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Abstract. Climate simulations are the fuel to drive hydrological models that are used to assess the impacts of climate change

and variability on hydrological parameters, such as river discharges, soil moisture, and evapotranspiration. Unlike with cars,

where we know which fuel the engine requires, we never know in advance what unexpected side-effects might be caused by the

fuel we feed our models with. Sometimes we increase the fuel’s octane number (bias-correction) to achieve better performance

and find out that the model behaves differently but not always as was expected or desired. This study investigates the impacts5

of projected climate change on the hydrology of the Upper Blue Nile catchment using two model ensembles consisting of five

global CMIP5 Earth System Models and ten Regional Climate Models (CORDEX Africa). WATCH forcing data were used to

calibrate an eco-hydrological model and to bias-correct both model ensembles using slightly differing approaches. On the one

hand it was found that the bias-correction methods considerably improved the performance of average rainfall characteristics

in the reference period (1970–1999) in most of the cases. This also holds true for non-extreme discharge conditions between10

Q20 and Q80. On the other hand, bias-corrected simulations tend to overemphasise magnitudes of projected change signals

and extremes. A general weakness of both uncorrected and bias-corrected simulations is the rather poor representation of high

and low flows and their extremes, which were often deteriorated by bias-correction. This inaccuracy is a crucial deficiency for

regional impact studies dealing with water management issues and it is therefore important to analyse model performance and

characteristics, the effect of bias-correction, and eventually to exclude some climate models from the ensemble. However, the15

multi-model means of all ensembles project increasing average annual discharges in the Upper Blue Nile catchment and a shift

in seasonal patterns, with decreasing discharges in June and July and increasing discharges from August to November.

1 Introduction

Ethiopia is a country where about 80% of the population is engaged in the agricultural sector (Dile et al., 2013; Deressa

et al., 2011), the main source of income for rural communities (Bryan et al., 2009). Around 90% of the country’s grain is20

produced by smallholder farms. Subsistence and rain-fed farming systems dominate and, with few exceptions, irrigation is

not practiced1. Consequently, agricultural and livestock production, people’s livelihoods, and food security depend strongly on
1http://www.fao.org/wairdocs/ilri/x5548e/x5548e0k.htm

1

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-422, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 26 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



weather conditions, mainly on rainfall patterns such as amounts and timing. Hence, a large share of Ethiopia’s population is

very vulnerable to weather conditions and in particular to its inter-annual variability (Busby et al., 2014; Megersa et al., 2014;

Headey et al., 2014; Zaitchik et al., 2012; Simane et al., 2012).

The Ethiopian Highlands, where the Blue Nile is rising in, are considered as the water tower in East Africa. The Blue Nile,

for instance, contributes about 55–65% of the flow of the Nile at the confluence with the White Nile (King, 2013; Sutcliffe5

and Parks, 1999). The river is therefore the most important water resource not only for Ethopia but also for the downstream

riparian countries Sudan and Egypt. Water politics in the Nile basin have a long history and are a central geopolitical feature

in this region (Gebreluel, 2014; Ibrahim, 2012). With growing populations, industrialisation, climate change and its variability,

the situation becomes more and more tense (Gebreluel, 2014). Knowledge about availability of future water resources in this

region and therefore studies providing insights of climate change and variability, and their impacts on the hydrology, are of10

outmost importance.

A review of future hydrological and climate studies in the River Nile basin provides Di Baldassarre et al. (2011). Taye et al.

(2015) contributed a review on hydrological extremes in the Upper Blue Nile catchment (UBN). Recent studies on climate

change and variability in the UBN or its tributaries served different purposes. The studies by Mengistu et al. (2014); Taye

and Willems (2012); Conway and Schipper (2011); Conway and Hulme (1993) investigated for instance trends of past climate15

change using observed and/or generated climate data. Diro et al. (2009) analysed the quality of rainfall data using two numerical

weather prediction models. Another category of studies investigates the performance and projected trends of climate models

(e.g., Conway and Schipper, 2011; Diro et al., 2011).

Studies performed to assess impacts of climate change in the UBN can be categorised into i) studies applying simple ap-

proaches, assuming for instance a fixed percentage of decrease or increase of a climatic variable or discharge (Jeuland and20

Whittington, 2014); ii) studies using a single climate model (e.g., McCartney and Menker Girma, 2012; Soliman et al., 2009;

Abdo et al., 2009); and iii) studies analysing complex climate model ensembles (e.g., Elshamy et al., 2009; Aich et al., 2014;

Mengistu and Sorteberg, 2012; Setegn et al., 2011; Beyene et al., 2010; Kim et al., 2008).

As a matter of fact, global as well as regional climate models do often have a bias of climatic variables such as air tem-

perature, precipitation, radiation etc. in the historical (reference) period (e.g., Addor and Seibert, 2014; Berg et al., 2012;25

Gudmundsson et al., 2012; Hagemann et al., 2011). Moreover, they often fail to adequately represent spatio-temporal dynam-

ics at the regional scale. In climate studies, the total or relative changes between historical and projection periods are analysed

and reported in the manner of: Model X projects a temperature increase of 2.5 Kelvin in 2021–2050 and an increase of 8%

of rainfall relative to its reference period. Here, it does not matter whether model X was too cold/warm or too dry/wet during

the reference period. Only the rate of change matters, which might be reasonable in this context. Moreover, in climate change30

studies it is nowadays common practice to analyse the entire available model ensemble and to calculate the multi-model mean

which is superior to any one individual climate model (Pierce et al., 2009). Unfortunately, a daily multi-model mean climate

time series does not serve as reasonable input to impact models operating at the daily time step. Therefore, the application of

climate model ensembles is always recommended for hydrological studies (Teutschbein and Seibert, 2010).
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Quantitative and application-oriented studies require a certain accuracy of input data as well as adequate representation of

the relevant processes by the models used. Already small biases in temperature or precipitation might lead to considerable

biases in impact models (Maraun et al., 2010). Therefore, various bias-correction approaches were developed, particularly for

hydrological applications (Piani et al., 2010; Dosio and Paruolo, 2011). The expectation of using bias-corrected input data is

that they are quantitatively more precise than their uncorrected counterparts.5

The authors of studies using complex model ensembles in the UBN, cited above, applied different approaches to generate

climate input time series for hydrological modelling. Elshamy et al. (2009) performed a bias-correction on 17 CMIP32 GCMs

(SRES A1B) and applied the corrected climate data to run the Nile Forecasting System in the UBN. The delta-change method

was used by Mengistu and Sorteberg (2012) and Kim et al. (2008) to generate time series of temperature and precipitation used

as input for hydrological modelling. Mengistu and Sorteberg (2012) used 19 GCMs of the CMIP3 model ensemble (SRES10

scenarios A2, A1B, and B1) to generate climate inputs for the model SWAT and Kim et al. (2008) used six GCMs (SRES

A2) to run a monthly water balance model. Setegn et al. (2011) applied a downscaling approach for daily temperature and

precipitation data to 15 CMIP3 GCMs (SRES scenarios A2, A1B, and B1) using a cumulative frequency distribution approach.

