
The  manuscript  addresses  an  important  issue  in  soil  hydrology:  The  application  of data  

assimilation  methods  to  real  world  data,  especially  when  estimating  not  only states,  but  also 

parameters.   The authors state  to  address  three  main  questions: (1) the performance of the data 

assimilation methods on Land Surface Models with real  world  data  in  general,  (2)  the  differences  

in  performance  due  to  different  data assimilation methods and (3) difference in performance due to 

different Land Surface Models. The study finds small differences due to data assimilation methods and 

large differences based on different Land Surface Models. These  findings  can  give  valuable  insight  

for  the  applicability  of  data  assimilation methods on Land Surface Models.  But, this requires an 

adequate discussion of the used measurements, data assimilation methods and finally the results. 

I  have  3  major  comments  regarding  each  of  these  discussions,  which  fall  short  off answering 

the stated main questions enough. Additionally I have one major comment on the quality of the 

explanations for employed methods and models. 

Reply: We thank the reviewer for pointing out the contribution of our work. We will revise the 

manuscript taking into account the comments.  

Page 10, Lines 20-23: “… and a soil moisture and soil temperature sensor network (with  

measurements  at  5,  20  and  50cm  depth)  are  installed,  amongst  others.   Soil moisture time 

series at 41 locations are being recorded.” What kind of soil moisture sensors are installed? Please 

discuss possible uncertainties in the data. 

Reply: The SPADE soil water content probes (sceme.de GmbH i.G., Horn-Bad Meinberg, 

Germany; (Hübner et al., 2009)) were installed at 5 cm, 20 cm and 50 cm depth along a vertical 

profile. The SPADE probe is a ring oscillator and the frequency of the oscillator is a function of 

the dielectric permittivity of the surrounding medium, which is strongly dependent on the soil 

water content because of the high permittivity of water (≈80F/m) as compared to mineral soil 

solids (≈2-9F/m), and air (≈1F/m). The SPADE probe was calibrated according to the 

procedure outlined in [Qu et al., 2014]. The possible uncertainties in the soil moisture data are 

related to imperfect contact of the sensors with the soil, imperfection of the model which relates 

the sensor response and dielectric permittivity and imperfection of the model which relates 

dielectric permittivity and soil moisture. The measurement error is assumed to be 0.02cm
3
/cm

3
. 

We will modify the text in the revised version of the manuscript to clarify this. 

Page 10, Lines 24-35: “In this work, the Rollesbroich site is modeled as a single point and the data of 

the soil sensor network are averaged to calculate areal averages of soil moisture content at 5cm, 

20cm and 50cm depth.” Please discuss the importance and implications of this assumption. What are 

the expected impacts of heterogeneity? 

Reply: Data assimilation experiments with land surface models are generally conducted for 

large scales, especially when remote sensing data are assimilated. Therefore it is important to 

evaluate the model performance at a larger scale. The Rollesbroich site has an area of 0.27km
2
, 

which is a very small catchment. Qu et al. (2014) described the statistics of soil properties for soil 

samples taken in the Rollesbroich catchment (see Table 1). We can see that soil texture shows a 

relatively limited variation. In our work only vertical heterogeneity is considered. In this case, 

heterogeneity does not seem to be very strong and we do not face a special challenging upscaling 

case for the land surface model. This will be clarified in the revised version of the manuscript. 

Table 1. Descriptive statistics of soil properties on the basis of 273 soil samples in the 

Rollesbroich catchment. Table is from Qu et al., (2014). 

