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Abstract.

Three different data products from the Soil Moisture Ocealin8y (SMOS) mission are assimilated separately into the
Goddard Earth Observing System Model, version 5 (GEOS4B)poove estimates of surface and root-zone soil moisture. T
first product consists of multi-angle, dual-polarizatioightness temperature (Th) observations at the bottorreddtimosphere
extracted from Level 1 data. The second product is a deri@®S Tb product that mimics the data at°4i@cidence angle
from the Soil Moisture Active Passive mission. The third quot is the operational SMOS Level 2 surface soil moisture
(SM) retrieval product. The assimilation system uses aiapatistributed ensemble Kalman filter (EnKF) with seaalbyn
varying climatological bias mitigation for Th assimilatiowhereas a time-invariant cumulative density functioriahiag is
used for SM retrieval assimilation. All assimilation exipeents improve the soil moisture estimates compared to fraug
simulations during the period 1 July 2010 to 1 May 2015 andL&¥ sites across the United States. Especially in areasewher
the satellite data are most sensitive to surface soil mmistarge skill improvements (e.g. increase in anomalyetation
by 0.1) are found in the surface soil moisture. The domagraye surface and root-zone skill metrics are similar among
the various assimilation experiments, but large diffeesria skill are found locally. The observation-minus-fastoresiduals
and analysis increments reveal large differences in howobservations add value in the Tbh and SM retrieval assiritati
systems. The distinct patterns of these diagnostics intbeystems reflect observation and model errors patterhatéaot
well captured in the assigned EnKF error parameters. Comsely, a localized optimization of the EnKF error paramets
needed to further improve Tb or SM retrieval assimilation.

1 Introduction

Microwave satellite missions are collecting large amouwrftdata for soil moisture monitoring. It is not yet clear, rexer,
how this wealth of data can be used in the most efficient waybtaio global estimates of soil moisture that can improve,
e.g., weather prediction, flood and drought modeling, adjtical yield monitoring, or landslide predictions. Manych ap-
plications require knowledge of soil moisture in a deepgetawhere water is extracted by plant roots or stored toebuff
drainage and runoff, not the approximately 5 cm surfacerlaygvhich the current L-band<(1.4 GHz) microwave missions
are sensitive. Moreover, L-band satellite observationg tzafairly coarse spatial resolution (about 40 km) and asdlatvle
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only at particular overpass times, typically once everyda@s for a given location. The challenge is thus to deriviesofile
moisture information at all times and locations throughadagsimilation, that is, through the merger of satelliteeobetions
with information from a dynamical land surface model.

The Soil Moisture Ocean Salinity (SMOS; Kerr et al., 20103sion and the Soil Moisture Active Passive (SMAP; Entekleahli.,
2014) mission are the two L-band observatories currentijtiog in space with the specific aim to measure global soilsmo
ture. These missions supply Level 1 (L1) brightness tenpezdTb) data, Level 2 (L2) surface soil moisture (SM) et&ls
and derived Level 3 (L3) products. The SMAP mission also jgles an operational Level 4 Surface and Root-Zone Soil
Moisture product (L4_SM; Entekhabi et al., 2014; Reichlalet2016) that is based on the assimilation of L1 SMAP Thb data
into Goddard Earth Observing System Model, version 5 (GBP&nd surface simulations. Alternatively, a soil moistur
assimilation system could ingest L2 SM retrievals instefddlolTb observations.

In this paper, we compare Tb and SM retrieval assimilatidngia historical (5-year) record of SMOS observations over
North Americain an assimilation system similar to that & 8MAP L4_SM system. The main differences between the SMAP
L4 _SM system and the experiments in this paper pertain taifferences in assimilated data, to the difference in gpati
resolution of the resulting soil moisture products (36 knthia current paper, see below; 9 km for the L4 _SM product), and
to differences in meteorological forcing input (re-an@yseteorology in the current paper; operational forecatenrology
corrected with gage-based precipitation in the L4_SM peodu

A key disadvantage of a system that assimilates SM retgésdhat potentially inconsistent ancillary data (suchalsgem-
perature) are used in the assimilation system and in thievatralgorithm that generates the SM observations. Howés
more difficult to assimilate Tb observations than SM retils\because brightness temperatures are only indireatlyezed
with the land surface variables of interest and the Th dataecim multiple polarizations. SMOS Tb observations are even
more complex because of their multi-angular nature. SontleeoSMOS L1 Tb data complexity is reduced in the L3 SMOS Th
product and further addressed in Munoz-Sabater et al. j201diDe Lannoy et al. (2015), who prepared the L1 SMOS Thb data
for assimilation into (quasi-)operational systems. Sasfid examples of SMOS Tb assimilation using a variety ofudifying
assumptions are illustrated in Lievens et al. (2015); Denlogrand Reichle (2016); Kornelsen et al. (2016). These studse
a radiative transfer model (RTM) to dynamically invert Tlharmation into corrections to modeled soil moisture estasaln
this paper, we advance the spatially distributed multitamgd dual-polarization Tb assimilation of De Lannoy anitRle
(2016) in the GEOS-5 land surface model with a new versionkobliservations and an improved treatment of the observa-
tion predictions. Moreover, to mimic SMAP Tb assimilatioe &lso assimilate dual-polarization single-anglé 8MOS Th
observations after fitting the multi-angle Tb data (De Lanebal., 2015).

The current SMOS SM retrievals have been found to be sKi(lAltYaari et al., 2014; Fascetti et al., 2016), and reshasc
ongoing to further improve them (Rodriguez-Fernandez.eR8ll5; Ye et al., 2015; Zhao et al., 2015; van der Schalié et a
2016; Wigneron et al., 2016). The use of these SMOS SM retlgevas been manifold, e.g. to derive enhanced estimates of
precipitation (Wanders et al., 2015; Koster et al., 201®§idrive off-line root-zone soil moisture estimates (Fdrdle 2014),
or to off-line downscale the data to higher-resolution sodisture estimates (Piles et al., 2014). Other studies has@ni-
lated SMOS SM retrievals on-line into land surface modelsassibly downscale the retrievals and consistently imgsmil
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moisture and other land surface variables (Ridler et all42@hao et al., 2014; Lievens et al., 2015), leading to engroved
estimates of floods (Alvarez-Garreton et al., 2015) and gropvth (Chakrabart et al., 2014). In this paper, we use aa|yat
distributed assimilation system to integrate SMOS SM eeg#is into the GEOS-5 land surface model with the aim to infer
improved surface and root-zone soil moisture estimates.stiigdy mainly differs from the above SMOS SM retrieval stud-
ies in the continental and multi-year scale of the experisien the treatment of the SM retrieval observations, anthé
comparison between Th and SM retrieval assimilation

To assess the potential of Tb and SM retrieval assimilafiea years of SMOS Tb data or SM data are assimilated into the
GEOS-5 land surface model, using a careful data qualityrobahd data preprocessing. The observations are assbuidte
a realistic antenna pattern, containing 50% of the signalgoan a circular area with 20 km radius. Special attentiopasl
to large-scale patterns of random and persistent forendstlaservation errors in the different assimilation systemnd to the
impact of the different assimilation schemes on the skiBwfface and root-zone soil moisture estimates. Sectiors&ites
the SMOS observations, the various modeling componendistrenin situ validation data. Section 3 highlights the tecain
differences between the various assimilation schemesseatin 4 presents the results.

