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Abstract.

Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the

Goddard Earth Observing System Model, version 5 (GEOS-5) toimprove estimates of surface and root-zone soil moisture.

The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the

atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at 40◦5

incidence angle from the Soil Moisture Active Passive mission. The third product is the operational SMOS Level 2 surface

soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with

seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative densityfunction

matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to

model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period1 July10

2010 to 1 May 2015 and for 187 sites across the United States. Especially in areas where the satellite data are most sensitive

to surface soil moisture, large skill improvements (e.g. increase in anomaly correlation by 0.1) are found in the surface soil

moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments,

but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large

differences in how the observations add value in the Tb and SMretrieval assimilation systems. The distinct patterns of these15

diagnostics in the two systems reflect observation and modelerrors patterns that are not well captured in the assigned EnKF

error parameters. Consequently, a localized optimizationof the EnKF error parameters is needed to further improve Tb or SM

retrieval assimilation.

1 Introduction

Microwave satellite missions are collecting large amountsof data for soil moisture monitoring. It is not yet clear, however,20

how this wealth of data can be used in the most efficient way to obtain global estimates of soil moisture that can improve,

e.g., weather prediction, flood and drought modeling, agricultural yield monitoring, or landslide predictions. Many such ap-

plications require knowledge of soil moisture in a deeper layer, where water is extracted by plant roots or stored to buffer

drainage and runoff, not the approximately 5 cm surface layer to which the current L-band (∼1.4 GHz) microwave missions
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are sensitive. Moreover, L-band satellite observations have a fairly coarse spatial resolution (about 40 km) and are available

only at particular overpass times, typically once every 2-3days for a given location. The challenge is thus to derive soil profile

moisture information at all times and locations through data assimilation, that is, through the merger of satellite observations

with information from a dynamical land surface model.

The Soil Moisture Ocean Salinity (SMOS; Kerr et al., 2010) mission and the Soil Moisture Active Passive (SMAP; Entekhabiet al.,5

2014) mission are the two L-band observatories currently orbiting in space with the specific aim to measure global soil mois-

ture. These missions supply Level 1 (L1) brightness temperature (Tb) data, Level 2 (L2) surface soil moisture (SM) retrievals

and derived Level 3 (L3) products. The SMAP mission also provides an operational Level 4 Surface and Root-Zone Soil

Moisture product (L4_SM; Entekhabi et al., 2014; Reichle etal., 2016) that is based on the assimilation of L1 SMAP Tb data

into Goddard Earth Observing System Model, version 5 (GEOS-5) land surface simulations. Alternatively, a soil moisture10

assimilation system could ingest L2 SM retrievals instead of L1 Tb observations.

In this paper, we compare Tb and SM retrieval assimilation using a historical (5-year) record of SMOS observations over

North America in an assimilation system similar to that of the SMAP L4_SM system. The main differences between the SMAP

L4_SM system and the experiments in this paper pertain to thedifferences in assimilated data, to the difference in spatial

resolution of the resulting soil moisture products (36 km inthe current paper, see below; 9 km for the L4_SM product), and15

to differences in meteorological forcing input (re-analysis meteorology in the current paper; operational forecast meteorology

corrected with gauge-based precipitation in the L4_SM product).

It is more difficult to assimilate Tb observations than SM retrievals because brightness temperatures are only indirectly

connected with the land surface variables of interest and the Tb data come in multiple polarizations. SMOS Tb observations

are even more complex because of their multi-angular nature. Some of the SMOS L1 Tb data complexity is reduced in the20

L3 SMOS Tb product and further addressed in Munoz-Sabater etal. (2014) and De Lannoy et al. (2015), who prepared the

L1 SMOS Tb data for assimilation into (quasi-)operational systems. Successful examples of SMOS Tb assimilation using

a variety of simplifying assumptions are illustrated in Lievens et al. (2015); De Lannoy and Reichle (2016); Kornelsen et al.

(2016). These studies use a radiative transfer model (RTM) to dynamically invert Tb information into corrections to modeled

soil moisture estimates. In this paper, we advance the spatially distributed multi-angle and dual-polarization Tb assimilation25

of De Lannoy and Reichle (2016) in the GEOS-5 land surface model with a new version of Tb observations and an improved

spatial support and forward simulation of the Tb observation predictions. Moreover, to mimic SMAP Tb assimilation we also

assimilate dual-polarization single-angle 40◦ SMOS Tb observations after fitting the multi-angle Tb data (De Lannoy et al.,

2015).

A key disadvantage of a system that assimilates SM retrievals is that the SM retrievals may be produced with inconsis-30

tent ancillary data, such as for example soil temperature simulated by another model than that used in the assimilation sys-

tem. The current SMOS SM retrievals by themselves have been found to be skillfull (Al-Yaari et al., 2014; Fascetti et al.,

2016), and research is ongoing to further improve them (Rodriguez-Fernandez et al., 2015; Ye et al., 2015; Zhao et al., 2015;

van der Schalie et al., 2016; Wigneron et al., 2016). The use of these SMOS SM retrievals has been manifold, e.g. to derive

enhanced estimates of precipitation (Wanders et al., 2015;Koster et al., 2016), to derive off-line root-zone soil moisture es-35
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timates (Ford et al., 2014), or to off-line downscale the data to higher-resolution soil moisture estimates (Piles et al., 2014).

Other studies have assimilated SMOS SM retrievals on-line into land surface models to possibly downscale the retrievals and

consistently improve soil moisture and other land surface variables (Ridler et al., 2014; Zhao et al., 2014; Lievens et al., 2015),

leading to e.g. improved estimates of floods (Alvarez-Garreton et al., 2015) and crop growth (Chakrabart et al., 2014). In this

paper, we use a spatially distributed assimilation system to integrate SMOS SM retrievals into the GEOS-5 land surface model5

with the aim to infer improved surface and root-zone soil moisture estimates. Our study mainly differs from the above SMOS

SM retrieval studies in the continental and multi-year scale of the experiments, in the advanced quality screening and spatial

support of the SM retrieval observations, and in the comparison between Tb and SM retrieval assimilation

To assess the potential of Tb and SM retrieval assimilation,five years of SMOS Tb data or SM data are assimilated into the

GEOS-5 land surface model, using a careful data quality control and data preprocessing. The observations are associated with10

a realistic antenna pattern, containing 50% of the signal power in a circular area with 20 km radius. Special attention ispaid

to large-scale patterns of random and persistent forecast and observation errors in the different assimilation systems, and to the

impact of the different assimilation schemes on the skill ofsurface and root-zone soil moisture estimates. Section 2 describes

the SMOS observations, the various modeling components, and the in situ validation data. Section 3 highlights the technical

differences between the various assimilation schemes, andsection 4 presents the results.15

2 Data and Model

2.1 SMOS Tb Observations

The Microwave Imaging Radiometer with Aperture Synthesis (MIRAS) onboard SMOS provides multi-angle Tb data, with a

nominal (3 dB) spatial resolution of 43 km and a global coverage approximately every 3 days (at either 0600 or 1800 local

time, i.e., ascending or descending half-orbits, separately). The most recent version (v620) of the SCLF1C Tb data is used.20