 
Clay 

% 

Sand 

% 

Silt 

% 

Bulk 

Density 

(g/cm
3
) 

Carbon 

Content 

(g/kg) 

Porosity 

(cm
3
/cm

3
) 

5cm 
mean 

std 

18.99 

2.00 

19.90 

3.82 

61.10 

3.79 

0.94 

0.12 

54.47 

15.82 

0.65 

0.05 

20cm mean 18.03 20.76 61.20 1.28 34.08 0.52 



std 1.99 4.03 3.46 0.15 16.84 0.05 

50cm 
mean 

std 

16.50 

2.40 

22.00 

5.68 

61.50 

4.53 

1.52 

0.16 

11.22 

6.01 

0.43 

0.06 

 

Page  29,  Figure  3:  The  figure  shows  higher  water  contents  closer  to  the  surface. Please 

mention this and discuss reasons and implications. 

Reply: The Rollesbroich catchment is a wet site with a yearly average precipitation around 

1200mm. Regular precipitation events cause a wet surface layer. In addition, porosity of the 

upper soil layer is higher than for the deeper soil layers. This causes that during wet conditions 

soil moisture content is higher for the upper soil layer than for the deeper layer. It implies that 

at this site often we have a drainage flux from the top soil towards the aquifer (and drainage 

channels). This will be clarified in the revised version of the manuscript.  

Page 11 Lines 34-36: "The soil moisture observation error is assumed to be normally distributed with 

mean equal to 0 and standard deviation equal to 0.02m
3
/m

3
, for both VIC-3L and CLM.“ Please 

discuss why you assume this uncertainty, especially since it is a mean of 41 values. 

Reply: We admit that 0.02m
3
/m

3
 is a little larger than the uncertainty of the mean soil moisture 

content averaged over the 41 values. A larger observation error elevates potential problems with 

filter inbreeding. In addition, it adds flexibility in case of the presence of an observation bias or 

model structural error. We will add an explanation in the paper. 

Page 11 Lines 33-34:  “Precipitation was perturbed were perturbed by multiplicative error N(1,0.1) 

to represent the uncertainty of measured precipitation at the site.” Please give a reason for this error. 

What is the assumed error for evaporation? 

Reply: In the Rollesbroich catchment, precipitation was measured by a tipping bucket. 

Therefore only a measurement error was assumed, which is typically around 10% of the 

measured value [Hodgkinson et al., 2004]. In this work the variables which govern 

evapotranspiration (incoming shortwave and longwave radiation, air temperature, relative 

humidity, wind speed), were not perturbed. An explanation will be added in this paper. 

Page  2,  Lines  13-15:   “This  approach  allows  for  joint  estimation  of  the  states  and parameters 

while taking into explicit consideration model structural error and forcing data errors (Liu and Gupta, 

2007).” This is correct, but it is not to the point, since the authors later set the model error to zero (see 

Page 11, Lines 36-37) and hence do not consider model structural errors. Please discuss this. 

Reply: Yes, model structural error is not considered in our work, but parameter uncertainties 

and forcing uncertainties are considered and we assume that these capture in this case the model 

uncertainty. However, we agree that it can be expected that we have other model structural 

errors, for example in relation to the representation of photosynthesis. We will revise this part in 

our manuscript. 

Page 6, Line 25 (Eq. 25): Please mention that the way R (and 𝑦𝑡
𝑖 ) is described, you assume 

uncorrelated measurement errors. 

Reply: We will add this information as suggested by the reviewer. 

Page 7, Line 25 (Eq. 33): Please describe the implications of employing this method. How does the 

performance of the filter depend on the choice of initial uncertainty? 

Reply: Filter inbreeding is a problem associated with EnKF. The ensemble spread may narrow 

down in the course of parameter estimation so that most of the ensemble members would 

become very close to the ensemble mean value, which is called filter inbreeding and which might 

cause filter divergence [Franssen and Kinzelbach, 2008; Han et al., 2014; Whitaker and Hamill, 

2012]. The approach according Eq. 33 has been proven to be an efficient method to avoid filter 



inbreeding [Han et al., 2014; Whitaker and Hamill, 2012]. We will test the effect of initial 

uncertainties on the performance of EnKF, e.g. increasing the forcing error from 10% to 20%. 

The additional simulation results will be explained in the manuscript. If larger changes would be 

observed, a more detailed discussion will be included. 

