10

15

20

Assimilation of SMOS Brightness Temper aturesor Soil Moisture
Retrievalsinto a Land Surface M oddl

Gabriélle J. M. De Lanndyand Rolf H. Reichlé

KU Leuven, Department of Earth and Environmental Sciendeserlee, Belgium
2NASA Goddard Space Flight Center, Global Modeling and Adation Office, Greenbelt, Maryland

Correspondenceto: Gabriélle J. M. De Lannoy (gabrielle.delannoy@kuleuvej.b

Abstract.

Three different data products from the Soil Moisture Ocealiny (SMOS) mission are assimilated separately into the
Goddard Earth Observing System Model, version 5 (GEOS-fiyprove estimates of surface and root-zone soil moisture.
The first product consists of multi-angle, dual-polariaatbrightness temperature (Th) observations at the bottbtheo
atmosphere extracted from Level 1 data. The second prodwectdierived SMOS Tb product that mimics the data &t 40
incidence angle from the Soil Moisture Active Passive moissiThe third product is the operational SMOS Level 2 surface
soil moisture (SM) retrieval product. The assimilationteys uses a spatially distributed ensemble Kalman filter {Eniith
seasonally varying climatological bias mitigation for T&samilation, whereas a time-invariant cumulative dengityction
matching is used for SM retrieval assimilation. All assatitbn experiments improve the soil moisture estimates @vetpto
model-only simulations in terms of unbiased root-mearasgdifferences and anomaly correlations during the pelridaly
2010 to 1 May 2015 and for 187 sites across the United Stagpedilly in areas where the satellite data are most sensiti
to surface soil moisture, large skill improvements (e.gréase in anomaly correlation by 0.1) are found in the serfamil
moisture. The domain-average surface and root-zone skiliios are similar among the various assimilation expenisie
but large differences in skill are found locally. The obsgion-minus-forecast residuals and analysis incremewesat large
differences in how the observations add value in the Th and@&hNeval assimilation systems. The distinct patterndebe
diagnostics in the two systems reflect observation and nerdets patterns that are not well captured in the assign&dEn
error parameters. Consequently, a localized optimizatfdahe EnKF error parameters is needed to further improveri®\b

retrieval assimilation.

1 Introduction

Microwave satellite missions are collecting large amouwrftdata for soil moisture monitoring. It is not yet clear, rexer,
how this wealth of data can be used in the most efficient waybtaio global estimates of soil moisture that can improve,
e.g., weather prediction, flood and drought modeling, adjtical yield monitoring, or landslide predictions. Manych ap-
plications require knowledge of soil moisture in a deepgetawhere water is extracted by plant roots or stored toepuff
drainage and runoff, not the approximately 5 cm surfacerlaygvhich the current L-band<(1.4 GHz) microwave missions
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are sensitive. Moreover, L-band satellite observationg tzafairly coarse spatial resolution (about 40 km) and asdlatvle
only at particular overpass times, typically once everydas for a given location. The challenge is thus to deriviesofile
moisture information at all times and locations throughadegsimilation, that is, through the merger of satellitecobetions
with information from a dynamical land surface model.

The Soil Moisture Ocean Salinity (SMOS; Kerr et al., 20103sion and the Soil Moisture Active Passive (SMAP; Entekleahl.,
2014) mission are the two L-band observatories currentitiog in space with the specific aim to measure global soilsmo
ture. These missions supply Level 1 (L1) brightness tenpezgTb) data, Level 2 (L2) surface soil moisture (SM) mt&ls
and derived Level 3 (L3) products. The SMAP mission also gles an operational Level 4 Surface and Root-Zone Soil
Moisture product (L4_SM; Entekhabi et al., 2014; Reichlalet2016) that is based on the assimilation of L1 SMAP Thb data
into Goddard Earth Observing System Model, version 5 (GBEPB&Nd surface simulations. Alternatively, a soil moistur
assimilation system could ingest L2 SM retrievals instefddlolTb observations.