2 Dataand Model
2.1 SMOSTb Observations

The Microwave Imaging Radiometer with Aperture SyntheBIERAS) onboard SMOS provides multi-angle Tb data, with a
nominal (3 dB) spatial resolution of 43 km and a global cogerapproximately every 3 days (at either 0600 or 1800 local
time, i.e., ascending or descending half-orbits, seplgafEhe most recent version (v620) of the SCLF1C Tb data edus
Observations are retained for further processing onlyr(ahé alias-free zone, (b) when the data are not contamirted
point source radio frequency interference (RFI) or taierdof, (c) when the values fall within the range 100-320 KJ &)
when valid data are available for both horizontal (H) andigal (V) polarization. The flag for snapshot RFI is not aated,
because it is currently too sensitive (pers. comm. R. OWvdgerr). After the initial screening, we correct the L1 Thivas
for geometric and Faraday rotation and for atmospheric afidated extraterrestrial radiation (De Lannoy et al., 2Qing
Modern-Era Retrospective Analysis for Research and Appiios (MERRA) version 2 (MERRAZ2; Bosilovich et al., 2015)
background fields. The resulting Th values at the bottom@atimosphere are then binned into 41 evenly spaced angafar bi
with the center angle ranging from 2€hrough 60. Next, the data are regridded from the 15 km Discrete Globa ®GG)
on which they are posted to the 36-km cylindrical Equal-Agealable Earth (EASEV?2) grid (Brodzik et al., 2014), and the
data are screened for excessive sub-36-km heterogengitya(sstandard deviation 7 K), which is indicative of open water
bodies or RFI. Tb values for a given 36-km EASEV2 grid cell ewenputed only if at least two valid DGG observations are
available.

From these preprocessed Tb data, two datasets are derivassimilation: (i) a 7-angle Tb dataset, with incidencelesg
0=[30°, 35, 4@, 45°, 5@, 55°, 60°] (De Lannoy et al., 2013), and (ii) a fitted Th dataset (De L@anet al., 2015) from which
only the Tb at 40 incidence angle is used to mimic the single-angle naturd/AB Tb observations. We refer to these datasets
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as Th_7ang and Tb_fit, respectively. Th_fit data are onlyrrethwhen the fitting error is less than 5 K and a minimum of 15
data points contributes to the entire fitted angular sigeatuith at least 5 data points above and below theid€idence angle
and at least 10 data points in the incidence angle inter@a+$8°|.

2.2 SMOSSM Retrieval Observations

The SMOS SM retrievals are extracted from the SMUDP2 prodbs®. Because this product version ends in early May 2015,
we limit our study periodto 1 July 2010 - 1 May 2015. (The rey@ssed v620 version of the SM retrievals was not yet availabl
at the time we conducted the experiments.) The SMOS retrédgarithm simultaneously retrieves soil moisture andeteg
tion opacity, by fitting multi-angle Tb observations at béthand V-polarization with simulations of the L-band Micrave
Emission of the Biosphere Model (L-MEB, Wigneron et al., 2ZD0'he SM data are retained only if: (a) all retrieved vaeab
fall within a realistic range (0-0.6 fam—3 for soil moisture), (b) the SM uncertainty estimated by tMCES retrieval algorithm

is less than 0.1 fim~3, (c) the RFI probability for both H- and V-polarization isskethan 0.3, and (d) SM retrieval flags are
not raised for high topographic complexity, high urban fiat, high open water fraction, sea ice, coastal areas, mydtbtal
electron content. Further screening for frozen tempeeand snow is based on GEOS-5 model output (section 2.3Y. thte
regridding from the 15-km DGG grid to the 36-km cylindricaAEEV2 grid, the data are screened for excessive sub-36-km
heterogeneity (spatial standard deviatiod.2 m®.m=3). SM values for a given 36-km EASEV2 grid cell are computely on

if at least two valid DGG observations are available.

2.3 Soil Moisture and Brightness Temperature Modeling

The land data assimilation system used here employs the &ECefFchment land surface model (CLSM; Koster et al., 2000),
along with an L-band tau-omega radiative transfer modeMRDe Lannoy et al., 2013, 2014b). The CLSM simulations use
GEQOS-5 parameters (Mahanama et al., 2015; De Lannoy eDaka2 similar to those used in the SMAP L4_SM product, and
are forced with 1/2x2/3° GEOS-5 forcing data from MERRA (Rienecker et al., 2011)naiirly interpolated to the model
grid. The study domain covers most of North America, with tloethwestern corner at (128/, 55°N) and the southeastern
corner at (60W, 24°N).

The computational elements are the 36-km EASEV2 grid cEhe.land model computation time step is 7.5 minutes, and
output is saved at 3-hourly intervals. At each grid cell, sheface soil moisture content (sfmc, 0-5 cm) and root-zaile s
moisture content (rzmc, 0-100 cm) are diagnosed based er fitognostic variables: catchment deficit (catdef), moote
excess (rzexc), and surface excess (srfexc). Similaysthface (skin) temperature is diagnosed from the progniestd
surface temperatures across the saturated (tcl), unat(teR), and wilting (tc4) sub-grid areas. Finally, thé samperature
(tpl for the topmost layer) is diagnosed from the prognagtizind heat content (ghtl for the top layer). An overviewhaf t
model variables is given in Reichle et al. (2015).

