
1 

 

State and Parameter Estimation of Two Land Surface Models 

Using the Ensemble Kalman Filter and the Particle Filter 

Hongjuan Zhang
1,2

, Harrie-Jan Hendricks Franssen
1,2

, Xujun Han
1,2

, Jasper A. Vrugt
3,4 

and 

Harry Vereecken
1,2

 

1
Forschungszentrum Jülich, Agrosphere (IBG 3), Jülich, Germany 5 

2
Centre for High-Performance Scientific Computing in Terrestrial Systems: HPSC TerrSys, Forschungszentrum   

Jülich, Jülich, Germany 
3
Department of Civil and Environmental Engineering, University of California Irvine, Irvine, USA 

4
Department of Earth Systems Science, University of California Irvine, Irvine, USA 

Correspondence to: Hongjuan Zhang (ho.zhang@fz-juelich.de) 10 

Abstract. Land surface models (LSMs) use a large cohort of parameters and state variables to simulate the water 

and energy balance at the soil-atmosphere interface. Many of these model parameters cannot be measured 

directly in the field, and require calibration against measured fluxes of carbon dioxide, sensible and/or latent 

heat, and/or observations of the thermal and/or moisture state of the soil. Here, we evaluate the usefulness and 

applicability of four different data assimilation methods for joint parameter and state estimation of the Variable 15 

Infiltration Capacity Model (VIC-3L) and the Community Land Model (CLM) using a 5-month calibration 

(assimilation) period (March – July, 2012) of areal-averaged SPADE soil moisture measurements at 5, 20 and 50 

cm depth in the Rollesbroich experimental test site in the Eifel mountain range in western Germany. We used the 

EnKF with state augmentation or dual estimation, respectively, and the residual resampling PF with a simple, 

statistically deficient, or more sophisticated, MCMC-based parameter resampling method. The performance of 20 

the “calibrated” LSM models was investigated using SPADE water content measurements of a 5-month 

evaluation period (August – December, 2012). As expected, all DA methods enhance the ability of the VIC and 

CLM models to describe spatiotemporal patterns of moisture storage within the vadose zone of the Rollesbroich 

site, particularly if the maximum baseflow velocity (VIC) or fractions of sand, clay, and organic matter of each 

layer (CLM) are estimated jointly with the model states of each soil layer. The differences between the soil 25 

moisture simulations of VIC-3L and CLM are much larger than the discrepancies among the four data 

assimilation methods. The EnKF with state augmentation or dual estimation yields the best performance of VIC-

3L and CLM during the calibration and evaluation period, yet results are in close agreement with the PF using 

MCMC resampling. Overall, CLM demonstrated the best performance for the Rollesbroich site. The large 

systematic underestimation of water storage at 50 cm depth by VIC-3L during the first few months of the 30 

evaluation period questions, in part, the validity of its fixed water table depth at the bottom of the modelled soil 

domain.  

1. Introduction and Scope 

Land surface models (LSMs) are used widely to simulate and predict the exchanges of momentum, energy, and 

mass between the terrestrial biosphere and overlying atmosphere at local, regional, and global scales. These 35 

models also play a key role in assessing impacts of environmental changes (climate, land-use, and land-cover) on 

energy, water, and biogeochemical fluxes (e.g. CO2, CH4, N2O) at the soil-atmosphere interface, and simplify 
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analysis of cause-effect relationships among the myriad of processes that govern land-atmosphere interactions 

and feedbacks, and emulate spatiotemporal variations in climate through greenhouse gas exchanges, carbon-

nitrogen feedbacks, soil moisture-precipitation, and soil moisture-temperature coupling. LSMs use relatively 40 

simple mathematical equations to conceptualize and aggregate the complex, spatially distributed, and interrelated 

(bio)physical, chemical, and ecological processes that govern the exchange of mass, energy, and momentum 

between the land-surface and the atmosphere. This approach simplifies considerably the topology of the land-

surface system, and reduces to much lower dimensions its state and parameter space. The consequence of this 

process aggregation and simplification is, however that the LSM parameters often do not represent directly 45 

measurable entities, and instead must be estimated via calibration by fitting the model against measured data 

records of soil moisture, soil temperature, and/or CO2, water vapour, and/or energy fluxes across a range of 

biomes and timescales. These measurements are of crucial importance to quantify properly LSM parameter and 

predictive uncertainty, and to identify poorly represented or missing processes (Williams et al., 2009; Bonan, 

2008).  50 

Many of the parameters of a LSM are model dependent and therefore difficult to transfer between different land-

surface schemes. Nevertheless, all LSMs use soil hydraulic, vegetation, and thermal parameters to describe heat 

transport, water flow, and root water uptake (canopy transpiration) in the variably saturated soil domain, and 

share a reflection coefficient (aka surface albedo) to calculate the reflected shortwave radiation. Two main 

approaches exist to determine the hydraulic and thermal properties of the considered soil domain. Some LSMs 55 

such as the Community Land Model (CLM) use basic soil data (soil texture and organic matter fraction) to 

estimate hydraulic and thermal parameters via pedotransfer functions (Oleson et al., 2013; Han et al., 2014; 

Vereecken et al., 2016). Other land-surface schemes such as the Variable Infiltration Capacity Model (VIC) 

(Liang et al., 1994; Gao et al., 2010) expect users to specify values for the hydraulic and thermal parameters. 

Pedotransfer functions are particularly useful in large-scale application of CLM as they simplify tremendously 60 

soil hydraulic characterization. Nevertheless, soil hydraulic parameter values derived from pedotransfer 

functions are subject to considerable uncertainty, and might therefore not accurately describe soil water 

movement and storage, particularly at larger spatial scales. What is more, (measurement) errors of the 

atmospheric forcing (e.g. wind speed, temperature, radiation, vapour pressure deficit, and precipitation) and 

errors in the auxiliary model input (e.g. topographic properties, vegetation characteristics) further enhance LSM 65 

prediction uncertainty.  

In the past decades, many different search and optimization methods have been developed for automatic 

calibration of dynamic system models. Of these, Bayesian methods have found widespread application and use in 

Earth systems modelling due to their innate ability to treat, at least in principle, model input (forcing), output 

(forecast), parameter and structural errors. The Bayesian approach relaxes the assumption of a single optimum 70 

parameter value in favour of a posterior parameter and forecast distribution which summarizes the coordinated 

impact of different uncertainties on the modelling results. Yet, general-purpose methods such as DREAM (Vrugt 

et al., 2008, 2009; Vrugt, 2016) require a relatively large number of LSM evaluations to estimate parameter and 

forecast uncertainty. This can pose significant computational challenges for CPU-intensive and parameter-rich 

LSMs, and complicates treatment of input data uncertainty via latent variables (e.g. Vrugt et al., 2008).  75 

Data assimilation offers an attractive alternative as general framework to account for LSM parameter, input, 

output, and other sources of uncertainty to take advantage of all available ground-based, airborne or spaceborne 
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observations to improve the compliance between numerical models and corresponding data. This approach 

enables joint estimation of model state variables and parameters and simplifies treatment of forcing data errors 

(Liu and Gupta, 2007). Many different studies published in the hydrologic literature have demonstrated the 80 

benefits of parameter estimation in the context of data assimilation for soil moisture characterization (e.g., 

Montzka et al., 2011; Lee, et al., 2014), rainfall-runoff (e.g., Moradkhani et al., 2005a; Vrugt et al., 2005) and 

land surface modelling (e.g., Pauwels et al., 2009).  

Data assimilation methods merge uncertain observations with predictions (output) of imperfect models to 

optimally estimate the state of a dynamical system. The prototype of this method, the Kalman filter (KF) was 85 

developed in the 1960s by Rudy Kalman for optimal control of linear dynamical systems (Kalman, 1960). The 

KF is a maximum likelihood estimator of the dynamic state of the system if the model error and measurement 

error distributions are (multivariate) normal. For nonlinear dynamical models this Gaussian assumption is not 

generally valid, and the KF will not give a maximum likelihood state estimate. The ensemble Kalman Filter, or 

EnKF, is a stochastic generalization of the KF to nonlinear system models, in which the evolution of the model 90 

error covariance matrix is derived from a finite set of state realizations (Evensen, 1994). The use of this Monte 

Carlo ensemble not only makes possible state estimation for complex system models but also enables the explicit 

treatment of different sources of modelling error. Two decades on from its inception, the EnKF has received 

operational status in real-time weather, tsunami, and flood prediction systems (amongst others) due its proven 

ability to enhance a model‟s forecast skill and characterize accurately prediction uncertainty.  95 

State estimation via the EnKF advances significantly the capabilities of hydrologic and land-surface models to 

predict spatiotemporal dynamics of water movement and storage in soils, lakes, and reservoirs, and fluxes of 

mass, energy, and momentum between the soil and the atmosphere. The predictive skill of these models is, 

however determined in large part by their parameterization. This has led hydrologists and hydrometeorologists to 

develop data assimilation approaches that permit the simultaneous inference of model state variables and 100 

parameter values. The power and usefulness of such joint state and parameter estimation methods have been 

investigated by many different authors in the water resources literature. Most of these publications use synthetic 

(or twin) experiments with assimilation of artificially generated data. Examples include studies with simulated 

measurements of the groundwater table depth or hydraulic head (Franssen and Kinzelbach, 2008; Bailey and 

Bau, 2012; Kurtz et al., 2014; Shi et al., 2014; Song et al., 2014; Tang et al., 2015), discharge/streamflow (Bailey 105 

and Bau, 2012; Moradkhani et al., 2012; Vrugt et al., 2013; Rasmussen et al., 2015), groundwater temperature 

(Kurtz et al., 2014), soil moisture (Wu and Margulis, 2011; Plaza et al., 2012; Erdal et al., 2014; Shi et al., 2014; 

Song et al., 2014; Pasetto et al., 2015), brightness temperature from passive remote sensing (Montzka et al., 

2013; Han et al., 2014), and contaminant concentration (Gharamti et al., 2013). These studies use a variety of 

different methods for joint parameter and state estimation, among which the EnKF (Franssen and Kinzelbach, 110 

2008; Wu et al., 2011; Gharamti et al., 2013; Erdal et al., 2014; Kurtz et al., 2014; Shi et al., 2014; Pasetto et al., 

2015), the iterative EnKF (Song et al., 2014), the extended KF (Pauwels et al., 2009), the local ensemble 

transform KF (Han et al., 2014), the ensemble transform KF (Rasmussen et al., 2015), and the normal score 

EnKF (Tang et al., 2015).  

The overarching conclusion from the body of synthetic experiments is that the joint estimation of parameters and 115 

state variables via data assimilation enhances significantly the predictive capabilities of hydrologic and land-

surface models. This finding is corroborated by results for real-world assimilation studies documented in a 
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rapidly growing list of publications and involving model structural inadequacies, measurement errors of the 

atmospheric forcing variables and calibration (assimilation) data, inadequate characterization of the lower 

boundary condition (aquifer), and uncertainty of other, auxiliary, model inputs. This includes assimilation of 120 

measurements of the electrical conductivity (Wu and Margulis, 2013), hydraulic head in wells (Kurtz et al., 

2014; Shi et al., 2015), groundwater temperature (Kurtz et al., 2014), streamflow and discharge (Moradkhani et 

al., 2012; Shi et al., 2015), active remote sensing (Pauwels  et al., 2009), passive brightness temperature (Qin et 

al., 2009), soil moisture from lysimeters (Lue et al., 2011; Wu and Margulis, 2013; Erdal et al., 2014; Shi et al., 

2015), land surface temperature (Bateni and Entekhabi, 2012) and sensible and latent heat fluxes (Shi et al., 125 

2015) using methods such as the PF (Qin et al., 2009), PMCMC (Moradkhani et al., 2012), EnKF (Bateni and 

Entekhabi, 2012; Wu and Margulis, 2013; Erdal et al., 2014; Kurtz et al., 2014; Shi et al., 2015) and the extended 

KF (Pauwels et al., 2009; Lue et al., 2011). Despite this growing body of applications, relatively few studies (e.g. 

Lue et al., 2011; Shi et al., 2015) have focused on an accurate characterization of soil moisture dynamics 

simulated by LSMs. This is particularly surprising, as root zone moisture storage modulates spatiotemporal 130 

variations in climate and weather, and governs the production and health status of crops, and the organization of 

natural ecosystems and biodiversity (Vereecken et al., 2008). 

In this paper, we evaluate the usefulness and applicability of four different data assimilation methods for joint 

parameter and state estimation of VIC-3L and CLM using a 5-month calibration (assimilation) period of soil 

moisture measurements at 5, 20 and 50 cm depth in the Rollesbroich experimental test site in the Eifel mountain 135 

range in western Germany. This grassland site is part of the TERENO network of observatories and extensively 

monitored since 2011 to catalogue long-term ecological, social and economic impact of global change at regional 

level. We used the EnKF with state augmentation (Chen and Zhang, 2006) or dual estimation (Moradkhani et al., 

2005a), respectively, and the residual resampling PF (Douc et al., 2005) with a simple, statistically deficient 

(Moradkhani et al., 2005b), or more sophisticated, MCMC-based (Vrugt et al., 2013) parameter resampling 140 

method. The “calibrated” LSM models were tested using SPADE water content measurements from a 5-month 

evaluation period. To the best of our knowledge, this is only the second study after Chen et al. (2015) that 

compares sequential data assimilation methods for joint parameter and state estimation of a LSM. Related work 

by Dechant and Moradkhani (2012) and Dumedah and Coulibaly (2013) consider application to the rainfall-

runoff transformation of a watershed.  145 

The three main objectives of our study may be summarized as follows, (1) to evaluate the usefulness and 

applicability of joint parameter and state estimation for soil moisture characterization with LSMs, (2) to compare 

the performance of four commonly used parameter and state estimation methods in their ability to predict soil 

moisture dynamics at different depths in the Rollesbroich experimental test site, and (3) to compare, contrast and 

juxtapose the soil moisture simulations and predictions of CLM and VIC. 150 

The remainder of this paper is organized as follows. Section 2 discusses briefly VIC-3L and CLM which are 

used as our LSMs to characterize soil moisture dynamics of the Rollesbroich experimental site in Germany. In 

this section, we contrast the numerical approaches, boundary conditions, and spatial discretization (soil layers), 

that are used by VIC-3L and CLM to describe water flow and storage in the modelled soil domain, and are 

particularly concerned with selection of their calibration parameters. Section 3 then reviews the basic concepts 155 

and theory of the four different data assimilation algorithms used herein. This is followed in section 4 with a 

detailed discussion of the Rollesbroich experimental site, and the numerical implementation and setup of each 
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data assimilation method. Section 5 introduces the results of the different parameter and state estimation methods 

and two LSMs, and section 6 discusses the main findings of our numerical experiments and assimilation studies. 