Observations are retained for further processing only (a) in the alias-free zone, (b) when the data are not contaminatedby

point source radio frequency interference (RFI) or tails thereof, (c) when the values fall within the range 100-320 K, and (d)

when valid data are available for both horizontal (H) and vertical (V) polarization. The flag for snapshot RFI is not activated,

because it is currently too sensitive (pers. comm. R. Oliva,Y. Kerr). After the initial screening, we correct the L1 Tb values

for geometric and Faraday rotation and for atmospheric and reflected extraterrestrial radiation (De Lannoy et al., 2015) using25

Modern-Era Retrospective Analysis for Research and Applications (MERRA) version 2 (MERRA2; Bosilovich et al., 2015)

background fields. The resulting Tb values at the bottom of the atmosphere are then binned into 41 evenly spaced angular bins

with the center angle ranging from 20◦ through 60◦. Next, the data are regridded from the 15 km Discrete Global Grid (DGG)

on which they are posted to the 36-km cylindrical Equal-AreaScalable Earth (EASEv2) grid (Brodzik et al., 2014), and the

data are screened for excessive sub-36-km heterogeneity (spatial standard deviation> 7 K), which is indicative of open water30

bodies or RFI. Tb values for a given 36-km EASEv2 grid cell arecomputed only if at least two valid DGG observations are

available.
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From these preprocessed Tb data, two datasets are derived for assimilation: (i) a 7-angle Tb dataset, with incidence angles

θ=[30◦, 35◦, 40◦, 45◦, 50◦, 55◦, 60◦] (De Lannoy et al., 2013), and (ii) a fitted Tb dataset (De Lannoy et al., 2015) from which

only the Tb at 40◦ incidence angle is used to mimic the single-angle nature of SMAP Tb observations. We refer to these datasets

as Tb_7ang and Tb_fit, respectively. Tb_fit data are only retained when the fitting error is less than 5 K and a minimum of 15

data points contributes to the entire fitted angular signature, with at least 5 data points above and below the 40◦ incidence angle5

and at least 10 data points in the incidence angle interval between 30◦ and 50◦

2.2 SMOS SM Retrieval Observations

The SMOS SM retrievals are extracted from the SMUDP2 productv552. Because this product version ends in early May

2015, we limit our study period to 1 July 2010 - 1 May 2015. (Thereprocessed v620 version of the SM retrievals was not yet

available at the time we conducted the experiments.) The SMOS retrieval algorithm simultaneously retrieves soil moisture and10

vegetation opacity, by fitting multi-angle Tb observationsat both H- and V-polarization with simulations of the L-bandMi-

crowave Emission of the Biosphere Model (L-MEB, Wigneron etal., 2007). Based on the quality information provided within

the SMOS products, the SM data are retained only if: (a) all retrieved variables fall within a realistic range (0-0.6 m3.m−3 for

soil moisture), (b) the SM uncertainty estimated by the SMOSretrieval algorithm is less than 0.1 m3.m−3, (c) the RFI proba-

bility for both H- and V-polarization is less than 0.3, and (d) SM retrieval flags are not raised for high topographic complexity,15

high urban fraction, high open water fraction, sea ice, coastal areas, and high total electron content. Further screening for frozen

temperature and snow is based on GEOS-5 model output (section 2.3). After the regridding from the 15-km DGG grid to the

36-km cylindrical EASEv2 grid, the data are screened for excessive sub-36-km heterogeneity (spatial standard deviation >

0.2 m3.m−3). SM values for a given 36-km EASEv2 grid cell are computed only if at least two valid DGG observations are

available.20

2.3 Soil Moisture and Brightness Temperature Modeling

The land data assimilation system used here employs the GEOS-5 Catchment land surface model (CLSM; Koster et al., 2000),

along with an L-band tau-omega radiative transfer model (RTM; De Lannoy et al., 2013, 2014b). The CLSM simulations use

GEOS-5 parameters (Mahanama et al., 2015; De Lannoy et al., 2014a) similar to those used in the SMAP L4_SM product, and

are forced with 1/2◦×2/3◦ GEOS-5 forcing data from MERRA (Rienecker et al., 2011) bilinearly interpolated to the model25

grid. The study domain covers most of North America, with thenorthwestern corner at (125◦W, 55◦N) and the southeastern

corner at (60◦W, 24◦N).

The computational elements are the 36-km EASEv2 grid cells.The land model computation time step is 7.5 minutes, and

output is saved at 3-hourly intervals. At each grid cell, thesurface soil moisture content (sfmc, 0-5 cm) and root-zone soil

moisture content (rzmc, 0-100 cm) are diagnosed based on three prognostic variables: catchment deficit (catdef), root-zone30

excess (rzexc), and surface excess (srfexc). Similarly, the surface (skin) temperature is diagnosed from the prognostic land

surface temperatures across the saturated (tc1), unsaturated (tc2), and wilting (tc4) sub-grid areas. Finally, the soil temperature
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(tp1 for the topmost layer) is diagnosed from the prognosticground heat content (ght1 for the top layer). An overview of the

model variables is given in Reichle et al. (2015); Koster et al. (2000) and Ducharne et al. (2000).

The L-band tau-omega RTM converts the 36-km CLSM soil moisture and temperature simulations into 36-km L-band Tb

estimates when the soil is not frozen or covered with snow, when precipitation is less than 10 mm/day, and where the open

water fraction is less than 5% percent. For each 36-km grid cell, key parameters of the RTM are estimated by minimizing Eq5

B.1 in De Lannoy et al. (2014b), using a 5-year history of SMOSv620 Tb data, and computing observation predictions (see

below) at the footprint scale. Specifically, all 36-km grid cells within one footprint area are initially assigned the same set of

RTM parameters, while the dynamic background information is spatially variable. For each 36-km grid cell, the calibration

estimates a spatially homogeneous set of RTM parameters forthe entire associated footprint area and the resulting values

are assigned to the central (and typically dominant) 36-km grid cell only. For the forward calculation of the Tb observation10

predictions during the data assimilation, all 36-km pixelshave a unique set of RTM parameters. The RTM is calibrated using all

5 years of available Tb data and aims at minimizing climatological biases. The data assimilation is performed over the same 5

years and aims at addressing random (or short term) errors. The methodology is very similar to that in De Lannoy and Reichle

(2016), but with the difference that, here, the RTM does not simulate atmospheric contributions (because the Tb observations

are now a priori corrected for atmospheric contributions) and the observation predictions are now spatially aggregated using a15

realistic (but approximate) antenna pattern.

For the computation of differences between SMOS observations and footprint-scale model simulations in the RTM cali-

bration and for the computation of the “observation-minus-forecast” (O-F) residuals in the assimilation system (section 3.1,

Figure 1), the modeled 36-km soil moisture or Tb simulationsare aggregated to the footprint scale by spatial convolution with

weights given by an approximation of the SMOS antenna pattern. We also refer to these spatially aggregated model estimates as20

‘observation predictions’. The SMOS antenna pattern is approximated by a two-dimensional Gaussian function containing 50%

of the signal within a circle with a radius of 20 km. The simulations outside a radius of 40 km are discarded in the computation

of the footprint-scale estimates. The number of 36-km EASEv2 grid cells included in one footprint area varies with latitude.

