7072, 2008.

1 Dahlgren, R. A., and Driscoll, C. T.: The effects of whole-tree clear-cutting on soil processes
2 at the Hubbard Brook Experimental Forest, New Hampshire, USA, *Plant and Soil*, 158, 239-
3 262, 10.1007/BF00009499, 1994.

4 Daly, C., and McKee, W.: Meteorological data from benchmark stations at the Andrews
5 Experimental Forest, 1957 to present. Long-Term Ecological Research. Forest Science Data
6 Bank, <http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=MS001> 2016.

7 de Boer-Euser, T., McMillan, H. K., Hrachowitz, M., Winsemius, H. C., and Savenije, H. H.
8 G.: Influence of soil and climate on root zone storage capacity, *Water Resources Research*,
9 n/a-n/a, 10.1002/2015WR018115, 2016.

10 Donohue, R. J., Roderick, M. L., and McVicar, T. R.: On the importance of including
11 vegetation dynamics in Budyko's hydrological model, *Hydrology and Earth System Sciences
Discussions*, 11, 983-995, 2007.

13 Donohue, R. J., Roderick, M. L., and McVicar, T. R.: Roots, storms and soil pores:
14 Incorporating key ecohydrological processes into Budyko's hydrological model, *Journal of
Hydrology*, 436-437, 35-50, <http://dx.doi.org/10.1016/j.jhydrol.2012.02.033>, 2012.

16 Douglass, J. E.: THE POTENTIAL FOR WATER YIELD AUGMENTATION FROM
17 FOREST MANAGEMENT IN THE EASTERN UNITED STATES1, *JAWRA Journal of the
American Water Resources Association*, 19, 351-358, 10.1111/j.1752-1688.1983.tb04592.x,
19 1983.

20 Du, E., Link, T. E., Wei, L., and Marshall, J. D.: Evaluating hydrologic effects of spatial and
21 temporal patterns of forest canopy change using numerical modelling, *Hydrological
Processes*, 30, 217-231, 10.1002/hyp.10591, 2016.

23 Dyrness, C.: Hydrologic properties of soils on three small watersheds in the western Cascades
24 of Oregon, Res. Note PNW-111, US Department of Agriculture, Forest Service, Pacific
25 Northwest Forest and Range Experiment Station: Portland, OR, 17, 1969.

26 Eagleson, P. S.: Climate, soil, and vegetation: 3. A simplified model of soil moisture
27 movement in the liquid phase, *Water Resources Research*, 14, 722-730,
28 10.1029/WR014i005p00722, 1978.

29 Eagleson, P. S.: Ecological optimality in water-limited natural soil-vegetation systems: 1.
30 Theory and hypothesis, *Water Resources Research*, 18, 325-340,
31 10.1029/WR018i002p00325, 1982.

32 Ehret, U., Gupta, H. V., Sivapalan, M., Weijs, S. V., Schymanski, S. J., Blöschl, G., Gelfan,
33 A. N., Harman, C., Kleidon, A., Bogaard, T. A., Wang, D., Wagener, T., Scherer, U., Zehe,
34 E., Bierkens, M. F. P., Di Baldassarre, G., Parajka, J., van Beek, L. P. H., van Griensven, A.,
35 Westhoff, M. C., and Winsemius, H. C.: Advancing catchment hydrology to deal with
36 predictions under change, *Hydrol. Earth Syst. Sci.*, 18, 649-671, 10.5194/hess-18-649-2014,
37 2014.

38 Elliott, K. J., Caldwell, P. V., Brantley, S. T., Miniat, C. F., Vose, J. M., and Swank, W. T.:
39 Water yield following forest-grass-forest transitions, *Hydrol. Earth Syst. Sci. Discuss.*, 2016,
40 1-53, 10.5194/hess-2016-548, 2016.

41 Entekhabi, D., Rodriguez-Iturbe, I., and Castelli, F.: Soil Moisture Theories and
42 ObservationsMutual interaction of soil moisture state and atmospheric processes, *Journal of
Hydrology*, 184, 3-17, [http://dx.doi.org/10.1016/0022-1694\(95\)02965-6](http://dx.doi.org/10.1016/0022-1694(95)02965-6), 1996.

1 Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlenbrook, S., and Savenije, H. H. G.: A framework to assess the realism of model structures using hydrological signatures, Hydrol. Earth Syst. Sci., 17, 1893-1912, 10.5194/hess-17-1893-2013, 2013.

4 Euser, T., Hrachowitz, M., Winsemius, H. C., and Savenije, H. H. G.: The effect of forcing and landscape distribution on performance and consistency of model structures, Hydrological Processes, 29, 3727-3743, 10.1002/hyp.10445, 2015.

7 Fatichi, S., Pappas, C., and Ivanov, V. Y.: Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale, Wiley Interdisciplinary Reviews: Water, 3, 327-368, 10.1002/wat2.1125, 2016.

10 Feddes, R. A., Kowalik, P. J., and Zaradny, H.: Simulation of field water use and crop yield, Centre for Agricultural Publishing and Documentation., 1978.

12 Federer, A. C., Flynn, L. D., Martin, W. C., Hornbeck, J. W., and Pierce, R. S.: Thirty years of hydrometeorologic data at the Hubbard Brook Experiment Forest, New Hampshire, 1990.

14 Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L.: Is the groundwater reservoir linear? Learning from data in hydrological modelling, Hydrol. Earth Syst. Sci., 10, 139-150, 10.5194/hess-10-139-2006, 2006.

17 Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister, L.: Understanding catchment behavior through stepwise model concept improvement, Water Resources Research, 44, n/a-n/a, 10.1029/2006WR005563, 2008.

20 Fenicia, F., Savenije, H. H. G., and Avdeeva, Y.: Anomaly in the rainfall-runoff behaviour of the Meuse catchment. Climate, land-use, or land-use management?, Hydrol. Earth Syst. Sci., 13, 1727-1737, 10.5194/hess-13-1727-2009, 2009.

23 Freer, J., Beven, K., and Ambroise, B.: Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach, Water Resources Research, 32, 2161-2173, 10.1029/95WR03723, 1996.

26 Gao, H., Hrachowitz, M., Schymanski, S. J., Fenicia, F., Sriwongsitanon, N., and Savenije, H. H. G.: Climate controls how ecosystems size the root zone storage capacity at catchment scale, Geophysical Research Letters, 41, 7916-7923, 10.1002/2014GL061668, 2014.

29 Gentine, P., D'Odorico, P., Lintner, B. R., Sivandran, G., and Salvucci, G.: Interdependence of climate, soil, and vegetation as constrained by the Budyko curve, Geophysical Research Letters, 39, n/a-n/a, 10.1029/2012GL053492, 2012.

32 Gerrits, A. M. J., Pfister, L., and Savenije, H. H. G.: Spatial and temporal variability of canopy and forest floor interception in a beech forest, Hydrological Processes, 24, 3011-3025, 10.1002/hyp.7712, 2010.

35 Gumbel, E. J.: The Return Period of Flood Flows, The Annals of Mathematical Statistics, 12, 163-190, 1941.

37 Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez, G. F.: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling, Journal of Hydrology, 377, 80-91, <http://dx.doi.org/10.1016/j.jhydrol.2009.08.003>, 2009.

41 Hargreaves, G. H., and Samani, Z. A.: Reference Crop Evapotranspiration from Temperature, Applied Engineering in Agriculture, 1, 96-99, 10.13031/2013.26773, 1985.

1 Harr, R. D., Harper, W. C., Krygier, J. T., and Hsieh, F. S.: Changes in storm hydrographs
2 after road building and clear-cutting in the Oregon Coast Range, Water Resources Research,
3 11, 436-444, 10.1029/WR011i003p00436, 1975.

4 Hornbeck, J. W., Pierce, R. S., and Federer, C. A.: Streamflow Changes after Forest Clearing
5 in New England, Water Resources Research, 6, 1124-1132, 10.1029/WR006i004p01124,
6 1970.

7 Hornbeck, J. W.: Storm flow from hardwood-forested and cleared watersheds in New
8 Hampshire, Water Resources Research, 9, 346-354, 10.1029/WR009i002p00346, 1973.

9 Hornbeck, J. W., Martin, C. W., and Eagar, C.: Summary of water yield experiments at
10 Hubbard Brook Experimental Forest, New Hampshire, Canadian Journal of Forest Research,
11 27, 2043-2052, 10.1139/x97-173, 1997.

12 Hornbeck, J. W., Eagar, C., Bailey, A., and Campbell, J. L.: Comparisons with results from
13 the Hubbard Brook Experimental Forest in the Northern Appalachians, Long-Term Response
14 of a Forest Watershed Ecosystem: Clearcutting in the Southern Appalachians, 213, 2014.

15 Hrachowitz, M., Savenije, H. H. G., Blöschl, G., McDonnell, J. J., Sivapalan, M., Pomeroy, J.
16 W., Arheimer, B., Blume, T., Clark, M. P., Ehret, U., Fenicia, F., Freer, J. E., Gelfan, A.,
17 Gupta, H. V., Hughes, D. A., Hut, R. W., Montanari, A., Pande, S., Tetzlaff, D., Troch, P. A.,
18 Uhlenbrook, S., Wagener, T., Winsemius, H. C., Woods, R. A., Zehe, E., and Cudennec, C.:
19 A decade of Predictions in Ungauged Basins (PUB)—a review, Hydrological Sciences
20 Journal, 58, 1198-1255, 10.1080/02626667.2013.803183, 2013.