Finally, this paper concludes in section 7 with a summary of our main findings.  160 

2. Land Surface Models and Calibration Parameters 

LSMs simulate terrestrial biosphere fluxes of matter and energy via numerical solution of the water, energy, and 

carbon balance of the land-surface. This includes hydrologic processes such as soil evaporation, infiltration, 

surface runoff, canopy interception and transpiration, aquifer discharge, groundwater recharge, and precipitation 

(Schaake et al., 1996) and energy fluxes such as latent and sensible heat from soil, snow, surface water and 165 

vegetated surfaces (Bertoldi, 2004). Their respective equations contain parameters whose values depend on 

global or regional distributions of vegetation and soil properties (Milly and Shmakin, 2002).  

The Rollesbroich site investigated herein covers an area of about 270,000 m
2
 with grassland vegetation that is 

dominated by perennial ryegrass (Loliumperenne) and smooth meadow grass (Poapratensis). The limited size of 

our site and its rather uniform vegetation and topography, justify treatment of our land surface domain as a single 170 

grid cell in LSM with apparent parameters that characterize the mass and energy exchange between the soil and 

atmosphere. This assumption of homogeneity is computationally convenient and also simplifies somewhat our 

subsequent mathematical notation. We conveniently write the LSM as a (nonlinear) regression function,     , 

which returns a     matrix   with the simulated (predicted) values of   different variables (e.g. soil moisture 

content, latent and sensible heat fluxes) at discrete times,   {     }, as follows  175 

       ̃   ̃  ̃ ,           (1) 

where   {       }  is the  -vector of model parameters,  ̃  signifies the    -vector with measured 

(inferred) values of the state variables of the land surface model for the domain at the start of simulation,  ̃ 

denotes the     control matrix with temporal measurements of   forcing variables (e.g. air temperature, 

precipitation, vapour pressure deficit, wind speed, short and long-wave radiation),  ̃ represents a vector with 180 

auxiliary constants, variables, or properties (e.g. plant functional type, land cover, soil texture, and other 

variables/constants) deemed necessary to simulate the water and energy balance of the land-surface domain of 

interest, and   [    
        

 ] , where   denotes transpose. Without loss of generality, we restrict the model 

parameters to a closed space,  , equivalent to some  -dimensional hypercube,       , called the feasible 

parameter space.  185 

The assumption of homogeneity simplifies considerably the model definition in equation (1). Yet, this lumped 

topology might not characterize adequately real-world soil-land-surface systems that exhibit considerable spatial 

variations in soils, vegetation, and land properties. Such systems might necessitate distributed application of 

equation (1) via spatial discretization of the considered land-surface domain into different grid cells. This 

discretization should honour spatial variations in vegetation and soil properties, and could account for small-190 

scale (within-grid-cell) variability. Nevertheless, in our present application of LSM we the treat the Rollesbroich 

site as a single grid cell with grassland vegetation and homogeneous, but layered, soil (details to follow).      

We now discuss briefly two different land surface schemes, VIC-3L and CLM which are used to describe 

temporal variations in soil water storage at different depths in the Rollesbroich experimental site in Germany.    
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2.1. The Variable Infiltration Capacity Model (VIC) 195 

The VIC model is a macro-scale semi-distributed hydrological model which solves for the water and energy 

balance of each grid cell using explicit consideration of within-grid-cell vegetation variations. Accordingly, each 

grid cell is divided into land cover tiles (Liang et al., 1994; Liang et al., 1996; Cherkauer and Lettenmaier, 1999), 

and assumes constant values of the soil properties (e.g., soil texture, hydraulic conductivity, thermal 

conductivity). The total evapotranspiration, sensible heat flux, effective land surface temperature and runoff are 200 

then obtained for each grid cell by summing over all the land cover tiles (vegetation types and bare soil) 

weighted by their respective fractional coverage (Gao et al., 2010). The VIC model can either be executed in a 

water balance mode or a water-and-energy balance mode. In this paper, we assume the latter and use a 70 cm 

deep soil composed of a 10 cm surface layer followed by a middle and bottom layer of 20 and 40 cm, 

respectively.  The relatively thin surface layer is used to capture rapid fluctuations in soil moisture due to rainfall 205 

and bare soil evaporation, and the deepest and thickest layer summarizes seasonal water content dynamics and 

base flow. We use herein, VIC-3L, and force the model with atmospheric boundary conditions (e.g. precipitation, 

wind speed, air temperature, longwave and shortwave radiation, and relative humidity) for the Rollesbroich 

experimental site in Germany. In the absence of detailed information about the hydraulic properties of the 

considered soil domain, we treat each layer‟s saturated hydraulic conductivity, log10   [log10(m/s)] and exponent 210 

of Brooks-Corey‟s drainage equation,   [-], as calibration parameters. What is more, we also include the 

infiltration shape parameter,   [-], and the maximum baseflow velocity,    [mm/day] as calibration parameters. 

Thus, this involves estimation of     parameters in VIC-3L for the Rollesbroich site. Appendix A summarizes 

the soil module of VIC-3L, including a brief description of the main processes and model parameters.  

 215 

2.2. The Community Land Model (CLM) 

CLM is the land model for the Community Earth System Model (CESM) (Oleson et al., 2013), and is made up of 

multiple different building blocks, or modules, which resolve processes related to land biogeophysics, the 

hydrological cycle, biogeochemistry, and dynamic vegetation composition, structure, and phenology. The model 

recognizes explicitly surface heterogeneity by dividing each individual grid cell into multiple subgrid levels. For 220 

example, a grid cell can be made up of different land cover types, each with their own respective patches of plant 

functional types (PFTs) and associated stem area index and canopy height. The first subgrid level is defined by 

land units (vegetated, lake, urban, glacier, and crop), each composed of a number of different columns (second 

subgrid level) for which separate energy and water calculations are made. Vegetated land units, as well as lakes 

and glaciers, use one column. Urban land uses five separate columns, and for crop land there is a distinction 225 

between irrigated and unirrigated columns with one single crop occupying each column. The third subgrid level 

is composed of PFTs and includes bare soil. The vegetated column has 16 possible PFTs besides bare soil. For 

the crop column, several crop types are available. Processes such as canopy evaporation and transpiration are 

calculated for each individual PFT, whereas soil and snow processes are calculated at the column level using 

areal-weighted values of the properties of the PFTs of individual patches. Note, that a similar aggregation 230 

approach is used by VIC-3L. 

In our application of CLM to the Rollesbroich experimental site in Germany, we calculate soil temperature for 

15 different soil layers, and simulate hydrological states and fluxes for the top 10 soil layers only. Appendix B 
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presents a brief description of the soil module of CLM, and discusses the main parameters used. The CLM is 

forced with atmospheric conditions (e.g. precipitation, vapour pressure deficit, wind speed, incoming short wave 235 

and long wave radiation) using values for the model parameters and initial states, and land surface data and other 

physical constants and/or variables as auxiliary input. The soil hydraulic (e.g. saturated hydraulic conductivity) 

and thermal parameters of CLM are derived from built-in pedotransfer functions (see Equations (B1) - (B4) of 

Appendix B) using as inputs the auxiliary vector/matrix  ̃ with sand, clay and organic matter fractions of each 

individual soil layer. We treat these auxiliary soil variables as unknown parameters in the present application of 240 

CLM. Thus, this involves      parameters in CLM for the Rollesbroich site. 

2.3. Main Differences of VIC-3L and CLM 

Before we proceed, we first summarize the main differences of VIC-3L and CLM in their calculations of the 

water and energy balance of the land-surface. In the first place, VIC-3L treats the vadose zone as a multi-layer 

bucket with variable infiltration capacity, whereas CLM uses a more physics-based description of soil water 245 

movement, storage, and associated hydrological fluxes (e.g. root water uptake) by numerical solution of a 

modified form of Richards‟ equation (Zeng and Decker, 2009). A bucket model is computationally convenient, 

but sacrifices important detail regarding the vertical distribution of soil water storage. The latter is a prerequisite 

to characterize accurately processes such as infiltration, redistribution, root-water uptake, drainage, and 

groundwater recharge. We refer the interested reader to Romano et al. (2011) for a detailed comparison of 250 

bucket-type and Richards‟ based vadose zone flow models.  

Second, VIC-3L treats the saturated and variably-saturated soil domain as two separate, lumped, control volumes 

which are decoupled from the underlying groundwater reservoir. In other words, a fixed lower boundary 

condition is imposed. CLM, on the contrary, simulates interactions between the modelled soil domain and an 

unconfined aquifer. The resulting water table variations of the aquifer affect soil water movement in the 255 

unsaturated zone via a variable recharge flux. In our application of CLM, this recharge flux emanates at the 

bottom of the tenth soil layer. The calculation of this recharge flux may be best explained via the use of a virtual 

soil layer, say layer 11, whose depth extends from the bottom of layer 10 to the groundwater table. If we assume 

hydrostatic conditions in layer 11, then we can calculate the recharge flux from layer 10 using Equation (B9) in 

Appendix B. This recharge flux then changes the depth of the water table according to Equation (B11). This 260 

Equation also takes into consideration drainage from the water table due to topographic gradients. If the 

groundwater table is within the upper 10 soil layers, a drainage flux emanates from the upper most saturated 

layer according Equation (B10). 

Third, VIC-3L expects the user to specify values for the soil hydraulic (e.g. saturated hydraulic conductivity), 

thermal, and baseflow parameters of the first, second, and third layer of each grid-cell, respectively, whereas 265 

CLM derives their counterparts (e.g. hydraulic conductivity at saturation, matric head at saturation, Clapp-

Hornberger exponent  , and soil thermal conductivity) for each of the fifteen soil layers using built-in 

pedotransfer functions.  

Finally, VIC-3L allows the user to determine freely the number and thickness of the soil layers in the bucket 

model (default is three layers), whereas CLM assumes a fixed thickness of each soil layer. 270 
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2.4. Selection of Calibration Parameters 

LSMs contain a large number of parameters whose values can be adjusted by fitting model output to observed 

data. Yet, only a few of those parameters will affect noticeably model performance. Various authors have 

investigated the parameter sensitivity of VIC-3L via Monte Carlo simulation, Generalized Likelihood 

Uncertainty Estimation (GLUE), or model calibration methods (Demaria et al., 2007; Xie et al., 2007; Troy et 275 

al., 2008). These studies demonstrated a strong dependency of parameter sensitivity on climatic conditions. 

Table 1 lists the VIC-3L and CLM parameters that have been selected for calibration via data assimilation, and 

reports their units, feasible ranges, perturbation, and spatial configuration. To honour prior information (e.g. soil 

textural data) we do not draw the model parameters from their feasible ranges, but rather sample their initial 

values around some best-guess VIC-3L and CLM parameterization using the normal and uniform distributions 280 

listed under the header “Perturbation”. This makes up the prior parameter distribution and is further explained in 

section 4.2.  

Appendix A (VIC-3L) and B (CLM) summarize the main variables, processes, and equations which are used by 

both models to describe the storage and vertical and/or horizontal movement of water in the variably-saturated 

soil domain of the Rollesbroich site. These two appendices help to better understand the role of the different 285 

calibration parameters of Table 1, and will be most beneficial to readers which are rather unfamiliar with both 

models. Note that CLM estimates the hydraulic and thermal parameters of each soil layer from built-in 

pedotransfer functions (Oleson et al., 2013; Han et al., 2014) using as input the sand, clay, and organic matter 

fraction of each soil layer.  

3. Data Assimilation Methods 290 

Data assimilation methods merge uncertain observations with predictions (output) of imperfect models to 

optimally estimate the state and/or parameters of a dynamical system. This includes the use of four-dimensional 

variational data assimilation (4D-Var), EnKF, PF, and related assimilation schemes. These methods have been 

applied successfully to a large number of different fields for model-data fusion in the atmospheric, oceanic, 

biogeochemical and hydrological sciences.  We now briefly discuss the theory of four different data assimilation 295 

methods which are used herein with VIC-3L and CLM to characterize spatiotemporal soil moisture dynamics at 

our experimental site.    

3.1. EnKF 

The EnKF was proposed by Evensen (1994) as generalization of the Kalman filter to nonlinear system models 

with many state variables. This method uses a Monte Carlo approach to generate an ensemble of different model 300 

trajectories from which the time evolution of the probability density of the model states, and related error 

covariances are estimated. The EnKF uses a state-space implementation of the dynamic system model of 

equation (1) and implements the following steps (Burgers et al., 1998): 

  
             

   ̃   
         ,                                                                                                             (2) 

where   
   is the     vector of predicted values of the state variables of the  th ensemble member,   305 

{ , , },  ̃   
  signifies the corresponding vector (or matrix) of measured values of the forcing variables,     

denotes a     process noise vector that accounts for structural imperfections of the LSM, and   denotes time. 

In our specific implementation, the state vector is made up of areal-averaged soil moisture content values at three 
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different measurement depths. What is more, the observed precipitation forcing was perturbed with a member-

dependent vector of measurement errors. From the ensemble of   state vectors, we can calculate the     310 

background error covariance matrix,  , using:  

    
 

   
∑    

     ̅     
     ̅  

 
   ,                                                                                                           (3) 

where  ̅  denotes the     vector with ensemble mean values of the states at time t. The     vector of 

measured soil moisture data at time   can be written for each individual ensemble member as follows: 

 ̂ 
     ̃      

 ,                                                                                                                                          (4) 315 

where   
  signifies a     vector of measurement errors drawn randomly from a  -variate normal distribution,  

        with zero-mean and     observation error covariance matrix  . We assume the soil moisture 

measurement errors at each depth to have a fixed and common variance   , and to be uncorrelated in space and 

time. Thus we can write       , where    signifies the     identity matrix with zeros everywhere except 

on the main diagonal which stores values of   .  320 

We can now update the predicted state values of each ensemble member as follows   

  
      

        ̂ 
  -    

   ,                                                                                                                         (5) 

where   
  denotes the     vector with updated estimates of the state variables (also called analysis state),   is a 

    matrix called the Kalman gain, and the     matrix   signifies the measurement operator which maps 

the model output to the measurement space. It is linear for EnKF. In our present application, we observe directly 325 

the soil moisture content of respective measurement depth, and thus the matrix   is made up of values of zero 

and unity. The Kalman gain is computed as follows: 

                 
- 

,                                                                                                                      (6) 

where the symbol   denotes transpose. The updated values of the states now enter equation (2) and are used to 

predict the soil moisture values at the next observation time,      , and so forth.   330 

In some cases it might be appropriate to estimate the model parameters along with the state variables. This 

requires a slight modification to the state-space formulation of equation (2) as the  -vector of parameter values, 

 , must now vary among the   ensemble members to facilitate parameter estimation from the measured data. 