The L-band tau-omega RTM converts the 36-km CLSM soil moésand temperature simulations into 36-km L-band Tb
estimates when the soil is not frozen or covered with snovenbrecipitation is less than 10 mm/day, and where the open
water fraction is less than 5% percent. For each 36-km gildkay parameters of the RTM are estimated by minimizing Eq
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B.1 in De Lannoy et al. (2014b), using a 5-year history of SM@®30 Tb data, and computing observation predictions (see
below) at the footprint scale. Specifically, all 36-km griells within one footprint area are assigned the same set M RT
parameters, while the dynamic background informationddiajy variable. The calibration estimates the RTM partersfor

the entire footprint area and the resulting values are asditp the central 36-km grid cell only. The RTM is calibratesihg

all 5 years of available Th data and aims at minimizing clolagical biases. The data assimilation is performed ovesttme

5 years and aims at addressing random (or short term) errors.

For the computation of differences between SMOS obsemstind footprint-scale model simulations in the RTM calibra
tion and for the computation of the “observation-minusefmst” (O-F) residuals in the assimilation system (se@idj, the
modeled 36-km soil moisture or Th simulations are aggreb@t¢éhe footprint scale by spatial convolution with weiggigen
by an approximation of the SMOS antenna pattern. We also tefidnese spatially aggregated model estimates as ‘observa
tion predictions’. The SMOS antenna pattern is approxichbiea two-dimensional Gaussian function containing 50%nef t
signal within a circle with a radius of 20 km. The simulatiangside a radius of 40 km are discarded in the computation of
the footprint-scale estimates. The number of 36-km EASEI®@ceglls included in one footprint area varies with latiéud he
circular footprint shape is preserved everywhere on theelin contrast, the shape of the EASEvV2 grid cells projeoted
the globe varies with the latitude, with an aspect ratio of 3@ (north/south) latitude, larger than 1 towards the poles and
less than 1 towards the equator. Therefore, at higher dastunultiple EASEV2 grid cells with the same latitude andotes
longitudes belong to one circular footprint, whereas talsahe equator, several EASEV2 grid cells with the same todgi
and various latitudes contribute to the footprint. Overhk difference between single 36-km simulations and faotiscale
values is small, but the number of valid Th observation mtsthis at the footprint scale is reduced, because of theéased
likelihood of finding a 36-km grid cell with a non-negligibleater fraction, snow amount, or precipitation, within tieetprint

area.
2.4 In Situ Soil Moisture Data

The assimilation results are evaluated using independesiti measurements of surface and root-zone soil moistana f
two sparse networks across the US: the US Natural Resounese@vation Service Soil Climate Analysis Network (SCAN;
Schaefer et al., 2007) and the US Climate Reference NetvidBICRN; Diamond et al., 2013; Bell et al., 2013). Surface soil
moisture measurements are taken at approximately 5 cm.deptit-zone soil moisture measurements are a weightedge/era
of measurements at 5, 10, 20, and 50 cm depth. Given theetifferin spatial support between these point measuremehts an
the 36-km gridded model and assimilation results, the gkdjuantified in terms of anomaly time series correlatioro(aRr),

and unbiased root-mean-square difference (RMSEntekhabi et al., 2010), using all 3-hourly forecast andlysis time
steps in the period 1 July 2010-1 May 2015, excluding timesmithe soil is frozen or snow covered. Metrics at a single site
are only calculated if at least 200 data points are avail&iél metrics across an entire network are calculated bgteking

the sites within SCAN and USCRN to avoid that densely samateds dominate the validation metrics and to ensure riealist
confidence intervals (De Lannoy and Reichle, 2016). The raurabclusters is estimated a priori after prescribing anaye
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cluster radius of 3 which approximately reflects the autocorrelation lengthaogye-scale topographic and meteorological
phenomena. The actual size of the clusters that resultstfrertlustering algorithm varies strongly in space.

3 DataAssimilation
3.1 Distributed Ensemble Kalman Filter

For both Th and SM retrieval assimilation, a spatially distred (or three-dimensional, 3D) ensemble Kalman filtetKE;
Reichle and Koster, 2003; De Lannoy and Reichle, 2016) id.uBkis system simultaneously assimilates multiple spwatia
distributed observation sets to update the simulationaett 86-km model grid cell. The details of the Tb assimilasgatem
are explained in De Lannoy and Reichle (2016) and differ amlthat the observations are here associated with a syatiall
variable antenna pattern reaching out to a radius of 40 km.

During the model integration, a data assimilation step fvated every 3 hours. All the SMOS observatignscollected
within 1.5 hours of the analysis timiere assimilated simultaneously to update the forecaamféét}‘i at locationk as follows:

3 =307+ Kpaly! — 977, (1)

with j denoting the ensemble membk;, ; the Kalman gainy{ the perturbed observatiorﬁsjf =h; (fc{’) the observation
predictions, andh;(.) the observation operator mapping the simulated land seiffagables to observed quantities. Bias in the
observation-minus-forecast residuals is addressedtoribe analysis (section 3.2). The ensemble is created lyrperg the
model forcing, the model forecasts and the observatiors$i¢se3.3). The Kalman gain is calculated as:

K = Cov(%;,,,97) [Cov(i,97) +Ri] 2)

whereCov(x, ;,¥; ) is the (sample) error covariance (across the ensemblepbetthe forecasted land surface state and the
forecasted Tb or SM. Similarl¥yov(y,; ,y; ) is the (sample) error covariance of the Th or SM forecast Ranis the Tb or
SM observation error covariance. The Kalman gain is idahtar all ensemble members.

In the case of SM retrieval assimilation, the observatiogratrh; (.) performs the spatial aggregation of soil moisture sim-
ulations from the 36-km grid cells to the satellite footpyin the case of Th data assimilation, the observation dpeiscludes
both the RTM and the spatial aggregation of gridded Thb sitiaria to the footprint (section 2.3). For the Th_7ang adsitioin,
one observation set at locatiancontains Tb observations at a maximum of 7 angles and botméiVgpolarization, i.e., up
to 14 individual observationg, .. ; € y.,;. The subscripi refers to the polarization and incidence angle of the imfliai Th
observations. In the middle part of the swath, all 14 obdemwa are typically available, whereas slightly fewer alvagons
are available in the outer portions of the swath, where tlseations with lower incidence angles are missing.

For the Tb_fit assimilation, one observation set usuallytaios 2 observations, i.e. both H- and V-polarization TbhGt 4
incidence angle. For the SM retrieval assimilation, eacseokation set contains only one observation. In all cabesplbser-
vation vectory{ collects multiple perturbed observation sets that araapatlistributed within an influence radius of 1.25

around the model grid cell, and each observation vecly)j has a forecasted counterpﬁff. After removal of the persistent
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errors (section 3.2) from the O-F residuals (or innovafjptie incrementh,i[y{ — 5/{’] are calculated and applied to the
state variables.