21 Hrachowitz, M., Fovet, O., Ruiz, L., Euser, T., Gharari, S., Nijzink, R., Freer, J., Savenije, H.
22 H. G., and Gascuel-Odoux, C.: Process consistency in models: The importance of system
23 signatures, expert knowledge, and process complexity, Water Resources Research, 50, 7445-
24 7469, 10.1002/2014WR015484, 2014.

25 Hughes, J. W., and Fahey, T. J.: Colonization Dynamics of Herbs and Shrubs in a Disturbed
26 Northern Hardwood Forest, Journal of Ecology, 79, 605-616, 10.2307/2260656, 1991.

27 Ivanov, V. Y., Bras, R. L., and Vivoni, E. R.: Vegetation-hydrology dynamics in complex
28 terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks, Water
29 Resources Research, 44, n/a-n/a, 10.1029/2006WR005588, 2008.

30 Jobbágy, E. G., and Jackson, R. B.: Groundwater use and salinization with grassland
31 afforestation, Global Change Biology, 10, 1299-1312, 10.1111/j.1365-2486.2004.00806.x,
32 2004.

33 Johnson, C. E., Johnson, A. H., Huntington, T. G., and Siccama, T. G.: Whole-Tree Clear-
34 Cutting Effects on Soil Horizons and Organic-Matter Pools, Soil Science Society of America
35 Journal, 55, 497-502, 10.2136/sssaj1991.03615995005500020034x, 1991.

36 Johnson, S., and Rothacher, J.: Stream discharge in gaged watersheds at the Andrews
37 Experimental Forest, 1949 to present. Long-Term Ecological Research. Forest Science Data
38 Bank, Forest Science Data Bank,
39 <http://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=HF004> 2016.

40 Jones, J. A., and Grant, G. E.: Peak Flow Responses to Clear-Cutting and Roads in Small and
41 Large Basins, Western Cascades, Oregon, Water Resources Research, 32, 959-974,
42 10.1029/95WR03493, 1996.

1 Jones, J. A., and Post, D. A.: Seasonal and successional streamflow response to forest cutting
2 and regrowth in the northwest and eastern United States, *Water Resources Research*, 40, n-a-
3 n/a, 10.1029/2003WR002952, 2004.

4 Jothiyangkoon, C., Sivapalan, M., and Farmer, D. L.: Process controls of water balance
5 variability in a large semi-arid catchment: downward approach to hydrological model
6 development, *Journal of Hydrology*, 254, 174-198, [http://dx.doi.org/10.1016/S0022-1694\(01\)00496-6](http://dx.doi.org/10.1016/S0022-1694(01)00496-6), 2001.

8 Kleidon, A.: Global Datasets of Rooting Zone Depth Inferred from Inverse Methods, *Journal*
9 of Climate, 17, 2714-2722, 10.1175/1520-0442(2004)017<2714:GDORZD>2.0.CO;2, 2004.

10 Kuczera, G.: Prediction of water yield reductions following a bushfire in ash-mixed species
11 eucalypt forest, *Journal of Hydrology*, 94, 215-236, [http://dx.doi.org/10.1016/0022-1694\(87\)90054-0](http://dx.doi.org/10.1016/0022-1694(87)90054-0), 1987.

13 Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants in water-controlled
14 ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic
15 soil moisture dynamics, *Advances in Water Resources*, 24, 707-723,
16 [http://dx.doi.org/10.1016/S0309-1708\(01\)00005-7](http://dx.doi.org/10.1016/S0309-1708(01)00005-7), 2001.

17 Legesse, D., Vallet-Coulob, C., and Gasse, F.: Hydrological response of a catchment to
18 climate and land use changes in Tropical Africa: case study South Central Ethiopia, *Journal of*
19 *Hydrology*, 275, 67-85, [http://dx.doi.org/10.1016/S0022-1694\(03\)00019-2](http://dx.doi.org/10.1016/S0022-1694(03)00019-2), 2003.

20 Li, K. Y., Coe, M. T., Ramankutty, N., and Jong, R. D.: Modeling the hydrological impact of
21 land-use change in West Africa, *Journal of Hydrology*, 337, 258-268,
22 <http://dx.doi.org/10.1016/j.jhydrol.2007.01.038>, 2007.

23 Liancourt, P., Sharkhuu, A., Ariuntsetseg, L., Boldgiv, B., Helliker, B. R., Plante, A. F.,
24 Petraitis, P. S., and Casper, B. B.: Temporal and spatial variation in how vegetation alters the
25 soil moisture response to climate manipulation, *Plant and Soil*, 351, 249-261,
26 10.1007/s11104-011-0956-y, 2012.

27 Likens, G. E., Bormann, F. H., Johnson, N. M., Fisher, D. W., and Pierce, R. S.: Effects of
28 Forest Cutting and Herbicide Treatment on Nutrient Budgets in the Hubbard Brook
29 Watershed-Ecosystem, *Ecological Monographs*, 40, 23-47, 10.2307/1942440, 1970.

30 Likens, G. E.: *Biogeochemistry of a forested ecosystem*, Springer, New York, 2013.

31 Lindström, G., Pers, C., Rosberg, J., Strömqvist, J., and Arheimer, B.: Development and
32 testing of the HYPE (Hydrological Predictions for the Environment) water quality model for
33 different spatial scales, *Hydrology Research*, 41, 295-319, 10.2166/nh.2010.007, 2010.

34 Mahe, G., Paturel, J.-E., Servat, E., Conway, D., and Dezetter, A.: The impact of land use
35 change on soil water holding capacity and river flow modelling in the Nakambe River,
36 Burkina-Faso, *Journal of Hydrology*, 300, 33-43,
37 <http://dx.doi.org/10.1016/j.jhydrol.2004.04.028>, 2005.

38 Martin, C. W.: Soil disturbance by logging in New England--review and management
39 recommendations, *Northern Journal of Applied Forestry*, 5, 30-34, 1988.

40 Martin, C. W., Hornbeck, J. W., Likens, G. E., and Buso, D. C.: Impacts of intensive
41 harvesting on hydrology and nutrient dynamics of northern hardwood forests, *Canadian*
42 *Journal of Fisheries and Aquatic Sciences*, 57, 19-29, 10.1139/f00-106, 2000.

1 McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., Plaut, J.,
2 Sperry, J., West, A., Williams, D. G., and Yepez, E. A.: Mechanisms of plant survival and
3 mortality during drought: why do some plants survive while others succumb to drought?, *New*
4 *Phytologist*, 178, 719-739, 10.1111/j.1469-8137.2008.02436.x, 2008.

5 Mencuccini, M.: The ecological significance of long-distance water transport: short-term
6 regulation, long-term acclimation and the hydraulic costs of stature across plant life forms,
7 *Plant, Cell & Environment*, 26, 163-182, 10.1046/j.1365-3040.2003.00991.x, 2003.

8 Milly, P. C. D.: Climate, soil water storage, and the average annual water balance, *Water*
9 *Resources Research*, 30, 2143-2156, 10.1029/94WR00586, 1994.

10 Milly, P. C. D., and Dunne, K. A.: Sensitivity of the Global Water Cycle to the Water-
11 Holding Capacity of Land, *Journal of Climate*, 7, 506-526, doi:10.1175/1520-
12 0442(1994)007<0506:SOTGWC>2.0.CO;2, 1994.

13 Montanari, A., and Toth, E.: Calibration of hydrological models in the spectral domain: An
14 opportunity for scarcely gauged basins?, *Water Resources Research*, 43, n/a-n/a,
15 10.1029/2006WR005184, 2007.

16 Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L.,
17 Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven,
18 K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di
19 Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D. A., Srinivasan, V.,
20 Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z.,
21 and Belyaev, V.: "Panta Rhei—Everything Flows": Change in hydrology and society—The
22 IAHS Scientific Decade 2013–2022, *Hydrological Sciences Journal*, 58, 1256-1275,
23 10.1080/02626667.2013.809088, 2013.

24 Mou, P., Fahey, T. J., and Hughes, J. W.: Effects of Soil Disturbance on Vegetation Recovery
25 and Nutrient Accumulation Following Whole-Tree Harvest of a Northern Hardwood
26 Ecosystem, *Journal of Applied Ecology*, 30, 661-675, 10.2307/2404245, 1993.

27 Nash, J. E., and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A
28 discussion of principles, *Journal of Hydrology*, 10, 282-290, [http://dx.doi.org/10.1016/0022-1694\(70\)90255-6](http://dx.doi.org/10.1016/0022-1694(70)90255-6), 1970.

29 Nijzink, R. C., Samaniego, L., Mai, J., Kumar, R., Thober, S., Zink, M., Schäfer, D., Savenije,
30 H. H. G., and Hrachowitz, M.: The importance of topography-controlled sub-grid process
31 heterogeneity and semi-quantitative prior constraints in distributed hydrological models,
32 *Hydrol. Earth Syst. Sci.*, 20, 1151-1176, 10.5194/hess-20-1151-2016, 2016.