Three different approaches have been published in the literature for joint estimation of model states and 

parameters in the EnKF. This includes, state augmentation, dual and outer estimation. The first two approaches 335 

assume the LSM parameters to be time-variant, and infer their values sequentially along with the model states. 

The third approach assumes the parameters to be time-invariant, and estimates their posterior distribution in a 

loop outside the EnKF by maximizing the marginal likelihood of the   state trajectories (Vrugt et al., 2005, 

2013). We will consider herein only the first two approaches, that is, state augmentation and dual estimation, as 

these two methods are most CPU-efficient.  340 

3.1.1. State augmentation 

In state augmentation, the     vector of state variables,   , the model error covariance matrix C, the 

measurement operator H, and the Kalman gain K consist of two separate blocks (Franssen and Kinzelbach, 

2008): 

      * 
 

  
+                                                                                                                                             (7) 345 
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where the subscripts x and   refer to the model states and parameters respectively. The state vector,   , now 

consists of     elements, the model error covariance matrix    is made up of four smaller matrices,    ,    
 , 

   , and    , and the measurement operator    includes    and additional values of zero. The Kalman gain 350 

matrix K is now given by: 
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This results in the following equation for the updated states and parameter values:  355 
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].                   (11)  

3.1.2. Dual estimation 

In the dual estimation approach, the state variables and model parameters are stored in two separate vectors and 

updated using their own individual steps (Moradkhani et al., 2005a). The parameter values of each ensemble 

member are first updated according to: 360 

  
      

         ̂ 
      

   .                                                                                                                          (12) 

Then, the updated parameter values are used with equation (2) to predict, for the second time, the state variables 

at time  , after which their values are updated via equation (5). This approach necessitates running the LSM 

twice for the time period between two successive measurements, thereby doubling the required CPU-time of 

each ensemble member for this dual estimation method compared to the state augmentation approach.  365 

The EnKF suffers from filter inbreeding, that is, the ensemble spread degrades after several data assimilation 

steps. In extreme cases, the covariance matrix  , of the state ensemble is so small that the measurements receive 

a negligible weight via equation (6) and do not affect much the state trajectories of the individual ensemble 

members. This reflects a situation similar to model calibration in which state variable errors are ignored and all 

uncertainty in the input-output representation of the model is attributed to the parameters. Filter inbreeding is 370 

aggravated by the use of a relatively low number of ensemble members (small  ) which results in spurious 

correlations among state variables and/or parameters, and underestimation of the spread of the ensemble. Other 

reasons for an insufficient ensemble spread are model structural errors, and the use of an underdispersed prior 

parameter distribution or too small variance of the measurement errors of the forcing variables. Ensemble 

inflation methods are an effective way to ameliorate filter inbreeding (Anderson, 2007; Whitaker and Hamill, 375 

2012). We apply the inflation algorithm of Whitaker and Hamill (2012) to the   parameter values of each 

ensemble member as follows: 
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where  ̅    signifies the analysis mean (after update) of the  th parameter at time  , the scalars    and    denote 

the prior (before update) and analysis standard deviation of the  th parameter (derived from ensemble), and 380 

  {     } . This method promotes a parameter spread that is in agreement with the width of the prior 

parameter distribution, and is particularly important to avoid a strong underestimation of ensemble variance and 

associated filter inbreeding in applications with relatively small ensemble sizes. As the spread is kept artificially 

constant, it cannot be assessed properly how data assimilation affects reduction of prediction uncertainty. In 

addition, it is important that the initial ensemble spread is adequate. This is a drawback of the applied inflation.  385 

3.2 Residual Resampling Particle Filter (RRPF) and Parameter Estimation 

The PF was first suggested in the research area of object recognition, robotics and target tracking (Gordon et al., 

1993) and was introduced to hydrology by Moradkhani et al. (2005a). The PF differs from the EnKF in that it 

describes the evolving probability density function (PDF) of the LSM state variables by a set of   random 

samples, also called particles. Each particle carries a non-zero weight which determines its underlying 390 

probability, and these weights are updated as soon as a new datum (observation) becomes available. Before we 

proceed with a brief theoretical description of the PF we must first explicate our notation. We denote with 

symbol      the collection of simulated values of the LSM state variables between the first observation at     

and the present datum,  , hence      [       ] is a     matrix with the LSM states at each measurement 

time stored as a column vector. The corresponding observations are stored in the     matrix,  ̃    395 

[ ̃     ̃ ]. Finally, we use braces, { }, to denote our Monte Carlo ensemble of   particle trajectories, {    
   }, and 

thus {  
   } is a     matrix with sampled values of the LSM state variables at time  . The subsequent 

description of the PF follows closely the description of Vrugt et al. (2013). Interested readers are referred to this 

publication for further details.      

If we assume the parameters to be known, then we can write the evolving posterior distribution,          ̃    , 400 

for the state-space formulation of equation (2) as follows: 

  (    | ̃   )    (      | ̃     )
⏞          

     

 
           ⏞        

     

    ̃     ⏞      
                   

    ̃   ̃      ⏟        
                      

,     (14) 

where   (      | ̃     )  denotes the prior state distribution,             signifies the transition probability 

density of the state variables (= equation (2)),     ̃      is the likelihood function, and     ̃   ̃       represents a 

normalization constant which ensures that the posterior state distribution integrates to unity. Equation (14) 405 

follows directly from Bayes‟ law (see Appendix A of Vrugt et al. (2013)), and does not use at once the data up to 

time   to estimate   (    | ̃   ) but rather estimates the evolving system state recursively over time using some 

mathematical model and new incoming measurements. If we integrate out the state trajectory        from 

equation (14) then we can derive an expression for the marginal PDF of the state variables,   (  | ̃   ), at time 

 :  410 

  (  | ̃   )  
    ̃       (  | ̃     )

    ̃   ̃      
,        (15) 
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which is also referred to as the update step of the optimal filter (conditional independence of measurements). 

The state prediction step is equivalent to the Chapman-Kolmogorov equation:  

  (  | ̃     )  ∫             
  (    | ̃     )     ,     (16) 

where   signifies the feasible state space.  415 

We conveniently assume herein, a Gaussian likelihood function: 

    ̃      
 

             
   ( 

 

 
  ̃       

      ̃       ) ,    (17) 

where R is the     measurement error covariance matrix,     signifies the determinant operator, and   

denotes the length of the observation vector,  ̃ , at time  .  

The PF makes use of the following identity of equation (14) to approximate the evolving state PDF: 420 

    (    | ̃   )    (      | ̃     )               ̃     .     (18) 

This recursion implies that we can use reuse the particles (samples) at     that define the prior distribution, 

  (      | ̃     ), to approximate the posterior state PDF,   (    | ̃   ), at the next observation time. Yet, such 

recycling poses a problem, that is, we cannot sample directly from   (    | ̃   )  as we do not know its 

multivariate distribution. We therefore resort to an easy-to-sample-from importance density,   ( |      ̃ ), and 425 

draw {  
   } taking into consideration the current observation,  ̃ , and previous state samples, {    

   }. We then 

calculate the unnormalized importance weight of the  th particle,   
 , as follows 

  
   ̅   

   ({    
 }),            (19) 

where        
   signifies the incremental importance weight: 

   ({    
 })  

  (,  
 -|,    

 -)  ( ̃ |,  
 -)

  ({  
 }|{    

 }  ̃ )
,       (20) 430 

and  ̅ 
    

  ∑   
  

    denote the normalized importance weights, which vary between 0 and 1. 

Before we can implement the PF in practice, we need to specify the importance density,      {    
   }  ̃  , for 

  {     } . We follow Gordon et al. (1993) and set             ̃               which results in the 

following equation for the incremental particle weights: 

   ({    
 })  

  (,  
 -|,    

 -)  ( ̃ |,  
 -)

  ({  
 }|{    

 })
   ( ̃ |{  

 }).      (21) 435 

This approach gives satisfactory results if the transition density or model operator,            , adequately 

describes the observed system dynamics, and/or the observations,  ̃   , are not too informative. Otherwise, the 

repeated application of equation (19) causes particle impoverishment in which the sampled particle trajectories 

drift away from the actual posterior state distribution, and receive a negligible importance weight. This ensemble 

degeneracy (e.g. Carpenter et al., 1999) deteriorates PF performance and results in a poor computational 440 

efficiency of the filter as much of the CPU-time is devoted to carrying forward particle trajectories whose 

contribution to   (    | ̃   ) for     is virtually zero.     
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To combat particle degeneracy we monitor the effective sample size (ESS) after assimilation of each new 

observation:  

     ∑ ( ̅ 
 )

  
   ⁄           (22) 445 

If the ESS is smaller than some default threshold, say    , then the particle ensemble is said to be degenerating. 

Several methods have been developed in the statistical literature to rejuvenate the particle ensemble. Gordon et 

al. (1993) introduced Sequential Importance Resampling (SIR), where   particles are drawn from the ensemble 

using selection probabilities equal to their normalized importance weights. This step replaces samples with low 

importance weights with exact copies of the most promising particles, and produces a resampled set of   450 

particles with equal weights of    . In our application of the PF we implement Residual Resampling (RR) 

developed by Liu and Chen (1998). This method has an important advantage over SIR in that it produces a 

resampled set of particles with more diverse weights (Weerts and Serafy, 2006). First, we compute a selection 

probability,  
,  

 -
, of each individual particle as follows: 

 
,  

 -
 

  ̅ 
  ⌊  ̅ 

 ⌋

   
,        (23) 455 

where the ⌊ ⌋ operator rounds down to the nearest integer, and   ∑ ⌊  ̅ 
 
⌋ 

   . Then, the   particles with 

largest normalized importance weights are retained, and the remaining     spots are filled by drawing from 

the   retained particles using their selection probabilities from equation (23). The resulting filter is referred to as 

RRPF. 

In the present application of the RRPF, we not only estimate the LSM states but also jointly infer the values of 460 

the model parameters. We use state augmentation and add the model parameters to the vector of LSM state 

variables. Yet, this approach requires definition of an importance density for the parameters to avoid parameter 

impoverishment after several successive assimilation steps. This has been demonstrated numerically by Plaza et 

al. (2012) using a series of data assimilation experiments. In principle, we could corrupt the posterior parameter 

distribution using the ensemble inflation method of Whitaker and Hamill (2012) detailed in equation (13). This 465 

approach was used by Qin et al. (2009) to avoid degeneracy of the parameter values. Instead, we use the 

approach described by Plaza et al. (2012) and perturb the parameter values of the resampled particles using 

draws from a zero-mean  -variate Gaussian distribution with diagonal covariance matrix. This     matrix has 

zero entries everywhere (uncorrelated dimensions) except on the main diagonal which stores values of 

     [{    
   }], where   is a scaling factor,    [{    

   }] signifies the prior variance of the  th parameter (at   470 

 ), and   {     }. This is an adaptation of the method introduced by Moradkhani et al. (2005b) and uses the 

prior variance of the parameters rather than their variance at the previous measurement time,    . Yet, in the 

absence of a formal guidelines on the choice of  , this perturbation approach suffers from a lack of adequate 

statistical underpinning [Vrugt et a., 2013; Yan et al., 2015]. In our present application, we set      , and 

evaluate the RRPF performance for VIC-3L model using other values for this scaling factor as well.  475 

3.3. Particle Markov Chain Monte Carlo (PMCMC) Simulation 

The RR procedure produces a sample with more evenly distributed weights, but many of the particles are exact 

copies of one another. To enhance sample diversity, we therefore evaluate another resampling step using Markov 
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chain Monte Carlo (MCMC) simulation. We follow herein the MCMC resampling method of Vrugt et al. (2013) 

and create candidate particles after RR using a discrete proposal distribution with state and parameter jumps 480 

equal to a multiple of the difference of two or more pairs of resampled particles. Each candidate particle is then 

re-evaluated between     and   by the LSM model, and the Metropolis acceptance probability is used to 

determine whether to replace the “old” particle or not. This combined PF and MCMC methodology is also 

referred to as PMCMC. Interested readers are referred to Vrugt et al. (2013) for a detailed description of this 

method. 485 

3.4. Important Differences of EnKF and PF  

Before we proceed with application of the EnKF-AUG, EnKF-DUAL, RRPF and PMCMC data assimilation 

methods, we reminisce about the key differences of the EnKF and PF. These differences are often overlooked 

and misunderstood but of crucial importance to help understand the two filters, and analyse and interpret our 

findings (see Vrugt et al., 2013). Most critically, the EnKF uses the measured values of the state variables (via 490 

measurement operator, if appropriate) to correct (update) the forecasted states of each ensemble member. The 

state PDF at each time is approximated by a weighted average of the distributions of the measured and forecast 

states. The PF on the other hand does not use a state analysis step, but rather assigns a likelihood to each particle. 