The subset of prognostic variables updated in Eq. 1 diffepedding on the assimilation experiment. The state veotor f
Tb assimilation ¢ = [catdef, srfexc, rzexc, tcl, tc2, tc4, ght}jincludes prognostic variables related to soil moistur swil
temperature (section 2.3). In contrast, the state vect@NKbretrieval assimilation = [catdef, srfexc, rzexé]) contains only
model prognostic variables related to soil moisture.

Figure 1 and Figure 2 illustrate the concept for Th assimitaind SM retrieval assimilation, respectively. Figures 1
b show swaths of footprint-scale bias-corrected Th_fit irations (mapped onto the 36-km EASEv2 grid), for H- and V-
polarization at 40 incidence angle from the single-angle Tb assimilationesystThe Tb innovations are then transformed
into soil moisture and temperature increments using Eq.HeM/Tb innovations are warm, the soil water is reduced aad th
temperature is increased. For simplicity, Figure 1c shtwedatal profile water incrementavtot=Asrfexc+Arzexc-Acatdef)
and Figure 1d shows increments to the first soil layer tentpergAtpl). Increments to the surface temperature prognostic
variables (section 2.3\tcl, Atc2, Atcd) are similar (not shown). Finally, the increments ardeatito the forecasted fields
to create spatially complete analysis maps of surface aotdzane soil moisture, as well as surface and soil tempegatu
(Figures le-g).

Similarly, Figure 2a shows the SM innovations from the SMiegtl assimilation at the same time as in Figure 1. Areas
with positive (wet) SM innovations in the SM retrieval askition roughly correspond with negative (cold) Th innovas
in the Tb assimilation system (Figures 1a-b ). Note that tlerbars for Tb and SM throughout the manuscript are chosen
according to the rule of thumb that a 2-3 K change in Th cowadp to a 0.01 tfhm—3 change in soil moisture, but keep
in mind that the relationship between Th and SM is non-lireeat varies with time, location and incidence angle. Next, th
SM innovations are converted to soil moisture incremeiwtot; Figure 2b); no increment to surface or soil tempematar
calculated. Figureslc and 2b show that the Th and SM ret@egimilation systems produce wtot increments with sonagwh
different large-scale patterns, which is further discdssesection 4.2. Finally, Figures 2c-d show the resultindazie and
root zone soil moisture analysis fields obtained by addiegribrements to the model forecast fields. For both the Th &hd S
retrieval assimilation systems, the analysis incremeletsdosmoothly into the forecast fields, that is, the analysps do not
reveal sharp spatial edges that would reveal the geometheaissimilated satellite swaths. Further details abasiffitjure
are discussed in section 4.1.

3.2 Tband SM Innovation Bias

To limit the long-term biases between Tb observations amdilsitions, the RTM was calibrated (section 2.3). The 5-year
average absolute bias between SMOS Tb and forecasted Tbus 2K across the domain. In general, slightly warm model
biases are found in the boreal zones and cold model biasetheveentral part of the US (not shown). But larger seasohal T
biases remain, primarily due to systematic errors in theetemtitemperature and vegetation. The seasonally varyimg<€l
tological Tb bias is removed prior to data assimilation facle angle, polarization and overpass time separately,sasided
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in De Lannoy and Reichle (2016). The Tb innovation biasesal@ilated over the period 1 July 2010 - 1 May 2015 for each
individual 36-km grid cell without spatial sampling.

The CLSM soil moisture was not calibrated for lack of globbservations that would support such an effort and because
modeled soil moisture does not necessarily represent sistuare as observed in the field anyway (Koster et al., 2008ljke
biases in Tb innovations, the biases in the SM innovatioasasre stationary and do not depend on seasonal temperature
variations. Therefore, the SM innovation biases are notcted seasonally, but instead cumulative distributiocfion (CDF)
matching between the observations and simulations is pee (Reichle et al., 2004) to reconcile the differencesmgtterm
mean, variance and higher moments, as in earlier retriegiindlation studies (Liu et al., 2011; Draper et al., 2018)line
with the Tb innovation biases, the SM innovation biases areputed for 1 July 2010 - 1 May 2015 at each 36-km grid cell
individually.

3.3 Random Forecast and Observation Error

The imposed ensemble forecast perturbations for Th and 8Mval assimilation are identical to those of De Lannoy Reichle
(2016) and not repeated here. The total observation erodatd deviation for SMOS Th_7ang is set to 6 K, which yields
near-optimal assimilation diagnostics on average actesglbbe. However, the diagnostics are not necessarilyopganal

in individual regions (De Lannoy and Reichle, 2016). Theuinpbservation error standard deviation for SM retrievals i
0.04 m¥.m~3, in line with the soil moisture accuracy requirement for teeent SMOS and SMAP missions. The SM re-
trieval error standard deviation is rescaled following @BF-matching of the SM observations and results in an efect
mean error standard deviation of 0.02.m=3, with larger values in the wetter eastern part, which exgiaihigher temporal
variability in soil moisture simulations, and lower valuesthe drier, western part of the study domain (not shownjlln
cases, the spatial observation error correlation lengi2®’. In case of multi-angle Th_7ang assimilation, interangetaor
correlations are imposed as in De Lannoy and Reichle (2016).

Observation errors in Th data or SM retrievals are a comisinaif instrument error and representation error (Cohn;7199
van Leeuwen, 2015). The 6 K Tb error consists of radiometrioreof about 4 K for individual incidence angles (instrurhen
error), plus 4.5 K representation inaccuracies (in ouresysti.e. based on the near-optimal 6 K observation error)tdue
errors in the RTM, or other discrepancies between Th obiensand forecasts (6442 + 4.52). For Tb_fit observations, the
instrument error may be slightly reduced compared to thaklio 7ang after the angular smoothing, but the representatior
remains similar. SM observations contain retrieval erdars to errors in the RTM and in the input L1 Tb observationsyels
as representation error due to, e.g., the inherently @iffiemature of simulated and observed soil moisture (Kostair,e2009).

In either case, the representation error depends on thme@iture and temperature dynamics and should ideally beeladd
as function of time and location, but we chose a constantiopservation error standard deviation in this paper fopéiity.
For SM retrieval assimilation, some spatial error varifbis introduced after rescaling in line with the CDF-mataih
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3.4 Tbor SM Retrieval Assimilation

In our experiments, we do not expect the SMOS Th and SM retressimilation systems to yield the same results. During
the SMOS L2 SM retrieval optimization, the Th data are useelstonate surface soil moisture anaetation opacity, given

soil temperature background fields provided by the Europzarter for Medium-Range Weather Forecasts (ECMWF), and
look-up parameter information that differs significantigrh the NASA GEOS-5 land data assimilation system. In cahtoar
SMOS Tb assimilation scheme estimates soil moisturetemperature, given vegetation information. Furthermore, the data
screening is necessarily different for Th data and SM nedtse and the approach for bias correction is intentiondiffierent.