In this paper, we compare Th and SM retrieval assimilatiangua historical (5-year) record of SMOS observations over
North Americain an assimilation system similar to that & 8MAP L4_SM system. The main differences between the SMAP
L4 SM system and the experiments in this paper pertain tdifferences in assimilated data, to the difference in gpati
resolution of the resulting soil moisture products (36 knthia current paper, see below; 9 km for the L4 _SM product), and
to differences in meteorological forcing input (re-an@ymeteorology in the current paper; operational forecaseorology
corrected with gauge-based precipitation in the L4_SM potd

It is more difficult to assimilate Tb observations than SMriesals because brightness temperatures are only inlgirect
connected with the land surface variables of interest aad'thdata come in multiple polarizations. SMOS Tb obserwatio
are even more complex because of their multi-angular naBome of the SMOS L1 Tb data complexity is reduced in the
L3 SMOS Tb product and further addressed in Munoz-Sabatdr €014) and De Lannoy et al. (2015), who prepared the
L1 SMOS Tb data for assimilation into (quasi-)operationgtems. Successful examples of SMOS Thb assimilation using
a variety of simplifying assumptions are illustrated in\ges et al. (2015); De Lannoy and Reichle (2016); Kornelsah e
(2016). These studies use a radiative transfer model (RdMynhamically invert Tb information into corrections to neded
soil moisture estimates. In this paper, we advance thealyadiistributed multi-angle and dual-polarization Thiagtation
of De Lannoy and Reichle (2016) in the GEOS-5 land surfaceahwoilh a new version of Th observations and an improved
spatial support and forward simulation of the Th observagicedictions. Moreover, to mimic SMAP Th assimilation weal
assimilate dual-polarization single-angle®’48MOS Tb observations after fitting the multi-angle Tb data (annoy et al.,
2015).

A key disadvantage of a system that assimilates SM retdasathat the SM retrievals may be produced with inconsis-
tent ancillary data, such as for example soil temperatunellsited by another model than that used in the assimilatien s
tem. The current SMOS SM retrievals by themselves have beemdfto be skillfull (Al-Yaari et al., 2014; Fascetti et al.,
2016), and research is ongoing to further improve them (Rode-Fernandez et al., 2015; Ye et al., 2015; Zhao et al520
van der Schalie et al., 2016; Wigneron et al., 2016). The fisbese SMOS SM retrievals has been manifold, e.g. to derive
enhanced estimates of precipitation (Wanders et al., 2Qa@8ter et al., 2016), to derive off-line root-zone soil morg es-
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timates (Ford et al., 2014), or to off-line downscale theadathigher-resolution soil moisture estimates (Piles.e&l14).
Other studies have assimilated SMOS SM retrievals on-titeland surface models to possibly downscale the retseaadl
consistently improve soil moisture and other land surfac@bles (Ridler et al., 2014; Zhao et al., 2014; Lievend.eR@15),
leading to e.g. improved estimates of floods (Alvarez-Garret al., 2015) and crop growth (Chakrabart et al., 20dhis
paper, we use a spatially distributed assimilation systeimteégrate SMOS SM retrievals into the GEOS-5 land surfagdeh
with the aim to infer improved surface and root-zone soil shaie estimates. Our study mainly differs from the above SMO
SM retrieval studies in the continental and multi-year sadlthe experiments, in the advanced quality screening patibs
support of the SM retrieval observations, and in the consparbetween Th and SM retrieval assimilation

To assess the potential of Tb and SM retrieval assimilafiea years of SMOS Tb data or SM data are assimilated into the
GEOS-5 land surface model, using a careful data qualityrobahd data preprocessing. The observations are assbueidte
a realistic antenna pattern, containing 50% of the signalgoan a circular area with 20 km radius. Special attentiopak
to large-scale patterns of random and persistent forendstlaservation errors in the different assimilation systeand to the
impact of the different assimilation schemes on the skibfface and root-zone soil moisture estimates. Sectiors&ites
the SMOS observations, the various modeling componendstranin situ validation data. Section 3 highlights the téchin
differences between the various assimilation schemessectibn 4 presents the results.

2 Dataand Model
2.1 SMOSTb Observations

The Microwave Imaging Radiometer with Aperture SyntheBIERAS) onboard SMOS provides multi-angle Tb data, with a
nominal (3 dB) spatial resolution of 43 km and a global cogerapproximately every 3 days (at either 0600 or 1800 local
time, i.e., ascending or descending half-orbits, seplgafEhe most recent version (v620) of the SCLF1C Tb data edus
Observations are retained for further processing onlyr(ahé alias-free zone, (b) when the data are not contamirmsted
point source radio frequency interference (RFI) or taierdof, (c) when the values fall within the range 100-320 KJ &)
when valid data are available for both horizontal (H) andigal (V) polarization. The flag for snapshot RFI is not aated,
because it is currently too sensitive (pers. comm. R. ONvdgerr). After the initial screening, we correct the L1 Thiwas

for geometric and Faraday rotation and for atmospheric afidated extraterrestrial radiation (De Lannoy et al., 3Qising
Modern-Era Retrospective Analysis for Research and Appiios (MERRA) version 2 (MERRAZ2; Bosilovich et al., 2015)
background fields. The resulting Tb values at the bottome#timosphere are then binned into 41 evenly spaced angnfar bi
with the center angle ranging from 2€hrough 60. Next, the data are regridded from the 15 km Discrete Glohial (®GG)