They used the climate data to run the SWAT model in the Lake Tana basin. Beyene et al. (2010) performed a quantile mapping

approach to bias-correct 11 CMIP3 GCMs (SRES A2 and B1) to run the VIC hydrological model for the entire Nile basin.15

The study at hand falls into the same category using most recent global and regional climate projections released for the

IPCC 5th Assessment Report (IPCC, 2013). Uncorrected and bias-corrected climate simulations of five CMIP53 Earth System

Models (ESMs) and ten uncorrected and bias-corrected Regional Climate Models (RCMs) from (CORDEX Africa4) were

used to run the Soil and Water Integrated Model (SWIM) (Krysanova et al., 2005). The climate scenarios used by both model

ensembles are the Representative Concentration Pathways (RCPs) RCP 4.5 and RCP 8.5 (van Vuuren et al., 2011; Meinshausen20

et al., 2011). Hence, we analyse 60 discharge simulations (2 RCPs, 15 uncorrected and 15 bias-corrected climate model runs)

for the reference period 1970–1999 and two future periods 2030–2059 and 2070–2099.

The first objective of this study is to assess climate change and its impacts on the availability of future water resources in the

UBN defined at gauge El Diem (Sudan Border). The second objective is to discuss the implications of using different model

ensembles to project future discharges. We compare the results of the whole range of ESMs, RCMs, uncorrected, and bias-25

corrected model ensembles. Eventually an ensemble was assembled including only those members fulfilling given performance

criteria. These criteria are used to characterise the suitability of simulations for different purposes. A qualitative impact study

may have lower demands on the quality of climate simulations than a study investigating hydrological extremes or water

management strategies. In the latter case, the requirements in terms of quantitative accuracy are much higher. The following

questions were central to our investigations: a) What are the likely impacts of climate change on future discharges in the UBN?30

b) Is there an agreement on the signal of climate change impacts in the 21st century using different climate model ensembles?

2http://cmip-pcmdi.llnl.gov/cmip3_overview.html?submenuheader=1
3http://cmip-pcmdi.llnl.gov/cmip5/
4http://start.org/cordex-africa/about/
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c) To what extent can bias-correction alter the magnitudes of change signals in hydrological simulations in the study area? d)

In how far can we trust simulations that required a strong correction?

2 Study area

The entire Blue Nile basin covers an area of about 296,000 km2. The study area considered here is the Upper Blue Nile

catchment (UBN) defined by gauge El Diem at the border between Ethiopia and Sudan covering an area of 166,000 km2. In5

Fig. 1, the UBN is encircled by a red line. In addition, it shows the 576 subbasins that were delineated for the hydrological

modelling exercise, the three gauging stations used to calibrate the hydrological model, and the coordinates of the climate data

grid. The source of the Blue Nile River is Lake Tana in the Ethiopian highlands and the catchment is located in the north-

western part of Ethiopia (Taye and Willems, 2012). It drains a major part of the western highlands (Sutcliffe and Parks, 1999)

that is predominantly governed by a unimodal rainfall regime depending on the movement of the Intertropical Convergence10

Zone (ITCZ). The interannual variability of annual rainfall amounts in the Ethiopian highlands is high (Zaitchik et al., 2012)

and ranges between 800 and 2200 mm and the elevation of the UBN varies from 4000 to 500 m.a.s.l. (Taye and Willems, 2012).

The river has a length of almost 1000 km from Lake Tana outlet to the Sudan border.

3 Methods

3.1 Data15

Freely available WATCH Forcing Data (WFD) (Weedon et al., 2011) based on ERA-40 (Uppala et al., 2005) reanalysis and

climate observations were used to bias-correct five ESMs and ten RCM runs and to calibrate the hydrological model SWIM

(Soil and Water Integrated Model) (Krysanova et al., 2005). Although the quality of WFD varies in space (Rust et al., 2015),

this gridded product with a spatial resolution of 0.5◦ was used as input because observed climate data were not available for

this study. The SRTM digital elevation model (Jarvis et al., 2008) was used to delineate the 576 subbasins and to derive some20

terrain-specific parameters. Required soil parameters were derived from the Digital Soil Map of the World (FAO et al., 2009)

and land use cover data were reclassified from Global Land Cover (GLC2000) (Bartholomé and Belward, 2005). Observed

monthly discharge data for model calibration were provided by the Global Runoff Data Centre (GRDC5).

3.2 Hydrological model

The eco-hydrological model SWIM (Krysanova et al., 2005) is a semi-distributed, process-based, eco-hydrological model25

that operates at the daily time step. It was developed on the basis of the MATSALU (Krysanova et al., 1989) and SWAT

(Arnold et al., 1993) models and is continuously further developed and adapted to new or specific requirements (Krysanova

et al., 2015). Hydrological response units (HRU), considered as areas with similar hydrological characteristics, are the smallest

model units where all hydrological, nutrient, and vegetation processes are calculated. There is no lateral interaction between
5http://www.bafg.de/GRDC/EN/Home/homepage_node.html
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HRUs but area weighted daily fluxes are calculated and aggregated at the subbasin scale and routed through the river network.

SWIM distinguishes three flow components: surface runoff, subsurface runoff, and contributions of the shallow groundwater

aquifer. Water percolating from the shallow groundwater aquifer into the deep groundwater aquifer is lost from the system but

is considered in the water balance.

A reservoir module (Koch et al., 2013) was incorporated in SWIM and parameterised to better account for Lake Tana’s5

storage effects and to consider the impact of the weir at the Lake’s outlet in future simulations that was constructed in the year

2001.

Radiation data required by SWIM as essential climate input were not available in all RCM runs. To maintain consistency

and comparability in hydrological simulations, daily radiation data were computed after Hargreaves and Samani (1985) from

daily minimum and maximum air temperature and the latitude of the respective subbasin.10

3.3 Climate models

The ESM ensemble used in this study consists of following five CMIP5 models: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-

LR, MIROC-ESM-CHEM, and NorESM1-M. Projections of these five ESMs were linearly downscaled and bias-corrected by

Hempel et al. (2013) in the frame of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP)6 (Warszawski et al.,

2014). The uncorrected ESM simulations were interpolated to the WFD 0.5◦ grid.15

Table S1 in the Supplement provides an overview of the RCM runs organised by the CORDEX Africa initiative7. The

ensemble consists of four RCMs driven by different ESMs. The RCM SMHI-RCA4 was driven by seven ESMs, CanRCM4 by

CanESM2 and the RCMs KNMI-RACMO22T and DMI-HIRHAM4 by EC-EARTH. The ten RCM runs were bias-corrected

by the authors of this manuscript. Table S2 shows the model IDs of all 15 climate models used in some figures and tables.