The soil moisture information extracted during the L2 mtal process or Tb assimilation is thus by design expectdxto
different. Finally, differences in the Th and SM retrievasanilation results could also be due to differences in hioseeach

of the systems is to an optimal calibration of its model anskeotation error parameters.

4 Results
4.1 Observation and Forecast Diagnostics
4.1.1 Number of Assimilated Observations

Let us revisit Figures la-b and 2a to further highlight sorffeidtnces between the various assimilated SMOS obsensti
First, the swath width for Tb innovations is much narrowerthhat of the SM innovations because the assimilated Th ob-
servations are strictly limited to the alias-free zone Wwittine full swath while the assimilated SM retrievals araietd in

the extended alias-free zone. Furthermore, the swath widtie Th_fit innovations is narrower than that of the mukgke
assimilation (not shown) because the fitting requires sefftalata at a range of incidence angles and lower angle datsoa
available at the outer edges of the swaths. Note that SMA¥¢es useable Th measurements over a much wider swath (not
shown).

The different swath widths result in different numbers obelvation sets assimilated in each of the three experiments
Figures 3a-c show the average number of assimilated oligemsets (defined in section 3.1) over the study period 1 July
2010 - 1 May 2015. The number of observation sets is smathest ¢very 4 days) for Th_fit and largest for SM retrievals (one
every 2 days), because the swath width is narrowest for Tanditvidest for SM retrievals. The northern areas and theanest
mountain ranges have fewest observations, because datatarsed when the soil is frozen or snow covered. Th obsemnsti
are not assimilated in many small areas scattered aroursdittig domain where more than 5% of open water is found in the
footprint, based on the underlying GEOS-5 land mask. FoBtfieetrievals, the screening for excessive5%) water fraction
is only based on the product science flags, not on GEOS-5ation. Data gaps in the SM retrievals are found in the waster
mountain ranges and in the vegetated southeastern pag &f3hThe data coverage is also different for Tb and SM retfiev
assimilation because the availability of the climatol@dioformation needed for the innovation bias correcti@c{®ns 3.2)
is different for the Th and SM retrieval observations.
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4.1.2 Actual Observation and Forecast Errors

The long-term mean observation-minus-forecast diffege{©-F, or innovations) are unbiased by design (section Btz
Hovmoiller plots for two data assimilation cases in Figureveal that the temporal pattern in area-averaged biasaslis f
random for the Tb_7ang assimilation case (very similar forfit assimilation, not shown), whereas it shows a slighsseal
pattern in the SM retrieval assimilation case. This smdfedénce is not surprising, given that the Tb innovationshig
seasonally corrected, whereas the SM innovation bias is not

The time series standard deviation of the innovations, if)ahe root-mean-square-difference (RMSD) between SMOS
observations and simulations, represents the total oéisenvand forecast error that is present in the assimilagisiem
(Desroziers et al., 2005). The spatial patterns of thisrhatic are very different for Tb and SM retrieval assimdati Fig-
ures 3d-e show values of about 7.4 K for Th_7ang and Thb_fih laitger values (exceeding 10 K) in the central plains and
along the Mississippi, where agricultural practices, sashltering crop rotation and irrigation, are observed byO&vbut not
simulated in the model. Along the East coast and in the Sasththe temporal standard deviation in the innovationsuis |
(2-3 K): forests show a limited interannual variabilitydamnder dense vegetation Th is only marginally sensitiviensoisture
and depends primarily on vegetation characteristics angsfpal) temperature.

The standard deviation in the SM innovations in the SM readi@ssimilation (Figure 3f) is 0.03 frm~—3, showing larger
values in the wetter vegetated East and smaller values oiriieWest, with the exception of the West coast. Surprigireyen
though altering crop rotation and irrigation are not sintedk the values over the central agricultural area are mbtdnithan
elsewhere in the domain. This good agreement between SMOtsiklals and our simulations is partly due to the bounded
nature of SM (unlike Tb) and the CDF-matching between both.

Our current system has a Tb sensitivity to soil moisture afuali.3 K/0.01 m.m~3 across the domain, averaged over all
incidence angles and polarizations. A standard deviati&@M innovations of 0.03 fim~2 would thus roughly correspond to
a standard deviation in Tb innovations of about 4 K, but iadtee find 7.4 K across the study domain in the Th assimilation
systems. The Tb observations thus either have a comparighblgrtobservation (incl. representation) error or theytaommore
information than the SM retrievals. At this point, we antiie that the higher Tb innovations in the central plains mdigate
that the Tb observations contain more unfiltered infornmatibout soil moisture (e.qg. irrigation) and that the Th obaton
error is higher due to shortcomings e.g. in the vegetatiodeting (representation error).

4.1.3 Actual versus Simulated Observation and Forecast Errors

In a near-optimal filtering system, that is, a system thatamily simulates the actual model and observation erroesstandard

deviation of thenormalized innovations[y . ; — y;,;]A/\/[R,m + Cov(¥,..i»¥.:)ax is close to unity (Reichle et al., 2002).
Figures 3g-i show that, averaged across the domain (andsaatibangles and polarizations for Tb assimilation), thetrin

is 1.14, 1.11 and 1.23 [-] for Tb_7ang, Tb_fit and SM retrieasdimilation. The figure thus suggests that, on average, the
simulated errors in the assimilation system only slightiderestimate the actual errors. But the figures also showthba
metric varies strongly across the domain and exhibits véfgrdnt spatial patterns for Tb and SM retrieval assinolat For

10



10

15

20

25

30

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-414, 2016 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 23 August 2016 Sciences
(© Author(s) 2016. CC-BY 3.0 License.

Discussions

Tb_7ang and Tb_fit assimilation, values are much larger thanthe central area and much smaller than 1 in the eastern
forested area. This indicates that the assigned obsemvatio forecast errors are severely underestimated in tlieatanea
and overestimated in the eastern forested area. Overdpiesan be assumed that the assigned representation gardof
observation error) should be smaller. The Tb forecast asralready very small (see below), because the Tb unceytaint
only marginally sensitive to soil moisture uncertaintieslar dense vegetation. For SM retrieval assimilation, e is
reversed, with the largest values in the eastern half of timeadn, suggesting that here the simulated errors underatstithe
actual errors. Values less than 1 are found in most of theanebilf of the domain, where the SM retrieval assimilatieass
to overestimate the actual errors.