33 Nobel, P. S., and Cui, M.: Hydraulic Conductances of the Soil, the Root-Soil Air Gap, and the
34 Root: Changes for Desert Succulents in Drying Soil, *Journal of Experimental Botany*, 43,
35 319-326, 10.1093/jxb/43.3.319, 1992.

36 North, G. B., and Nobel, P. S.: Drought-induced changes in hydraulic conductivity and
37 structure in roots of Ferocactus acanthodes and Opuntia ficus-indica, *New Phytologist*, 120,
38 9-19, 10.1111/j.1469-8137.1992.tb01053.x, 1992.

39 Onstad, C. A., and Jamieson, D. G.: Modeling the Effect of Land Use Modifications on
40 Runoff, *Water Resources Research*, 6, 1287-1295, 10.1029/WR006i005p01287, 1970.

41 Oudin, L., Andréassian, V., Perrin, C., and Anctil, F.: Locating the sources of low-pass
42 behavior within rainfall-runoff models, *Water Resources Research*, 40, n/a-n/a,
43 10.1029/2004WR003291, 2004.

1 Parajka, J., Merz, R., and Blöschl, G.: Uncertainty and multiple objective calibration in
2 regional water balance modelling: case study in 320 Austrian catchments, *Hydrological
3 Processes*, 21, 435-446, 10.1002/hyp.6253, 2007.

4 Patric, J. H., and Reinhart, K. G.: Hydrologic Effects of Deforesting Two Mountain
5 Watersheds in West Virginia, *Water Resources Research*, 7, 1182-1188,
6 10.1029/WR007i005p01182, 1971.

7 Perrin, C., Michel, C., and Andréassian, V.: Improvement of a parsimonious model for
8 streamflow simulation, *Journal of Hydrology*, 279, 275-289, [http://dx.doi.org/10.1016/S0022-1694\(03\)00225-7](http://dx.doi.org/10.1016/S0022-1694(03)00225-7), 2003.

10 Porporato, A., Daly, E., Rodriguez, x, Iturbe, I., and Associate Editor: William, F. F.: Soil
11 Water Balance and Ecosystem Response to Climate Change, *The American Naturalist*, 164,
12 625-632, 10.1086/424970, 2004.

13 Refsgaard, J. C., and Storm, B.: MIKE SHE, in: *Computer Models of Watershed Hydrology*,
14 edited by: Singh, V. J., Water Resour. Publ., Littleton, Colorado, 1995.

15 Reynolds, J. F., Kemp, P. R., and Tenhunen, J. D.: Effects of long-term rainfall variability on
16 evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis,
17 *Plant Ecology*, 150, 145-159, 10.1023/a:1026530522612, 2000.

18 Rodriguez-Iturbe, I.: Ecohydrology: A hydrologic perspective of climate-soil-vegetation
19 dynamics, *Water Resources Research*, 36, 3-9, 10.1029/1999WR900210, 2000.

20 Rodriguez-Iturbe, I., D'Odorico, P., Laio, F., Ridolfi, L., and Tamea, S.: Challenges in humid
21 land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and
22 vegetation, *Water Resources Research*, 43, n/a-n/a, 10.1029/2007WR006073, 2007.

23 Rood, S. B., Braatne, J. H., and Hughes, F. M. R.: Ecophysiology of riparian cottonwoods:
24 stream flow dependency, water relations and restoration, *Tree Physiology*, 23, 1113-1124,
25 10.1093/treephys/23.16.1113, 2003.

26 Rothacher, J.: Streamflow from small watersheds on the western slope of the Cascade Range
27 of Oregon, *Water Resources Research*, 1, 125-134, 10.1029/WR001i001p00125, 1965.

28 Rothacher, J., Dyrness, C. T., Fredriksen, R. L., Forest, P. N., and Station, R. E.: Hydrologic
29 and related characteristics of three small watersheds in the Oregon Cascades, Pacific
30 Northwest Forest and Range Experiment Station, U.S. Dept. of Agriculture, 1967.

31 Rothacher, J.: Increases in Water Yield Following Clear-Cut Logging in the Pacific
32 Northwest, *Water Resources Research*, 6, 653-658, 10.1029/WR006i002p00653, 1970.

33 Schenk, H. J., and Jackson, R. B.: Rooting depths, lateral root spreads and below-
34 ground/above-ground allometries of plants in water-limited ecosystems, *Journal of Ecology*,
35 90, 480-494, 10.1046/j.1365-2745.2002.00682.x, 2002.

36 Schoups, G., Hopmans, J. W., Young, C. A., Vrugt, J. A., and Wallender, W. W.: Multi-
37 criteria optimization of a regional spatially-distributed subsurface water flow model, *Journal
38 of Hydrology*, 311, 20-48, <http://dx.doi.org/10.1016/j.jhydrol.2005.01.001>, 2005.

39 Schymanski, S. J., Sivapalan, M., Roderick, M. L., Beringer, J., and Hutley, L. B.: An
40 optimality-based model of the coupled soil moisture and root dynamics, *Hydrology and Earth
41 System Sciences Discussions*, 12, 913-932, 2008.

1 Seibert, J., and McDonnell, J. J.: Land-cover impacts on streamflow: a change-detection
2 modelling approach that incorporates parameter uncertainty, *Hydrological Sciences Journal*,
3 55, 316-332, 10.1080/02626661003683264, 2010.

4 Seibert, J., McDonnell, J. J., and Woodsmith, R. D.: Effects of wildfire on catchment runoff
5 response: a modelling approach to detect changes in snow-dominated forested catchments,
6 *Hydrology Research*, 41, 378-390, 2010.

7 Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., Orlowsky, B.,
8 and Teuling, A. J.: Investigating soil moisture–climate interactions in a changing climate: A
9 review, *Earth-Science Reviews*, 99, 125-161,
10 <http://dx.doi.org/10.1016/j.earscirev.2010.02.004>, 2010.

11 Seneviratne, S. I., Wilhelm, M., Stanelle, T., van den Hurk, B., Hagemann, S., Berg, A.,
12 Cheruy, F., Higgins, M. E., Meier, A., Brovkin, V., Claussen, M., Ducharne, A., Dufresne, J.-
13 L., Findell, K. L., Ghattas, J., Lawrence, D. M., Malyshev, S., Rummukainen, M., and Smith,
14 B.: Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the
15 GLACE-CMIP5 experiment, *Geophysical Research Letters*, 40, 5212-5217,
16 10.1002/grl.50956, 2013.

17 Shamir, E., Imam, B., Morin, E., Gupta, H. V., and Sorooshian, S.: The role of hydrograph
18 indices in parameter estimation of rainfall–runoff models, *Hydrological Processes*, 19, 2187-
19 2207, 10.1002/hyp.5676, 2005.

20 Sivapalan, M., Blöschl, G., Zhang, L., and Vertessy, R.: Downward approach to hydrological
21 prediction, *Hydrological Processes*, 17, 2101-2111, 10.1002/hyp.1425, 2003.

22 Sperry, J. S., Hacke, U. G., Oren, R., and Comstock, J. P.: Water deficits and hydraulic limits
23 to leaf water supply, *Plant, Cell & Environment*, 25, 251-263, 10.1046/j.0016-
24 8025.2001.00799.x, 2002.

25 Swift, L. W., and Swank, W. T.: Long term responses of streamflow following clearcutting
26 and regrowth / Réactions à long terme du débit des cours d'eau après coupe et repeuplement,
27 *Hydrological Sciences Bulletin*, 26, 245-256, 10.1080/02626668109490884, 1981.

28 Teuling, A. J., Van Loon, A. F., Seneviratne, S. I., Lehner, I., Aubinet, M., Heinesch, B.,
29 Bernhofer, C., Grünwald, T., Prasse, H., and Spank, U.: Evapotranspiration amplifies
30 European summer drought, *Geophysical Research Letters*, 40, 2071-2075, 10.1002/grl.50495,
31 2013.

32 Troch, P. A., Martinez, G. F., Pauwels, V. R. N., Durcik, M., Sivapalan, M., Harman, C.,
33 Brooks, P. D., Gupta, H., and Huxman, T.: Climate and vegetation water use efficiency at
34 catchment scales, *Hydrological Processes*, 23, 2409-2414, 10.1002/hyp.7358, 2009.

35 Troch, P. A., Lahmers, T., Meira, A., Mukherjee, R., Pedersen, J. W., Roy, T., and Valdés-
36 Pineda, R.: Catchment coevolution: A useful framework for improving predictions of
37 hydrological change?, *Water Resources Research*, 51, 4903-4922, 10.1002/2015WR017032,
38 2015.

39 Tron, S., Perona, P., Gorla, L., Schwarz, M., Laio, F., and Ridolfi, L.: The signature of
40 randomness in riparian plant root distributions, *Geophysical Research Letters*, 42, 7098-7106,
41 10.1002/2015GL064857, 2015.