The circular footprint shape is preserved everywhere on theglobe. In contrast, the shape of the EASEv2 grid cells projected

on the globe varies with the latitude, with an aspect ratio of1 at 30◦ (north/south) latitude, larger than 1 towards the poles and25

less than 1 towards the equator. Therefore, at higher latitudes multiple EASEv2 grid cells with the same latitude and various

longitudes belong to one circular footprint, whereas towards the equator, several EASEv2 grid cells with the same longitude

and various latitudes contribute to the footprint. Overall, the difference between single 36-km simulations and footprint-scale

values is small, but the number of valid Tb observation predictions at the footprint scale is reduced, because of the increased

likelihood of finding a 36-km grid cell with a non-negligiblewater fraction, snow amount, or precipitation, within the footprint30

area.

2.4 In Situ Soil Moisture Data and Metrics

The assimilation results are evaluated using independent in situ measurements of surface and root-zone soil moisture from

two sparse networks across the US: the US Natural Resources Conservation Service Soil Climate Analysis Network (SCAN;
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Schaefer et al., 2007) and the US Climate Reference Network (USCRN; Diamond et al., 2013; Bell et al., 2013). Surface soil

moisture measurements are taken at approximately 5 cm depth. Root-zone soil moisture measurements are a weighted average

of measurements at 5, 10, 20, and 50 cm depth, with respectiveweights of 0.1, 0.1, 0.27 and 0.53. Given the difference in

spatial support between these point measurements and the 36-km gridded model and assimilation results, the skill is quantified

in terms of anomaly time series correlation (anomR), and unbiased root-mean-square difference (RMSDub; Entekhabi et al.,5

2010), using all 3-hourly forecast and analysis time steps in the period 1 July 2010-1 May 2015, excluding times when the soil

is frozen (top layer soil temperature< 274.15 K) or snow covered (snow water equivalent> 0 kg/m2). The anomaly correlation

is based on anomaly time series obtained by subtracting a multi-year smoothed climatology from both the simulations andin

situ observations. Note that the assimilation and open-loop simulations have, by design, the same climatological variability; the

assimilation only corrects for random errors. Metrics at a single site are only calculated if at least 200 data points areavailable.10

Skill metrics across an entire network are calculated by clustering the sites within SCAN and USCRN to avoid that densely

sampled areas dominate the validation metrics and to ensurerealistic confidence intervals (De Lannoy and Reichle, 2016).

The number of clusters is estimated a priori after prescribing an average cluster radius of 3◦, which approximately reflects

the autocorrelation length of large-scale topographic andmeteorological phenomena, or of large-scale soil moisturepatterns

(Vinnikov et al., 1996). The actual size of the clusters thatresults from the clustering algorithm varies strongly in space.15

3 Data Assimilation

3.1 Distributed Ensemble Kalman Filter

For both Tb and SM retrieval assimilation, a spatially distributed (or three-dimensional, 3D) ensemble Kalman filter (EnKF;

Reichle and Koster, 2003; De Lannoy and Reichle, 2016) is used. This system simultaneously assimilates multiple spatially

distributed observation sets, using horizontal and vertical error covariance structures, to update the simulations at each 36-km20

model grid cell. The details of the Tb assimilation system are explained in De Lannoy and Reichle (2016) and differ only in

that the observations are here associated with a spatially variable antenna pattern reaching out to a radius of 40 km.

During the model integration, a data assimilation step is activated every 3 hours. All the SMOS observationsyi collected

within 1.5 hours of the analysis timei are assimilated simultaneously to update the forecasted statex̂j−
k,i at locationk as follows:

x̂
j+
k,i = x̂

j−
k,i +Kk,i[y

j
i − ŷ

j−
i ]. (1)25

with j denoting the ensemble member,Kk,i the Kalman gain,yj
i the perturbed observations,ŷ

j−
i = hi(x̂

j−
i ) the observation

predictions, andhi(.) the observation operator mapping the simulated land surface variables to observed quantities. Bias in the

observation-minus-forecast residuals is addressed priorto the analysis (section 3.2). The ensemble is created by perturbing the

model forcing, the model forecasts and the observations (section 3.3). The Kalman gain is calculated as:

Kk,i =Cov(x̂−

k,i, ŷ
−

i )
[

Cov(ŷ−

i , ŷ
−

i )+Ri

]−1
, (2)30
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whereCov(x̂−

k,i, ŷ
−

i ) is the (sample) error covariance (across the ensemble) between the forecasted land surface state and the

forecasted Tb or SM. Similarly,Cov(ŷ−

i , ŷ
−

i ) is the (sample) error covariance of the Tb or SM forecasts, and Ri is the Tb or

SM observation error covariance. The Kalman gain is identical for all ensemble members.

In the case of SM retrieval assimilation, the observation operatorhi(.) performs the spatial aggregation of soil moisture sim-

ulations from the 36-km grid cells to the satellite footprint; in the case of Tb data assimilation, the observation operator includes5

both the RTM and the spatial aggregation of gridded Tb simulations to the footprint (section 2.3). For the Tb_7ang assimilation,

one observation set at locationκ contains Tb observations at a maximum of 7 angles and both H- and V-polarization, i.e., up

to 14 individual observationsyλ,κ,i ∈ yκ,i. The subscriptλ refers to the polarization and incidence angle of the individual Tb

observations. In the middle part of the swath, all 14 observations are typically available, whereas slightly fewer observations

are available in the outer portions of the swath, where the observations with lower incidence angles are missing.10

For the Tb_fit assimilation, one observation set usually contains 2 observations, i.e. both H- and V-polarization Tb at 40◦

incidence angle. For the SM retrieval assimilation, each observation set contains only one observation. In all cases, the obser-

vation vectoryj
i collects multiple perturbed observation sets that are spatially distributed within an influence radius of 1.25◦

around the model grid cellk, and each observation vectoryj
i has a forecasted counterpartŷ

j−
i . After removal of the persis-

tent errors (section 3.2) from the O-F residuals (or innovations), the incrementsKk,i[y
j
i − ŷ

j−
i ] are calculated and applied15

to the state variables. Figure 1 illustrates the forward simulation from 36-km gridded land surface simulations to footprint-

scale observation predictions of Tb, and the downscaling ofthe footprint-scale Tb innovations to 36-km gridded land surface

increments.

The subset of prognostic variables updated in Eq. 1 differs depending on the assimilation experiment. The state vector for

Tb assimilation (x = [catdef, srfexc, rzexc, tc1, tc2, tc4, ght1]T ) includes prognostic variables related to soil moisture and20

soil temperature (section 2.3), because Tb observations are by definition sensitive to surface soil moisture and temperature. In

contrast, the state vector for SM retrieval assimilation (x = [catdef, srfexc, rzexc]T ) contains only model prognostic variables

related to soil moisture, because the SM retrievals do not carry direct information about the soil temperature. The select

updates will be propagated to all other variables within theland surface modeling system through energy and water exchange

between various soil layers and land-vegetation-atmosphere compartments. For the discussion of the soil moisture increments25

we will focus on the total profile water increments (∆wtot=∆srfexc+∆rzexc-∆catdef) in units of kg/m2 (that is, mm of water

equivalent). This quantity is easily understandable and thus simplifies the discussion.