3.4 Climate scenarios20

For both the global and regional climate model ensembles, the two scenarios RCP 4.5 and RCP 8.5 were used because they

represent a broad range of uncertainties with regard to possible future pathways and related climate projections. According to

van Vuuren et al. (2011) and Meinshausen et al. (2011), RCP 4.5 represents the medium stabilisation scenario (stabilisation

without overshoot pathway leading to +4.5 W m-2 radiative forcing (relative to pre-industrial forcing) and ~650 ppm CO2 eq

by 2100) and RCP 8.5 the highest emission scenario (rising radiative forcing pathway leading to +8.5 W m-2 and ~1370 ppm25

CO2 eq by 2100) assuming no stabilisation in global GHG emissions.

3.5 Bias-correction

Despite regional downscaling to finer resolution, RCM simulations often show considerable biases when compared to observed

data (Addor and Seibert, 2014; Christensen et al., 2008). A review on bias-correction methods (linear scaling, local intensity

scaling, power transformation and distribution or quantile mapping) provide Teutschbein and Seibert (2012). The authors30

6https://www.pik-potsdam.de/research/climate-impacts-and-vulnerabilities/research/rd2-cross-cutting-activities/isi-mip
7http://start.org/cordex-africa/about/
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conclude that the distribution or quantile mapping method achieves the best performance for most of the selected criteria.

Although quantile mapping is a successful method to improve the representation of daily rainfall characteristics, it fails to

correct multi-day and inter-annual variables, such as mean maximum 4-day precipitation, mean minimum 14-day precipitation,

and inter-annual variability (Addor and Seibert, 2014). The drawback that all approaches have in common is that they are

based on the stationarity assumption which presumes that future physical processes in the atmosphere are comparable to5

the period used to correct the simulations. Bias-correction of climate simulation data is nowadays a widely used practice in

hydrological impact modelling but it should be treated with caution. As Maraun et al. (2010) point out, the origins of the bias

in climate simulations (mathematical formulations in climate models) are not solved by the post-processing and may disrupt

internal physical coherence between weather variables. Hence, the corrections are usually based on wrong reasons (Addor and

Seibert, 2014). Alternatives to bias-correction are so-called delta-change methods. Sophisticated approaches of this method are10

described by Anandhi et al. (2011), Bosshard et al. (2011), and Chiew et al. (2009).

3.5.1 Bias-correction of ESMs

Bias-corrected data of five CMIP5 ESMs were available and provided by ISI-MIP. In a first step ESM data were linearly

interpolated to the WFD 0.5◦grid implementing the standard Gregorian calendar. Temperature data were corrected using a

trend-preserving additive approach where monthly mean values were adjusted for a systematic bias by adding a grid-point15

and month-specific constant offset. Thereby, the absolute projected temperature changes of the ESMs are not changed. The

daily variability of ESM temperatures was adjusted to reproduce WFD variability by adding a monthly correction factor on

temperature anomalies.

Precipitation data were corrected using a multiplicative approach where monthly mean precipitation was multiplied with

a grid-point and month-specific constant correction factor. Relative changes projected by the ESMs are thereby preserved. A20

known problem of this method is that extraordinary high values of daily precipitation can occur in the bias-corrected simulation

if very high simulated daily precipitation data are multiplied with high correction factors. Therefore, the correction factor was

limited to a value of 10. Remaining extremely high daily precipitation values were truncated to 400 mm. After the method

introduced by Piani et al. (2010), daily precipitation variability and the frequency of dry days was corrected by applying a

transfer function to fit the normalised simulated time series of wet months to the normalised WFD time series. A more detailed25

description of the bias-correction procedure applied to the five CMIP5 ESMs used in this study provides Hempel et al. (2013).

3.5.2 Bias-correction of RCMs

Precipitation biases in most CORDEX RCMs show a high seasonality for grid boxes within the evaluation domain of the UBN.

This limits a bias correction based on seasonal or annual means. However, as some of these grid boxes do show almost no

precipitation events for single months, a harmonic-based bias correction method analogously to the one applied to temperature30

is not feasible for precipitation. Furthermore, this results in a large uncertainty in the estimation of the corresponding monthly

biases. Thus, based on the recommendation from Dobler and Ahrens (2008), a bias correction is only applied on months and

grid boxes with more than 100 rainy days (rainfall above 1 mm/day) within the calibration period (1951–2001).

6
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The method applied is based on a local rainy day intensity scaling, correcting the frequency of rainy days and the mean

precipitation on rainy days to fit the observed values in a specific calibration period (Schmidli et al., 2006). Details on the

implementation and an evaluation are given in Dobler and Ahrens (2008). The method has been successfully applied before as

a downscaling and bias correcting method for precipitation in alpine regions (Dobler and Ahrens, 2008; Dobler et al., 2011).

The underlying idea is the assumption of a smooth seasonal cycles for the variables simulated by the RCM and the observa-5

tional reference (WFD). These cycles are modelled with a series of harmonic functions using vector generalized linear models

(Yee, 2015) and the difference in cycles between an RCM reference simulation and the observational product is used for bias

correction of the RCM projection.

The seasonality in the location parameter of a quantity (i.e. the expectation value in case of a Gaussian distribution) can be

modelled as10

µ(t) = µ0 +
K∑

k=1

µk sin(kω t) +
L∑

l=1

µl cos(lω t) (1)

with ω = 2π
365.25 , t= 1, . . . ,366 being the time variable running over all possible days of the year; K and L are the orders of

the harmonic function expansion for µ. A scale parameter σ can be modelled analogously in this framework. The result is a

climatological distribution, i.e. a description of the probability distribution throughout the year.

Selection of orders K and L are based on a 10-fold cross validation using Continuous Rank Probability Score (CRPS,15

Wilks, 2011) as cost function. The difference in parameters between the RCM reference and the observational product (WFD)

is subtracted from the parameters of the RCM projections for bias correction. A quantile mapping (e.g., Vrac and Friederichs,

2015) now maps the values from the uncorrected to the corrected climatological distribution.

Particular care needs to be taken when correcting minimum and maximum temperature to avoid inconsistencies such as

Tmax < Tmin. Here, a variable transformation ensures physical consistency:20

T1 = log(Tmax−T ) (2)

T2 = log(T −Tmin) (3)

After bias correcting T1 and T2, corrected values for Tmax and Tmin can be obtained by back-transforming the variables.

3.6 Evaluating the suitability of climate simulations25

Evaluating the suitability of climate simulations for regional impact studies is a process including seemingly objective com-

ponents (e.g., analysing performance criteria) and subjective components (choosing criteria and setting their thresholds). Data

visualisation and interpretation by the user might be considered as a mixture of both objectivity and subjectivity. The choice

of periods used as reference and future projection does also influence the results. The former is often predetermined by data

availability or conventions and the latter usually by the client. Moreover, there are uncertainties with regard to quality of the30

dataset used as comparison baseline, mostly observed and/or generated climate data.

7
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Evaluation of climate model performance is complicated by the fact that climate simulations cannot be compared to the

reference dataset on a real-time daily, monthly, or annual basis, as it is common practice with discharge simulations in hydro-

logical modelling. Climate simulations are not supposed to reproduce or predict the weather at a certain day, month, or year.