To further interpret the actual and simulated error magieg, Figures 3j-k show the ensemble spread in the Tb fosecast

(that is, the simulated forecast error standard deviatw()‘ov(y;’i,y;’i)]M. Averaged across all angles and polarizations
A, the values are around 2 K when averaged across the entirainlobarger values (3 K) are found in the central and dry
western part, and smaller values (1 K) in the wetter eastern phis pattern is similar for the SM ensemble spread irSikle
retrieval assimilation system (Figure 3l). In dry climattge root-zone soil moisture often drops to the wilting poiemains
stagnant and no longer replenishes the surface. Thissesuticreased sensitivity of the surface soil moisture tdyvbations

in meteorological conditions, and thus in higher uncetya@stimates for surface soil moisture in dry climates.

Given that the Tb observation errm is set to 6 K for each individual angle, polarization and gess time in the
Tb assimilation, the approximate total assigned obsematnd forecast error is 6.1 K/62 + 22) across the study domain,
6.7 K (/62 + 32) in the central area, and 6 K/2 + 12) in the eastern Appalachian area. Because the assignec/atise
error is uniformly set to 6 K, the spatial variability in thetal simulated errors is thus too small compared to the hetvars
(Figures 3d-e), which ranges from more than 10 K in the céatesa to and around 2-3 K in the eastern Appalachian area.

The SM observation error (after rescaling) is 0.02mm 2 on average across the domain, with higher values in thereaste
part and lower values in the western part, with the excepfdvexico, California and West Oregon where higher obséowat
errors are found (section 3.3). This general pattern isrsexkin the SM forecast errors. Combined, the spatial viditiaim
the SM observation and forecast errors is not capturingghead variability in the actual errors (Figure 3f), whigalds to an
overestimation of the errors in the West and an underesomat the East.

4.2 Analysisincrements
4.2.1 Spatio-Temporal Patterns

The Kalman filter translates footprint-scale innovatiam® i36-km increments. Because of the spatially distrib8£) fil-
tering (section 3.1), the number of increments in Figures Baabout 1.4 times the number of assimilated observagts s
(Figures 3a-c). Many areas with missing observations (seplation predictions) are filled through interpolation &xtrap-
olation. With SM retrieval assimilation, there is almoseancrement per day.

Figures 5d-f show the temporal standard deviations in tbreiments for the total soil profile watekwtot=Asrfexc+Arzexc-
Acatdef). The area averagegtandard deviation) values are &38.7 mm for Th_7ang assimilation, 5:8.5 mm for Th_fit
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assimilation and 421.9 mm for SM retrieval assimilation. After scaling for theafiable) profile depth, the area-average
values in volumetric soil moisture units aet +1.7 x 10~2 m3.m~3 for Tb_7ang assimilatior2.9 + 1.7 x 10~3 m3.m=3 for
Tb_fit assimilation an@.3 4+ 1.9 x 1073 m3.m~3 for SM retrieval assimilation.

The individual components of the wtot increments are shawfigures 5g-i for the surface excess increments, Figures 5j
for the root zone excess increments, and Figures 5m-o facdteiment deficit increments. The patterns in wtot incrdsen
are dominated by catdef increments, and they generallyctafie patterns in the respective innovations standarcatiens
(Figures 3d-f), which are very different for Tb and SM retekassimilation. The catdef increments pertain to thereiptiofile
depth (which varies, with typical values around 2-3 m) aneeterelatively small impact on the upper 5 cm solil layer @cef
soil moisture): the domain-averaged magnitude of 5.4 méhmn and 3.5 mm for catdef increments due to Th_7ang, Th_fit
or SM retrieval assimilation, respectively (Figures 5meyuld scale to about 0.1 mm for a 5 cm soil layer. This is léssit
the 0.6, 0.4 and 0.4 mm for the corresponding srfexc incresn@igures 5g-i), which are directly applied to the uppen®d c
soil layer. The increments in rzexc (Figures 5j-1) are iieéy smallest, because this variable is not perturbed Isjgte

Both Th and SM retrieval assimilation show similar spatiatterns in the standard deviations of srfexc increments (Fi
ures 5g-i): the largest increments are found in the dry Wedtthe smallest in the wetter East. The patterns in srfexeinc
ments agree with the patterns in the ensemble forecasttamtgrfor this variable (not shown, but implied by the Th awil
moisture uncertainty in Figures 3j-1). The srfexc valuessmall with small uncertainties, and the increments arg shilarly
bounded in both Th and SM retrieval assimilation, yieldiogparable spatial increment patterns.

Finally, Figure 6 compares spatially and temporally calked wtot, srfexc and rzexc increments obtained with Thg7an
assimilation, Tb_fit assimilation and SM retrieval assatidn, i.e., the figure shows all pairs of increments avégl&éiom two
assimilation cases. The scatter plots show that the inarenage usually small and unbiased. The correlation betleen
wtot increments (Figure 6a) obtained by Tbh_7ang and Tb_gin@ktion is 0.7, and aligns with the expectation that @ith
Tb assimilation experiment roughly corrects for the samenes In contrast, the correlation between the incremesttsmed
by Th_7ang and SM retrieval assimilation is only 0.3 (Fig6b@. The figure is similar when comparing the Tb_fit and SM
retrieval assimilation (not shown). For srfexc and rzexg(Fes 6c-f), the increments are again similar for Th_7armyEb_fit
assimilation, but different for Tb and SM retrieval assatitn. For all soil moisture prognostic variables, Th adlsition leads
to larger increments than SM retrieval assimilation. THéedént assimilation systems thus introduce distinct ections to
the modeled soil moisture trajectories.

4.2.2 Discussion

In a nutshell, Eq. 1 expresses that the increments are givérelproduct of the Kalman gain and the innovations. To érpla
the differences in increment patterns between Th and Shevatrassimilation, we must therefore consider each system
innovations and Kalman gains. The relatively larger magtatof the Th innovations compared to the SM innovations-(sec
tion 4.1.2) contributes to the fact that the Th assimilatiesults in larger soil moisture increments. This is the cassn
though the SM retrieval assimilation (unlike Tb assimdadi applies increments only to moisture variables and doeadjust
modeled temperatures.
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Furthermore, the Kalman gain matricks; ; (Eq. 2) for Tb and SM retrieval assimilation are differentaese the two
systems employ different observation operatess) and different observation error covariand®s First, we note that the
non-linear inversion of Tb innovations to soil moistureriements, driven by the RTM in the observation operatonois
responsible for the larger wtot increments in the centrakgrand crop areas, because these areas exhibit low vatubs fo
microwave roughness parametgr<0.2, not shown) and a high sensitivity of Th to soil moistuae ¢onfirmed by the high
forecast Tb errors in Figures 3j-k). That is, in these areasruensurately large Th O-F values result onlgimall updates to
soil moisture.