Figure 2 and Figure 3 illustrate the concept for Tb assimilation and SM retrieval assimilation, respectively. Figures 2a-b show

swaths of footprint-scale bias-corrected Tb_fit innovations (mapped onto the 36-km EASEv2 grid), for H- and V-polarization at

40◦ incidence angle from the single-angle Tb assimilation system. The Tb innovations are then transformed into soil moisture30

and temperature increments using Eq. 1. Where Tb innovations are warm, the soil water is reduced and the temperature is

increased. Figure 2c shows the total profile water increments ∆wtot and Figure 2d shows increments to the first soil layer

temperature∆tp1. Increments to the surface temperature prognostic variables (section 2.3;∆tc1,∆tc2,∆tc4) are similar (not

shown). Finally, the increments are added to the forecastedfields to create spatially complete analysis maps of surfaceand

root-zone soil moisture, as well as surface temperature andsoil temperature (Figures 2e-g).35
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Similarly, Figure 3a shows the SM innovations from the SM retrieval assimilation at the same time as in Figure 2. Areas

with positive (wet) SM innovations in the SM retrieval assimlation roughly correspond with negative (cold) Tb innovations

in the Tb assimilation system (Figures 2a-b ). Note that the colorbars for Tb and SM throughout the manuscript are chosen

according to the rule of thumb that a 2-3 K change in Tb corresponds to a 0.01 m3.m−3 change in soil moisture, but keep

in mind that the relationship between Tb and SM is non-linearand varies with time, location and incidence angle. Next, the5

SM innovations are converted to soil moisture increments (∆wtot; Figure 3b); no increment to surface or soil temperature is

calculated. Figures2c and 3b show that the Tb and SM retrieval assimilation systems produce wtot increments with somewhat

different large-scale patterns, which is further discussed in section 4.2. Finally, Figures 3c-d show the resulting surface and

root zone soil moisture analysis fields obtained by adding the increments to the model forecast fields. For both the Tb and SM

retrieval assimilation systems, the analysis increments blend smoothly into the forecast fields, that is, the analysismaps do not10

reveal sharp spatial edges that would reveal the geometry ofthe assimilated satellite swaths. Further details about this figure

are discussed in section 4.1.

3.2 Tb and SM Innovation Bias

To limit the long-term biases between Tb observations and simulations, the RTM was calibrated (section 2.3). The 5-year

average absolute bias between SMOS Tb and forecasted Tb is about 2 K across the domain. In general, slightly warm model15

biases are found in the boreal zones and cold model biases over the central part of the US (not shown). But larger seasonal Tb

biases remain, primarily due to systematic errors in the modeled temperature and vegetation. The seasonally varying clima-

tological Tb bias is removed prior to data assimilation for each angle, polarization and overpass time separately, as described

in De Lannoy and Reichle (2016). The Tb innovation biases arecalculated over the period 1 July 2010 - 1 May 2015 for each

individual 36-km grid cell without spatial sampling.20

The CLSM soil moisture was not calibrated for lack of global observations that would support such an effort and because

modeled soil moisture does not necessarily represent soil moisture as observed in the field anyway (Koster et al., 2009).Unlike

biases in Tb innovations, the biases in the SM innovations are more stationary and do not depend on seasonal temperature

variations. Therefore, the SM innovation biases are not corrected seasonally, but instead cumulative distribution function (CDF)

matching between the observations and simulations is performed (Reichle and Koster, 2004) to reconcile the differences in25

long-term mean, variance and higher moments, as in earlier retrieval assimilation studies (Liu et al., 2011; Draper et al., 2012).

The observed and simulated SM CDFs are computed for the entire study period are computed for 1 July 2010 - 1 May 2015 at

each 36-km grid cell individually.

3.3 Random Forecast and Observation Error

The imposed ensemble forecast perturbations for Tb and SM retrieval assimilation are identical to those of De Lannoy andReichle30

(2016) and not repeated here. The total observation error standard deviation for SMOS Tb_7ang is set to 6 K, which yields

near-optimal assimilation diagnostics on average across the globe. However, the diagnostics are not necessarily near-optimal

in individual regions (De Lannoy and Reichle, 2016). The input observation error standard deviation for SM retrievals is
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0.04 m3.m−3, in line with the soil moisture accuracy requirement for therecent SMOS and SMAP missions. The SM re-

trieval error standard deviation is rescaled following theCDF-matching of the SM observations and results in an effective

mean error standard deviation of 0.02 m3.m−3, with larger values in the wetter eastern part, which exhibits a higher temporal

variability in soil moisture simulations, and lower valuesin the drier, western part of the study domain (not shown). Inall

cases, the spatial observation error correlation length is0.25◦. In case of multi-angle Tb_7ang assimilation, interangular error5

correlations are imposed as in De Lannoy and Reichle (2016).

Observation errors in Tb data or SM retrievals are a combination of instrument error and representation error (Cohn, 1997;

van Leeuwen, 2015). The 6 K Tb error consists of radiometric error of about 4 K for individual incidence angles (instrument

error), plus 4.5 K representation inaccuracies (in our system, i.e. based on the near-optimal 6 K observation error) dueto errors

in the RTM, the spatial aggregation, or other discrepanciesbetween Tb observations and forecasts (6=
√
42 +4.52). For Tb_fit10

observations, the instrument error may be slightly reducedcompared to that for Tb_7ang after the angular smoothing, but the

representation error remains similar. SM observations contain retrieval errors due to errors in the RTM and in the inputL1 Tb

observations, as well as representation error due to, e.g.,the inherently different nature of simulated and observed soil moisture

(Koster et al., 2009). In either case, the representation error depends on the soil moisture and temperature dynamics and should

ideally be modeled as function of time and location, but we chose a constant input observation error standard deviation in this15

paper for simplicity. For SM retrieval assimilation, some spatial error variability is introduced after rescaling in line with the

CDF-matching.

3.4 Tb or SM Retrieval Assimilation

In our experiments, we do not expect the SMOS Tb and SM retrieval assimilation systems to yield the same results. During

the SMOS L2 SM retrieval optimization, the Tb data are used toestimate surface soil moisture andvegetation opacity, given20

soil temperature background fields provided by the EuropeanCenter for Medium-Range Weather Forecasts (ECMWF), and

look-up parameter information that differs significantly from the NASA GEOS-5 land data assimilation system. In contrast, our

SMOS Tb assimilation scheme estimates soil moisture andtemperature, given vegetation information. Furthermore, the data

screening is necessarily different for Tb data and SM retrievals, and the approach for bias correction is intentionallydifferent.

The soil moisture information extracted during the L2 retrieval process or Tb assimilation is thus by design expected tobe25

different. Finally, differences in the Tb and SM retrieval assimilation results could also be due to differences in how close each

of the systems is to an optimal calibration of its model and observation error parameters.
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4 Results

4.1 Observation and Forecast Diagnostics

4.1.1 Number of Assimilated Observations

Let us revisit Figures 2a-b and 3a to further highlight some differences between the various assimilated SMOS observations.

First, the swath width for Tb innovations is much narrower than that of the SM innovations because the assimilated Tb ob-5

servations are strictly limited to the alias-free zone within the full swath while the assimilated SM retrievals are retained in

the extended alias-free zone. Furthermore, the swath widthof the Tb_fit innovations is narrower than that of the multi-angle

assimilation (not shown) because the fitting requires sufficient data at a range of incidence angles and lower angle data are not

available at the outer edges of the swaths. Note that SMAP provides useable Tb measurements over a much wider swath (not

shown).10

The different swath widths result in different numbers of observation sets assimilated in each of the three experiments.