on which they are posted to the 36-km cylindrical Equal-A8ealable Earth (EASEv2) grid (Brodzik et al., 2014), and the
data are screened for excessive sub-36-km heterogengtyasstandard deviation 7 K), which is indicative of open water
bodies or RFI. Tb values for a given 36-km EASEV2 grid cell ewenputed only if at least two valid DGG observations are
available.
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From these preprocessed Th data, two datasets are derivassimilation: (i) a 7-angle Tb dataset, with incidencelasg
0=[30°, 35°, 40¢, 45°, 5@, 55°, 60°] (De Lannoy et al., 2013), and (ii) a fitted Th dataset (De L@anet al., 2015) from which
only the Th at 40 incidence angle is used to mimic the single-angle naturd/ B Tb observations. We refer to these datasets
as Tb_7ang and Tb_fit, respectively. Tb_fit data are onlyrrethwhen the fitting error is less than 5 K and a minimum of 15
data points contributes to the entire fitted angular sigeatith at least 5 data points above and below theid€idence angle
and at least 10 data points in the incidence angle intentaldsn 30 and 50

2.2 SMOSSM Retrieval Observations

The SMOS SM retrievals are extracted from the SMUDP2 proaltb2. Because this product version ends in early May
2015, we limit our study period to 1 July 2010 - 1 May 2015. (Téprocessed v620 version of the SM retrievals was not yet
available at the time we conducted the experiments.) The Sk&@ieval algorithm simultaneously retrieves soil maistand
vegetation opacity, by fitting multi-angle Tb observati@i$oth H- and V-polarization with simulations of the L-baid
crowave Emission of the Biosphere Model (L-MEB, Wigneromlet2007). Based on the quality information provided withi
the SMOS products, the SM data are retained only if: (a) &ileneed variables fall within a realistic range (0-0.6.m—3 for

soil moisture), (b) the SM uncertainty estimated by the SM&8eval algorithm is less than 0.1%°mm~3, (c) the RFI proba-
bility for both H- and V-polarization is less than 0.3, andl &M retrieval flags are not raised for high topographic canxity,
high urban fraction, high open water fraction, sea ice, @daseas, and high total electron content. Further scnggor frozen
temperature and snow is based on GEOS-5 model output (3€8d. After the regridding from the 15-km DGG grid to the
36-km cylindrical EASEV2 grid, the data are screened foresgive sub-36-km heterogeneity (spatial standard dewiati

0.2 m>.m~3). SM values for a given 36-km EASEV2 grid cell are computely dnat least two valid DGG observations are
available.

2.3 Soil Moisture and Brightness Temperature Modeling

The land data assimilation system used here employs the &ECfchment land surface model (CLSM; Koster et al., 2000),
along with an L-band tau-omega radiative transfer modeMRDe Lannoy et al., 2013, 2014b). The CLSM simulations use
GEOS-5 parameters (Mahanama et al., 2015; De Lannoy eDaKa2 similar to those used in the SMAP L4_SM product, and
are forced with 1/2x2/3° GEOS-5 forcing data from MERRA (Rienecker et al., 2011)nairly interpolated to the model
grid. The study domain covers most of North America, with tloethwestern corner at (128/, 55°N) and the southeastern
corner at (60W, 24°N).

The computational elements are the 36-km EASEV2 grid c€lis.land model computation time step is 7.5 minutes, and
output is saved at 3-hourly intervals. At each grid cell, sheface soil moisture content (sfmc, 0-5 cm) and root-zaile s
moisture content (rzmc, 0-100 cm) are diagnosed based er firognostic variables: catchment deficit (catdef), moote
excess (rzexc), and surface excess (srfexc). Similadystitface (skin) temperature is diagnosed from the progniastd
surface temperatures across the saturated (tcl), unat(teR), and wilting (tc4) sub-grid areas. Finally, thé samperature
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(tpl for the topmost layer) is diagnosed from the prognagtizind heat content (ghtl for the top layer). An overviewhaf t
model variables is given in Reichle et al. (2015); Koster e2000) and Ducharne et al. (2000).