Hence, only statistical parameters, summarised over a period of usually 30 years (e.g. the annual cycle represented by average

daily or monthly time series) or the mean, quantile values, and standard deviation of the entire daily time series can be used as5

a basis for comparison.

In the first step of climate model evaluation, daily and monthly precipitation characteristics of uncorrected (UC) and bias-

corrected (BC) climate simulations were compared to monthly WFD characteristics (reference climate). In a second step,

SWIM was employed to simulate daily discharge using all climate simulations for reference and future periods. Since the

main purpose of this study is to assess climate change impacts on the hydrology, using hydrological performance indicators10

to evaluate climate simulations is a straightforward way. Another benefit of this approach is that a spatially semi-distributed

hydrological model does not only account for temporal but also for spatial patterns of climate inputs. Therefore, the annual

cycle represented by daily (n= 365) discharge simulations (sim) averaged over the 30-years reference period, was compared

against the baseline simulation using WFD (ref ). The performance criteria applied to these time series are: R2, PBIAS,

standard deviation (SD), and the normalised SD of discrepancies (SDD) or the centred root mean square errors, respectively.15

The characteristics of daily discharges were analysed using flow duration curves (FDCs) where every discharge value is

related to the percentage of time that this discharge is equaled or exceeded (Smakhtin, 2000). FDCs summarise discharge

variability of a time series and display the complete range from low flows to flood events. In order to analyse and visualise

average, low, and high flow characteristics, 17 percentile values (Q0.01−Q99.99) were used to compute FDCs based on the entire

daily discharge time series of the 30-years reference period. This method was applied to assess whether model performance is20

suitable to study non-extreme discharge conditions (NED) and/or high and low flow situations as well as their extremes.

R2 =

n∑
i=1

(simi− ref)2

n∑
i=1

(refi− ref)2
(4)

PBIAS =

n∑
i=1

(simi− refi) ∗ 100

n∑
i=1

(refi)
(5)

SDD =
SD(simi− refi)

SDref
(6)

In addition to the criteria used to evaluate model performance in the reference period, it is also important to consider25

model behaviour in future periods. In fact, unexpected behaviour in projection periods was observed in several simulations,

particularly in some BC simulations. The hypothesis is that the stronger the necessity of bias-correction the higher the risk that

8
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the BC simulation will show unexpected behaviour in future periods. Therefore, another criterion was introduced that indicates

the rate of change (PBIAS) between future and reference period. The model selection process and criteria thresholds are

described in the following section.

3.7 Model selection

Beside analysing the impact of climate projections on future discharges using the whole UC and BC ESM and RCM ensembles,5

a climate model ensemble was assembled containing only those models that fulfil the criteria and their thresholds defined below.

In order to become a member of the selected ensemble, a model must basically achieve all the following three criteria:

– Seasonality: The annual cycle based on average daily discharge simulations must achieve R2 ≥ 0.85. Models with R2 <

0.85 are assumed to represent discharge seasonality only poorly.

– Volumetric deviation: Average daily discharge simulations must achieve a PBIAS ≤±30%.10

– Non-extreme discharges (NED): NED represent discharge conditions between FDC percentile values between >Q10

and <Q90 (Q20,Q30, ...,Q80). Percentiles in this range should not deviate more than ±30% from WFD discharge

simulation.

Models meeting these three criteria are assumed to be suitable for a qualitative impact assessment and are indicated in

column pre (pre-selection) in Table 1. In addition, the columns HF (high flows, FDC percentiles Q10,Q5,Q1,Q0.1,Q0.01)15

and LF (low flows, FDC percentiles Q90,Q95,Q99,Q99.9,Q99.99) indicate whether a particular model is further adequately

representing extreme discharge conditions and might be used for specific investigations. Again, the FDC values in the respective

range should not exceed the threshold of ±30%.

After simulating discharges using all climate scenarios it was found that several simulations project enormous increase in

annual river discharge already in the period 2030–2059. This was particularly the case in simulations where bias-correction20

resulted in stupendous increase of extreme daily rainfall and therefore extraordinary high peak discharges. Hence, another

criterion was defined representing the rate of change. Simulations where average annual discharges changed by more than

±30% in the period 2030–2059 (RCP 8.5) relative to the reference period were omitted from the selected ensemble, even if the

first three criteria were achieved. This criterion is represented in Table 1 in column Change. This column does also reveal that

always both UC and BC models either achieve or not achieve this criterion.25

4 Results

4.1 Model calibration and validation

The eco-hydrological model SWIM was calibrated to three discharge gauges in the UBN: 1. downstream Lake Tana, 2. Kessie,

and 3. El Diem. Fig. 2 shows the results of monthly and average monthly discharges at gauge El Diem for calibration (left panel)

and validation (right panel). According to Moriasi et al. (2007), Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970)30

9
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values of 0.92 (calibration) and 0.90 (validation) are considered as very good for the monthly time step. The same classification

is achieved for the volumetric errors in both periods. The percent bias (PBIAS) between simulated and observed data is -6.7%

(calibration) and -14.4% (validation). SWIM simulates peak discharges adequately in most years with few exceptions (1983,

1987, 1988) of rather large underestimation. One explanation for this is the lack of accuracy of WFD inputs and/or observed

discharge in some years.5

The Figures S1 a) and b) in the Supplement show the calibration results for the gauges downstream Lake Tana and Kessie.

The available GRDC discharge time series for both gauges are rather short and in the case of Tana, the data of the years 1973–

1975 are not reliable. Compared to the discharge data given in Dile et al. (2013) and Setegn et al. (2011), maximum discharges

are usually around 200–250 m3s-1, as is it the case in the years 1969–1972 (Fig. S1a). Monthly WFD precipitation does not

explain the high discharges observed in the last three years. Hence, only the first four years were used for calibration where an10

NSE of 0.67 and a PBIAS of 23.1% were achieved. Monthly discharges at gauge Kessie in the four years where GRDC data

were available, are underestimated by -18.8% and achieved an NSE of 0.92. According to Moriasi et al. (2007) the results for

the two gauges can be classified between good and very good.

4.2 Model performance

4.2.1 Performance of daily and monthly precipitation15

Figures S2, S3, and S4 in the Supplement show the ranges and medians of monthly precipitation sums of UC and BC simu-

lations in comparison to WFD. The underlying data for the boxplots are monthly precipitation sums of the 30-years reference

period averaged over the UBN catchment area. Monthly medians and average annual precipitation sums of UC ESM and RCM

simulations deviate sometimes strongly from WFD. Bias-correction improved the performance of both indicators considerably

in both model ensembles. Deviations of average annual precipitation of all BC ESMs are lower than ±2%. The results for the20

BC RCM ensemble are more diverse. Five RCMs deviate ≤±2%, three RCMs ≤±5%, and two RCMs ≤±7%

Despite the improvement of monthly medians and average annual precipitation sums, bias-correction increased the range of

monthly precipitation sums critically in several models in both ensembles. This phenomenon can be observed particularly if

the deviation of monthly medians between UC simulation and WFD is rather large (e.g. IPSL from May to October, MIROC

in July, NorESM in July and August). The effect of increasing variability of monthly precipitation sums is even higher with25

the method used to bias-correct RCMs and is true for all RCMs (Figures S3 and S4). Noticeable are also the extreme outliers

in many models generated by both correction methods.