Figures 4a-c show the average number of assimilated observation sets (defined in section 3.1) over the study period 1 July

2010 - 1 May 2015. The number of observation sets is smallest (one every 4 days) for Tb_fit and largest for SM retrievals (one

every 2 days), because the swath width is narrowest for Tb_fitand widest for SM retrievals. The northern areas and the western

mountain ranges have fewest observations, because data arenot used when the soil is frozen or snow covered. Tb observations15

are not assimilated in many small areas scattered around thestudy domain where more than 5% of open water is found in the

footprint, based on the underlying GEOS-5 land mask. For theSM retrievals, the screening for excessive (> 5%) water fraction

is only based on the product science flags, not on GEOS-5 information. Data gaps in the SM retrievals are found in the western

mountain ranges and in the vegetated southeastern part of the US. The data coverage is also different for Tb and SM retrieval

assimilation because the availability of the climatological information needed for the innovation bias correction (sections 3.2)20

is different for the Tb and SM retrieval observations.

4.1.2 Actual Observation and Forecast Errors

The long-term mean observation-minus-forecast differences (O-F, or innovations) are unbiased by design (section 3.2). The

Hovmüller plots for two data assimilation cases in Figure 5 reveal that the temporal pattern in area-averaged biases is fairly

random for the Tb_7ang assimilation case (very similar for Tb_fit assimilation, not shown), whereas it shows a slight seasonal25

pattern in the SM retrieval assimilation case. This small difference is not surprising, given that the Tb innovation bias is

seasonally corrected, whereas the SM innovation bias is not.

The time series standard deviation of the innovations, thatis, the root-mean-square-difference (RMSD) between SMOS

observations and simulations, represents the total observation and forecast error that is present in the assimilationsystem

(Desroziers et al., 2005). The spatial patterns of this diagnostic are very different for Tb and SM retrieval assimilation. Fig-30

ures 4d-e show values of about 7.4 K for Tb_7ang and Tb_fit, with larger values (exceeding 10 K) in the central plains and along

the Mississippi, where agricultural practices, such as altering crop rotation and irrigation, are observed by SMOS, whereas in-
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terannual variations in vegetation are not simulated by themodel or provided as input to the model. Along the East coast and in

the Southeast, the temporal standard deviation in the innovations is low (2-3 K): forests show a limited interannual variability,

and under dense vegetation Tb is only marginally sensitive to soil moisture and depends primarily on vegetation characteristics

and (physical) temperature.

The standard deviation in the SM innovations in the SM retrieval assimilation (Figure 4f) is 0.03 m3.m−3, showing larger5

values in the wetter vegetated East and smaller values in thedrier West, with the exception of the West coast. Surprisingly, even

though altering crop rotation and irrigation are not simulated, the values over the central agricultural area are not higher than

elsewhere in the domain. This good agreement between SMOS SMretrievals and our simulations is partly due to the bounded

nature of SM (unlike Tb) and the CDF-matching between both.

Our current system has a Tb sensitivity to soil moisture of about 1.3 K/0.01 m3.m−3 across the domain, averaged over all10

incidence angles and polarizations. A standard deviation in SM innovations of 0.03 m3.m−3 would thus roughly correspond to

a standard deviation in Tb innovations of about 4 K, but instead we find 7.4 K across the study domain in the Tb assimilation

systems. The Tb observations thus either have a comparably higher observation (incl. representation) error or they contain more

information than the SM retrievals. At this point, we anticipate that the higher Tb innovations in the central plains mayindicate

that the Tb observations contain more unfiltered information about soil moisture (e.g. irrigation) and that the Tb observation15

error is higher due to shortcomings e.g. in the vegetation modeling (representation error).

4.1.3 Actual versus Simulated Observation and Forecast Errors

In a near-optimal filtering system, that is, a system that correctly simulates the actual model and observation errors, the standard

deviation of thenormalized innovations[yκ,i− ŷ
−

κ,i]λ/
√

[Rκ,i+Cov(ŷ−

κ,i, ŷ
−

κ,i)]λλ is close to unity (Reichle et al., 2002).

Figures 4g-i show that, averaged across the domain (and across all angles and polarizations for Tb assimilation), this metric20

is 1.14, 1.11 and 1.23 [-] for Tb_7ang, Tb_fit and SM retrievalassimilation. The figure thus suggests that, on average, the

simulated errors in the assimilation system only slightly underestimate the actual errors. But the figures also show that the

metric varies strongly across the domain and exhibits very different spatial patterns for Tb and SM retrieval assimilation. For

Tb_7ang and Tb_fit assimilation, values are much larger than1 in the central area and much smaller than 1 in the eastern

forested area. This indicates that the assigned observation and forecast errors are severely underestimated in the central area25

and overestimated in the eastern forested area. Over forests, it can be assumed that the assigned representation error (part of

observation error) should be smaller. The Tb forecast erroris already very small (see below), because the Tb uncertainty is

only marginally sensitive to soil moisture uncertainties under dense vegetation. For SM retrieval assimilation, the pattern is

reversed, with the largest values in the eastern half of the domain, suggesting that here the simulated errors underestimate the

actual errors. Values less than 1 are found in most of the western half of the domain, where the SM retrieval assimilation seems30

to overestimate the actual errors.

To further interpret the actual and simulated error magnitudes, Figures 4j-k show the ensemble spread in the Tb forecasts

(that is, the simulated forecast error standard deviation)
√

[Cov(ŷ−

κ,i, ŷ
−

κ,i)]λλ. Averaged across all angles and polarizations

λ, the values are around 2 K when averaged across the entire domain. Larger values (3 K) are found in the central and dry
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western part, and smaller values (1 K) in the wetter eastern part. This pattern is similar for the SM ensemble spread in theSM

retrieval assimilation system (Figure 4l). In dry climates, the root-zone soil moisture often drops to the wilting point, remains

stagnant and no longer replenishes the surface. This results in increased sensitivity of the surface soil moisture to perturbations

in meteorological conditions, and thus in higher uncertainty estimates for surface soil moisture in dry climates.

Given that the Tb observation error
√

[Rκ,i]λλ is set to 6 K for each individual angle, polarization and overpass time in the5

Tb assimilation, the approximate total assigned observation and forecast error is 6.1 K (
√
62+22) across the study domain,

6.7 K (
√
62 +32) in the central area, and 6 K (

√
62 +12) in the eastern Appalachian area. Because the assigned observation

error is uniformly set to 6 K, the spatial variability in the total simulated errors is thus too small compared to the actual errors

(Figures 4d-e), which ranges from more than 10 K in the central area to around 2-3 K in the eastern Appalachian area.

The SM observation error (after rescaling) is 0.02 m3.m−3 on average across the domain, with higher values in the eastern10

part and lower values in the western part, with the exceptionof Mexico, California and West Oregon where higher observation

errors are found (section 3.3). This general pattern is reversed in the SM forecast errors. Combined, the spatial variability in

the SM observation and forecast errors is not capturing the spatial variability in the actual errors (Figure 4f), which leads to an

overestimation of the errors in the West and an underestimation in the East.