This likelihood is a dimensionless scalar which measures in a probabilistic sense the distance between the 

measured and forecasted state variables. The state PDF at each time is then constructed via the likelihoods 495 

(normalized importance weights) of the particles. Resampling is required to rejuvenate the ensemble, but this 

step is rather inefficient compared to the state analysis step of the EnKF as the measured states are only used 

indirectly in the PF via calculation of the likelihood. What is more, a single resampling step in RRPF or PMCMC 

does not guarantee a good approximation of the actual state PDF, as the particles‟ forecasted states may be 

systematically biased. Consequently, the PF may need a very large ensemble and/or many resampling steps to 500 

characterize properly the state PDF. On the contrary, the state analysis step of the EnKF resurrects rapidly a 

biased ensemble by migrating the members‟ forecasted states in closer vicinity of their measured values. This 

crucial difference between the EnKF and PF is the result of their dichotomous design, as is also evident from our 

mathematical notation. The EnKF estimates separately at each time the state PDF via equation (5), whereas the 

PF is designed to estimate the posterior distribution of the entire state trajectory via the recursion of equation 505 

(18). This latter task is much more difficult in practice, and requires use of the laws of probability to ensure that 

each particles‟ state trajectory constitutes a plausible realization from the transition density,  ({  
 }|{    

 }), 

juxtaposed by the distribution of the model errors. This latter requirement of plausibility renders impossible the 

use of an analysis step in the PF (such as EnKF), as the resulting state updates may violate the statistics of the 

transition density and model error distribution and jeopardize the realism of each particle‟s state trajectory. 510 

Therefore, the PF requires a proper resampling method that takes into explicit account the statistical properties of 

the state transition density and model error distribution to replace bad particles and ensure an exact 

characterization of the evolving state PDF.       
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4. Case study  515 

4.1. The Rollesbroich Experimental Site 

We apply the four data assimilation approach to characterize soil moisture dynamics of the 27 ha Rollesbroich 

experimental test site (50°37'27"N, 6°18'17"E) in Germany. This site is located in the Eifel hills and ranges in 

elevation between 474 and 518 m with mean slope of 1.63°. The watershed constitutes a sub-basin of the 

TERENO Rur experimental catchment (Bogena et al., 2010; Qu et al., 2014) and consists of grassland with a soil 520 

texture that is predominantly silty loam. The mean annual air temperature and precipitation are 7.7 °C and 1033 

mm, respectively. An eddy covariance tower (50°37'19"N, 6°18'15"E, elevation 514.7 m) and a soil moisture and 

soil temperature sensor network (with measurements at 5, 20 and 50 cm depth) have been installed (amongst 

others) at the Rollesbroich site. Water content data are measured at 41 different locations (see Figure 1) using 

SPADE soil moisture probes (sceme.de GmbH i.G., Horn-Bad Meinberg, Germany) (Hübner et al., 2009) 525 

installed at 5 cm, 20 cm and 50 cm depth along a vertical profile. The SPADE probe is a ring oscillator and the 

frequency of the oscillator is a function of the dielectric permittivity of the surrounding medium, which depends 

strongly on local soil water content because of the high relative permittivity of water  ≈ 80) as compared to 

mineral soil solids  ≈ 2-9 , and air  ≈ 1). The SPADE probe was calibrated following the procedure outlined in 

(Qu et al., 2014). The soil moisture measurements are subject to several sources of error. This includes an 530 

inadequate contact of the sensors with the surrounding soil, and structural imperfections of the equations which 

relate the sensor response to the dielectric permittivity, and this permittivity to soil moisture.  

The atmospheric LSM forcing data in this study were measured at the eddy covariance tower and include hourly 

measurements of air temperature, air pressure, relative humidity, wind speed, and incoming shortwave and 

longwave radiation. Precipitation was measured by a tipping bucket located in close proximity of the eddy 535 

covariance station. Soil texture was determined using 273 soil samples, taken from three different depths, 

ranging between 5 and 11 cm, 11 and 35 cm, and 35 to 65 cm. The sample locations coincided exactly with the 

location of the SoilNet sensors. The soil textural composition, organic carbon content, and bulk density were 

determined for each sample using standard laboratory experiments. These values were averaged to obtain mean 

values for the listed depths. Soil hydraulic parameters were then estimated for each of these three measurement 540 

depths from pedotransfer functions using as input data the basic soil measurements.  

In this work, we conveniently assume the soil-land-surface domain of the Rollesbroich site to be homogeneous 

and characterized by areal average values of soil moisture content at 5, 20 and 50 cm depth. In other words, we 

consider only vertical variations in soil water storage. Common LSM data assimilation experiments published in 

the literature usually involve application to much larger spatial scales, especially when remote sensing data are 545 

used. Hence, it is important to evaluate the LSM performance for a site where heterogeneities are neglected. Qu 

et al. (2014) investigated the geostatistical properties of the soils of the Rollesbroich test site. This work 

demonstrated a rather small spatial variability of the soil texture. This does not suggest, however that we can 

ignore spatial variations in the measured soil moisture values. Indeed, the standard deviations of soil moisture 

vary between 0.04 and 0.07 cm
3
/cm

3
 depending on the actual soil layer. This spatial heterogeneity of the soil 550 

moisture data documents variability in the soil hydraulic properties, and complicates the application and 

upscaling of LSMs.  
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4.2. Numerical Experiments 

A total of       ensemble members (particles) were used in all our data assimilation experiments. The period 

from January 1, 2011 to February 29, 2012 was used to spin-up VIC-3L and CLM using measured hourly forcing 555 

data. The subsequent period between March 1, 2012 and July 31, 2012 served as our “calibration period” during 

which the daily soil moisture observations at the three measurement depths were used to update the LSM state 

variables and possibly also its parameter values. The following 5-months from August 1, 2012 to December 31, 

2012 were used as an independent evaluation period. During this last period, we did not update the states and set 

the parameters to their “optimized” values derived from the calibration period. Soil moisture assimilation was 560 

initiated in March 2012 as the SPADE water content sensors were deemed unreliable (at least in February) in the 

preceding winter season due to soil freezing. We terminated our numerical experiments at the end of December 

2012, as a large number of sensors seemed to be malfunctioning in subsequent readings which could impact too 

much the mean soil moisture values.  

Soil moisture contents measured at 5 cm, 20 cm and 50 cm depth were assimilated jointly. The three (default) 565 

soil layers in VIC-3L (0-10 cm, 10-30 cm, and 30-70 cm) were synchronized to match the three measurement 

depths. Soil parameters were defined separately for all individual layers, measured or not. In CLM, we used ten 

(default) soil layers with increasing thickness downwards (see Table 2). The 5, 20 and 50 cm measurement 

depths correspond to the third, fifth and the sixth layer in CLM. Spatial relationships (covariance matrices) 

between the soil parameters of the measured layers and their values of the unmeasured layers were used in the 570 

EnKF to update the parameterization of layers 1, 2, 4, 7, 8, 9 and 10. A slightly different approach was followed 

in RRPF and PMCMC, in which the soil parameters of the unmeasured moisture layers in CLM were updated to 

their weighted-average values of the resampled particles using the vector of normalized importance weights.  

The measurement errors of the soil moisture observations are assumed to be zero-mean Gaussian with standard 

deviation,        m
3
/m

3
. This results in            in equations (4) and (17), respectively. We admit that 575 

0.02m
3
/m

3
 is clearly larger than the uncertainty of the mean soil moisture content averaged over the 41 values. A 

larger observation error alleviates potential problems with filter inbreeding. Also, we account crudely for errors 

in LSM model formulation via parameter uncertainty and the use of a stochastic description of the precipitation 

record of the Rollesbroich site (discussed next). In other words, the     process noise vector,   , in equation 

(2) consists of zeros. However, we agree that it can be expected that we have other model structural errors, for 580 

example in relation to the representation of photosynthesis.  

The hyetograph of each ensemble member is derived by multiplying the measured hourly precipitation rates of 

the tipping bucket with multipliers drawn from a unit-mean normal distribution with standard deviation of 0.10. 

This is equivalent to a heteroscedastic error of 10% of the observed precipitation (Hodgkinson et al., 2004). 

Forcing variables which govern evapotranspiration (incoming shortwave and longwave radiation, air 585 

temperature, relative humidity, and wind speed) were not corrupted.  

The initial values of the VIC-3L and CLM parameters are sampled at random using a simple two-step procedure. 

This approach honours soil textural data and is consistent with related results published in the literature. First, we 

draw   times from each marginal distribution listed in Table   under the column “perturbation”. These 

distributions originate from Han et al. (2014) for CLM, and Demaria et al. (2007) and Troy et al. (2008) in case 590 

of VIC-3L. This results in a     matrix of perturbations for VIC-3L and CLM, respectively. We then create 
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the initial     parameter ensemble of VIC-3L and CLM by adding each perturbation matrix to a deterministic 

vector of “best-guess” parameter values for each model. This initial parameter ensemble is the same for all the 

assimilation methods. For CLM, this best-guess vector is simply equivalent to the areal-averaged sand, clay, and 

organic matter fraction of each of the ten soil layers, respectively. In case of VIC-3L, we guess that      (all 595 

layers),      , and       (mm/d), and derive the value of log10   (log10(m/s)) of all three soil layers from 

the measured mean areal sand fraction at each of those depths. The best-guess parameter values of VIC-3L and 

CLM and their respective marginal distributions are jointly also referred to hereafter as prior parameter 

distribution. We want to compare EnKF and PF starting from the same prior distribution in order to make a more 

meaningful comparison. EnKF assumes a Gaussian distribution, but the PF not. We believe that assuming an 600 

initial uniform distribution is a neutral assumption good for comparing EnKF and PF. 

One may debate our best-guess parameter values of VIC-3L and CLM and their respective marginal 

distributions. Nevertheless, the prior parameter distribution used herein introduces more than sufficient 

dispersion in the best-guess parameter values to rapidly overcome a possibly deficient initial model 

parameterization. Note, that the prior uncertainty of the two texture parameters (sand and clay fraction) in CLM 605 

is much larger than their spread derived from the texture measurements of each soil layer. This inflation of the 

prior distribution is done purposely to account indirectly for the epistemic uncertainty of the pedotransfer 

functions that are used to predict the soil hydraulic parameters. Indeed, the prior parameter uncertainty of the 

sand and clay fraction should be large enough to guarantee a sufficient soil moisture spread of the ensemble, 

which is of crucial importance for an adequate performance of the different data assimilation methods.  610 

Figure 2 shows the measured records of daily precipitation and daily air temperature for the 10 month 

measurement period used herein. The measurement period is rather wet with several intensive precipitation 

events during the summer. For example, notice the event on the 27th of July in 2012 in which 31 mm of 

precipitation fell in just one hour. Our experience suggests that such extreme rainfall events corrupt the 

parameter estimates, in large part due to an inadequate description and/or characterization of surface runoff. 615 

What is more, the correlation between the hydraulic parameters of the different layers of our soil domain and the 

moisture state deteriorates rapidly close to saturation. Therefore, on days with rainfall in excess of 20 mm we 

resort to state estimation only, and proceed with this the next two consecutive days to give VIC-3 and CLM 

sufficient opportunity to remove, via deficient surface transport or state updating, the excess water. On the third 

day after each 20 mm+ precipitation event, we resume joint LSM state and parameter estimation.  620 

To evaluate joint state-parameter estimation algorithms for the two LSMs and the four different data assimilation 

algorithms, we carried out the following three numerical experiments for VIC-3L and CLM (see also Table 3):  

(1) Open loop simulation. We evaluate the LSMs from March 1, 2012 to December 31, 2012 with time-invariant 

parameters via Monte Carlo simulation using a large number of draws from the prior parameter distribution 

summarized in Table 1 and section 4.2. 625 

(2) State updating with EnKF. The soil moisture state variables were updated during the five-month calibration 

period using the SPADE moisture content measurements. In theory, soil moisture assimilation should improve 

our estimates of the initial states of the evaluation period. We posit that this enhanced state-value 

characterization should improve the accuracy of the LSM simulated (predicted) soil moisture values during the 

first few days/weeks of the evaluation period, after which the model performance deteriorates rapidly over time 630 

in the absence of recursive state adjustments.  
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(3) Joint state-parameter estimation using RRPF, PMCMC, and EnKF with state augmentation and dual 

estimation. The soil moisture state variables and model parameters are estimated during the five-month 

calibration period using the SPADE soil moisture measurements. The parameter values and state variables at the 

end of the calibration data period are used for the evaluation period. 635 

4.3. Summary Statistics 

We used the Nash-Sutcliffe model efficiency (NSE) and the Root Mean Square Error (RMSE) to evaluate the 

quality-of-fit of the VIC-3L and CLM predicted (simulated) soil moisture values during the calibration 

(assimilation) and evaluation period. These two metrics are computed separately for the 5, 20, and 50 cm 

measurement depths as follows:  640 
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where  ̃    and  ̅    denote the measured and ensemble mean predicted soil moisture contents at time  , the 

subscript   constitutes an index for measurement depth,   {     }, and   {     }. The     vector of 

ensemble mean predicted moisture contents,  ̅ , is simply equivalent to the mean of the VIC-3L or CLM 

forecasted state variables at these respective measurement depths. Larger values of the NSE and smaller values 645 

of the RMSE are preferred as they indicate a better LSM performance. In the absence of reliable information 

about the soil hydraulic properties of the different layers, the soil moisture observations were the only data 

available to evaluate the results of VIC-3L and CLM and each data assimilation method.  

5. Results  

In this section we present the results of our numerical experiments. We first discuss our findings for VIC-3L 650 

followed by the results of CLM. Section 6 proceeds with a discussion of the main findings.    

5.1. VIC-3L 

Figure 3 displays the observed (blue dots) and VIC-3L predicted soil moisture values (solid lines) at (A) 5, (B) 

20, and (C) 50 cm depths using PMCMC (black), RRPF (red), EnKF-AUG (green), and EnKF-DUAL (cyan). As 

the Rollesbroich test site experiences a yearly average precipitation of more than about 1000 mm it is not 655 

surprise that the upper soil layer at 5 cm is rather wet with volumetric soil moisture contents that vary 

dynamically between 0.3 and 0.5 cm
3
/cm

3
 in response to atmospheric forcing. This is especially true during the 

summer months (week 12 – 22) and explained by a rapid succession of rainfall and drying events. The larger 

porosity values of the surface layer explain the relatively high soil moisture contents of the 5 cm measurement 

depth. The storage time series of the deeper soil layers at 20 and 50 cm depth exhibit a rather negligible temporal 660 

variation with soil moisture values that range between 0.3-0.4 cm
3
/cm

3
 and show a damped and lagged response 

to rainfall. Note that the soil water storage of the deepest layer increases steadily during the year. This implies a 

drainage flux from the top soil to the aquifer (and drainage channels).  