Not all UC models do adequately represent the unimodal rainfall regime in the UBN. UC NorESM shows for instance a

distinct bimodal regime which is also visible but less pronounced in GFDL and MIROC (Fig. S2) and only weakly visible in

MIROC/RCA4 (Fig. S4). Although bias-correction eliminated this deficiency, it is questionable at what costs. The physical30

basis was certainly disrupted by the correction method applied.

The Tables S3 and S4 in the Supplement show following statistical parameters of daily precipitation averaged over the

catchment: Average number of days with precipitation >1 mm per annum nDays > 1mm, average daily precipitation ave,
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maximum daily precipitation max, standard deviation SD, average precipitation in July, August, and September ave(JAS),

and the standard deviation of daily precipitation in July, August, and September SD(JAS). Where Table S3 shows absolute

values, Table S4 shows the differences to WFD precipitation (sim-WFD). The two SD parameters were computed by division

SDsim/SDWFD. The Tables show for instance that maximum daily precipitation is underestimated by all UC models except

by MIROC. Bias-correction resulted in overestimation in 13 out of 15 models. All BC RCMs overestimate maximum daily5

precipitation, many of them significantly. Yet the differences in average daily precipitation of BC simulations are, with excep-

tions, usually rather small. Large deviations in maximum daily precipitation and in the number of rainy days at the same time,

while achieving only small differences in average daily precipitation, indicate that the distribution of daily rainfall can differ

sometimes strongly among simulations. It is also noticeable that the SD of daily precipitation of all UC models is lower than

the WFD SD. Almost all BC simulations show higher SD than the UC simulations where all ESM SD are still lower than10

WFD SD and all RCM SD greater or equal than WFD SD.

4.2.2 Performance of daily discharge using UC and BC climate input

Bias-correction improved the performance of averaged daily discharge simulations (n= 365) considerably for all members

of the ESM ensemble and for most members of the RCM ensemble. Figures 3 and 4 show the simulated hydrographs in the

reference period comparing UC and BC simulations with WFD using R2 and PBIAS to indicate discharge performance of15

the annual cycle.

All UC discharge simulations using ESM climate input, except the one based on GFDL, underestimate average annual

discharges, which is indicated by negative PBIAS values (Fig. 3). Largest deviations shows IPSL with a PBIAS of -84%.

All other models deviate less than 30% from WFD discharges. R2 values indicate that seasonal discharge patterns are more or

less adequately represented by all models, except by NorESM which simulates a bimodal regime with a small peak in June and20

a high peak in October instead of one single major peak between August and September. Peak discharges simulated with GFDL

and MIROC climate input occur approximately four weeks later than the peak simulated with WFD. Discharges simulated with

HadGEM achieve an R2 of 0.98 but are too low during the high flow season. Another example is the UC IPSL model which

achieves an R2 of 0.9 although it underestimates discharge by -84%. Hence, high R2 values can be misleading if not combined

with a volumetric criterion, such as PBIAS.25

On contrast to ESMs, the majority of discharge simulations based on UC RCMs overestimate average annual discharges

in the reference period (Fig. 4). The deviations of six UC RCMs are larger than 30%. However, seasonal discharge patterns

are generally better represented using UC RCM climate input than UC ESM input. The lowest UC RCM R2 value is 0.93

compared to an R2 of 0.49 by NorESM of the UC ESM ensemble. Hence, bias-correction improved R2 values only slightly

for 50% of RCMs. In 60% of the cases, the volumetric deviation (PBIAS) of BC RCMs is significantly lower than in the30

corresponding UC models. Based on these two indicators, the performance of BC RCM simulations is generally better than

UC RCMs. However, there is a strong tendency of peak flow overestimation in six out of ten BC RCMs which is not captured

by R2 and PBIAS. Therefore, a visual assessment of hydrographs is important as well as an analysis of daily discharge

characteristics using FDCs (see following section).
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Taylor diagrams (Taylor, 2001) are another method to visualise model performance showing three performance indicators

(R2, normalised SD, and SDD) in a single plot (see Fig. 5). They facilitate the visual assessment of model performance where

outliers can be easily identified. A model having similar statistical characteristics as the reference dataset would be represented

by a point at 1.0 on the x-scale and 0.0 on the y-scale. However, interpretation of normalised values is difficult in terms of

numerical thresholds but Fig. 5 a) identifies UC IPSL and UC NorESM clearly as outliers. IPSL is, for instance, an outlier5

because it shows deficiencies at representing SD (0.25 where 1.0 would be ideal) and SDD (0.79 where 0.0 would be ideal).

UC NorESM performs poorly in terms of all indicators. After bias-correction all ESMs show rather good performance (see

Fig. 5 b). Except BC IPSL, all models have lower SD than WFD. The characteristics of RCMs are different. Half of the UC

RCMs SD (Fig. 5 c) deviate more than ±0.25 from standardised WFD but perform much better in terms of R2. Interestingly,

after bias-correction (Fig. 5 d), all models show a higher SD than WFD, which is consistent with higher SD of daily rainfall10

as described in the previous section.

4.2.3 Flow duration curves

FDCs are employed here to analyse and characterise strengths and weaknesses of daily discharge simulations with regard to

NED conditions, high flows, low flows and their extremes. Fig. S5 in the Supplement shows FDCs of all ensembles where the

black line represents simulations using WFD. At least one obvious outlier can be clearly identified in both UC ensembles (IPSL15

and CanESM2-RCA4). Apart from the outliers, NED characteristics are slightly better represented by the UC ESM ensemble

(Fig. S5 a) than by the UC RCM ensemble (Fig. S5 c). Most of the UC RCMs tend to overestimate NED and low flows. At a

first glance, the biases were significantly reduced by the correction methods (Fig. S5 b and d), especially for NED. However,

compared to UC simulations, the correction led to higher biases in the high and low flow segments and especially in their

extreme values. Note that a logarithmic y-scale is used where large deviations in the extreme high flow section appear rather20

small on this plot although they are in fact extremely high.

Figure 6 overcomes this problem by showing relative deviations of FDCs between discharge time series simulated with

climate model inputs and the baseline using WFD. The values corresponding to Fig. 6 provide the Tables S5 to S8 in the

Supplement. Assuming that deviations in the range of ±30% are tolerable, there is not a single UC model (Fig. 6 a and c)

which fulfils these requirements for all percentile values. However, the UC ESMs MIROC and HadGEM (Fig. 6 a) show25

acceptable deviations (±30%) in NED conditions but there is not a single UC RCM representing NED conditions in the given

range (Fig. 6 c). The best UC RCM result was achieved with NorESM1-RCA4. The Figures 6 b) and d) show that bias-

correction was successful in correcting the biases of NED for all ESMs and seven out of ten RCMs. The correction method

applied to ESMs leads to different patterns in the high and low flow sections compared to the method used to bias-correct

RCMs.30

Between Q1 and Q10 (high flows), the BC ESMs tend to underestimation (but in the given range of acceptable deviations)

whereas BC RCMs do overestimate flows corresponding to these percentiles. There is not a single BC RCM that represents Q1

conditions in the given range of ±30%. The smallest overestimation for Q1 is 52.4%. All BC RCMs do strongly overestimate

extreme high flows Q0.1 and Q0.01. The highest Q0.01 overestimation is 656.9% and the lowest 100.4% (Table S8). The BC
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ESMs perform better in the extreme high flow segments. But only GFDL and HadGEM2 simulateQ0.1 values in the acceptable

range and only HadGEM2 for Q0.01 (Table S6).