Page 9, Line 13. How did you choose the tuning parameter s?  How does it influence the performance? 

Please include the choice of s for the PF and initial uncertainties of the EnKF when comparing 

different methods. 

Reply: The optimal tuning parameter s is hardly known in applications [Yan et al., 2015]. It was 

set to 0.01 in some applications [DeChant and Moradkhani, 2012; Plaza et al., 2012]. In our work, 

to keep particle spread, s was set to 0.1. We will test other values for parameter s, like 0.01, to 

see how it influences the performance. The additional simulation results will be explained in the 

manuscript. If larger changes would be observed, a more detailed discussion will be included. 

Page  15  Line  32:   You  state:   "It  is  not  surprising  that  the  EnKF  is  more  efficient and 

effective than the PF.“ I would follow this statement in case of strictly Gaussian distributions and 

linear measurement operators. In those cases the EnKF is expected to outperform the PF.  

Nevertheless, when dealing with non-linear processes that challenge the Gaussian assumption, the 

better performance is not clear at all. 

Reply: We added an explanation already in the manuscript why we think EnKF outperforms PF, 

even although the PF is in theory more suited for non-linear processes and non-Gaussian 

statistics. We will re-evaluate this part and try to formulate more precisely. 

Page 16 Line 33:  You state that EnKF and PF “differ fundamentally in their analysis step”. I would 

disagree and argue that the analysis step is similar. The only difference is  that  the  EnKF  updates  

it’s  posterior  based  on  the  Gaussian  assumption  of  the distributions, while the PF drops this 

assumption. 

Reply: We still think that EnKF and PF differ fundamentally in their analysis step. In EnKF, 

the difference of the forecasted output variable(s) and corresponding observed value(s) (the part 

(y-Hx)) is used directly to update states and parameters. However, in PF, not the difference but 

the likelihood is calculated and the individual particles are not corrected towards the states, but 

only weighted differently in correspondence with the likelihood.  

Page 25, Table 1: The EnKF assumes Gaussian distributions. What is the reason that you sample for 

all but one parameter from an initial uniform distribution? What are the implications for the chosen 

inflation method? 

Reply: We want to compare EnKF and PF starting from the same prior distribution in order to 

make a more meaningful comparison. It is right that EnKF assumes a Gaussian distribution, but 

the PF not. We believe that assuming an initial uniform distribution is a neutral assumption 

good for comparing EnKF and PF. We will add an explanation in the paper.  

Page 16, Lines 1-2:  You state:  “The value of the likelihood does generally not say anything about 

how close the forecasted variables are to their measured counterparts.” I disagree, the likelihood 

yields information about the distance. 

Reply: The likelihood yields information about the relative, but not the absolute distance 

between forecasted variables and measurements. We can say that particles with higher weights 

are closer to the measurements but we cannot tell how close they are to the measurements. 

Discussion of results: Since the results show a wealth of information.  I would appreciate a detailed 

discussion. Especially consider the following points in detail and incorporate them into your 

conclusion: 



Page 29, Figure 3: The large deviations in the Particle Filter might hint at filter inbreeding in the 

states.  You observe the deviation but do not discuss it and actually exclude the  possibility  of  

inbreeding  by  investigating  the  parameters:  “A  too  narrow  spread of  ensemble  members  would  

lead  to  filter  divergence.   For  the  state  augmentation (AUG) and dual estimation (DUAL), the 

spread of the ensemble members is kept large enough during the whole assimilation period as the 

ensemble inflation method helped to keep adequate ensemble spread. RRPF and MCMCPF also have 

enough ensemble spread because of parameter perturbation and MCMCPF resampling.” (Page 13 

Lines 15-19).  Please address the question of adequate ensemble spread in the states by actually 

showing the ensemble of states there.  

Reply: We will show the evolution of the state ensemble in our manuscript and address this 

question. 