4.2 Analysis Increments15

4.2.1 Spatio-Temporal Patterns

The Kalman filter translates footprint-scale innovations into 36-km increments. Because of the spatially distributed(3D) fil-

tering (section 3.1), the number of increments in Figures 6a-c is about 1.4 times the number of assimilated observation sets

(Figures 4a-c). Many areas with missing observations (or observation predictions) are filled through interpolation and extrap-

olation. With SM retrieval assimilation, there is almost one increment per day.20

Figures 6d-f show the temporal standard deviations in the increments for the total soil profile water (∆wtot=∆srfexc+∆rzexc-

∆catdef). The area average (±standard deviation) values are 6.9±3.7 mm for Tb_7ang assimilation, 5.9±3.5 mm for Tb_fit

assimilation and 4.2±1.9 mm for SM retrieval assimilation. After scaling for the (variable) profile depth, the area-average

values in volumetric soil moisture units are3.4± 1.7× 10−3 m3.m−3 for Tb_7ang assimilation,2.9± 1.7× 10−3 m3.m−3 for

Tb_fit assimilation and2.3± 1.9× 10−3 m3.m−3 for SM retrieval assimilation.25

The individual components of the wtot increments are shown in Figures 6g-i for the surface excess increments, Figures 6j-l

for the root zone excess increments, and Figures 6m-o for thecatchment deficit increments. The patterns in wtot increments

are dominated by catdef increments, and they generally reflect the patterns in the respective innovations standard deviations

(Figures 4d-f), which are very different for Tb and SM retrieval assimilation. The catdef increments pertain to the entire profile

depth (which typically ranges between 2 m and 3 m) and they presumably have a relatively small impact on the upper 5 cm30

soil layer (surface soil moisture): the domain-averaged magnitude of 5.4 mm, 4.9 mm and 3.5 mm for catdef increments due to

Tb_7ang, Tb_fit or SM retrieval assimilation, respectively(Figures 6m-o), would linearly scale to about 0.1 mm for a 5 cmsoil

layer. This is a rough approximation: in reality the part of catdef that contributes to the 5 cm soil moisture cannot be calculated
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without computing the entire balanced profile. Yet, the approximate 0.1 mm is considerably less than the 0.6, 0.4 and 0.4 mm

for the corresponding srfexc increments (Figures 6g-i), which are directly applied to the upper 5 cm soil layer. The increments

in rzexc (Figures 6j-l) are relatively smallest, because this variable is not perturbed by design.

Both Tb and SM retrieval assimilation show similar spatial patterns in the standard deviations of srfexc increments (Fig-

ures 6g-i): the largest increments are found in the dry West and the smallest in the wetter East. The patterns in srfexc incre-5

ments agree with the patterns in the ensemble forecast uncertainty for this variable (not shown, but implied by the Tb andsoil

moisture uncertainty in Figures 4j-l). The srfexc values are small with small uncertainties, and the increments are thus similarly

bounded in both Tb and SM retrieval assimilation, yielding comparable spatial increment patterns.

Finally, Figure 7 compares spatially and temporally collocated wtot, srfexc and rzexc increments obtained with Tb_7ang

assimilation, Tb_fit assimilation and SM retrieval assimilation, i.e., the figure shows all pairs of increments available from two10

assimilation cases. The scatter plots show that the increments are usually small and unbiased. The correlation betweenthe

wtot increments (Figure 7a) obtained by Tb_7ang and Tb_fit assimilation is 0.7, and aligns with the expectation that either

Tb assimilation experiment roughly corrects for the same events. In contrast, the correlation between the increments obtained

by Tb_7ang and SM retrieval assimilation is only 0.3 (Figure7b). The figure is similar when comparing the Tb_fit and SM

retrieval assimilation (not shown). For srfexc and rzexc (Figures 7c-f), the increments are again similar for Tb_7ang and Tb_fit15

assimilation, but different for Tb and SM retrieval assimilation. For all soil moisture prognostic variables, Tb assimilation leads

to larger increments than SM retrieval assimilation. The different assimilation systems thus introduce distinct corrections to

the modeled soil moisture trajectories.

4.2.2 Discussion

In a nutshell, Eq. 1 expresses that the increments are given by the product of the Kalman gain and the innovations. To explain20

the differences in increment patterns between Tb and SM retrieval assimilation, we must therefore consider each system’s

innovations and Kalman gains. The relatively larger magnitude of the Tb innovations compared to the SM innovations (sec-

tion 4.1.2) contributes to the fact that the Tb assimilationresults in larger soil moisture increments. This is the caseeven

though the SM retrieval assimilation (unlike Tb assimilation) applies increments only to moisture variables and does not adjust

modeled temperatures.25

Furthermore, the Kalman gain matricesKk,i (Eq. 2) for Tb and SM retrieval assimilation are different because the two

systems employ different observation operatorshi(.) and different observation error covariancesRi. First, we note that the

non-linear inversion of Tb innovations to soil moisture increments, driven by the RTM in the observation operator, isnot

responsible for the larger wtot increments in the central grass and crop areas, because these areas exhibit low values for the

microwave roughness parameter (h <0.2, not shown) and a high sensitivity of Tb to soil moisture (as confirmed by the high30

forecast Tb errors in Figures 4j-k). That is, in these areas commensurately large Tb innovations (O-F) values result only in

small updates to soil moisture.

Second, the choice of a spatially uniform observation errorcovariance in the Tb assimilation experiment creates an imprint of

the innovation pattern in the increment pattern. Higher increments are found in the agricultural areas with large Tb innovation
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standard deviations (Figures 4d-e), because irrigation isnot modeled and vegetation is not accurately parameterized. Since the

filter is not set up to correct the latter, occasional excessive increments to soil moisture and temperature may be introduced.

Such shortcomings could be mitigated by a more sophisticated assignment of Tb observation (representation) errors.

For SM retrieval assimilation, the pattern of the SM innovation standard deviation (RMSD) is similarly visible in the in-

crements, with smaller values in the West and higher values in the East. Here again, the true spatio-temporal nature of the5

observation errors is not captured in the assigned observation error covariance and therefore propagated into the increments.

Note also that the 0.03 m3.m−3 SM innovation standard deviation (top 5 cm, Figure 4f) is translated to a standard deviation

of profile moisture increments of 0.002 m3.m−3 (Figures 6f rescaled by profile depth), but these incrementsare not equally

distributed, i.e. larger increments are found for surface soil moisture and smaller increments for the deeper profile.

4.3 In Situ Validation10

The above discussion highlights similarities and stark contrasts in how the Tb and SM retrieval assimilation systems operate.

In this section, we look at the effect of these differences onthe skill of the assimilation estimates versus in situ observations.

Figure 8 shows the RMSDub (section 2.4) for the model-only open loop (OL) simulation,and the change in RMSDub (sec-

tion 2.4) between the OL simulation and either the Tb_7ang orSM retrieval data assimilation (DA) experiment (∆RMSDub

= RMSDub(DA) - RMSDub(OL)) at individual SCAN and USCRN sites, for the period 1 July 2010 - 1 May 2015. The gray15

background shading indicates areas with modest topographic complexity and vegetation cover and where the satellite ob-

servations are most sensitive to surface soil moisture (details in De Lannoy and Reichle, 2016). The OL simulation has an

average RMSDub value of 0.054 m3.m−3 for surface soil moisture and 0.039 m3.m−3 for root-zone soil moisture. Looking

more closely, the RMSDub values are generally higher in the central and wetter eastern regions. In dry areas, the RMSDub is

limited, because the time series show a limited variabilityfor lack of much precipitation. On average, both assimilation exper-20

iments introduce improvements at about 80% of the sites for surface soil moisture, with spatially averaged∆RMSDub values

of -0.004 and -0.003 m3.m−3 for Tb_7ang and SM retrieval assimilation, respectively. (Spatial average metrics are computed

using a cluster-based algorithm, Section 2.4.) The improvements are also propagated to the root-zone soil moisture (65% of

sites improved) with smaller average∆RMSDub values of -0.002 and -0.001 m3.m−3, respectively.