In the low flow section (between Q90 and Q99) there is no BC ESM performing adequately for all percentile values. Except

HadGEM2 that overestimates low flows, the other models tend to underestimation. Extreme low flows (Q99.9 and Q99.99) are

only represented by GFDL within the acceptable range. The BC RCMs do all underestimate low flows, where four models5

are within the acceptable range of deviations for Q95 there is only one model within this range for Q99 (CanESM2-RCM4).

Extreme low flow conditions (Q99.9 and Q99.99) are only represented adequately by EC-EARTH-RCA4, the other RCMs

severely underestimate extreme low flows.

Summarising the evaluation of model performance based on FDCs it can be stated that bias-correction improved the per-

formance of simulated NED significantly. However, with few exceptions, both bias-correction methods did not improve the10

performance of high and low flows. This is particularly true for extreme values which are strongly exaggerated in most cases.

4.3 Impact of bias-correction on discharge projections

Figures S6 and S7 in the Supplement show projected discharge changes of each single model under RCP 8.5 in the period 2030–

2059. The changes are relative to the models’ reference period. The figures allow to investigate the changes between reference

and future period of UC and BC models as well as the differences of projected changes between UC and BC simulations. The15

indicators R2 and PBIAS are not used to measure the performance but indicate the magnitude of change between reference

and projection period.

The IPSL model shows the largest deviations between future and reference period (Fig. S6) for both UC and BC simulations.

The UC IPSL model projects an increase of 95.4% in average annual discharge. A visual assessment supports the previously

made assumptions that the IPSL model does not provide adequate climate simulations in the study area. This is true for both UC20

and BC climate simulations. The HadGEM2 model is the only model where bias-correction changed the sign of the discharge

signal. The simulation with UC climate input projects a decrease of average annual discharges of -2.9% and the BC simulation

an increase of +2.2%. Interesting are the results of the NorESM1 model. The UC model simulates a bimodal rainfall and runoff

system with a dry period during the rainy season in July to September. Although the model was forced by bias-correction

into a completely different system, by pushing the dry season into a rainy season, the projections seem not anywhere near25

as disrupted as the IPSL simulation. Hence, the NorESM1 results do not support the assumption that strong bias-correction

necessarily results in unexpected behaviour in future periods.

Figure S7 shows that maximal discharge peaks simulated with RCM climate input is often much higher than average peaks

simulated with WFD (~6000 m3s-1). Where only two UC RCMs simulate much higher peaks in the reference period (EC-

EARTH-Hirham5 and EC-EARTH-RCA4), five BC RCM simulate peaks higher than 7000 m3s-1. Looking at projected peaks30

in the period 2030–2059 (RCP 8.5) shows that nine out of ten BC RCM-driven and five UC RCM simulations simulate peaks

that are higher than 7000 m3s-1.
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4.4 Selected ensemble

Table 1 summarises the performance criteria for all UC and BC simulations using R2, PBIAS, deviations from FDC values,

and the change rate. The seasonality criterionR2 > 0.85 was achieved by all simulations except the one based on UC NorESM.

Seven out of 30 simulations failed to represent the volumetric deviation criterion PBIAS±30%. Concerning the FDC criteria,

12 simulations passed the NED test, seven simulations the high flow criterion and only one simulation the low flow criterion.5

The column pre (pre-selection) shows whether a model fulfilled the criteria in the first three columns. Those models might be

chosen for a qualitative impact assessment. However, four models that passed the pre-selection criteria were not used in this

study because they project very high changes in average annual discharges (column Change). Sometimes both the UC and BC

simulations were judged to be suitable. In order not to overweight the results of one model, only the better simulation (UC or

BC) was selected into the final model ensemble and is denoted in column final. The latter columns indicates that ten out of 3010

simulations passed all performance criteria and are thus members of the selected model ensemble. This ensemble consists of

four BC ESMs, four BC RCMs, and two UC RCMs.

4.5 Temperature and precipitation projections

Figures 7 and 8 show precipitation and temperature projections of the selected model ensemble for the 21st century for RCP 4.5

and RCP 8.5 as anomalies to the reference period in the UBN. They indicate the total range of change and the 5-year moving15

average (MA5) for both scenarios. The precipitation MA5 does not show a distinct trend of change over the century but

average annual precipitation is projected to be up to 100 mm (~7%) higher than in the reference period. The increase is only

marginally higher in RCP 8.5 than in RCP 4.5. In Fig. S8 it is shown that maximal only three out of 15 UC climate models

project decreasing average annual precipitation. The multi-model mean of the CMIP5 ESM ensemble projects increasing

annual precipitation of 5% (6%) and 8.4% (15.6%) under RCP 4.5 and RCP 8.5 in 2030–2059 and (2070–2099), respectively.20

Fig. S9 shows where the five ESMs used in this study are situated within the entire CMIP5 ensemble. It is noticeable that only

three out of 26 ESMs show declining precipitation trends under RCP 8.5.

Projected surface air temperatures show a clearly increasing trend over the 21st century in both RCPs. Compared to the

reference period, the multi-model mean projects an increase of 1.5 K (-1 to 3.0 K) in RCP 4.5 and 2.0 K (-0.2 to 3.5 K) in

RCP 8.5 in 2050. At the end of the century average temperatures climb up to 2.0 K (-0.3 to 4.0 K) under RCP 4.5 and 5.0 K (2.525

to 7.0 K) under RCP 8.5. The multi-model mean of the CMIP5 ESM ensemble projects increasing average annual temperatures

of 1.6 K (2.3 K) and 1.7 K (3.9 K) under RCP 4.5 and RCP 8.5 in 2030–2059 (2070–2099), respectively.

4.6 Climate impacts on discharges

In this section, the similarities and differences of projected climate change impacts on Blue Nile discharges at gauge El Diem

are discussed. Considered are the two UC and BC ESM and RCM ensembles and the selected model ensemble (see Table 1,30

column final). In Figures 9 and 10 and S10 to S13, each model simulation is represented by a semi-transparent polygon where

blueish colours indicate increase and reddish colours decrease in monthly discharges. The more saturated the colour the more
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models project the same rate of change. The figures show monthly changes relative to average annual discharges in the reference

period. This method was chosen in order not to overemphasise large relative changes in dry periods which are not significant

compared to annual discharges.