42 Vose, J. M., Miniat, C. F., Luce, C. H., Asbjornsen, H., Caldwell, P. V., Campbell, J. L.,
43 Grant, G. E., Isaak, D. J., Loheide II, S. P., and Sun, G.: Ecohydrological implications of

1 drought for forests in the United States, *Forest Ecology and Management*,
2 <http://dx.doi.org/10.1016/j.foreco.2016.03.025>,

3 Wagener, T., Sivapalan, M., Troch, P., and Woods, R.: Catchment Classification and
4 Hydrologic Similarity, *Geography Compass*, 1, 901-931, 10.1111/j.1749-8198.2007.00039.x,
5 2007.

6 Waichler, S. R., Wemple, B. C., and Wigmosta, M. S.: Simulation of water balance and forest
7 treatment effects at the H.J. Andrews Experimental Forest, *Hydrological Processes*, 19, 3177-
8 3199, 10.1002/hyp.5841, 2005.

9 Wang-Erlandsson, L., Bastiaanssen, W. G. M., Gao, H., Jägermeyr, J., Senay, G. B., van Dijk,
10 A. I. J. M., Guerschman, J. P., Keys, P. W., Gordon, L. J., and Savenije, H. H. G.: Global root
11 zone storage capacity from satellite-based evaporation, *Hydrol. Earth Syst. Sci.*, 20, 1459-
12 1481, 10.5194/hess-20-1459-2016, 2016.

13 Weibull, W.: A Statistical Distribution Function of Wide Applicability, *Journal of applied
14 mechanics*, 18, 293-297, 1951.

15 Westerberg, I. K., Guerrero, J. L., Younger, P. M., Beven, K. J., Seibert, J., Halldin, S., Freer,
16 J. E., and Xu, C. Y.: Calibration of hydrological models using flow-duration curves, *Hydrol.
17 Earth Syst. Sci.*, 15, 2205-2227, 10.5194/hess-15-2205-2011, 2011.

18 Westra, S., Thyre, M., Leonard, M., Kavetski, D., and Lambert, M.: A strategy for diagnosing
19 and interpreting hydrological model nonstationarity, *Water Resources Research*, 50, 5090-
20 5113, 10.1002/2013WR014719, 2014.

21 Wilks, D. S.: *Statistical Methods in the Atmospheric Sciences*, Elsevier Science, 2005.

22 Yadav, M., Wagener, T., and Gupta, H.: Regionalization of constraints on expected watershed
23 response behavior for improved predictions in ungauged basins, *Advances in Water
24 Resources*, 30, 1756-1774, <http://dx.doi.org/10.1016/j.advwatres.2007.01.005>, 2007.

25 Yilmaz, K. K., Gupta, H. V., and Wagener, T.: A process-based diagnostic approach to model
26 evaluation: Application to the NWS distributed hydrologic model, *Water Resources Research*,
27 44, n/a-n/a, 10.1029/2007WR006716, 2008.

28 Zhang, S., Yang, H., Yang, D., and Jayawardena, A. W.: Quantifying the effect of vegetation
29 change on the regional water balance within the Budyko framework, *Geophysical Research
30 Letters*, 43, 1140-1148, 10.1002/2015GL066952, 2016.

31 Zhao, R.-J.: The Xinjiang model applied in China, *Journal of Hydrology*, 135, 371-381,
32 [http://dx.doi.org/10.1016/0022-1694\(92\)90096-E](http://dx.doi.org/10.1016/0022-1694(92)90096-E), 1992.

33

1 Table 1. Overview of the catchments and their sub-catchments (WS).

Catchment	Deforestation period	Treatment	Area [km ²]	Affected Area [%]	Aridity index [-]	Precipitation [mm/year]	Discharge [mm/year]	Potential evaporation [mm/year]
HJ Andrews WS1	1962 -1966.	Burned 1966	0.956	100	0.39	2305	1361	902
HJ Andrews WS2	-	-	0.603	-	0.39	2305	1251	902
Hubbard Brook WS2	1965-1968	Herbicides	0.156	100	0.57	1471	1059	784
Hubbard Brook WS3	-	-	0.424	-	0.54	1464	951	787
Hubbard Brook WS5	1983-1984	No treatment	0.219	87%	0.51	1518	993	746

2

3 Table 2. Applied parameter ranges for root zone storage derivation

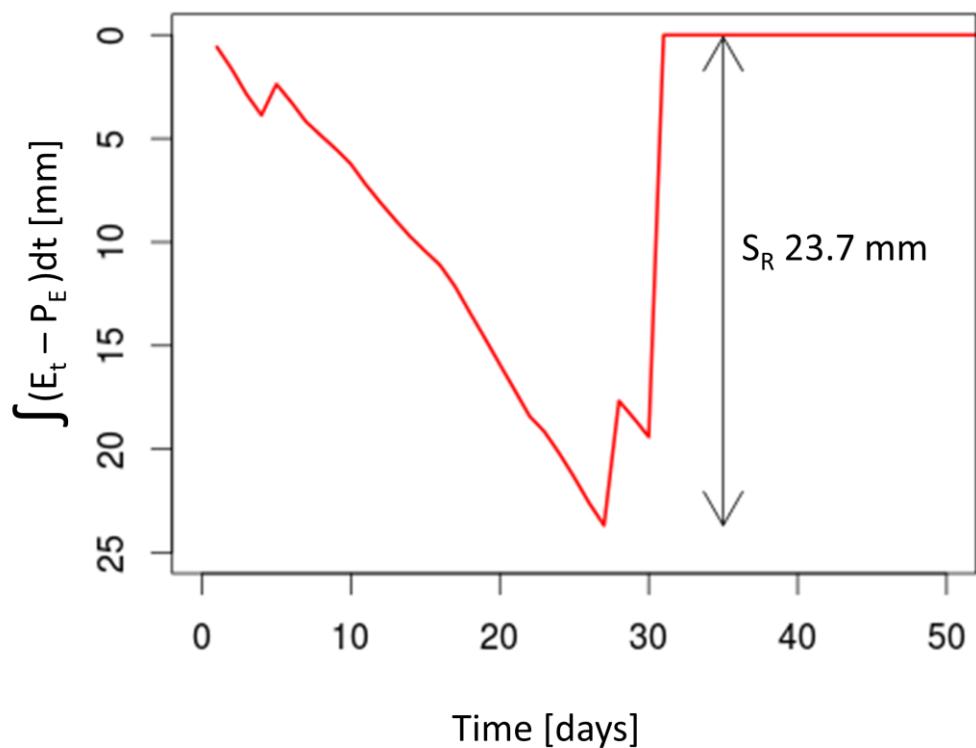
Catchment	I _{max,eq} [mm]	I _{max,change} [mm]	T _r [days]
HJ Andrews WS1	1-5	0-5	0-3650
HJ Andrews WS2	1-5	-	-
Hubbard Brook WS2	1-5	5-10	0-3650
Hubbard Brook WS3	1-5	-	-
Hubbard Brook WS5	1-5	0-5	0-3650