The different data assimilation methods demonstrate a rather similar performance with VIC-3L predicted 

moisture contents that track reasonably well the three different layers. Note, however that RRPF does not 665 

reproduce well the measured data at 50cm depth in the period from March (week 1) to June (week 17). This 

might be caused by filter inbreeding of the states, and will be discussed later (see also Fig. 9b). Nevertheless, 
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RRPF recovers the observed soil moisture data in week 18. Although difficult to see, the EnKF produces the best 

results at 50 cm depth (state augmentation and dual estimation).  

Table 4 summarizes the NSE and RMSE values of PMCMC, RRPF, EnKF-DUAL and EnKF-AUG for the 670 

calibration (assimilation) period. We also list the performance of VIC-3L without data assimilation (OpenLoop) 

using the mean soil moisture time series of many different realizations of the prior parameter distribution, and 

include RMSE and NSE values of the EnKF for state estimation only (noParamUpdate) using VIC-3L 

parameterizations drawn randomly from its prior parameter distribution. The open loop deviates most from the 

measured values with RMSE values of 0.036, 0.037 and 0.129 cm
3
/cm

3
 for the 5, 20, and 50 cm measurement 675 

depths. The different data assimilation methods improve significantly the quality of fit of VIC-3L compared to 

the open loop run. EnKF-AUG and EnKF-DUAL exhibit an almost identical performance with similar NSE and 

RMSE values. The particle filters, RRPF and PMCMC demonstrate comparable results for the 5 and 20 cm 

depth, but exhibit somewhat inferior performance compared to EnKF-AUG and EnKF-DUAL for the 50 cm 

layer. The Table confirms our previous finding that the PF exhibits difficulties to track the soil moisture data of 680 

the deepest measurement layer. Indeed, the RMSE value of 0.088 of the PF for this layer is much larger than its 

counterparts of 0.021, 0.014 and 0.016 derived from PMCMC, EnKF-AUG and EnKF-DUAL, respectively. 

Perhaps surprisingly, but the best performance of VIC-3L is obtained for state estimation only (noParamUpdate) 

using model parameterizations drawn randomly from the prior parameter distribution. We posit that the nonlinear 

relationship between states and parameters may introduce inconsistencies in PMCMC, RRPF, EnKF-AUG and 685 

EnKF-DUAL which jointly estimate VIC-3L states and parameters. Overall, the EnKF gives somewhat better 

results than the PF, particularly for the deepest measurement layer, and PMCMC exhibits a better performance 

than RRPF.  

Figure 4 presents traceplots of the VIC-3L parameters during the 5-month calibration period using the PMCMC 

(black), PF (red), EnKF-AUG (green), and EnKF-DUAL (cyan) data assimilation methods. We display the 690 

ensemble mean saturated hydraulic conductivity (log10   in m/s) at (A) 5 cm, (B) 20 cm, and (C) 50 cm depth, 

(D)  ,   at (E) 5 cm, (F) 20 cm, and (G) 50 cm depth, and (H) the maximum baseflow velocity,    in mm/day. 

In general, the different data assimilation methods result in somewhat similar trajectories of the ensemble mean 

parameter values during the calibration period. In particular, the parameter traceplots of EnKF-AUG and EnKF-

DUAL appear almost identical, with the exception of parameter   and   at 50 cm depth. Note that the parameters 695 

of the surface layer exhibit most dynamics in response to atmospheric forcing. This is largely due to the 

trajectories of PMCMC which exhibit significant temporal dynamics. This is not surprising, and a consequence 

of the MCMC resampling step that is used to rejuvenate the parameter samples (e.g. Vrugt et al., 2013). In the 

first place, the DREAM-type proposal distribution that is used to create candidate particles allows for relatively 

large moves in the parameter space. Second, only a small LSM trajectory between two successive soil moisture 700 

observations is used to determine the acceptance probability of each candidate particle. With such a short (re)-

simulation period, insensitive parameters are allowed to transition to very different values, as they do not affect 

the model output between the two observations, and thus likelihood of a candidate particle. The use of a larger 

historical simulation period (going back further in time) would better constrain the VIC-3L parameters, but also 

increase significantly the computational burden of resampling. Nonetheless, the ensemble mean VIC-3L 705 

parameter values of the different data assimilation methods are remarkably similar at the end of the calibration 

period, after assimilating the soil moisture observations of week 22. The exception to this is parameter   whose 



20 

 

trajectories differ most with values at the end of the calibration period that range between values of 0.11 for 

RRPF and 0.25 for EnKF-DUAL. Finally, parameter    converges systematically to values of 1 - 2 mm/day but 

at a different rate for the data assimilation methods. The EnKF-AUG, EnKF-DUAL and PMCMC methods need 710 

just a few soil moisture observations to determine the value of   , whereas RRPF converges at a much slower 

pace. This might explain the rather inferior performance of RRPF for the 50 cm measurement depth during a 

substantial part of the assimilation period.  

To provide a better understanding of the ensemble spread of the VIC-3L parameters, please consider Figure 5 

which presents traceplots of the sampled log10ks (left column) and β (right column) values at the 20 cm 715 

measurement depth for the         members. Results are presented in order of (A-B) PMCMC (gray), (C-D) 

RRPF (red), (E-F) EnKF-AUG (green) and (G-H) EnKF-DUAL (cyan) and the ensemble mean is indicated with 

the solid black line. The ensemble members cover a relatively large part of the prior distribution of both 

parameters, with the exception of RRPF which seems to underestimate the actual uncertainty of log10ks and β. 

This is an artefact of equation (13) which discourages large parameter adjustments with small  . Nevertheless, 720 

note that the ensemble mean of the parameters is rather unaffected by assimilation of the soil moisture data, 

except for the small increase of log10ks and β late April due to increased precipitation in the following months 

(see also Fig. 2).  

Figure 6 displays VIC-3L simulated soil moisture time series for the independent 5-month evaluation period at 

(A) 5, (B) 20, and (C) 50 cm depths using initial states and parameter values derived from PMCMC (black), PF 725 

(red), EnKF-AUG (green), and EnKF-DUAL (cyan). The observed soil moisture values are separately indicated 

with the solid blue dots. The water content simulations of VIC-3L are hardly distinguishable, except for the 

deepest soil layer at 50 cm depth. Apparently, it does not matter which data assimilation method is used to 

estimate the VIC-3L parameter values and initial states of the evaluation period. VIC-3L tracks very well the soil 

moisture data at 20 cm depth, but does not do a particularly good job in describing water content dynamics at 5 730 

and 50 cm depth. In particular, the model systematically underestimates the observed storage of the bottom soil 

layer between weeks 25-36. This might be a consequence of the use of a fixed lower boundary condition (no 

connection with underlying aquifer) and/or the relatively simple baseflow parameterization. Although not further 

shown herein, a separate VIC-3L run using state estimation only (noParamUpdate) produces similar results after 

a few days to an open loop simulation.  735 

We summarize in Table 5 the NSE and RMSE values of PMCMC, RRPF, EnKF-DUAL and EnKF-AUG during 

the 5-month evaluation period. We also list the performance of VIC-3L without data assimilation (OpenLoop) 

using the mean soil moisture time series of many different realizations of the prior parameter distribution, and 

include RMSE and NSE values of the EnKF for state estimation only (noParamUpdate) using VIC-3L 

parameterizations drawn randomly from its prior parameter distribution. In general, the RMSE values of the 740 

evaluation period are much higher than their counterparts of the assimilation period, and noParamUpdate 

produces RMSE values similar to that of an open loop simulation. VIC-3L parameter estimation is productive, as 

it substantially reduces the RMSE values of 20 and 50 cm measurement depths compared to a model run with 

state estimation only (noParamUpdate) and parameters drawn randomly from their prior distribution. More 

specifically, the PMCMC, RRPF, EnKF-AUG and EnKF-DUAL show a RMSE improvement of about 54% and 745 

42% for the second and third measurement depth compared to OpenLoop and noParamUpdate. The NSE values 
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of VIC-3L for the 50 cm depth are negative for all six methods, conclusively demonstrating an inferior 

performance of the model for this soil layer.  

We now investigate in more detail the effect of MCMC resampling with the PF as Fig. 4 has demonstrated that 

PMCMC produces rather dynamic trajectories of the sampled parameter values. Nevertheless, the parameters 750 

converge to stable values at the end of the assimilation period. This suggests that the choice of the length of the 

calibration period is crucially important in determining the performance of PMCMC during the evaluation 

period. To investigate this in more detail we use June 11, June 30, July 20, and July 31, 2012 as end dates of the 

PMCMC calibration period and verify VIC-3L performance for the same 5-month evaluation period. The 

different end dates are conveniently referred to as PMCMC_0611, PMCMC_0630, PMCMC_0720 and 755 

PMCMC_0731 in Figure 7. The simulated soil moisture trajectories of PMCMC_0630, PMCMC_0720 and 

PMCMC_0731 are in excellent agreement, but deviate from PMCMC_0611. Thus, a 4-month calibration period 

would have led to the same results of PMCMC.   

The effect of initial uncertainties on the performance of EnKF with the ensemble inflation method is also tested 

with the VIC-3L model. Table 6 compares the RMSE values of EnKF-AUG and EnKF-DUAL for the calibration 760 

and evaluation period using heteroscedastic precipitation data errors equivalent to 10% (default) and 20% of their 

measured hourly rates plotted in Figure 2. We list separate RMSE values for each soil moisture measurement 

depth. In short, the results are equivalent for both EnKF implementations. 

Next, we evaluate the effect of the choice of the scaling factor   in RRPF on VIC-3L output. This scalar plays a 

crucial role in the resampling of the parameters in the PF. If   is taken too large, the resampling step will 765 

introduce parameter drift and corrupt the approximation of  (    | ̃   ) and  (  | ̃   ). On the contrary, if   is 

too small, then the resampled parameters exhibit insufficient dispersion, and underestimate the actual parameter 

uncertainty. In the absence of theoretical convergence proofs and clear guidelines on the selection of  , the RRPF 

cannot estimate exactly the posterior state and parameter PDF (Vrugt et al., 2013; Yan et al., 2015). Previous 

applications of RRPF have suggested a value of        (DeChant and Moradkhani, 2012; Plaza et al., 2012), 770 

but thus far we have used       to avoid sample impoverishment. Table 7 lists RMSE values of VIC-3L for 

the 5, 20, and 50 cm measurement depth for the calibration and evaluation period using RRPF with       , 

     , and      , respectively. These three runs are coined RRPF_0.01, RRPF_0.1 and RRPF_0.5, 

respectively. These results demonstrate that a value of       significantly enhances the performance of RRPF 

during the calibration period. The RMSE values are reduced from 0.025, 0.012, and 0.113 to 0.015, 0.007, and 775 

0.037 for the 5, 20 and 50 cm measurement depths. RRPF_0.5 also shows substantial improvements over 

RRPF_0.01 during the evaluation period. This improvement is most apparent for the 20 and 50 cm soil depths 

with RMSE values that have decreased from 0.025 and 0.119 to 0.020 and 0.071, respectively. These results are 

on par with our default setting of       in RRPF. These findings provide evidence for our claim that the 

scaling factor   plays a crucial role in RRPF. What is more, it provides support for our conclusion in Fig. 5 that 780 

RRPF underestimates the actual uncertainty of log10ks and β. Larger values of   will increase the parameter 

spread, which in turn will enhance the uncertainty among the particles‟ forecasted states. This makes it easier for 

RRPF to track the observed soil moisture data during the calibration period.  

Figure 8 displays traceplots of the sampled       trajectories of the saturated hydraulic conductivity (log10   

in m/s) at 50 cm depth (left column) and parameter   (right column) of VIC-3L during the 5-month assimilation 785 



22 

 

period using (A-B) RRPF_0.01, (C-D) RRPF_0.1, and (E-F) RRPF_0.5. As expected, larger values of   increase 

the spread of the sampled values of the VIC-3L parameters as evidenced by an increasingly larger particle 

coverage of the prior parameter distribution. This larger spread of the particles‟ parameter values also enhances 

the ability of RRPF to track properly the joint parameter and state PDF. Yet, larger values of   have two 

important drawbacks. Not only can it obstruct parameter convergence (as evidenced in Fig. 8e), but also many of 790 

the resampled parameter values might be deemed nonbehavioral, enhancing considerably the chances of particle 

degeneration. To demonstrate this more explicitly, Figure 9 shows traceplots of the VIC-3L predicted soil 

moisture contents of the       particles at 50 cm depth using (A) RRPF_0.01, (B) RRPF_0.1, and (C) 

RRPF_0.5. The RRPF is excessively optimistic for        with a negligible uncertainty in the predicted soil 

moisture values between weeks 2-14. Note that in weeks 2-4 the ensemble has collapsed to a deterministic 795 

simulation (appears as single line). A similar result is observed for RRPF_0.1 but with enhanced uncertainty in 

soil moisture values for the second part of the calibration period. In PF_0.1 particle degeneration from March to 

June explains its bad performance from March to June in Fig. 3. The use of       enhances considerably the 

spread of the VIC-3L soil moisture predictions. Yet, the ensemble spread has become quite large from week 15 

onwards. For these reasons, we are satisfied with our value of       in RRPF, although this decision is 800 

subjective and would require much testing via trial-and-error. This has stimulated Vrugt et al. (2013) to introduce 

a parameter resampling method which is properly rooted in statistical theory and uses laws of probability to 

rejuvenate the ensemble.     

5.2. CLM 

Figure 10 shows the observed (blue dots) and ensemble mean predicted soil moisture values by CLM (solid 805 

lines) at (A) 5, (B) 20, and (C) 50 cm depths during the assimilation period using PMCMC (black), PF (red), 

EnKF-AUG (green), and EnKF-DUAL (cyan). The most important results are as follows. First, the ensemble 

mean soil moisture time series of CLM exhibit a larger spread than VIC-3L depicted previously in Fig. 3. 