Page 30 Figure 4: During the calibration period the filter without parameter estimation performs 

better. Please discuss possible reasons. 

Reply: When only states (soil moisture content) are assimilated, states are updated directly by 

observations. However, when states and parameters are updated jointly, the nonlinear relation 

between states and parameters is considered which may introduce inconsistency. We will further 

discuss these results in the paper. 

Page 31 Figure 5: Parameter b estimated by MCMC shows a large difference to the other methods.   

But MCMC does perform approximately as well as the other filters (Figure 7, Page 33). Why is there 

no difference? Please discuss. 

Reply: Demaria et al. (2007) evaluated the sensitivity and identifiability of ten parameters which 

control surface and subsurface runoff in the VIC model for four U.S. watersheds along a 

hydroclimatic gradient. They found that parameter b is crucial in a dry environment, while its 

impact on model performance is not significant in wet sites. They concluded that parameter b 

plays a key role in partitioning rainfall into soil moisture and surface runoff in dry 

environments. [Liang and Guo, 2003] and [Atkinson et al., 2002] have a similar conclusion. In our 

work, the Rollesbroich catchment is very wet, even though parameter b estimated by MCMC 

shows a large difference with other methods, it shows small impact on the soil moisture content 

for layer 1 and layer 2. An explanation will be added in the paper. 

Page 32 Figure 6: Initial parameter uncertainties are the same for PF and EnKF but at time 0 the 

ensemble spreads are different. Please explain. You only show the two parameters with the least 

change over time.  Give a reason or show the one with the smallest and the one with the largest 

changes. 

Reply: Figure 6 shows the evolution of the parameter ensemble from time step 1 but not time 

step 0. At time step 0, the ensemble spreads are the same, but at time step 1, the parameter 

ensemble is updated by PF or EnKF, and the ensemble spreads between EnKF and PF differ.  

We will show the evolution of the parameter ensemble from time step 0 onwards in the revised 

version of the manuscript. We think that the saturated hydraulic conductivity log10ks and the 

model parameter β are the two most important parameters for the VIC Model for the 

Rollesbroich catchment, so they are shown in the figure. 

Page  34,  Figure  8:  There  is  basically  no  difference  for  the  prediction  of  the  water content 

whether there are parameters estimated or not. Please discuss why this is the case. 

Reply: Predictions of soil moisture content for layer 2 and layer 3 (in the verification period) 

improved significantly for the case of parameter estimation. Concerning the soil moisture 



content of layer 1, the RMSE value of the open loop run is 0.053m
3
/m

3
, which is already quite 

close to the observed values. In addition, the soil moisture content for the upper layer is strongly 

driven by single precipitation events. We will extend the discussion of these results.     

Page 37 Figure 11: You do not show the parameters from the augmented state. Instead you show 

parameters derived from those in a non-linear way.  Please discuss this. 

Reply: We showed on purpose the soil hydraulic parameters ks and B, which are in CLM 

calculated from soil texture. We believe that displaying these parameters is more meaningful 

than soil texture. 

Figures  7,  8,  12,  13:  Especially  water  content  of  the  top  layer  can  almost  not  be represented 

by either model, although improved with state of the art data assimilation methods. Please  discuss  

this  including  the  representation  of  the  physics  in  the  models  and implications of the perfect 

model assumption. 

Reply: We will provide additional discussion of the results and discuss reasons for the larger 

deviations in the fit.  

The difference in the assimilation methods is small.  Please discuss if this difference is significant. Do 

you expect the same results for other applications? What is the influence of specific filter settings on 

the performance? 