4

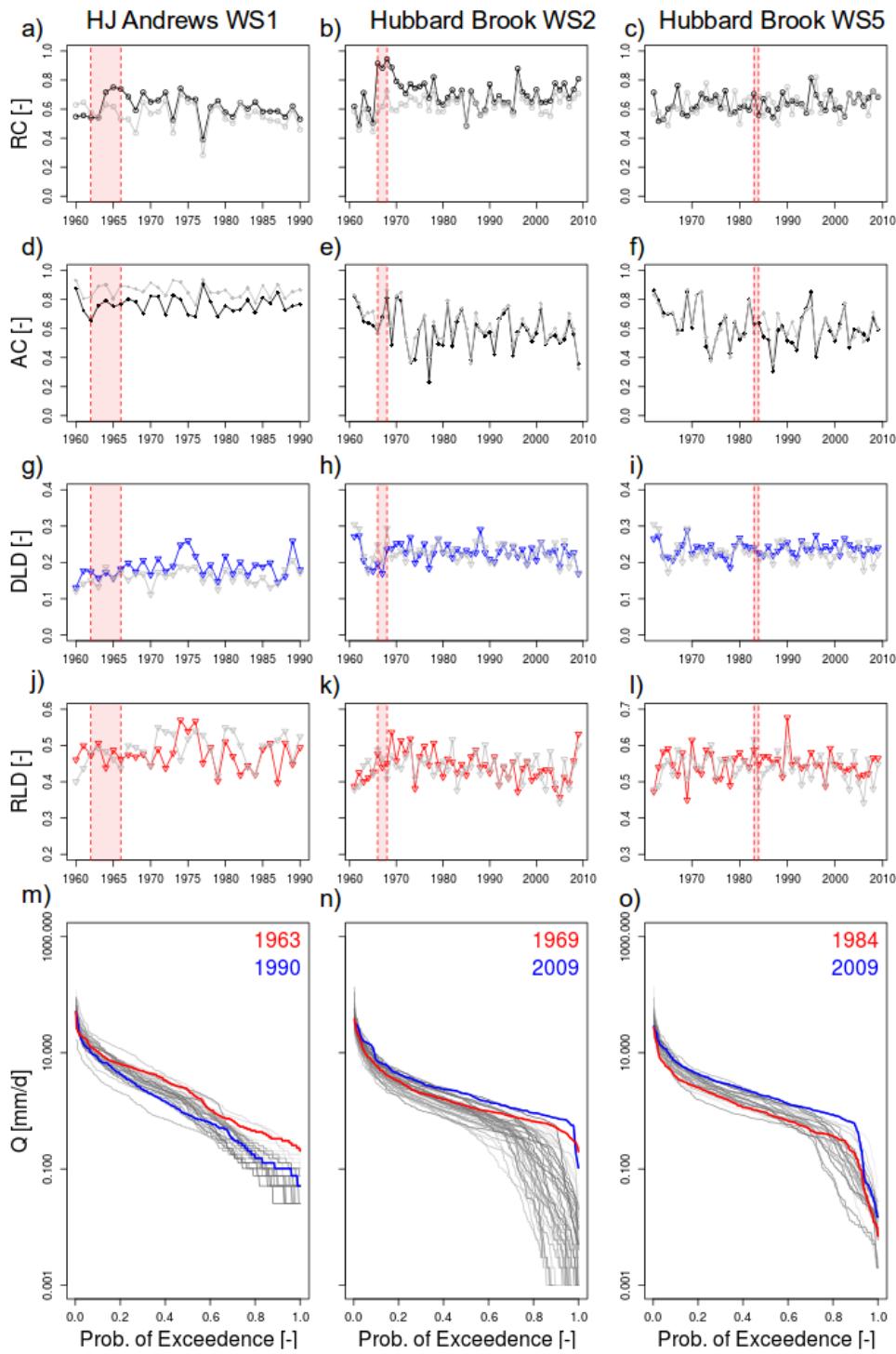
5

1 Table 3. Overview of the hydrological signatures

Signature	Description	Reference
S_{MQMA}	Mean annual runoff	
S_{AC}	One day autocorrelation coefficient	Montanari and Toth (2007)
$S_{\text{AC,summer}}$	One day autocorrelation the summer period	Euser et al. (2013)
$S_{\text{AC,winter}}$	One day autocorrelation the winter period	Euser et al. (2013)
S_{RLD}	Rising limb density	Shamir et al. (2005)
S_{LDL}	Declining limb density	Shamir et al. (2005)
S_{Q5}	Flow exceeded in 5% of the time	Jothityangkoon et al. (2001)
S_{Q50}	Flow exceeded in 50% of the time	Jothityangkoon et al. (2001)
S_{Q95}	Flow exceeded in 95% of the time	Jothityangkoon et al. (2001)
$S_{\text{Q5,summer}}$	Flow exceeded in 5% of the summer time	Yilmaz et al. (2008)
$S_{\text{Q50,summer}}$	Flow exceeded in 50% of the summer time	Yilmaz et al. (2008)
$S_{\text{Q95,summer}}$	Flow exceeded in 95% of the summer time	Yilmaz et al. (2008)
$S_{\text{Q5,winter}}$	Flow exceeded in 5% of the winter time	Yilmaz et al. (2008)
$S_{\text{Q50,winter}}$	Flow exceeded in 50% of the winter time	Yilmaz et al. (2008)
$S_{\text{Q95,winter}}$	Flow exceeded in 95% of the winter time	Yilmaz et al. (2008)
S_{Peaks}	Peak distribution	Euser et al. (2013)
$S_{\text{Peaks,summer}}$	Peak distribution summer period	Euser et al. (2013)
$S_{\text{Peaks,winter}}$	Peak distribution winter period	Euser et al. (2013)
$S_{\text{Qpeak,10}}$	Flow exceeded in 10% of the peaks	
$S_{\text{Qpeak,50}}$	Flow exceeded in 50% of the peaks	
$S_{\text{Qsummer,peak,10}}$	Flow exceeded in 10% of the summer peaks	
$S_{\text{Qsummer,peak,50}}$	Flow exceeded in 10% of the summer peaks	
$S_{\text{Qwinter,peak,10}}$	Flow exceeded in 10% of the winter peaks	



$S_{Q_{\text{winter,peak},50}}$	Flow exceeded in 50% of the winter peaks	
S_{SFDC}	Slope flow duration curve	Yadav et al. (2007)
S_{LFR}	Low flow ratio (Q_{90}/Q_{50})	
S_{FDC}	Flow duration curve	Westerberg et al. (2011)
$S_{\text{AC,serie}}$	Autocorrelation series (200 days lag time)	Montanari and Toth (2007)



1

2

1
 2 Figure 1. Derivation of root zone storage capacity (S_R) for one specific time period in the
 3 Hubbard Brook WS2 catchment as difference between the cumulative transpiration (E_t) and
 4 the cumulative effective precipitation (P_E).

1

2 Figure 2. Evolution of signatures in time of a-c) the runoff coefficient, d-f) the 1-day
3 autocorrelation, g-i) the declining limb density, j-l) the rising limb density with the reference
4 watersheds in grey and periods of deforestation in red shading. The flow duration curves for
5 HJ Andrews WS1, Hubbard Brook WS2 and Hubbard Brook WS5 are shown in m-o), where
6 years between the first and last year are colored from lightgray till darkgrey progressively in
7 time.