Second, the EnKF-AUG and EnKF-DUAL exhibit a superior performance with ensemble mean CLM 

simulations that track closely the observed soil moisture observations at each depth. Third, the moisture time 810 

series (and data) demonstrate most dynamics at the 5 cm depth in response to the variable atmospheric boundary 

conditions. Fourth, the worst performance is observed for RRPF, as evidenced by systematic deviations of this 

filter ś soil moisture predictions with the observed data between weeks 3-6 and 18-21 for the 5 cm depth, weeks 

1-14 and weeks 18-21 for the 20 cm depth, and weeks 1-15 and 19-22 for the 50 cm measurement depth. Fourth, 

the initial soil moisture values of CLM at 50 cm depth appear positively biased with a distance of approximately 815 

0.05 cm
3
/cm

3
 to the areal-mean value of the soil water contents measured by the SPADE sensors on 01-03-2012 

(first day of week 1). A smaller bias of 0.03 cm
3
/cm

3
 is observed at the 20 cm depth. The ENKF-AUG and 

EnKF-DUAL methods need a few days to recover from this erroneous initialization.         

Table 8 lists the NSE and RMSE values of PMCMC, RRPF, EnKF-DUAL and EnKF-AUG for the CLM 

calibration (assimilation) period. We also list the performance of CLM without data assimilation (OpenLoop) 820 

using the mean soil moisture time series of many different realizations of the prior parameter distribution, and 

list in column with header “noParamUpdate” the RMSE and NSE values of the EnKF using state estimation only 

with CLM parameterizations drawn randomly from the prior parameter distribution. These results demonstrate 

that soil moisture assimilation enhances considerably the ability of CLM to predict the observed data. Compared 
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to open loop CLM simulation, the RMSE is reduced from 0.051, 0.031 and 0.069 to values of about 0.020, 825 

0.012, and 0.016 (average) for the different data assimilation methods, respectively. Yet, the RMSE and NSE 

values of a CLM run with state estimation only (noParamUpdate) appear as good as those derived from joint 

parameter and state estimation using PMCMC, RRPF, EnkF-AUG and EnKF-DUAL. Overall, the best 

performance is observed for EnKF-AUG and EnKF-DUAL followed by PMCMC and RRPF.     

We proceed in Figure 11 with traceplots of the       sampled trajectories of the saturated hydraulic 830 

conductivity (log10   in m/s) at 50 cm depth (left column) and soil hydraulic parameter   at 50 cm depth (right 

column) during the 5-month assimilation period using (A-B) PMCMC (C-D) RRPF, (E-F) EnKF-AUG, and (G-

H) EnKF-DUAL. The evolution of the ensemble mean log10   and   values is separately indicated with the solid 

black line. The largest spread of the ensemble members is observed for EnKF-AUG and EnKF-DUAL and 

explained by the inflation method of equation (13) which inherits and sustains the prior parameter uncertainty. 835 

The RRPF sampled trajectories of log10   and   exhibit a rather small uncertainty with PDF ś of these two 

parameters that appear well defined at all measurement times. This might explain the inferior performance of 

RRPF as detailed previously in Table 8. Overall, the two CLM parameters do not exhibit large temporal changes 

and converge to stable values in the last few weeks of the calibration period.  

Figure 12 displays the observed (blue dots) and ensemble mean predicted soil moisture values by CLM (solid 840 

lines) at (A) 5, (B) 20, and (C) 50 cm depths during the evaluation period using PMCMC (black), PF (red), 

EnKF-AUG (green), and EnKF-DUAL (cyan). The soil moisture time series of the different data assimilation 

methods appear rather similar with largest differences observed at the 50 cm depth. In general, the PMCMC, 

RRPF, EnKF-AUG and EnKF-DUAL methods do not do a particularly good job in tracking the soil moisture 

observations of the top soil layer. Indeed, the CLM soil moisture predictions derived from the different data 845 

assimilations are systematically biased, either underestimating (weeks 35-41 and 43-44) or overestimating 

(weeks 24-31 and 42) the observed soil moisture data during large parts of the evaluation data set. CLM much 

better tracks the soil moisture data of the 20 and 50 cm depth.  

Finally, Table 9 presents the NSE and RMSE values of PMCMC, RRPF, EnKF-AUG and EnKF-DUAL during 

the 5-month evaluation period. We also list the performance of VIC-3L without data assimilation (OpenLoop) 850 

using the mean soil moisture time series derived from many different realizations of the prior parameter 

distribution, and display NSE and RMSE values of the EnFK using state estimation only (noParamUpdate) with 

CLM parameterizations drawn randomly from the prior parameter distribution. The results of this Table are in 

agreement with our findings for VIC-3L. Indeed, the RMSE values of the evaluation period are much higher than 

their counterparts of the assimilation period. This is particularly evident for the 5 cm measurement depth where 855 

RMSE values have increased from 0.017-0.027 to 0.054-0.058. The deeper measurement depths do not appear to 

be as much affected, consistent with our findings from Fig. 12. The results also highlight the importance of joint 

CLM parameter and state estimation as state estimation alone (column noParamUpdate) results in significantly 

larger RMSE values during the evaluation period. This is most evident for the 50 cm measurement depth, where 

the RMSE value of 0.050 of noParamUpdate is much larger than its value of 0.016-0.025 derived from PMCMC, 860 

RRPF, EnKF-AUG and EnKF-DUAL. Altogether, RRPF achieves the worst performance of all four parameter-

state estimation methods during the evaluation period. PMCMC, EnKF-AUG and EnKF-DUAL provide rather 

similar RMSE and NSE values.  
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6. Discussion 

In this study, we have evaluated the usefulness and applicability of four different data assimilation methods for 865 

joint parameter and state estimation of the VIC-3L and CLM land surface models using a 5-month calibration 

(assimilation) data set of distributed SPADE soil moisture measurements at 5, 20 and 50 cm depth in the 

Rollesbroich test site in the Eifel mountain range in western Germany. We used the EnKF with state 

augmentation or dual estimation, respectively, and the PF with a simple, statistically deficient, or more 

sophisticated, MCMC-based parameter resampling method. The “calibrated” LSM models were tested using 870 

water content data from a 5-month evaluation period. The uniqueness of the present work resides in the 

application of these four joint or dual parameter and state estimation methods to real-world data.  

Our results demonstrated that joint inference of the VIC-3L and CLM soil parameters improved considerably soil 

moisture characterization during the evaluation period compared to the mean water content predictions of an 

open loop run derived via averaging of simulations of many different realizations drawn randomly from the prior 875 

parameter distribution. This is particularly true for CLM, the two deeper soil layers, and the EnKF-AUG and 

EnKF-DUAL methods (but followed closely by PMCMC). Despite this improvement in model performance over 

an open-loop simulation, VIC-3L and CLM do not adequately characterize soil moisture dynamics of the top 

layer (5 cm measurement depth) during the evaluation period (RMSE values of about 0.05 cm
3
/cm

3
). We posit 

that these two models do not characterize adequately processes such as water infiltration, soil evaporation, and/or 880 

root water uptake (transpiration), which govern rapid variations in soil moisture storage in the top soil. VIC-3L 

also appeared deficient at 50 cm depth during the evaluation period with RMSE values of about 0.07 cm
3
/cm

3
 

which are much larger than their counterparts of approximately 0.02 cm
3
/cm

3 
derived from CLM. These results 

favour the use of CLM which uses a more physics-based description of soil water movement, storage, and 

associated hydrological fluxes at the Rollesbroich site. 885 

The improvement in quality-of-fit of the VIC-3L and CLM models compared to an open-loop run does not 

necessarily imply that the estimated parameter values of VIC-3L and CLM characterize better the hydraulic 

properties and maximum baseflow velocity of the soils of the Rollesbroich experimental test site. Assimilation 

studies with synthetically generated data help to ascertain whether the model parameters converge properly to 

their “true” values, yet this is difficult to confirm with real-world measurements. State estimation will, without 890 

doubt, help reduce the impact of epistemic errors and systematic biases of LSM input and forcing data on 

parameter inference during the assimilation period (e.g. Vrugt et al., 2005). But the calibrated parameter values 

derived with state estimation do not necessarily guarantee a consistent and adequate model performance during 

an independent evaluation period without state estimation. Indeed, without assimilation the simulated states may 

diverge from their “measured” values and deteriorate model performance in an evaluation period. This begs the 895 

question which parameter values we should use to predict future system behaviour outside an assimilation 

period? Should we use parameter estimates derived with state estimation or should we use their values derived 

via batch calibration (optimization) without recursive adjustments to the state variables? This dilemma is 

illustrated further in Vrugt et al. (2006) by modelling of a subsurface tracer test using data from Yucca 

Mountain, Nevada, USA. We conclude that the enhanced performance of VIC-3L and CLM during the 900 

evaluation period compared to our open-loop simulation is due to improved estimates of the initial states and the 

soil parameters. 
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In our implementation of the EnKF and PF, the VIC-3L and CLM parameters were assumed to be time-variant 

and their values updated jointly with the model states at each assimilation time step. The 5-month calibration 

period we used herein involves several large precipitation events, and as a consequence, the soil profile is rather 905 

wet. The resulting parameter estimates might therefore not be representative for dry periods with much lower 

moisture values of the soil profile. What is more, the assumption of spatial homogeneity might not characterize 

adequately the distributed soil properties of the Rollesbroich site and induce temporal variability in the VIC-3L 

and CLM parameters. Bias in model input and measurement errors of the forcing data also contribute to the 

temporal fluctuations of the estimated parameter values. These temporal parameter variations are meaningful in 910 

some cases as they can help diagnose structural model inadequacies and/or biases in model input and forcing 

data. Kurtz et al. (2012) successfully estimated a temporally-variant parameter with the EnKF, but these authors 

concluded that the algorithm needs a considerable spin-up period to “warm-up” to new parameter values. Vrugt 

et al. (2013) found considerable temporal non-stationarity in the parameters estimated by PMCMC as a result of 

the small time period used to calculate the acceptance probability of candidate particles. This finding is in 915 

agreement with the results of PMCMC in our paper. Of course, we could have assumed time-invariant 

parameters via a method such as SODA, yet this would have enhanced significantly computational requirements. 

Fortunately, parameters estimated via our implementation of the EnKF exhibit asymptotic properties during the 

assimilation period (e.g. see Shi et al. (2015)). This is particularly true for highly sensitive parameters. An 

example of this was parameter    of VIC-3L which quickly converged to values of around 1 – 2 mm after 920 

assimilating just a handful of soil moisture observations.  

It is difficult to assess whether the inferred VIC-3L and CLM parameter values will do a good job at predicting 

soil moisture dynamics at the different measurement depths during a much longer evaluation period with wet and 

dry conditions. As the estimated parameters represent apparent properties of the Rollesbroich site, one may 

expect their calibrated values not to change too much over time. We would need additional soil moisture data 925 

and/or other type of measurements to corroborate this. Nevertheless, the apparent parameter values derived 

herein improve characterization of soil moisture dynamics at the Rollesbroich site compared to a separate state 

estimation run with VIC-3L and CLM using parameters drawn randomly from the prior distribution, or open 

loop simulation using the ensemble mean model output of a large cohort of parameter vectors drawn randomly 

from the prior parameter distribution (initial parameter ensemble).  930 

The different data assimilation methods (EnKF-AUG, EnKF-DUAL, RRPF and PMCMC) led to a rather similar 

performance of VIC-3L during the calibration and evaluation period. The only exception to this was the 

anomalous RMSE value of RRPF at the 50 cm measurement depth during the calibration period. This was 

explained by the slow convergence of the maximum baseflow velocity in RRPF. Our results for VIC-3L further 

demonstrated that the results of EnKF-AUG and EnKF-DUAL were equivalent for a 10% and 20% rainfall error. 935 

Moreover, the use of a larger value of the scaling   in RRPF reduced considerably the RMSE values of VIC-3L 

in the calibration data period, particularly at the 50 cm measurement depth, whereas model performance was 

hardly improved during the evaluation period.    

For CLM, larger differences were observed in the performance of the different data assimilation methods. This 

larger disparity among the methods is explained by the considerably larger number of soil layers (ten) used by 940 

CLM. This increased significantly the dimensionality of the parameter estimation problem. The overall best 

results at the 5, 20 and 50 cm measurement depths were observed for EnKF-AUG and EnKF-DUAL with RMSE 
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values that were somewhat smaller than their counterparts derived from PMCMC. This was true for both the 

calibration and evaluation periods. The RRPF exhibited the worst performance, in part determined by the use of 

a relatively small ensemble of         particles. The superiority of the EnKF-AUG and EnKF-DUAL 945 

methods for CLM is consistent with our expectations articulated previously in Section 3.1. The analysis step of 

the EnKF makes it much easier for EnKF-AUG and EnKF-DUAL to track the measured soil moisture dynamics, 

thereby promoting convergence in high-dimensional state-parameter spaces. PF-based methods, on the contrary, 

deteriorate in robustness and efficiency with larger dimensionality of the state-parameter space as they lack a 

state analysis step and approximate the transient state-parameter PDF via the particles‟ likelihoods. This 950 

likelihood is only a low-dimensional summary statistic of the distance between the forecasted and measured 

values of the states. Resampling with MCMC via the likelihood thus becomes increasingly more difficult in 

high-dimensional state-parameter spaces. For CLM, the PMCMC method still achieves comparable results to 

EnKF-AUG and EnKF-DUAL as the dimensionality of the state-parameter PDF of this model is only somewhat 

larger than its counterpart of VIC-3L. Of course, the use of a larger ensemble size makes it easier to characterize 955 

the transient state-parameter PDF, but at the expense of a significantly increased CPU-cost. For PMCMC, 

multiple different MCMC resampling steps can also enhance significantly the particle ensemble by allowing 

each particle trajectory to improve its likelihood. Yet, this deteriorates significantly the efficiency of 

implementation as each candidate particle requires a separate model evaluation of VIC-3L or CLM to determine 

its likelihood. Thus, for LSMs with relatively few state variables and model parameters, we expect the EnKF and 960 

PF methods to achieve a comparable performance. For larger dimensional state-parameter spaces we would 

recommend EnKF-AUG and EnKF-DUAL, unless one can afford a very large number of particles. 