Reply: The performance of the four data assimilation algorithms in which states and parameters 

are jointly estimated does not differ very much in our study. Nevertheless, the small difference 

in performance between EnKF and PF based algorithms indicates that PF is also an efficient 

data assimilation algorithm for problems of this size. It can be expected that larger ensemble 

numbers can improve the performance of EnKF and PF based algorithms. For MCMCPF, 

multiple MCMC resampling steps can also help improve performance. Given the CPU-intensity 

of the calculations a larger comparison is beyond the scope of this work. In our work, all 

algorithms are evaluated with real-world data, so we think our results are meaningful for other 

applications. We expect that for example with more unknowns (i.e., 2D and 3D-applications) 

EnKF-based algorithms will perform better than PF, as PF will become extremely CPU-

intensive and needs many more particles. We will evaluate the impact of filter settings on the 

results of this paper. However, it will be difficult to evaluate the significance of the difference 

between the DA-algorithms on the basis of this single study.  

Please improve the explanations on the Particle Filter and the two LSMs. Page  7  Line  32  -  Page  8  

Line  11:   I  do  understand  Particle  Filters,  but  the  given explanation is not clear.  Especially 

clarify your description of transition and proposal densities. 

Reply: We will revise this part in our manuscript. 

Page 8 Lines 21-30: You describe SIR and RR. What is the reason to choose RR? 

Reply: RR is developed from SIR by [Liu and Chen, 1998]. RR is one of the most popular 

methods for PF to reduce particle degeneration. For RR, the variance of particles is smaller than 

the one given by the SIR scheme. Moreover, RR is computationally cheaper than SIR. This 

explanation will be added in the revised version of the manuscript.  



Page 7 Lines 31-32:  “The particle filter was first suggested in the research area of object recognition, 

robotics and target tracking (Arulampalam et al., 2002).” The PF was actually mentioned earlier 

(Gordon et al., 1993). 

Reply: This will be corrected in the revised version. 

For this study the understanding of the different LSM models is important, since the main difference in 

performance is attributed to different models. Because of that a good description is necessary.  

Although I am not an expert on LSMs, I noticed the following: Page 17, Line 15 (Eq. A2): The 

equation describes the soil water movement in the top two layers. To me it was not clear if this 

description is valid for both layers individually. If so, why is the precipitation P and evaporation E the 

same? 

Reply: This will be corrected in the revised version. 

Page 18, Line 1 (Eq. A7): The dimensions are inconsistent: You add [LT-1], [] and [L]. im should be 

Im (or is not introduced). Please also explain the distinction of the cases P+I < Im and P+I > Im. 

Reply: im is Im. We will revise this part in our manuscript. When P+I > Im, the upper soil layers 

(layer 1 and layer 2) will be saturated.  When P+I < Im, the upper soil layers are assumed 

unsaturated, and infiltration capacity is variable, as clarified in Eq. A9.   

Page 19, Lines 18-22:  the Richards equation is formulated for a continuum.  Please explain the 

modifications and the implications of applying it to layers.  Please give the extent of these layers. 

Reply: The unmodified Richards equation is: 

The soil water flux q can be described by Darcy’s law: 

 q = -k (
∂(ψ+z)

∂z
)                                                                                            (1) 

For one-dimensional vertical water flow in soils, the conservation of mass is stated as: 

∂θ

∂t
 = -

∂q

∂z
- E = 

∂

∂z
[k(

∂(ψ+ z)

∂z
)]  – E                                                                       (2) 

E is the ET loss. Zeng and Decker (2009) note that this equation cannot maintain the hydrostatic 

equilibrium soil moisture distribution because of the truncation errors of the finite-difference 

numerical scheme. They show that this deficiency can be overcome by subtracting the 

equilibrium state as: 

∂θ

∂t
 = 

∂

∂z
[k(

∂(ψ+ z-C)

∂z
)]  – E                                                                                    (3) 

Where C is a constant hydraulic potential above the water table z∇: 

C=ψ
𝐸

 + z                                                                                                        (4)                                        

Substitution of equation (4) into equation (3) yields the modified Richards equation (B7): 

 q=-k (
∂(ψ-ψE)

∂z
)      and       

∂θ

∂t
 = -

∂q

∂z
 - E= 

∂

∂z
[k(

∂(ψ -ψE )

∂z
)]  – E                        (5) 

Implication of this modified method: Richards equation (2) used a θ-based solution which 

cannot account for the variation of ψ below water table because θ is constant (at saturated value) 



while ψ varies temporally and spatially, which leads to the failure to maintain the hydrostatic 

equilibrium soil moisture distribution. However, the modified Richards equation in which 

constant hydraulic potential C is explicitly subtracted at each time step can fix this deficiency. 