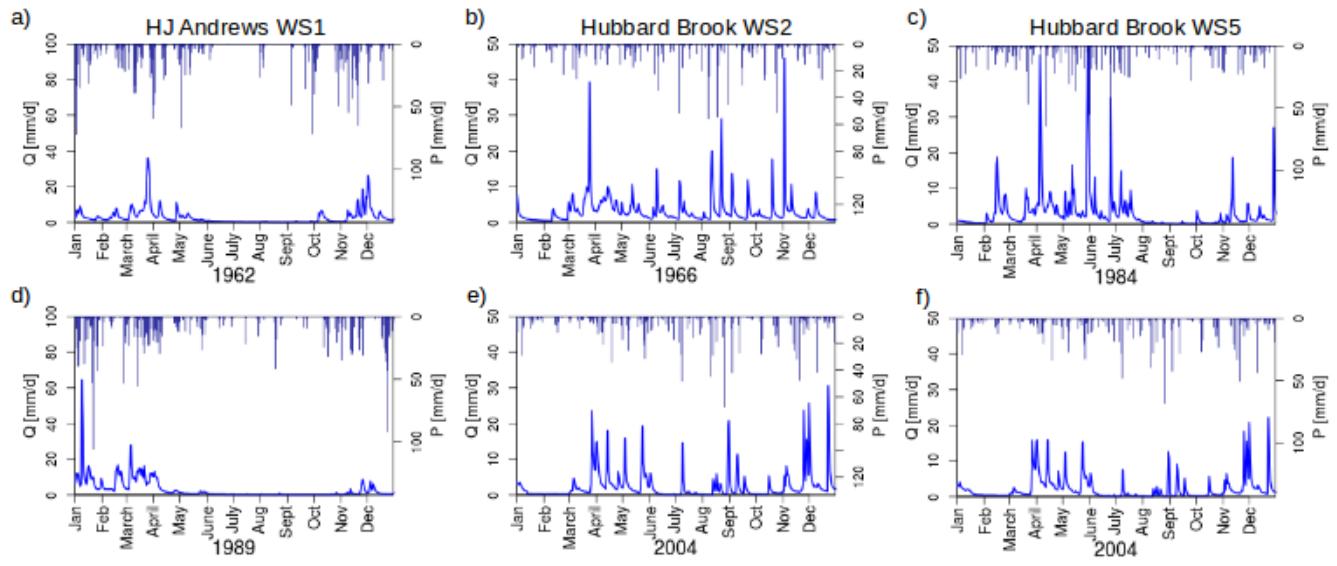
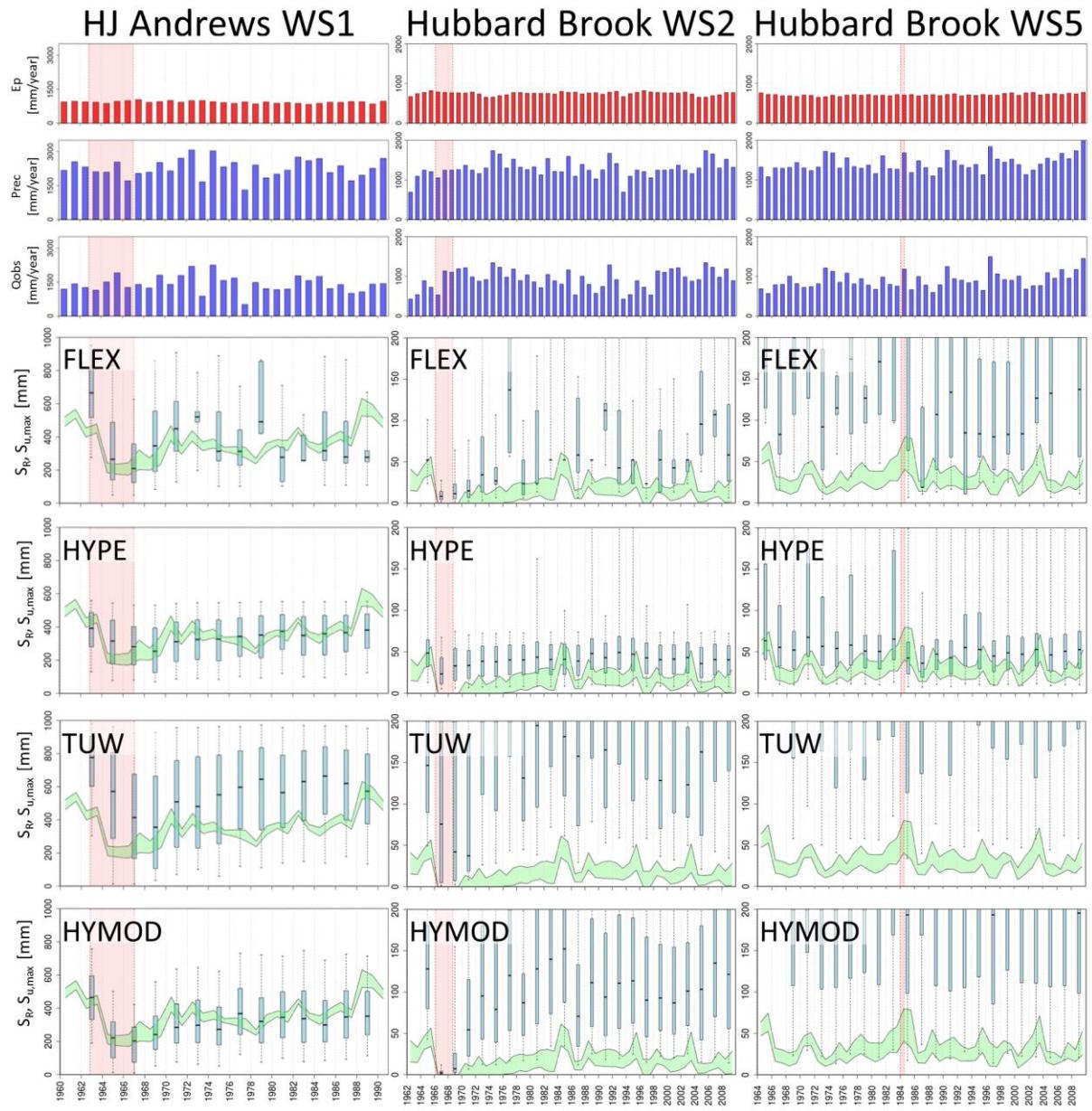
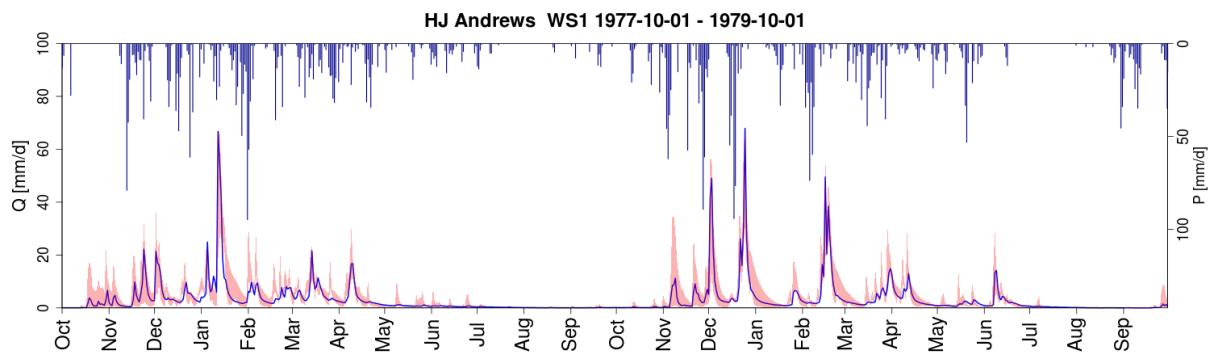
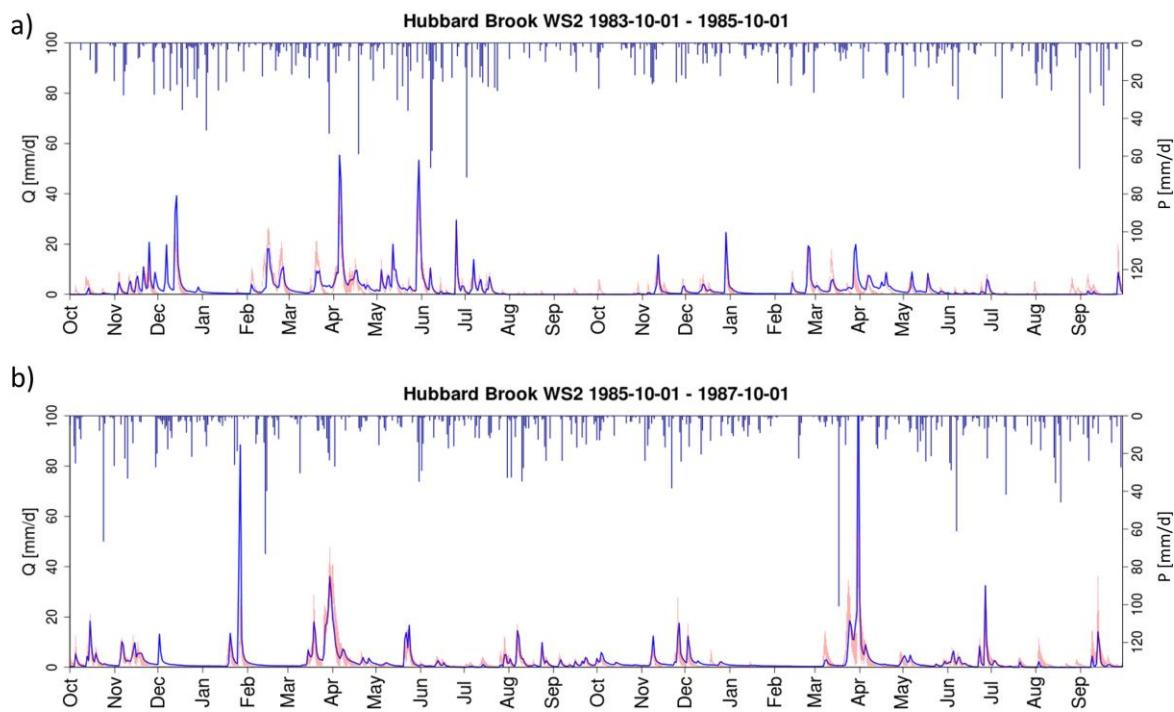
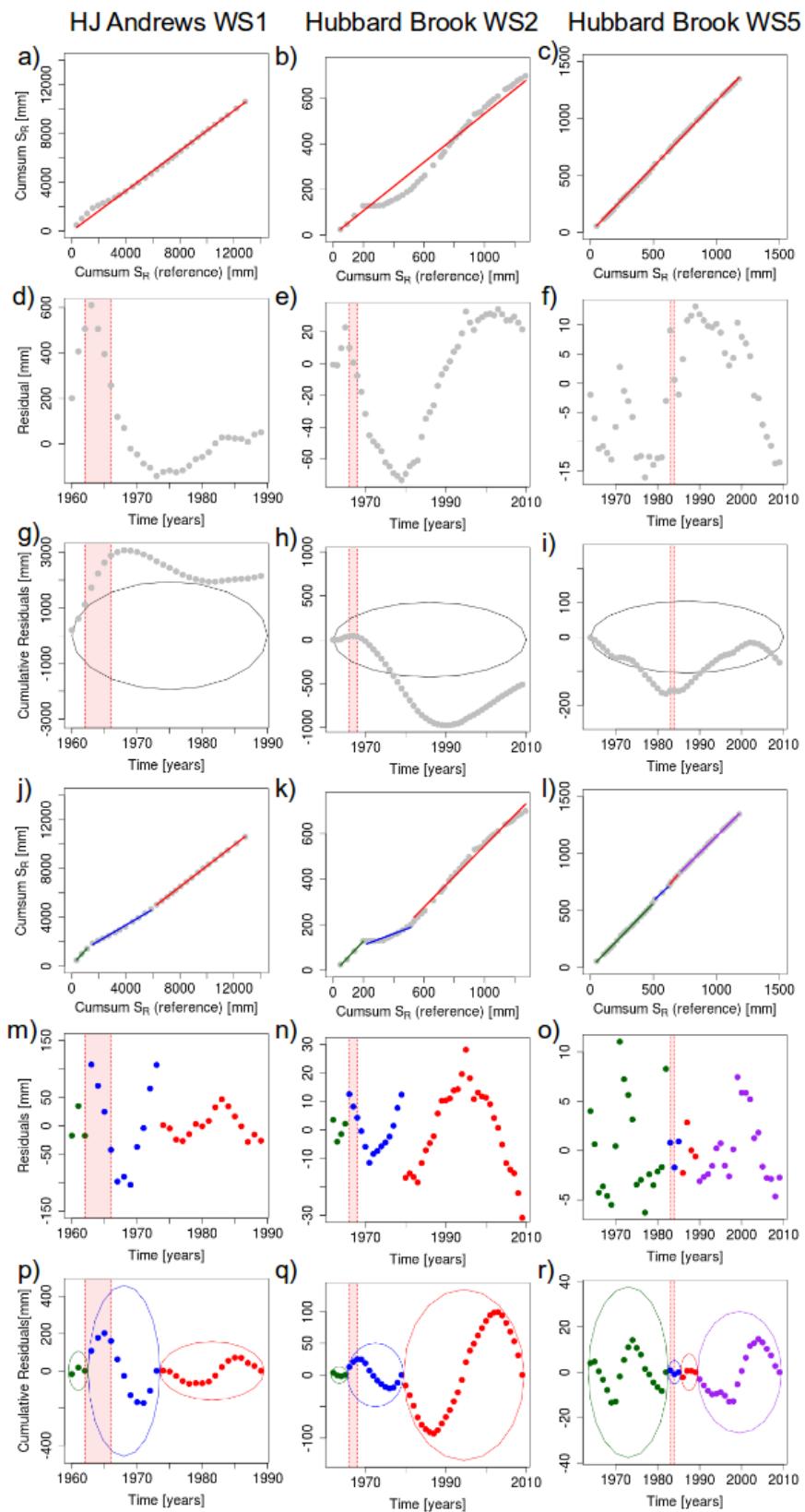