Finally, our results demonstrated that the differences between the soil moisture simulations of VIC-3L and CLM 

are much larger than the discrepancies among the four data assimilation methods. Overall, CLM performed 

better than VIC-3L, especially at 50 cm measurement depth. Of course, we cannot generalize this finding to 965 

other sites, but VIC-3L‟s rather poor characterization of soil moisture dynamics at 50 cm depth (systematic 

underestimation during first 2-3 months) warrants investigation into the use of a variable water table depth in this 

model to account for interactions between the variably-saturated soil domain and the groundwater reservoir of 

the Rollesbroich site. CLM simulates such interactions and the resulting variations in the water table depth affect 

soil water movement in the unsaturated zone.  970 

7. Conclusions 

In this study, we have evaluated the usefulness and applicability of four different data assimilation methods for 

joint parameter and state estimation of the Variable Infiltration Capacity Model (VIC-3L) and the Community 

Land Model (CLM) using a 5-month calibration (assimilation) period (March – July, 2012) of areal-averaged 

SPADE soil moisture measurements at 5, 20 and 50 cm depth in the Rollesbroich experimental test site in the 975 

Eifel mountain range in western Germany. This watershed is part of TERENO observatories and extensively 

monitored since 2011 to catalogue long-term ecological, social and economic impact of global change at regional 

level. We used the EnKF with state augmentation or dual estimation, respectively, and the PF with a simple, 

statistically deficient, or more sophisticated, MCMC-based parameter resampling method. The “calibrated” LSM 

models were tested using SPADE water content measurements from a 5-month evaluation period (August – 980 

December, 2012). The performance of the four different state and parameter estimation methods appeared rather 
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similar during the evaluation period with a slightly better performance of the augmentation and dual estimation 

methods, but followed closely by PMCMC and then RRPF. The differences between the soil moisture 

simulations of VIC-3L and CLM are much larger than the discrepancies among the four data assimilation 

methods. Overall, the best performance was observed for CLM. The large systematic underestimation of water 985 

storage at 50 cm depth by VIC-3L during the first few months of the evaluation period questions, in part, the 

validity of its fixed lower boundary condition at the bottom of the modelled soil domain. This approach ignores 

the movement of water into and out of the groundwater reservoir of the Rollesbroich site. CLM simulates 

interactions of the modelled soil domain with the Rollesbroich aquifer via the use of a variable water depth at the 

lower boundary.  990 

Appendix A: Parametrization of the VIC-3L Model 

The integrated water balance in the VIC-3L can be written as follows: 

    ⁄             ,       (A1) 

where   [L] is storage,   [T] denotes time,     ⁄  [LT
-1

] signifies the change in water storage, and  ,  ,  ,   , 

and   [LT
-1

] represent fluxes of precipitation, canopy transpiration, soil evaporation, direct runoff, and 995 

baseflow, respectively. Bare soil evaporation,  , is calculated using the equation of Francini and Pacciani (1991). 

The canopy transpiration flux,  , is equivalent to the total uptake of water by plant roots in our soil profile and is 

estimated following Blondin (1991) and Ducoudre et al. (1993) using the bulk equation of Monteith (1963). In 

this “single-leaf” approach, the canopy resistance is assumed to be a function of the minimum canopy resistance 

and environmental variables (factors) such as photosynthetically active radiation, ambient temperature, vapour 1000 

pressure deficit, and soil moisture content. We refer to Wigmosta et al. (1994) for a detailed discussion of these 

four limiting variables, including their mathematical description and parameterization used herein. When it rains 

the leaves become covered with a thin film of water and the transpiration flux is suppressed temporarily until the 

intercepted water has evaporated at the potential rate derived from the Penman-Monteith equation (Shuttleworth, 

2007). To calculate foliage storage the maximum canopy water storage is set to a multiple of 0.2 of the leaf area 1005 

index (Dickinson, 1984). Direct runoff,   , reduces the amount of rainfall that can infiltrate in the top soil during 

wet conditions, and is calculated using (Liang et al., 1996): 
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where the triples {        } and {        } signify the volumetric moisture content [L
3
L

-3
], porosity [-], and 

depth [L] of the top layer of the soil and the next or second layer immediately below it, respectively,    [L] and 1010 

     [L] denote the actual and maximum moisture capacity of the soil, respectively,    [L] signifies the 

integration time step that is used to solve numerically Equation (A1), and   [-] is an unknown shape parameter 

that measures the spatial variability of the soil moisture capacity. Note that the integration time step,     is often 

missing from Equation (A2) in VIC-manuals or literature publications. This is consistent if rainfall,  , is 

expressed in units of depth, say mm, but invalid in conjunction with Equation (A1) which requires as input 1015 

precipitation rates. If the integration time step is set equivalent to the time unit of the measured precipitation rates 

then     . This approach, however can introduce large numerical errors, particularly if the soil is close to 
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saturation. The dimensionless parameter   is usually determined via calibration by fitting VIC-3L against a 

historical record of soil moisture observations and/or flux data.  

The direct runoff in Equation (A2) is not only a function of the water saturation of the first layer, but also 1020 

depends on the moisture content of the second underlying soil layer. To be able to track adequately the large 

storage variations of the top soil observed in experimental data, the first layer of VIC-3L must be taken rather 

small. Consequently, this top layer will saturate quickly in response to rainfall as it exhibits a rather negligible 

water holding capacity. Hence, VIC-3L uses the available storage of the first and second layer to determine the 

excess precipitation, which is set equivalent to   . If the rainfall depth exceeds the available moisture capacity of 1025 

the soil,           , then the excess precipitation is removed via surface runoff. Otherwise, if             

    , then a large fraction of the rainfall will infiltrate depending on the soil‟s available storage and the spatial 

variability of the moisture capacity within the grid cell. The values of    and      are estimated from [Zhao, 

1992]: 

       (        
     )                                                                     (A3) 1030 

                      ,       (A4) 

where    [-] is the areal fraction of the grid cell that is saturated (infiltration capacity equal to      :  

      (  
         

     
)
       ⁄  

        (A5) 

The baseflow,   , originates from the bottom (third) soil layer and is calculated using the formulation of the 

Arno model (Franchini and Pacciani, 1991): 1035 
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where    [LT
-1

] is the maximum baseflow velocity, and    and    are dimensionless fractions of    and the 

porosity of the third layer,   , respectively. The baseflow flux is linearly dependent on the water content of the 

third layer if        , and increases nonlinearly with water storage of the third layer if        .  

Now we have discussed the different fluxes from the soil domain simulated by VIC-3L we can now write 1040 

differential equations of the moisture dynamics in the individual soil layers (see also Liang et al., 1996).  
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where        [LT
-1

] is the vertical flux of water between two adjacent soil layers   and    ,    [LT
-1

] signifies 

the root water uptake of the  th layer, and   {     }. Downward fluxes are negative to be consistent with 

convention used in soil hydrology. The canopy transpiration flux is equal to the total water uptake by the plant 1045 

roots, thus           . All three soil layers contain roots and thus contribute to transpiration in our 

application of VIC-3L to the Rollesbroich site. The vertical flux of water between two adjacent soil layers is 
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assumed to be equivalent to the hydraulic conductivity of the upper layer. VIC-3L computes the hydraulic 

conductivity of each soil layer using the formulation of Brooks and Corey (1988): 

            (
          

         
)
  

             ,                                                                               (A8)  1050 

where      [LT
-1

] and      [L
3
L

-3
] signify the saturated hydraulic conductivity and the residual volumetric 

moisture content of the  th soil layer, respectively. The minus sign at the right-hand-side of equation (A8) 

matches the direction of the flux. The dimensionless exponent    should be larger than 3.0.  

The use of three soil layers by VIC-3L makes it difficult to describe accurately the vertical moisture distribution 

in the vadose zone. Indeed, VIC-3L cannot distinguish between saturated and partially-saturated areas in a given 1055 

soil layer. As a consequence, the baseflow flux,   , is made up of water from the unsaturated zone and the 

groundwater (Liang et al., 1996; Liang et al., 2003). Liang et al. (2003) developed a new parameterization, which 

considers explicitly effects of surface and groundwater interactions on soil moisture, transpiration, soil 

evaporation, runoff and recharge. This parameterization, coined VIC-ground, enhanced considerably water 

storage in the lower soil layer compared to VIC-3L.  1060 

Appendix B: Parametrization of the CLM Model 

This Appendix summarizes the main equations of CLM which are used to describe variably-saturated water flow 

in the soil domain of our experimental catchment. The model uses a water balance formulation similar to 

Equation (A1) of Appendix A to simulate moisture storage and movement in the soil of each grid-cell of the 

application domain of interest. Yet, CLM includes a more exhaustive description of all the different processes 1065 

that determine the water storage of the land surface. This includes canopy water, surface water, snow water, soil 

water, soil ice and water stored in the unconfined aquifer. In addition to surface and subsurface runoff, CLM also 

considers runoff from glaciers, wetlands and lakes.  

Fluxes,   [ML
-2

T
-1

], of ground evaporation, interception evaporation, and vegetation transpiration are calculated 

by CLM using the following general expression (Schwinger et al., 2010; Oleson et al., 2013): 1070 

  
  

  
      ,           (B1)  

where    [ML
-3

] is the density of air,    [TL
-1

] signifies the aerodynamic resistance,   [MM
-1

] is the specific 

humidity of the soil pores (for soil evaporation) or canopy (for vegetation transpiration and interception 

evaporation) or the saturated specific humidity of snow or surface water, and    [MM
-1

] denotes the specific 

humidity at atmospheric level if ground evaporation is calculated, or the saturated specific humidity within the 1075 

canopy if canopy evapotranspiration is calculated. The values of   ,   and    are based on Monin-Obukhov 

similarity theory (Schwinger et al., 2010; Oleson et al., 2013). 

We use 10 soil layers (see Table 2) in CLM to solve for the vertical storage and movement of water. Whenever 

the index   is used we mean „for all   {      }„. The saturated hydraulic conductivity,      [LT
-1

], saturated 

volumetric moisture content,      [L
3
L

-3
], thermal conductivity,    [WL

-1
K

-1
], soil matric head at saturation,      1080 

[L], and Clapp-Hornberger exponent,    [-], of each soil layer are derived from built-in pedotransfer functions. 
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These functions use as inputs textural data (Clapp and Hornberger, 1978; Cosby et al., 1984) and/or the organic 

matter fraction (Lawrence and Slater, 2008) of each soil layer as follows:   

                   
                                [mm] (B2) 

                                           [-] (B3) 1085 
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where       and      , and       signify the fractions of sand, clay and organic matter, respectively,      [-], denotes 

the fraction of connected organic matter,       [mm/s], is the saturated hydraulic conductivity of organic soils. If 

the organic matter fraction,      , is smaller than 0.5, then       , otherwise                               .      1090 

Vertical flow in the unsaturated zone is governed by rainfall infiltration, surface and subsurface runoff, root 

water uptake (canopy transpiration), and groundwater interactions. A modified Richards‟ equation is used to 

predict water storage and movement in the variably-saturated soils of the Rollesbroich site: 
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where    [L
3
L

-3
],    [L],    [LT

-1
],    [L], and      [L] denote the volumetric water content, matric head, 1095 

hydraulic conductivity, depth, and equilibrium matric head of the  th
 soil layer,           , and    [T

-1
] is the 

loss of water via root water uptake (canopy transpiration). Note that Equation (B6) omits conveniently the 

evaporation flux from the first (top) layer. The hydraulic conductivity,   , of each layer depends on its moisture 

content, saturated hydraulic conductivity, and exponent  , and these values of the adjacent soil layer 

immediately below, with the exception of the bottom layer (Oleson et al., 2013; Han et al., 2014). The use of the 1100 

constant    in Equation (B6) allows CLM to simulate matric head variations below the water table. This 

modification maintains a hydrostatic equilibrium soil moisture distribution, and fixes a critical deficiency of the 

 -based formulation of Richards‟ equation (Zeng and Decker, 2009; Oleson et al., 2013).  

The matrix head,     and equilibrium matric head,     , of each soil layer are computed as follows: 

       (
  

    
)
   

 and           (
    

    
)
   

,     (B7) 1105 

with 

          (
              

    
)
       

,        (B8) 

where    [L] is the depth of the water table.  

The bottom boundary condition of Equation (B6) depends on the depth of the water table. This depth,   , is 

calculated following Niu et al. (2007) and assumes the presence of an unconfined aquifer below the soil column. 1110 

If the water table is within the modelled soil column (top 10 layers), then a constant water storage is assumed in 

the unconfined aquifer (soil column is saturated with water below water table) and a zero-flux bottom boundary 

condition is used. Recharge,      [LT
-1

], to the unconfined aquifer is calculated as follows: 
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         (
    

         
),          (B9)  

where     [LT
-1

],     [L], and     [L] signify the hydraulic conductivity, matric head, and depth of the layer 1115 

that contains the groundwater table. Drainage,  
drain

 [ML
-2

T
-1

], from the aquifer is calculated via a simple 

TOPMODEL-based (SIMTOP) scheme (Niu et al., 2005) using: 

                           ,         (B10)  

where   [Rad] signifies the mean topographic slope of the respective grid cell. The change in the water table 

depth is then given by: 1120 

     
                 

  
,         (B11) 

where    [-] denotes the specific yield which depends on the properties of the soil. 
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Table 1. Description of the soil parameters of VIC-3L and CLM that are subject to inference with the different 

data assimilation methods using the 5-month soil moisture calibration data period of the Rollesbroich site. We 

list the symbol, unit, feasible range, perturbation, and domain of application of each parameter of VIC-3L and 

CLM. The column with header “perturbation” lists the statistical distributions that are used to create the initial 

parameter ensemble for each data assimilation algorithm. The notation        signifies the univariate normal 

distribution with mean   and standard deviation  , whereas        denotes the univariate uniform distribution 

between   and  . These perturbation distributions are centred on the best-guess parameter values of VIC-3L and 

CLM (see section 4.2) and define together the prior parameter distribution. This prior distribution honours 

textural measurements of each soil layer and its dispersion is in agreement with previously published studies.  

†
Note that the sand, clay, and organic matter fraction of each layer serve as input to pedotransfer functions in 

CLM which compute the hydraulic properties of each layer. See Equations (B2)-(B5) of Appendix B. 


In the figures of this paper we conveniently use labels with units of m/s for log10  . 

  

Model Parameter Description Units Ranges Perturbation Configuration 

VIC-3L 

log10   
Saturated hydrologic 

conductivity 
log10(m/s)


 [-7, -3]        Layer 

  
Exponent of Brooks-

Corey drainage equation 
- [8, 30]         Layer 

  
Infiltration shape 

parameter 
- [10

-3
, 0.8]             Profile 

   
Maximum baseflow 

velocity 
mm/d (0, 30]           Profile 

CLM 

    Clay fraction - [0.01, 1]             Layer 

    Sand fraction - [0.01, 1]             Layer 

    Organic matter fraction - [0, 1]               Layer 
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Table 2. Nodal depth,  , thickness,   , and depth at layer interface,   , of the ten soil layers used by CLM.  