Second, the choice of a spatially uniform observation erogariance in the Th assimilation experiment creates aniimgf
the innovation pattern in the increment pattern. Higherentents are found in the agricultural areas with large Tlwation
standard deviations (Figures 3d-e), because irrigationtisnodeled and vegetation is not accurately parametei®inde the
filter is not set up to correct the latter, occasional exeessicrements to soil moisture and temperature may be intedl
Such shortcomings could be mitigated by a more sophistidsignment of Th observation (representation) errors.

For SM retrieval assimilation, the pattern of the SM innaMatstandard deviation (RMSD) is similarly visible in the in
crements, with smaller values in the West and higher valndgkea East. Here again, the true spatio-temporal natureeof th
observation errors is not captured in the assigned obsemvatror covariance and therefore propagated into theements.
Note also that the 0.03 hm~—3 SM innovation standard deviation (top 5 cm, Figure 3f) im$itated to a standard deviation
of profile moisture increments of 0.002°m~3 (Figures 5f rescaled by profile depth), but these incremamsiot equally
distributed, i.e. larger increments are found for surfasikrsoisture and smaller increments for the deeper profile.

4.3 |n Situ Validation

The above discussion highlights similarities and starkiremts in how the Th and SM retrieval assimilation systenmesaie.

In this section, we look at the effect of these differencegtenskill of the assimilation estimates versus in situ obeser
tions. Figure 7 shows the change in RMgOsection 2.4) between the model-only open loop (OL) sinwtatind either

the Tb_7ang or SM retrieval data assimilation (DA) expentmM@&RMSD,;, = RMSD,;,(DA) - RMSD,,;,(OL)) at individual
SCAN and USCRN sites, for the period 1 July 2010 - 1 May 201% gteen background shading indicates areas with modest
topographic complexity and vegetation cover and where ditellge observations are most sensitive to surface soistuie
(details in De Lannoy and Reichle, 2016). On average, batimélation experiments introduce improvements at aboét 80

the sites for surface soil moisture, with spatially avethgdRMSD,,;, values of -0.004 and -0.003*%m~2 for Th_7ang and

SM retrieval assimilation, respectively. (Spatial averagetrics are computed using a cluster-based algorithnticBez.4.)

The improvements are also propagated to the root-zone sistune (65% of sites improved) with smaller averadg@MSD,,;,
values of -0.002 and -0.001%m—3, respectively. Both Th and SM retrieval assimilation shaypiovements in the central
and eastern parts of the US but perform poorly in the westerantain areas. The Th_7ang assimilation shows the largest
improvements in the central US, whereas the SM retrievairélssion shows the largest improvements in the southeaste
part, for both surface and root-zone soil moisture. It issfiale that the Tbh assimilation has a larger impact in thereéhlS

than the SM retrieval assimilation, because irrigatiomévenay be filtered in the SM retrievals (and perhaps partigasd
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to vegetation opacity retrievals). As will be shown nexg ttomain-average skill differences between Th_7ang, Tor §M
retrieval assimilation are not significant.

The barplots in Figure 8 summarize the average anomR vatugbd open loop and data assimilation experiments, after
stratifying all SCAN and USCRN sites into ‘favorable’ ancmfavorable’ categories, where the ‘favorable’ siteslacated
the area where the satellite observations are most sentitsoil moisture (indicated with green background shadirgg-
ure 7). The figure shows that the open loop anomR values féacisoil moisture are similar for both the favorable and
non-favorable areas (0.51 and 0.50, respectively). Howelaga assimilation has a larger impact in favorable arezerev
all assimilation schemes introduce significant improvetméanomR=0.63, 0.61 and 0.59 for Th_7ang, Tb_fit and SM re-
trieval assimilation). In non-favorable areas, the imgments are smaller but still significant (anomR=0.57, Orisb@a54, for
Tb_7ang, Tb_fit and SM retrieval assimilation).

In the root-zone, data assimilation also improves the ekir the open loop simulations, but without statisticahgigance.
The open loop simulations yield anomR values of 0.56 andid.&Vorable and non-favorable areas, respectively. larkvle
areas, the assimilation increases the anomR to 0.64, 0db@.68, for Tb_7ang, Tb_fit and SM retrieval assimilationném-
favorable areas, the skill improvement is limited and theraR values are 0.54, 0.54 and 0.52, for Tb_7ang, Tb_fit and SM
retrieval assimilation. In any case, with assimilatiohasmlomR values exceed 0.5, meaning that the skill becomésr bblean
a climatological forecast (Brier skill score larger than 0)

Overall, the skill metrics are comparable for the Th_7and)®n_fit assimilation (Figure 8). The results from SM retekv
assimilation are slightly worse than those from Tb assitioifa which may indicate that Tb observations indeed stih-c
tain more information (Section 4.2) than the SM retrievalsich are implicitly filtered during the retrieval proce¥®t, the
differences between the domain-averaged skill valuessofdinious assimilation schemes are minimal. Furthermdreun-
ning the assimilation scheme with different spatially dans Th observation error parameters, the skill metricy chnged
marginally. This reveals that our skill metrics are relalinsensitive to uniform changes in the data assimilgpiarameters.
One reason for this is that the skill metrics are presentédlastered) spatial averages, which compensate for laigg tif-
ferences. Itis expected that the skill of our data assiitedystems can only be further improved by using a more ipedl(in
space and time) approach to optimizing the assimilatedreasens (e.g. L2 SM retrievals), and the forecast and ofagiem
error parameters in the EnKF.

Finally, unlike Liu et al. (2011), the skill improvementstinis study are smaller when we correct the re-analysis jpreci
tation input with gauge-based precipitation data (Reielnieé Liu, 2014). This and other recent improvements in the 650
modeling system make it increasingly challenging to obs&nificant skill improvements from the assimilation of noiwave
observations over areas for which high-quality forcingadate available, such as the domain studied here. The beofefits
the microwave-based soil moisture assimilation systenegpected to be greater in areas with poorer ancillary infoutse
modeling system. This aspect will be further investigatedugh the validation of the global SMAP L4_SM data product.

14



10

15

20

25

30

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-414, 2016 Hydrology and
Manuscript under review for journal Hydrol. Earth Syst. Sci. Earth System
Published: 23 August 2016 Sciences
(© Author(s) 2016. CC-BY 3.0 License.