Details about the implementation of the modified method can be seen in [Zeng and Decker, 2009]. 

Below we explain the application of the modifications to layers. These details would not be 

presented in the revised manuscript and would be referred to the CLM-manual (Oleson et al., 

2013) where more details can be found. Table 2 shows the soil layer definition in CLM for Nlevsoi 

=10 layers.  

Table 2. Soil layer definition where soil moisture is calculated in CLM. Layer node depth(z), 

thickness(∆z), and depth at layer interface(zh) for 10 soil layers. Unit is meter. 

Layer i z ∆z zh 

         1 (top) 0.0071 0.0175 0.0175 

2 0.0279 0.0276 0.0451 

3 0.0623 0.0455 0.0906 

4 0.1189 0.0750 0.1655 

5 0.2122 0.1236 0.2891 

6 0.3661 0.2038 0.4929 

7 0.6198 0.3360 0.8289 

8 1.0380 0.5539 1.3828 

9 1.7276 0.9133 2.2961 

10 2.8646 1.5058 3.8019 

Numerical solution of equation (5) to soil layer i: 

∆zi
∆θi

∆t
=-q

i-1
t+1+q

i
t+1-ei                                                                                   (6) 

where t is the time step, ∆𝒛𝒊 is soil layer thickness,  ∆θi=θi
t+1-θi

t, q
i
 is the outgoing flux of water 

from layer i to layer i+1, q
i-1

 is the incoming flux of water from layer i-1 to layer i and 𝒆𝒊 is layer-

averaged ET loss. The water fluxes (q
i-1
t+1 and q

i
t+1) in equation (6) are linearized about 𝛉 using 

Taylor series expansion which results in a general tridiagonal equation set of the form [Oleson et 

al., 2013]: 

ri= ai∆θi-1+ bi∆θi+ci∆θi+1                                                                           (7) 

ai, bi, ci and ri will be discussed under different conditions below. This tridiagonal equation set is 

solved over i=1,…, Nlevsoi+1 where i= Nlevsoi+1 is a virtual layer representing the aquifer. 

When i=1, the boundary condition is the infiltration rate, and 

ai = 0                                                                                                           

bi=
∂qi

∂θi
-

∆zi

∆t
                                                                                                

ci=
∂qi

∂θi+1
                                                                                                      

ri=q
infl
t+1 - q

i
t + ei                                                                                      



q
infl
t+1  is the infiltration into the soil which is partitioned between water input flux (sum of 

precipitation reaching the ground and melt water from snow), surface runoff, and surface water 

storage.  

When i=2, …, Nlevsoi - 1, 

ai= -
∂q

i-1

∂θ
i-1

                                                                                                    

bi=
∂qi

∂θi
-

∂q
i-1

∂θi
-

∆zi

∆t
                                                                                         

ci=
∂qi

∂θi+1
                                                                                                       

ri=q
i-1
t  - q

i
t + ei                                                                                        

For the lowest soil layer (i = Nlevsoi), the bottom boundary condition depends on the depth of the 

water table. If the water table is within the soil column, a zero flux boundary condition is 

applied (q
i
t = 𝟎) and 

ai = -
∂q

i-1

∂θ
i-1

                                                                                                    

bi=-
∂q

i-1

∂θi
-

∆zi

∆t
                                                                                          

ci = 0                                                                                                             

ri=q
i-1
t +ei                                                                                                 

And for the aquifer layer i= Nlevsoi +1: 