Layer     [m]    [m]    [m] 

         1 (top) 0.0071 0.0175 0.0175 

2 0.0279 0.0276 0.0451 

3 0.0623 0.0455 0.0906 

4 0.1189 0.0750 0.1655 

5 0.2122 0.1236 0.2891 

6 0.3661 0.2038 0.4929 

7 0.6198 0.3360 0.8289 

8 1.0380 0.5539 1.3828 

9 1.7276 0.9133 2.2961 

10 2.8646 1.5058 3.8019 
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Table 3. Summary of the different numerical experiments used in this paper for CLM and VIC-3L and their 

respective abbreviations used in the subsequent tables and figures.  

 scenario description Abbreviation 

 Open loop simulation OpenLoop 

 EnKF with state estimation noParamUpdate 

 EnKF with state augmentation  EnKF-AUG 

 EnKF with dual estimation EnKF-DUAL 

 RRPF with ad-hoc parameter perturbations  RRPF 

 PMCMC    PMCMC 
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Table 4. Calibration period: Values of the NSE and RMSE summary statistics of the quality of fit of VIC-3L for 

the Rollesbroich soil moisture observations at 5, 20, and 50 cm depth using the PMCMC, RRPF, EnKF-AUG 

and EnKF-DUAL data assimilation methods. For completeness, we also list the performance of the EnKF for 

state estimation only (noParamUpdate) using VIC-3L parameter values drawn randomly from the prior 

parameter distribution, and the performance of an open loop run of VIC-3L (OpenLoop) using the mean 

simulation of many different VIC-3L parameterizations drawn randomly from the prior parameter distribution 

(see Table 1 and section 4.2).   

Criteria Soil depth PMCMC RRPF 
EnKF-

AUG 

EnKF-

DUAL 
noParamUpdate OpenLoop 

NSE 

(-) 

5 cm 0.82 0.73 0.80 0.82 0.89 0.33 

20 cm 0.80 0.84 0.92 0.91 0.86 -1.16 

50 cm 0.27 -11.77 0.69 0.58 0.91 -26.65 

RMSE 

(m
3
/m

3
) 

5 cm 0.019 0.023 0.020 0.019 0.015 0.036 

20 cm 0.011 0.010 0.007 0.007 0.009 0.037 

50 cm 0.021 0.088 0.014 0.016 0.008 0.129 
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Table 5. Evaluation period: Values of the NSE and RMSE summary statistics of the quality of fit of VIC-3L for 

the Rollesbroich soil moisture observations at 5, 20, and 50 cm depth using the calibrated parameter values and 

initial states derived from the PMCMC, RRPF, EnKF-AUG and EnKF-DUAL data assimilation methods. For 

completeness, we also list the performance of the EnKF using state estimation only (noParamUpdate) using VIC-

3L parameter values drawn randomly from the prior parameter distribution, and the performance of an open loop 

run of VIC-3L (OpenLoop) using the mean simulation of many different VIC-3L parameterizations drawn 

randomly from the prior parameter distribution.   

Criteria Soil depth PMCMC RRPF 
EnKF-

AUG 

EnKF-

DUAL 
noParamUpdate OpenLoop 

NSE 

(-) 

5 cm 0.39 0.39 0.39 0.39 0.35 0.36 

20 cm 0.38 0.47 0.40 0.39 -1.75 -1.87 

50 cm -10.33 -8.41 -10.54 -11.33 -26.83 -32.96 

RMSE 

(m
3
/m

3
) 

5 cm 0.052 0.052 0.052 0.052 0.054 0.053 

20 cm 0.026 0.024 0.026 0.026 0.055 0.056 

50 cm 0.076 0.069 0.077 0.079 0.119 0.132 
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Table 6. RMSE values of VIC-3L for the Rollesbroich soil moisture measurements at 5, 20, and 50 cm depth 

using the EnKF with state AUGmentation or DUAL estimation during the calibration period. We also summarize 

the subsequent performance of the VIC-3L model using the calibrated parameter values and initial states derived 

from AUG and DUAL. The subscripts 10% and 20% signify the standard deviations of the measurements errors 

that are used to corrupt the hourly precipitation data.  

Period Soil depth 
EnKF-

AUG_10% 

EnKF-

AUG_20% 

EnKF-

DUAL_10% 

EnKF-

DUAL_20% 

Calibration 

( Assimilation ) 

5 cm 0.020 0.019 0.019 0.019 

20 cm 0.007 0.007 0.007 0.007 

50 cm 0.014 0.014 0.016 0.014 

Evaluation 

5 cm 0.052 0.052 0.052 0.052 

20 cm 0.026 0.025 0.026 0.025 

50 cm 0.077 0.077 0.079 0.079 
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Table 7. RMSE values of VIC-3L for the Rollesbroich soil moisture observations at 5, 20, and 50 cm depth using 

data assimilation with RRPF during the calibration period. We also summarize the subsequent performance of 

the VIC-3L model using the calibrated parameter values and initial states derived from RRPF. The subscripts 

0.01, 0.1, and 0.5 signify the value of the scaling factor   of the multivariate normal distribution that is used to 

perturb the parameter values (importance density).  

Period Soil depth RRPF-0.01 RRPF-0.1 RRPF-0.5 

Calibration 

( Assimilation ) 

5 cm 0.025 0.023 0.015 

20 cm 0.012 0.010 0.007 

50 cm 0.113 0.088 0.037 

Evaluation 

5 cm 0.053 0.052 0.056 

20 cm 0.025 0.024 0.020 

50 cm 0.119 0.069 0.071 
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Table 8. Calibration period: Values of the NSE and RMSE summary statistics of the quality of fit of CLM for the 

Rollesbroich soil moisture measurements at 5, 20, and 50 cm depth with the PMCMC, RRPF, EnKF-AUG and 

EnKF-DUAL data assimilation methods. For completeness, we also list the performance of the EnKF for state 

estimation only (noParamUpdate) using CLM parameter values drawn randomly from the prior parameter 

distribution, and the performance of an open loop run of CLM (OpenLoop) using the mean simulation of many 

different CLM parameterizations drawn randomly from the prior parameter distribution.   

Statistic 
Soil depth PMCMC RRPF 

EnKF-

AUG 

EnKF-

DUAL 
noParamUpdate OpenLoop 

NSE 

(-) 

5 cm 0.63 0.63 0.82 0.85 0.72 -0.31 

20 cm 0.73 0.23 0.94 0.95 0.98 -0.57 

50 cm 0.50 -0.26 0.85 0.86 0.47 -6.90 

RMSE 

(m
3
/m

3
) 

5 cm 0.027 0.027 0.019 0.017 0.024 0.051 

20 cm 0.013 0.022 0.006 0.006 0.004 0.031 

50 cm 0.017 0.028 0.009 0.009 0.018 0.069 
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Table 9. Evaluation period: NSE and RMSE values for the Rollesbroich soil moisture measurements at 5, 20, and 

50 cm depth using CLM. The initial states and parameter values used by the PMCMC, RRPF, EnKF-AUG and 

EnKF-DUAL data assimilation methods originate from the 5-month calibration data period. For completeness, 

we also list the performance of the EnKF using state estimation (noParamUpdate) using CLM parameter values 

drawn randomly from the prior parameter distribution, and the performance of an open loop run of CLM 

(OpenLoop) using the mean simulation of many different CLM parameterizations drawn randomly from the 

prior parameter distribution.  

Criteria 
Soil depth PMCMC RRPF 

EnKF-

AUG 

EnKF-

DUAL 
noParamUpdate OpenLoop 

NSE 

(-) 

5cm 0.26 0.23 0.32 0.33 -0.19 -0.14 

20cm 0.39 0.21 0.44 0.46 0.24 -0.11 

50cm 0.35 -0.23 0.51 0.42 -3.87 -4.58 

RMSE 

(m
3
/m

3
) 

5cm 0.057 0.058 0.055 0.054 0.072 0.071 

20cm 0.026 0.029 0.025 0.024 0.031 0.035 

50cm 0.018 0.025 0.016 0.017 0.050 0.053 
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Figure 1. Aerial photograph of the 270,000 m
2
 Rollesbroich experimental test site near the city of Rollesbroich in 

the Eifel mountain range, western Germany (photo is taken from Qu et al., (2014)). The solid black line signifies 

the outer perimeter of our site and is determined in part by topographic gradients except for the Rollesbroich 

Straße which acts as border in the East-Southeast part of our domain. The small blue dots characterize locations 

within the watershed where soil samples were taken. The larger red dots are locations of the sensor network 

where soil moisture and temperature were recorded at depths of 5, 20, and 50 cm. The blue triangle symbolizes 

the eddy covariance tower. 
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Figure 2. Historical records of daily mean air temperature (solid black line; left y-axis) and precipitation (blue 

bars; right y-axis) in the period from March 1, 2012 to December 31, 2012 for the Rollesbroich experimental test 

site in the Eifel mountain range in western Germany. The grey region demarcates the 5-month assimilation 

period (March 1, 2012 to July 31, 2012) which is used for VIC-3L and CLM calibration using joint parameter 

and state estimation. The subsequent 5-month period between August 1, 2012 and December 31, 2012 serves as 

our evaluation period to verify the performance of the calibrated VIC-3L and CLM models without state 

estimation.  
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Figure 3. Assimilation period: Observed (blue dots) and VIC-3L predicted time series (solid lines) of soil 

moisture content at depths of (A) 5, (B) 20, and (C) 50 cm in the Rollesbroich site. Colour coding is used to 

differentiate between the results of PMCMC [black], RRPF [red], EnKF-AUG [green], and EnKF-DUAL [cyan]. 

The first days of week 1 and 22 are 01-03-2012 and 26-07-2012, respectively. 
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Figure 4. Traceplots (solid lines) of the VIC-3L parameters, Saturated hydraulic conductivity (log10   in m/s) at 

(A) 5 cm, (B) 20 cm, and (C) 50 cm depth, (D)  ,   at (E) 5 cm, (F) 20 cm, and (G) 50 cm depth, and (H) the 

maximum baseflow velocity,   , in mm/day during the 5-month assimilation period. Colour coding is used to 

differentiate between the results of PMCMC [black], RRPF [red], EnKF-AUG [green], and EnKF-DUAL [cyan]. 

The first days of week 1 and 22 are 01-03-2012 and 26-07-2012, respectively.  
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Figure 5. Sampled trajectories of the       ensemble members of the saturated hydraulic conductivity 

(log10   in m/s) at 20 cm depth (left column) and parameter   (right column) of VIC-3L during the 5-month 

assimilation period of week 1 to 22 using (A-B) PMCMC [grey] (C-D) RRPF [red], (E-F) EnKF-AUG [green], 

and (G-H) EnKF-DUAL [cyan]. The trajectory of the ensemble mean is separately indicated in each panel using 

the solid black line.   
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Figure 6. Evaluation period: Observed (blue dots) and VIC-3L simulated time series (solid lines) of soil moisture 

content at depths of (A) 5 cm, (B) 20 cm, and (C) 50 cm in the Rollesbroich site. Colour coding is used to 

differentiate between the results of PMCMC [black], RRPF [red], EnKF-AUG [green], and EnKF-DUAL [cyan]. 

The first days of week 23 and 44 are 01-08-2012 and 26-12-2012, respectively.  
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Figure 7. Evaluation period: VIC-3L simulated volumetric moisture contents at (A) 5 cm, (B) 20 cm, and (C) 50 

cm depth in the soil of the Rollesbroich experimental test site using parameter values derived from PMCMC via 

assimilation periods ending on 06-11 [platinum], 06-30 [silver], 07-20 [grey] and 07-31 [black], respectively. For 

PMCMC_0611, PMCMC_0630 and PMCMC_0720, the soil moisture state on 01-08-12, the first day of the 5-

month evaluation period, was derived from VIC-3L simulation using the analysis state and parameter values of 

the last day of the assimilation period.  
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Figure 8. Sampled trajectories of the       ensemble members (solid red lines) of the saturated hydraulic 

conductivity (log10   in m/s) at 50 cm depth (left column) and parameter   (right column) of VIC-3L during the 

5-month assimilation period of week 1 to 22 using (A-B) RRPF-0.01, (C-D) RRPF-0.1, and (E-F) RRPF-0.5. 

The ensemble mean is separately indicated in each panel with the solid grey line.  
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Figure 9. Soil moisture trajectories of the       ensemble members at 50 cm depth for the 5-month 

assimilation period (week 1 to 22) of the Rollesbroich site using VIC-3L and (A) RRPF-0.01, (B) RRPF-0.1, and 

(C) RRPF-0.5. The solid black line signifies the ensemble mean soil moisture prediction. 
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Figure 10. CLM predicted time series of soil moisture content at (A) 5 cm, (B) 20 cm, and (C) 50 cm depth 

during the 5-month calibration period using PMCMC [black], RRPF [red], EnKF-AUG [green], and EnKF-

DUAL [cyan]. The first day of week 1 is 01-03-2012 and week 22 starts with 26-07-2012. 
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Figure 11. Sampled trajectories of the       ensemble members of the saturated hydraulic conductivity 

(log10   in m/s) at 50 cm depth (left column) and soil hydraulic parameter   at 50 cm depth (right column) of 

CLM during the 5-month assimilation period of week 1 to 22 using (A-B) PMCMC [grey] (C-D) RRPF [red], 

(E-F) EnKF-AUG [green], and (G-H) EnKF-DUAL [cyan]. The solid black line signifies the evolution of the 

ensemble mean values of log10   and B. Please note that log10ks (in log10(m/s)) and parameter   are derived from 

the sand, clay, and organic matter fractions of each soil layer, which are estimated during the assimilation period. 
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Figure 12. Traceplots of soil moisture contents simulated by CLM during the evaluation period at (A) 5 cm, (B) 

20 cm, and (C) 50 cm depth in the Rollesbroich site using the calibrated parameter values derived from PMCMC 

[black], RRPF [red], EnKF-AUG [green], and EnKF-DUAL [cyan]. The measured moisture data are separately 

indicated in each panel with the solid blue dots. The first day of week 23 is 01-08-2012 and the last day of week 

44 is 02-01-2013.  

  

      