The domain-average∆RMSDub values caused by assimilation are only barely statistically significant for surface soil mois-25

ture in ‘favorable’ areas, i.e. where the satellite observations are most sensitive to soil moisture (indicated with green back-

ground shading in Figure 8). The differences between Tb_7ang, Tb_fit or SM retrieval assimilation are not significant. The

assimilation contributes an average relative improvementin surface soil moisture of 7% of the OL RMSDub in favorable loca-

tions and 4% in non-favorable areas. Both Tb and SM retrievalassimilation show improvements in the central and eastern parts

of the US, but perform poorly in the western dry mountain areas, where the RMSDub for the OL was small and the assimila-30

tion may have introduced some additional noise. The Tb_7angassimilation shows the largest improvements in the centralUS,

whereas the SM retrieval assimilation shows the largest improvements in the southeastern part, for both surface and root-zone

soil moisture. It is possible that the Tb assimilation has a larger impact in the central US than the SM retrieval assimilation,

because irrigation events may be filtered in the SM retrievals (and perhaps partly assigned to vegetation opacity retrievals).
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The barplots in Figure 9 summarize the average anomR values for the open loop and data assimilation experiments, af-

ter stratifying all SCAN and USCRN sites into ‘favorable’ and ‘non-favorable’ categories (gray versus white background in

Figure 8). The figures show that the open loop anomR values forsurface soil moisture are similar for both the favorable and

non-favorable areas (0.51 and 0.50, respectively). However, data assimilation has a larger impact in favorable areas where

all assimilation schemes introduce significant improvements (anomR=0.63, 0.61 and 0.59 for Tb_7ang, Tb_fit and SM re-5

trieval assimilation). In non-favorable areas, the improvements are smaller but still significant (anomR=0.57, 0.56 and 0.54, for

Tb_7ang, Tb_fit and SM retrieval assimilation).

In the root-zone, data assimilation also improves the skillover the open loop simulations, but without statistical significance.

The open loop simulations yield anomR values of 0.56 and 0.50in favorable and non-favorable areas, respectively. In favorable

areas, the assimilation increases the anomR to 0.64, 0.64 and 0.62, for Tb_7ang, Tb_fit and SM retrieval assimilation. Innon-10

favorable areas, the skill improvement is limited and the anomR values are 0.54, 0.54 and 0.52, for Tb_7ang, Tb_fit and SM

retrieval assimilation. In any case, with assimilation, all anomR values exceed 0.5, meaning that the skill becomes better than

a climatological forecast (Brier skill score larger than 0).

Overall, the skill metrics are comparable for the Tb_7ang and Tb_fit assimilation (Figure 9). The results from SM retrieval

assimilation are slightly worse than those from Tb assimilation, which may indicate that Tb observations indeed still con-15

tain more information (Section 4.2) than the SM retrievals,which are implicitly filtered during the retrieval process.Yet, the

differences between the domain-averaged skill values of the various assimilation schemes are minimal. Furthermore, when run-

ning the assimilation scheme with different spatially constant Tb observation error parameters, the skill metrics only changed

marginally. This reveals that our skill metrics are relatively insensitive to uniform changes in the data assimilationparameters.

One reason for this is that the skill metrics are presented as(clustered) spatial averages, which compensate for large local dif-20

ferences. It is expected that the skill of our data assimilation systems can only be further improved by using a more localized (in

space and time) approach to optimizing the assimilated observations (e.g. L2 SM retrievals), and the forecast and observation

error parameters in the EnKF.

Finally, unlike Liu et al. (2011), the skill improvements inthis study are smaller when we correct the re-analysis precipi-

tation input with gauge-based precipitation data (Reichleand Liu, 2014). This and other recent improvements in the GEOS-525

modeling system make it increasingly challenging to obtainsignificant skill improvements from the assimilation of microwave

observations over areas for which high-quality forcing data are available, such as the domain studied here. The benefitsof

the microwave-based soil moisture assimilation system areexpected to be greater in areas with poorer ancillary inputsto the

modeling system. This aspect will be further investigated through the validation of the global SMAP L4_SM data product.

5 Conclusions30

The SMOS and SMAP satellite missions currently provide a wealth of L-band data to monitor large-scale soil moisture. A key

question is how to make the best use of these data in current land surface data assimilation systems. The L1 Tb data from these

missions are often complex, because of their multi-polarization and possibly multi-angle nature and their indirect connection

15



with soil moisture. In theory, the best approach is to directly assimilate Tb observations using a consistent data assimilation

system, but a correct global characterization of the Tb forecast and observation errors remains difficult. The L2 SM retrievals

are easily handled products, but their assimilation is impacted by errors introduced by inconsistent ancillary information in

the SM retrieval algorithm and the assimilation system. With further improvements in the assimilated retrievals and careful

selection of the ancillary data SM retrieval assimilation may become a coequal alternative.5

Three different data products from the SMOS mission are assimilated separately into the GEOS-5 land surface model to

improve estimates of surface and root-zone soil moisture and to study the workings of each assimilation system. The first

product consists of L1-based data of multi-angle, dual-polarization Tb observations at the bottom of the atmosphere. The

second product is a derived 40◦ Tb product that mimics SMAP data. The third product are the operational L2 SM retrievals.

Special care is taken during quality control and processingof the satellite observations prior to assimilation and within the10

assimilation system. The Tb assimilation uses a distributed EnKF with a temporally variable Tb bias mitigation, a system that

is also used for the SMAP L4_SM product (Reichle et al., 2016). The SM retrieval assimilation uses a similar system, but with

CDF-matching instead to eliminate the more stationary SM innovation biases. The study covers most of North America for the

period of 1 July 2010 - 1 May 2015.

The Tb and SM innovations show very different spatial patterns and the number of assimilated observations differs because of15

different needs for data screening and bias mitigation. Based on the average sensitivity of Tb to soil moisture, the magnitude of

the Tb innovations is comparably larger than that of the SM innovations, which may either introduce more information or more

error into the Tb assimilation system. The Tb and SM retrieval assimilation schemes also yield surprisingly different spatio-

temporal increment patterns, leading to very different adjustments to the modeled soil moisture trajectories. Despite these stark

differences, the various assimilation schemes yield soil moisture estimates with similar average skill metrics, computed from20

a set of 187 SCAN and USCRN sites across the US. Compared to in situ observations, both Tb and SM retrieval assimilation

yield anomaly correlations around or larger than 0.6 for both the surface and root-zone soil moisture in ‘favorable’ areas, where

the satellite data are expected to better represent the soilmoisture conditions, i.e. in areas with limited topographic complexity

and limited vegetation. The anomaly correlation with data assimilation is between 0.5 and 0.6 in non-favorable areas. The data

assimilation introduces significant improvements over themodel-only simulations for surface soil moisture everywhere, but25

the improvement are much larger in favorable areas. For the root zone, improvements are also found, but without statistical

significance. While no significant differences in domain-averaged skills can be found between the various assimilationsystems,

there are large local differences in performance between the Tb and SM retrieval assimilation which may be due to differences

in information content and screening of the observations, and differences in how close each of the systems is to an optimal

calibration of its model and observation error parameters.Therefore, we expect that soil moisture data assimilation systems30

can be further improved only if the systems manage to better simulate the spatial and temporal variations of the actual errors

in the model and the observations. Furthermore, the SM retrieval assimilation results will benefit from any future improvement

in the SM retrievals.