Table 2 shows the total range of changes in average annual discharges projected by the multi-model means of UC and BC

ESMs and RCMs and the selected model ensembles. In the near future (2030–2059) in both RCPs, the range of UC models is5

between 7.4% and 19%, the range of BC models between 11.3% and 27.7% and the range of the selected ensemble between

5.8% and 11.3%. In the far future (2070–2099) considering both RCPs, the range of UC models is between 7.5% and 21.6%,

the range of BC models between 20.3% and 56.7% and the range of the selected ensemble between 8.4% and 13.2%. Following

conclusions summarise the projected changes of average annual discharges more specifically:

– All ensembles in all RCPs and future periods have in common that they all project an increase of average annual dis-10

charges. An exception is the selected model ensemble of the UC ESMs under RCP 4.5 (2030–2059) which projects a

decrease of -0.4% (Fig. S10a).

– The multi-model means of both UC and BC RCM ensembles (all models) project usually higher increase of average

annual discharges than the ESM ensembles, except under RCP 8.5 (2070–2099), see Figures S11 d) and S13 d).

– The multi-model means of BC simulations (both RCPs and periods) always project higher increases in average annual15

discharges than the UC multi-model means.

– The magnitude of change signals projected by selected models in the respective ensemble is always lower than the

magnitude of the whole ensemble. This is mainly caused by the fact that models projecting changes of>±30%, between

reference period and 2030–2059 under RCP 8.5, were omitted from the ensemble of selected models.

– A noticeable difference between the UC RCM and ESM ensembles is that projected average annual discharges in the20

second future period are lower (RCMs) and higher (ESMs) than in the first future period.

General findings concerning changes in seasonality:

– There is a trend of decreasing discharges at the end of the dry season projected by all ensembles in both RCPs and

periods. The period indicating a drying trend projected by the ESM ensemble tends to be longer and starts a bit earlier

(June/July to August) than the trend projected by RCMs (only July).25

– There is a trend of increasing discharges during the rainy season projected by all ensembles in both RCPs and periods.

The period indicating higher discharges starts earlier in the RCM ensembles (August to November) than in the ESM

ensembles (September to November).

– Both ensembles agree that there is almost no change projected in the dry period between December and May.
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5 Discussion and conclusions

Are we using the right fuel to drive hydrological models? What are the likely impacts of climate change on future discharges

in the UBN and is there a strong agreement of projected trends? In how far does bias-correction influence the results and can

we trust models that required strong correction? These questions, posed in the introduction, are discussed in the following.

The majority (≥80%) of the 15 climate models used in this study agree that average annual discharges in the UBN are5

likely to increase in future. The models project a trend towards decreasing discharges at the end of the dry period (June and

July) and an increase during the rainy season (August to November). Due to the usage of different climate model ensembles,

downscaling approaches, study areas within the UBN, and periods of analysis, a direct comparison with other studies is difficult

but clearly reveals that the selection of climate models is predominantly influencing the results and conclusions made. Setegn

et al. (2011) found for instance that the eleven CMIP3 GCMs they used to investigate climate impacts on discharges in the Lake10

Tana catchment (Blue Nile headwaters) project decreasing trends but they also state that “...it seems that, by chance, the nine

GCMs used in this study are those that show a precipitation decrease...”. On the other hand Dile et al. (2013) conclude that

discharges may increase by up to 135% in the same region. Taking the, sometimes contradicting, results of recent studies into

account (Dile et al., 2013; Mengistu and Sorteberg, 2012; McCartney and Menker Girma, 2012; Setegn et al., 2011; Conway

and Schipper, 2011; Diro et al., 2011; Elshamy et al., 2009), one can conclude that climate impacts in the UBN are uncertain15

but there is a bias towards a wetter future. The findings of this study, using most recent global and regional climate models as

well as precipitation projections of the entire CMIP5 ensemble, are underlining the latter statement.

Apart from discussing whether the future in the UBN will become generally wetter or drier, decisions with regard to adap-

tation of land and water management to changing climatic conditions requires not only information on qualitative but also

accurate seasonal quantitative changes. The value of using uncorrected climate simulations to answer those questions is, due to20

the lack of spatio-temporal accuracy and the lack of statistically representing observed weather characteristics, usually rather

limited. Bias-correction of climate simulations is an attempt to overcome at least some of these deficiencies.

The reference dataset used to bias-correct climate models and to calibrate and validate the hydrological model is another

source of uncertainty. It influences calibration parameter settings and correction factors. The usage of a different reference

dataset would certainly lead to different settings but probably not to different results. WFD were used in this study because25

bias-correction on ESMs, provided by ISI-MIP, was performed on the basis of this dataset. Moreover, WFD provide a sound

basis as climate input, particularly in data scarce regions, as was shown in various studies (Vetter et al., 2015; Aich et al.,

2014; Liersch et al., 2013). The usage of a different reference dataset would certainly require different parameter settings

and correction factors but would probably not impact the change signals. The most important issue in this connection is the

consistency in using the same reference for calibration, validation, and bias-correction.30

As was shown in this study, monthly medians and average annual precipitation amounts of UC ESM and RCM simulations

deviate sometimes strongly from reference climate. Although bias-correction improved the performance of average climate

conditions, the range of monthly precipitation amounts increased critically in several models, producing some extreme outliers

in both ensembles. The same is true for daily precipitation characteristics. Average daily precipitation and the number of rainy
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days were considerably improved but 13 out of 15 BC models overestimate daily precipitation maxima and many of them

significantly. Hence, the bias-correction methods applied to ESMs and RCMs in this study could be considered as only partly

successful. While achieving significant improvement in terms of average daily, monthly, and annual precipitation characteris-

tics, increasing variability of precipitation amounts and therefore under and overestimation of extremes was the result in many

simulations.5

This phenomenon is problematic for impact studies and the application of hydrological models. Particularly if changes of

extreme values are the subject of investigation. Large overestimation of precipitation on some days or in some months for

instance, which are balanced by dry months in the long term, can lead to large amounts of excess water that may be simulated

almost entirely as surface runoff by the hydrological model. Therefore, it is reasonable to use hydrological performance indi-

cators to evaluate the suitability of climate simulations for specific purposes and to create a subset of models for the impact10

assessment. Due to the fact that discharge simulations, based on climate simulations, cannot be compared to observed dis-

charges on a real-time daily, monthly, or annual basis, the methods to evaluate discharge performance are limited. In this study,

the annual cycle (daily time series averaged over the simulation period) was characterised byR2 and PBIAS, whereR2 was a

measure for seasonality and PBIAS for volumetric deviations. FDCs were used to characterise the distribution of average flow

conditions, high and low flows as well as their extremes by using the whole time series of daily discharge simulations. As ex-15

pected, discharge simulations show similar deficiencies as precipitation simulations. Using bias-corrected climate simulations

improved the performance of non-extreme discharges (NED) significantly but, with few exceptions, the performance of high

and low flows was not improved. Many BC discharge simulations tend to exaggeration of high (overestimation) and low flows

(underestimation). This was particularly true for extreme values which are strongly overestimated in most cases. Comparing

peak discharges using UC and BC climate input, for instance, showed a tremendous increase in some BC simulations although20

average monthly precipitation patterns of BC models achieved a much better fit than their UC counterparts. Moreover, the

multi-model means of BC simulations (both RCPs and periods) always project higher increases in average annual discharges

than the UC multi-model means.