ai=0     bi=-
∆zi

∆t
    ci=0      ri=0                                                          

If water table is below the soil column, for i= Nlevsoi: 

ai = -
∂q

i-1

∂θ
i-1

                                                                                                    

bi=
∂qi

∂θi
-

∂q
i-1

∂θi
-

∆zi

∆t
                                                                                  

ci=
∂qi

∂θi+1
  

ri=q
i-1
t -q

i
t+ei  

And for the aquifer layer i = Nlevsoi+1: 

ai = -
∂q

i-1

∂θ
i-1

  

bi=-
∂q

i-1

∂θi
-

∆zi

∆t
  



ci = 0  

ri=q
i-1
t   

Upon solution of the tridiagonal equation set, soil water content is updated as: 

θi
t+1 = θi

t + ∆θi∆zi                                                                                     (8)       

             

Specific comments: Page  5,  Line  36:  "Commonly  used  data  assimilation  algorithms  are  EnKF,  

PF  and variants of them.“ 4D-Var is also commonly used. 

Reply: We admit that 4D-Var is also commonly used. The sentence will be adapted to account 

for this, and we will specify shortly in which contexts the different methods are normally used.  

Page 6, Line 19: “H […] is the identity matrix if y refers to in-situ ground measurements available at 

all grid cells.” This is only the case if the same quantity as the state is observed.  Otherwise the 

quantity has to be transferred.  Additionally mention that H has to be linear for the EnKF. 

Reply: We will revise and extend this part in our manuscript. 

Page 6-7:  You do not mention the use of a damping factor (Hendricks Franssen and Kinzelbach, 2008) 

for the parameters. Is there a specific reason you do not employ it? 

Reply: The filter inbreeding problem could be reduced with help of a damping factor, which 

limits the intensity of the perturbation of the parameters [Franssen and Kinzelbach, 2008]. In 

our work, the inflation algorithm proposed by Whitaker and Hamill (2012) was applied to the 

ensemble of parameters to reduce filter inbreeding. 

Page  25,  Table  1:   It  is  not  clear  which  parameters  are  estimated  for  each  layer individually 

and which are estimated for the entire profile.  

Reply: We will clarify this in table 1. 

Page 11 Lines 11-12:  “The parameters of the other layers were updated with help of the calculated 

spatial covariance in case of EnKF.” This statement implies that the parameters were not estimated 

with the PF? Please clarify.  

Reply: Parameters are also estimated in PF. In PF, each particle includes a state vector and a 

parameter vector. But the weight vector is calculated only by the state vector. Both the state 

vector and parameter vector are resampled with help of the weight vector. We will reformulate 

the text to make this clearer. 

Page 11 Line 30: “EnKF with state updating only was tested for (2).” Why did you not test state 

updating with the PF?  

Reply: In our work, parameters are perturbed to generate particles for PF, which means each 

particle includes a state vector and a parameter vector. After calculating the weight vector for 

the state vector, the resampling is (automatically) applied for both state vector and parameter 

vector. In this context, it is not possible to only update states. If we would have deterministic 

parameters, it would be possible to only update states with PF, but then not a comparison with 

EnKF could be made. 



Page 12 Lines 2-10: Why do you need 2 different characterizations of the uncertainty. What is the 

additional gain by showing NSE?  

Reply: Because RMSE values are usually affected by both a mean bias and random variations, 

NSE is added as another measure [Han et al., 2012]. NSE values represent the correlation 

between the estimation and the observation.  

Page 12 Line 9-10:  “A NSE value equal to 1 and RMSE equal to 0 imply a perfect prediction.” This is 

wrong. A RMSE equal to the measurement uncertainty is perfect.  

Reply: Thanks, we admit that for a prediction in the verification phase we cannot expect a better 

result than a RMSE equal to the measurement uncertainty but still an RMSE equal to 0 would 

be the best result. We will modify the sentence to accommodate this result.  

All Technical corrections are applied in our revised manuscript.  
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