In line with our findings for the SMOS data assimilation, we anticipate that future versions of the Tb assimilation systemfor

the SMAP L4_SM product may benefit from an improved characterization of spatial model and observation error structures,35
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and from a better representation of some modeling components, such as e.g. vegetation. In addition, given that SMOS and

SMAP both provide L-band Tb observations, future assimilation systems should consider a joint assimilation of SMOS and

SMAP Tb data. In such a system, it is important to consider thedifferent instrument, Tb processing and Tb error characteristics

of the two L-band missions (De Lannoy et al., 2015).
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Figure 1. Flowchart of Tb assimilation. The forward simulation consists of (a) land surface model simulations and (b) Tb simulations on

the 36-km EASEv2 grid. The Tb simulations are subsequently (c) aggregated using weights based on an approximate antennapattern. The

resulting footprint-scale brightness temperature observation predictions are compared to (d) SMOS observations to calculate innovations

(O-F) at the footprint scale. (e) The 3D EnKF maps the footprint-scale innovations to the 36-km EASEv2 grid based on the modeled error

correlations between the footprint-scale Tb and the 36-km soil moisture and soil temperature state variables (per Equations 1 and 2).
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Innovations Increments
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Figure 2. Soil moisture and temperature analysis on 30 April 2015 at 12:00 UTC for the Tb_fit assimilation system. (a,b) Tb innovations (O-

F) at 40◦ incidence angle for H- and V-polarization respectively; (c,d) Increments in total profile water (∆wtot) and first soil layer temperature

(∆tp1), respectively; (e,f,g) Assimilation analyses of surface soil moisture (sfmc), root-zone soil moisture (rzmc) and soil temperature (tp1),

respectively.
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Innovations Increments
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Figure 3. Soil moisture analysis on 30 April 2015 at 12:00 UTC for the SMretrieval assimilation system. (a) SM innovations (O-f); (b)

Increments in total profile water (∆wtot); (c,d) Assimilation analyses of surface soil moisture (sfmc) and root-zone soil moisture (rzmc).
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Figure 4. Observation-space assimilation diagnostics for the period from 1 July 2010 to 1 May 2015. Number of assimilated observation

sets for (a) Tb_7ang assimilation, (b) Tb_fit assimilation,and (c) SM retrieval assimilation. Standard deviation of the (d) Tb innovations

from Tb_7ang assimilation, (e) Tb innovations from Tb_fit assimilation, and (f) SM innovations from SM retrieval assimilation. (g,h,i) same

as (d,e,f), but for normalized innovations (normO-F). Ensemble standard deviation of the (j) Tb forecast error for Tb_7ang assimilation, (k)

Tb forecast error for Tb_fit assimilation, and (l) surface soil moisture forecast error for SM retrieval assimilation. The titles show the spatial

mean (m) and standard deviation (s) across each map.
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Figure 5. Hovmüller plots showing the temporal evolution of longitudinally averaged innovations (O-F) for the period from 1 July2010 to

1 May 2015. (a) Tb_7ang innovations, averaged over H- and V-polarization, ascending and descending swaths and over 7 incidence angles.

(b) SM innovations, averaged over ascending and descendingswaths.
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Figure 6. Statistics of the increments, calculated for the period from 1 July 2010 to 1 May 2015. Number of increments per day for (a)

Tb_7ang assimilation, (b) Tb_fit assimilation, and (c) SM assimilation. Temporal standard deviation of total profile water (wtot) increments

for (d) Tb_7ang assimilation, (e) Tb_fit assimilation, and (f) SM assimilation. (g,h,i) same as (d,e,f) but for srfexc increments. (j,k,l) same as

(d,e,f) but for rzexc increments. (m,n,o) same as (d,e,f) but for catdef increments. The titles show the spatial mean (m)and standard deviation

(s) across each map.

27



∆wtot [mm]
(a) R=0.72 (b) R=0.33

-50 0 50
Tb_7ang DA

-50

0

50

T
b_

fit
 D

A

 wtot [mm], R=0.72

-50 0 50
Tb_7ang DA

-50

0

50

S
M

 D
A

 wtot [mm], R=0.33

1

10 2

10 4

∆srfexc [mm]
(c) R=0.81 (d) R=0.41

-5 0 5
Tb_7ang DA

-5

0

5

T
b_

fit
 D

A

 srfexc [mm], R=0.81

-5 0 5
Tb_7ang DA

-5

0

5

S
M

 D
A

 srfexc [mm], R=0.41

1

10 2

10 4

∆rzexc [mm]
(e) R=0.77 (f) R=0.33

-20 0 20
Tb_7ang DA

-20

0

20

T
b_

fit
 D

A

 rzexc [mm], R=0.77

-20 0 20
Tb_7ang DA

-20

0

20

S
M

 D
A

 rzexc [mm], R=0.33

1

10 2

10 4

Figure 7. Spatially and temporally collocated analysis increments from (a,c,e) Tb_fit assimilation and (b,d,f) SM retrieval assimilation versus

same from Tb_7ang assimilation for (a,b) profile-integrated wtot increments, (c,d) srfexc increments, and (e-f) rzexcincrements. Increments

are from the period 1 July 2010 to 1 May 2015. The plot range is limited to the maximum value of 10 times the standard deviation in either

experiment, and divided into 100 even sample bins. Colors indicate the number of sample points within each 1.5 mm bin, 0.13 mm bin

or 0.44 mm for∆wtot, ∆srfexc and∆rzexc, respectively. R is the spatio-temporal Pearson correlation coefficient between the individual

increments from two assimilation experiments.
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Figure 8. Unbiased RMSD (RMSDub) for the model-only open loop (OL) simulation, and change inunbiased RMSD (∆RMSDub) due to data assimilation at

(circles) SCAN and (triangles) USCRN sites for (a,b,c) surface and (d,e,f) root-zone soil moisture. The skill of (a,d) the open loop simulation is the reference value

for the changes in skill due to (b,e) Tb_7ang and (c,f) SM retrieval assimilation. Statistically significant changes aremarked by larger symbols (e.g. southeastern

US for SM retrieval assimilation). Metrics are calculated across 3-hourly time steps during the period from 1 July 2010 to 1 May 2015. The titles indicate the spatial

mean (∆)RMSDub across all sites with clustering (31 clusters). The gray background shading marks areas with limited vegetation and topographic complexity

based on model parameters.
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Figure 9. Performance of open-loop and data assimilation experiments in terms of anomaly correlations (anomR) calculated across 3-hourly

analyses and forecast time steps from 1 July 2010 to 1 May 2015, for (a) surface and (b) root-zone soil moisture. The bars show skill metrics

averaged over sites in either favorable or non-favorable areas, where favorable areas refer to the areas indicated by the gray background

shading in Figure 8. The variable N is the total number of SCANand USCRN sites considered for each category, with the number of clusters

in parentheses. The error bars reflect cluster-averaged 95%confidence intervals.
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