Knowing these limitations, one should carefully consider the model’s suitability and the purpose it is being used for. An

impact study focusing on relative changes of future water availability may have lower requirements in terms of model accuracy25

than a study with the aim to investigate future extremes, such as floods and droughts or a study addressing land and water

management issues including irrigation and/or reservoir operations. Therefore, the question of model selection is valid. Why

should one use or trust models to assess changes in seasonal patterns, for instance, that are not representing those patterns

in the past or use a model to investigate future flood risk that completely fails to represent rainfall extremes? Again, bias-

correction may help to overcome some quality issues but it was also found in this study that improving climate simulations in30

the reference period does not guarantee higher quality or reliability in simulating future periods. On the contrary, the greater

the necessity to correct a particular model, the higher the risk that BC simulations will show unexpected behaviour in future

periods, where exceptions confirm the rule. Examples confirming this assumption are the following models: IPSL, CanESM2-

RCA4, CNRM-CM5-RCA4, and MIROC-RCA4. The NorESM1 model is an exception here because the BC simulation does

not show extreme changes in future periods although strong bias-correction was necessary in some months to force the model35
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from a bimodal into a unimodal rainfall regime. It should be emphasised that the analysis of climate model performance in

this study is only valid for the region of the UBN. It does not imply that a model which performed poorly in this study area is

generally performing “poorly” in other regions, too.

The authors of this study conclude that a purpose-driven selection of a climate model subset is a reasonable approach, partic-

ularly in a regional context. To identify “good performing” models, the selection process should include an analysis of climate5

inputs, seasonal discharge patterns, volumetric deviations, daily characteristics (FDCs for extremes) and an assessment of the

magnitude of projected future changes. It is also worth mentioning that the thresholds defined to evaluate model performance

have a subjective component and are based on statistical parameters, graphical data interpretation, and modelling expertise. If

the thresholds would have been set more critically in this study, almost no climate model would have passed the evaluation

process successfully. The rather weak thresholds were a compromise and reveal the fact that the performance of many climate10

models is still far beyond being adequate for applied quantitative impact studies. In another river basin with different charac-

teristics, e.g. with a nival regime or a bimodal rainfall regime, the performance criteria and their thresholds may have been

defined differently. However, model selection for regional impact studies is only a reasonable, justifiable, and recommended

approach if the uncertainties of the selected ensemble are communicated within the context of the whole model ensemble.

This study demonstrated that neither the trend-preserving method applied to the five ESMs nor the harmonic-based method15

used to bias-correct the ten RCMs was able to generate fully satisfactory climate inputs for a regional hydrological impact study

with high demands in terms of accuracy. Hence, further research is required to improve regional climate simulations and/or

to investigate alternative correction methods or approaches to make available climate simulations meaningful for application-

oriented regional studies. Currently, the most promising solutions seem to be sophisticated delta-change methods, as suggested

by Anandhi et al. (2011), Bosshard et al. (2011), and Chiew et al. (2009)20
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Figure 1. Map of the Blue Nile River basin. The Upper Blue Nile (UBN) catchment is enclosed by the red line.
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Figure 2. Simulated discharges for calibration (a and b) and validation (c and d) periods at gauge El Diem (Sudan Border) using WFD.
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(1970-1999), simulated by SWIM.
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Figure 4. Annual cycle of average daily uncorrected (UC) and bias-corrected (BC) discharges using RCMs and WFD in the reference period

(1970-1999), simulated by SWIM.
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Figure 5. Taylor diagram of average daily discharges in the reference period (1970-1999). It shows R2, normalised standard deviation (SD),

and normalised SDD of discrepancies.
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Figure 6. Deviations of FDCs from baseline discharge simulation using WFD in the reference period (1970-1999).
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Figure 8. Anomalies of average annual mean air temperature relative to the reference period (1970-1999). Range of selected model ensemble
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Figure 9. Monthly discharge changes of UC and BC ESM and RCM simulations in [%] under RCP 8.5 (2070-2099). Monthly changes are

relative to average annual discharge in the reference period (1970-1999) at gauge El Diem.
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Figure 10. Monthly discharge changes of the selected model ensemble (10 models) relative to average annual discharge in the reference

period (1970-1999) at gauge El Diem.
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Table 1. ESM and RCM selection

R2 PBIAS FDC ±30% Change Selection

Climate model > 0.85 ±30% NED HF LF ±30% pre final

UC GFDL x x – x – x – –

BC GFDL x x x – – x x x

UC HadGEM x x x – – x x –

BC HadGEM x x x x – x x x

UC IPSL x – – – – – – –

BC IPSL x x x – – – x –

UC MIROC x x x ~ – x x –

BC MIROC x x x – – x x x

UC NorESM – x ~ ~ – x – –

BC NorESM x x x – – x x x

UC CanESM2/RCM4 x x – x – – – –

BC CanESM2/RCM4 x x x – – – x –

UC CanESM2/RCA4 x – – – – x – –

BC CanESM2/RCA4 x x – – – x – –

UC CNRM-CM5/RCA4 x – – – – – – –

BC CNRM-CM5/RCA4 x x x – – – x –

UC GFDL/RCA4 x x x x – x x x

BC GFDL/RCA4 x x x – – x x –

UC EC-EARTH/Hirham x – – ~ – x – –

BC EC-EARTH/Hirham x x x – – x x x

UC EC-EARTH/RACMO x – – x – x – –

BC EC-EARTH/RACMO x x x – – x x x

UC EC-EARTH/RCA4 x – – – – x – –

BC EC-EARTH/RCA4 x x x – – x x x

UC MIROC5/RCA4 x x – x – – – –

BC MIROC5/RCA4 x x ~ – – – x –

UC MPI-M-ESM-LR/RCA4 x – – – – x – –

BC MPI-M-ESM-LR/RCA4 x x x – – x x x

UC NorESM1/RCA4 x x ~ x x x x x

BC NorESM1/RCA4 x x – – – x – –

“x” = criterion achieved; “~” = criterion almost achieved; “–” = criterion not achieved

“HF” = high flows (≤Q10); “LF” = low flows (≥Q90)

“Change±30” = volumetric change between reference period and RCP 8.5 in 2030-2059

“pre” = pre-selection; “final” = models selected into the final ensemble
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Table 2. Projected changes in average annual discharges relative to 1970-1999 in [%]

RCP 4.5 RCP 8.5

Model ensemble 2030-2059 2070-2099 2030-2059 2070-2099

UC ESMs 7.4 7.5 8.2 21.6

UC RCMs 18.5 14.2 19.0 12.4

BC ESMs 11.3 20.3 24.5 56.7

BC RCMs 23.5 22.3 27.7 52.7

Selected 5.8 8.4 11.3 13.2
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