Discussions

5 Conclusions

The SMOS and SMAP satellite missions currently provide althexd L-band data to monitor large-scale soil moisture. A ke
question is how to make the best use of these data in currehslaface data assimilation systems. The L1 Tb data frosethe
missions are often complex, because of their multi-podaidn and possibly multi-angle nature and their indirectregction
with soil moisture. In theory, the best approach is to dlyeassimilate Th observations using a consistent data #dasion
system, but a correct global characterization of the Thdaseand observation errors remains difficult. The L2 SMeeals
are easily handled products, but their assimilation is ictg by errors introduced by inconsistent ancillary infation in
the SM retrieval algorithm and the assimilation system.hfitrther improvements in the assimilated retrievals arréfod
selection of the ancillary data SM retrieval assimilatioaynlbecome a coequal alternative.

Three different data products from the SMOS mission araralsged separately into the GEOS-5 land surface model to
improve estimates of surface and root-zone soil moistucetarstudy the workings of each assimilation system. The first
product consists of L1-based data of multi-angle, duakpphtion Th observations at the bottom of the atmosphene. T
second product is a derived 4Tb product that mimics SMAP data. The third product are therafional L2 SM retrievals.
Special care is taken during quality control and processinipe satellite observations prior to assimilation anchimitthe
assimilation system. The Th assimilation uses a distrib&teKF with a temporally variable Tb bias mitigation, a systiat
is also used for the SMAP L4 _SM product (Reichle et al., 20IBg SM retrieval assimilation uses a similar system, bth wi
CDF-matching instead to eliminate the more stationary Shdwuation biases. The study covers most of North Americafer t
period of 1 July 2010 - 1 May 2015.

The Th and SM innovations show very different spatial page@nd the number of assimilated observations differs tseoaiu
different needs for data screening and bias mitigationeBas the average sensitivity of Tb to soil moisture, the nitage of
the Th innovations is comparably larger than that of the Shbuations, which may either introduce more information oren
error into the Th assimilation system. The Th and SM retfiagaimilation schemes also yield surprisingly differgueitso-
temporal increment patterns, leading to very differentisipents to the modeled soil moisture trajectories. Des$pése stark
differences, the various assimilation schemes yield soiktare estimates with similar average skill metrics, categ from
a set of 187 SCAN and USCRN sites across the US. Compared ito iobservations, both Tb and SM retrieval assimilation
yield anomaly correlations around or larger than 0.6 fohltbe surface and root-zone soil moisture in ‘favorableaarevhere
the satellite data are expected to better represent thms@sture conditions, i.e. in areas with limited topograptomplexity
and limited vegetation. The anomaly correlation with dasirailation is between 0.5 and 0.6 in non-favorable arelas.data
assimilation introduces significant improvements overrioglel-only simulations for surface soil moisture everyvehdut
the improvement are much larger in favorable areas. Fordbezone, improvements are also found, but without steébti
significance. While no significant differences in domair@aged skills can be found between the various assimilajistems,
there are large local differences in performance betweeithand SM retrieval assimilation which may be due to diffiers
in information content and screening of the observationd, differences in how close each of the systems is to an optima
calibration of its model and observation error paramefEngrefore, we expect that soil moisture data assimilatjstesns
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can be further improved only if the systems manage to bdttaxrlate the spatial and temporal variations of the actualrer
in the model and the observations. Furthermore, the SMexetirassimilation results will benefit from any future impement
in the SM retrievals.
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Figure 1. Soil moisture and temperature analysis on 30 April 2015 2@ TC for the Tb_fit assimilation system. (a,b) Tb innovat
at 40 incidence angle for H- and V-polarization respectivelydjdncrements in total profile water (wtot) and first soiléayemperature
(tpl), respectively; (e,f,g) Assimilation analyses offane soil moisture (sfmc), root-zone soil moisture (rzmm) goil temperature (tpl),

respectively.
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Figure 3. Observation-space assimilation diagnostics for the ddrimm 1 July 2010 to 1 May 2015. Number of assimilated obg&masets
for (a) Tb_7ang assimilation, (b) Th_fit assimilation, aieyl $M retrieval assimilation. Standard deviation of the T)innovations from
Tb_7ang assimilation, (e) Tb innovations from Th_fit asktion, and (f) SM innovations from SM retrieval assimitati (g,h,i) same as
(d,e,f), but for normalized innovations (hormO-F). Ensé&diandard deviation of the (g) Tb forecast error for Th grassimilation, (h)

Tb forecast error for Th_fit assimilation, and (i) surfacé swisture forecast error for SM retrieval assimilatioreTtitles show the spatial

mean (m) and standard deviation (s) across each map.
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Figure 4. Hovmdiller plots showing the temporal evolution of longituelly averaged innovations (O-F) for the period from 1 J2040 to
1 May 2015. (a) Th_7ang innovations, averaged over H- andl&zation, ascending and descending swaths and oveideimee angles.
(b) SM innovations, averaged over ascending and descesdiaths.
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Figure6. Spatially and temporally collocated analysis incrememsif(a,c,e) Th_fit assimilation and (b,d,f) SM retrievaliaskation versus
same from Th_7ang assimilation for (a,b) profile-integitateot increments, (c,d) srfexc increments, and (e-f) riegcements. Increments
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or 0.44 mm forAwtot, Asrfexc andArzexc, respectively. R is the spatio-temporal Pearsoretaiion coefficient between the individual

increments from two assimilation experiments.
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Figure 7. Change in unbiased RMSIARMSD,,;) due to data assimilation at (circles) SCAN and (triangSTRN sites for (a,b) surface
and (c,d) root-zone soil moisture, for (a,c) Tb_7ang and)(BM retrieval assimilation. Statistically significantaciyes are marked by
larger symbols. Metrics are calculated across 3-hourly tteps during the period from 1 July 2010 to 1 May 2015. Thestinhdicate the
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topographic complexity based on model parameters.
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Figure 8. Performance of open-loop and data assimilation expersriarierms of anomaly correlations (anomR) calculated ac3dsourly
analyses and forecast time steps from 1 July 2010 to 1 May,206d.&) surface and (b) root-zone soil moisture. The baosvs$kill metrics
averaged over sites in either favorable or non-favoratdasrwhere favorable areas refer to the areas indicatedebyrélen background
shading in Figure 7. The variable N is the total number of SG&N USCRN sites considered for each category, with the nuoflmdusters
in parentheses. The error bars reflect cluster-averaged:8fitlence intervals.
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