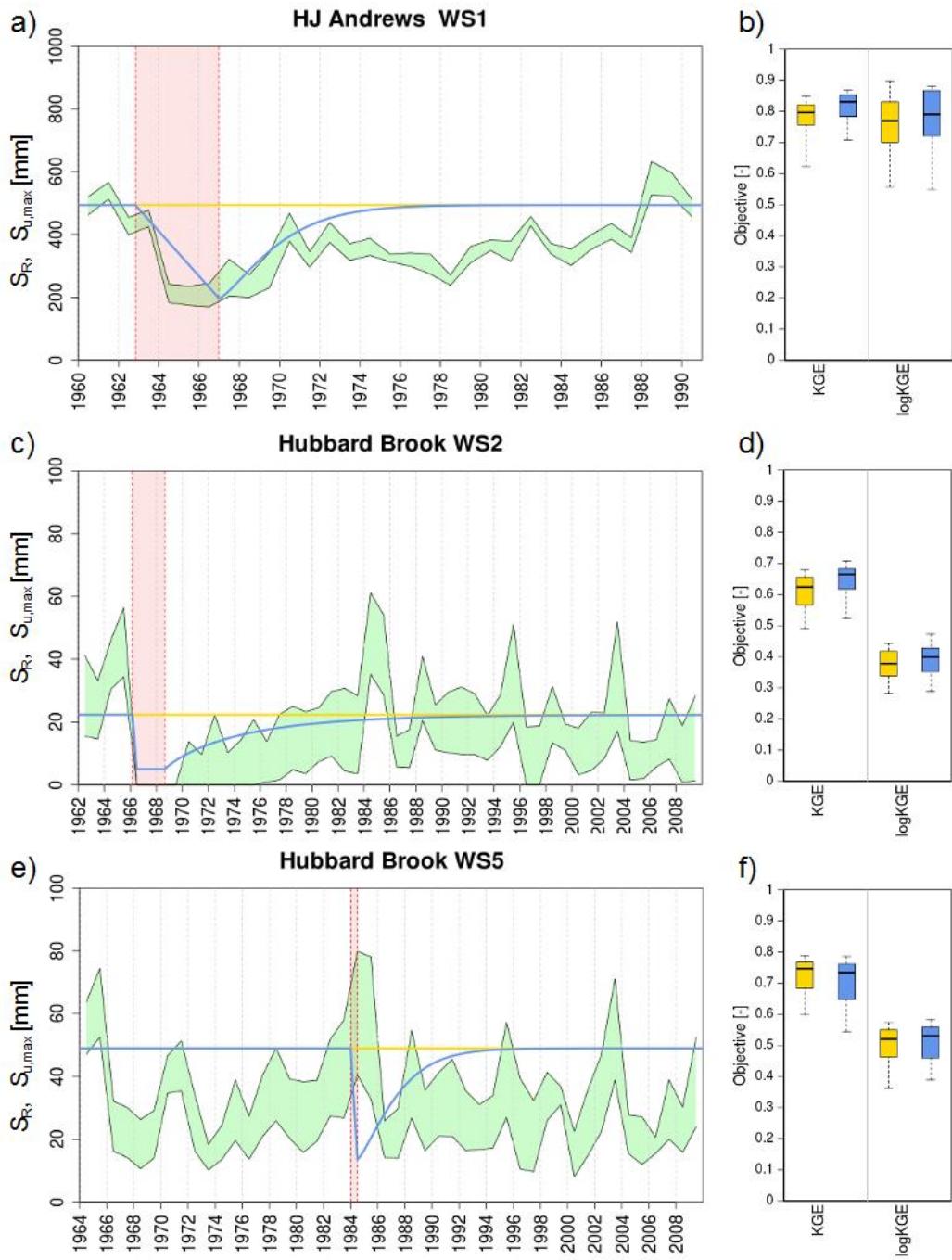
Figure 3. Hydrographs for HJ Andrews WS1 in a) 1963 (annual precipitation $P_A = 2018 \text{ mm yr}^{-1}$, $E_{p,A} = 951 \text{ mm yr}^{-1}$) and b) 1989 ($P_A = 1752 \text{ mm yr}^{-1}$, $E_{p,A} = 846 \text{ mm yr}^{-1}$), Hubbard Brook WS2 in c) 1966 ($P_A = 1222 \text{ mm yr}^{-1}$, $E_{p,A} = 788 \text{ mm yr}^{-1}$ and d) 2004 ($P_A = 1296 \text{ mm yr}^{-1}$, annual $E_{p,A} = 761 \text{ mm yr}^{-1}$ and Hubbard Brook WS5 in e) 1984 ($P_A = 1480 \text{ mm yr}^{-1}$, annual $E_{p,A} = 721 \text{ mm yr}^{-1}$) and f) 2004 ($P_A = 1311 \text{ mm yr}^{-1}$, $E_{p,A} = 731 \text{ mm yr}^{-1}$).



1

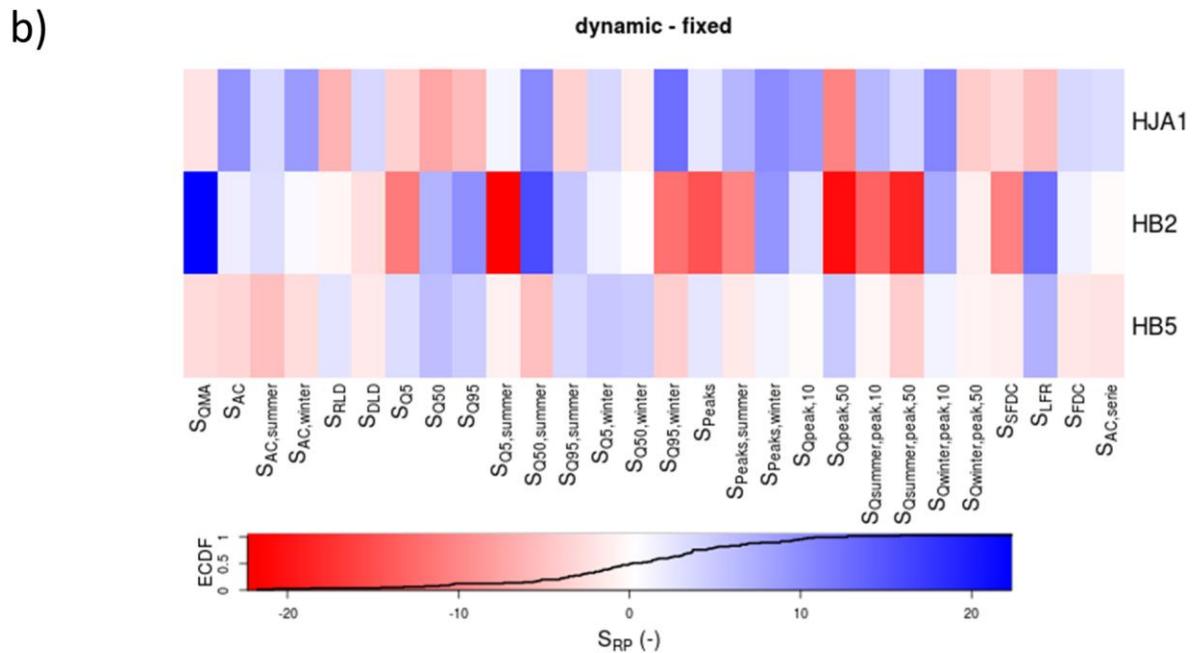
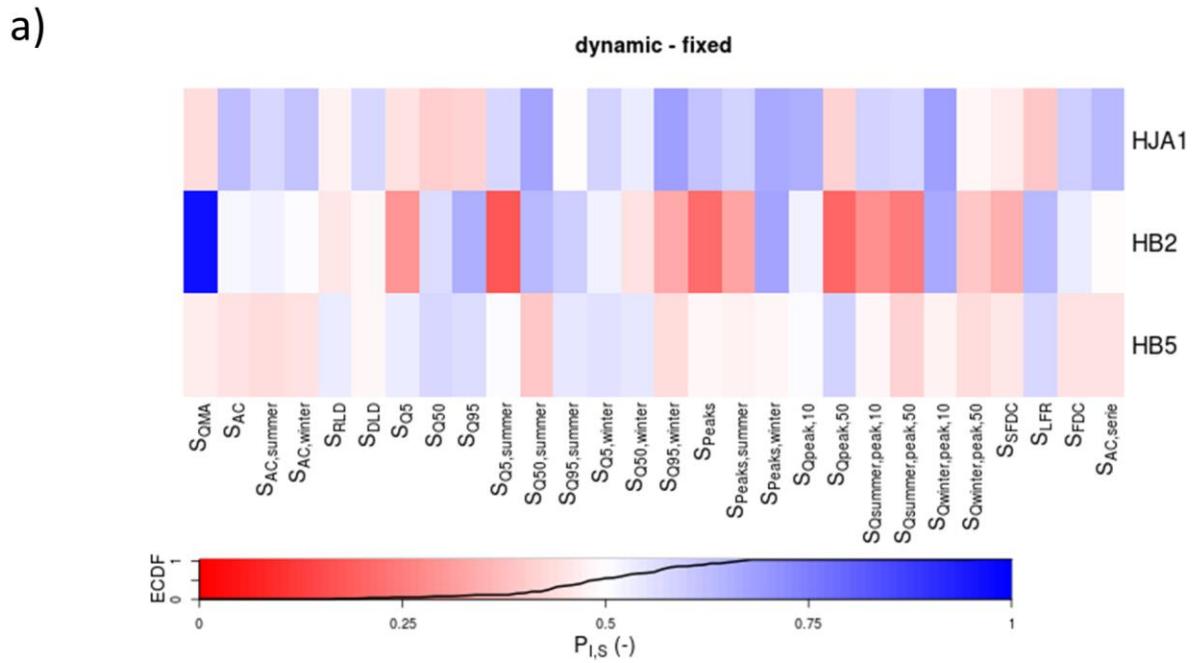

2 Figure 4. Evolution of root zone storage capacity $S_{R,1yr}$ from water balance-based estimation
 3 (green shaded area, a range of solutions due to the sampling of the unknown interception
 4 capacity) compared with $S_{u,max,2yr}$ estimates obtained from the calibration of four models
 5 (FLEX, HYPE, TUW, HYMOD; blue boxplots) for a) HJ Andrews WS1, b) Hubbard Brook
 6 WS2 and c) Hubbard Brook WS5. Red shaded areas are periods of deforestation.

1
2 Figure 5. Observed and modelled hydrograph for HJ Andrews WS1 the years of 1978 and
3 1979, with the red colored area indicating the 5/95% uncertainty intervals of the modelled
4 discharge. Blue bars show daily precipitation.



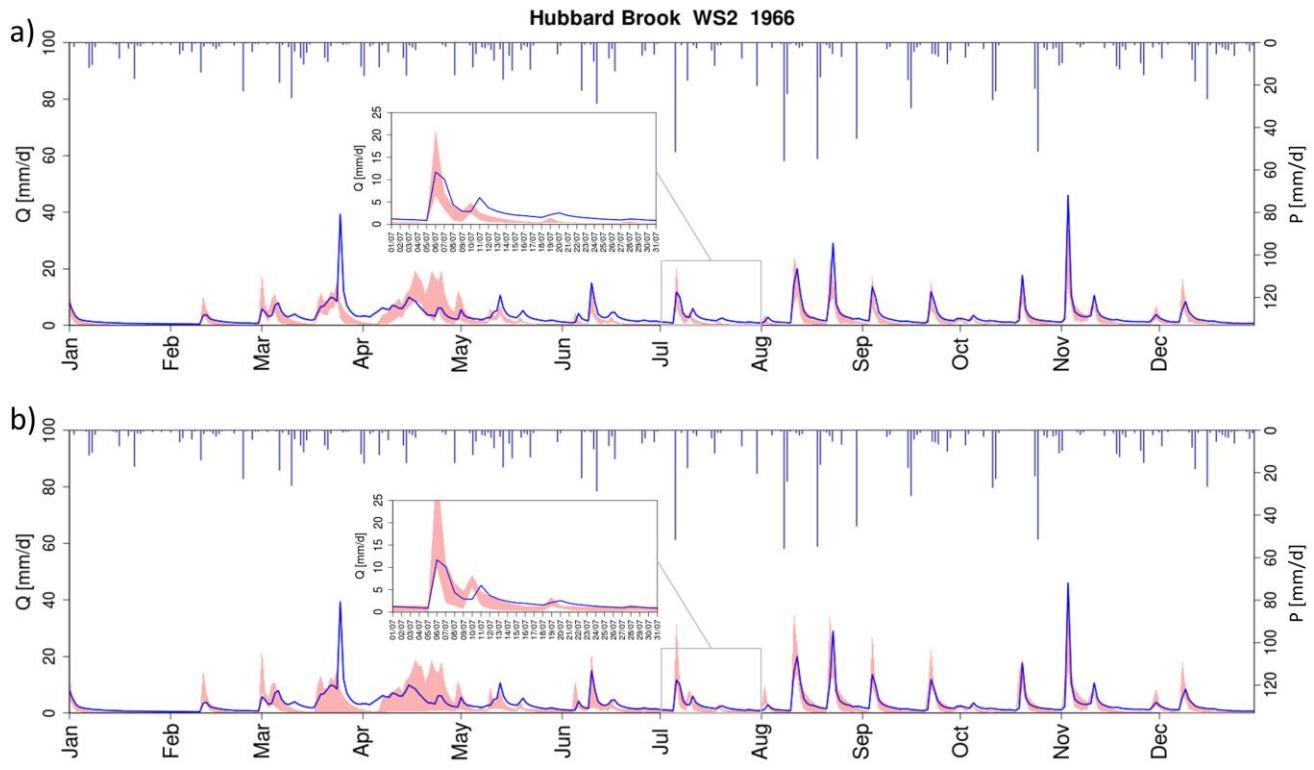
5
6 Figure 6. Observed and modelled hydrograph for Hubbard Brook WS2 for a) the years of
7 1983 and 1985 and b) the years of 1985 and 1987, with the red colored area indicating the
8 5/95% uncertainty intervals of the modelled discharge. Blue bars show daily precipitation.
9

1 Figure 7. Trend analysis for $S_{R,1yr}$ in HJ Andrews WS1, Hubbard Brook WS2 and WS5 based
2 on comparison with the control watersheds with a-c) Cumulative root zone storages ($S_{R,1yr}$)
3 with regression, d-f) residuals of the regression of cumulative root zone storages, g-i)
4 significance test; the cumulative residuals do not plot within the 95%-confidence ellipse,
5 rejecting the null-hypothesis that the two time series are homogeneous, j-l) piecewise linear
6 regression based on break points in residuals plot, m-o) residuals of piecewise linear
7 regression, p-r) significance test based on piecewise linear regression with homogeneous time
8 series of $S_{R,1yr}$. The different colors (green, blue, red, violet) indicate individual homogeneous
9 time periods.



10

1
2 Figure 8. The time invariant $S_{u,\max}$ formulation represented by $S_{R, 20\text{yr}}$ (yellow) and time
3 dynamic $S_{u,\max}$ fitted Weibull growth function (blue) with a linear reduction during
4 deforestation (red shaded area) and mean 20-year return period root zone storage capacity S_R ,
5 20yr as equilibrium value for a) HJ Andrews WS1 with $a=0.0001 \text{ days}^{-1}$, $b=1.3$ and $S_{R, 20\text{yr}} =$
6 494 mm with b) the objective function values, c) Hubbard Brook WS2 with $a=0.001 \text{ days}^{-1}$,

1 $b=0.9$ and $S_{R, 20\text{yr}} = 22 \text{ mm}$ with d) the objective function values, and e) Hubbard Brook WS5
2 with $a=0.001 \text{ days}^{-1}$, $b=0.9$ and $S_{R, 20\text{yr}} = 49 \text{ mm}$ and with f) the objective function values.
3 The green shaded area represents the maximum and minimum boundaries of $S_{R,1\text{yr}}$ from the
4 water balance-based estimation, caused by the sampling of interception capacities.


5

1

2 Figure 9. Signature comparison between a time-dynamic and time-invariant formulation of
3 root zone storage capacity in the FLEX model with a) probabilities of improvement and b)
4 Ranked Probability Score for 28 hydrological signatures for HJ Andrews WS1 (HJA1),
5 Hubbard Brook WS2 (HB2) and Hubbard Brook WS5 (HB5). High values are shown in blue,
6 whereas a low values are shown in red.

7

1
2 Figure 10. Hydrograph of Hubbard Brook WS2 with the observed discharge (blue) and the
3 modelled discharge represented by the 5/ 95% uncertainty intervals (red), obtained with a) a
4 constant representation of the root zone storage capacity $S_{u,\max}$ and b) a time-varying
5 representation of the root zone storage capacity $S_{u,\max}$. Blue bars indicate precipitation.
6