The L-band tau-omega RTM converts the 36-km CLSM soil moésand temperature simulations into 36-km L-band Tb
estimates when the soil is not frozen or covered with snovemnprecipitation is less than 10 mm/day, and where the open
water fraction is less than 5% percent. For each 36-km gildkay parameters of the RTM are estimated by minimizing Eq
B.1 in De Lannoy et al. (2014b), using a 5-year history of SM@30 Tb data, and computing observation predictions (see
below) at the footprint scale. Specifically, all 36-km griglls within one footprint area are initially assigned thensaset of
RTM parameters, while the dynamic background informat®sgatially variable. For each 36-km grid cell, the calilomat
estimates a spatially homogeneous set of RTM parametethidoentire associated footprint area and the resultingegalu
are assigned to the central (and typically dominant) 36-kieh cell only. For the forward calculation of the Th obsefiwat
predictions during the data assimilation, all 36-km pixedse a unique set of RTM parameters. The RTM is calibratetyal
5 years of available Th data and aims at minimizing climajwal biases. The data assimilation is performed over theesa
years and aims at addressing random (or short term) erroesmBthodology is very similar to that in De Lannoy and Reichl
(2016), but with the difference that, here, the RTM does imukate atmospheric contributions (because the Th obSens
are now a priori corrected for atmospheric contributioms) the observation predictions are now spatially aggregageng a
realistic (but approximate) antenna pattern.

For the computation of differences between SMOS obsemaiimd footprint-scale model simulations in the RTM cali-
bration and for the computation of the “observation-mifugcast” (O-F) residuals in the assimilation system {sacB.1,
Figure 1), the modeled 36-km soil moisture or Th simulatiaresaggregated to the footprint scale by spatial convaiwtiith
weights given by an approximation of the SMOS antenna pati®e also refer to these spatially aggregated model e st
‘observation predictions’. The SMOS antenna pattern is@gmated by a two-dimensional Gaussian function coniej5i0%
of the signal within a circle with a radius of 20 km. The sintidas outside a radius of 40 km are discarded in the comutati
of the footprint-scale estimates. The number of 36-km EAS&nd cells included in one footprint area varies with ladié.
The circular footprint shape is preserved everywhere orglblee. In contrast, the shape of the EASEV2 grid cells ptefkc
on the globe varies with the latitude, with an aspect ratib af 30 (north/south) latitude, larger than 1 towards the poles and
less than 1 towards the equator. Therefore, at higher da#tunultiple EASEV2 grid cells with the same latitude andotes
longitudes belong to one circular footprint, whereas talsahe equator, several EASEV2 grid cells with the same todgi
and various latitudes contribute to the footprint. Oveltake difference between single 36-km simulations and faatyscale
values is small, but the number of valid Th observation mtsths at the footprint scale is reduced, because of theased
likelihood of finding a 36-km grid cell with a non-negligibbeater fraction, snow amount, or precipitation, within teetprint

area.
2.4 In Situ Soil Moisture Data and Metrics

The assimilation results are evaluated using independesiti measurements of surface and root-zone soil moistana f
two sparse networks across the US: the US Natural Resounrese@ation Service Soil Climate Analysis Network (SCAN;
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Schaefer et al., 2007) and the US Climate Reference NetidBICRN; Diamond et al., 2013; Bell et al., 2013). Surface soil
moisture measurements are taken at approximately 5 cm.deptit-zone soil moisture measurements are a weightedgevera
of measurements at 5, 10, 20, and 50 cm depth, with respetéights of 0.1, 0.1, 0.27 and 0.53. Given the difference in
spatial support between these point measurements and-ra §6dded model and assimilation results, the skill isrgifeed

in terms of anomaly time series correlation (anomR), andas#d root-mean-square difference (RM$DEntekhabi et al.,
2010), using all 3-hourly forecast and analysis time stefise period 1 July 2010-1 May 2015, excluding times when tlile s
is frozen (top layer soil temperature274.15 K) or snow covered (snow water equivater@t kg/n?). The anomaly correlation

is based on anomaly time series obtained by subtracting &yealr smoothed climatology from both the simulations and
situ observations. Note that the assimilation and opep-$trmulations have, by design, the same climatologicahbdity; the
assimilation only corrects for random errors. Metrics ahglg site are only calculated if at least 200 data pointsasadable.
Skill metrics across an entire network are calculated bgtehing the sites within SCAN and USCRN to avoid that densely
sampled areas dominate the validation metrics and to emeatistic confidence intervals (De Lannoy and Reichle, 2016
The number of clusters is estimated a priori after presugilsin average cluster radius df, 3vhich approximately reflects
the autocorrelation length of large-scale topographicraeteorological phenomena, or of large-scale soil moigpatéerns
(Vinnikov et al., 1996). The actual size of the clusters tieatllts from the clustering algorithm varies strongly iacp.

3 DataAssimilation
3.1 Distributed Ensemble Kalman Filter

For both Th and SM retrieval assimilation, a spatially dtted (or three-dimensional, 3D) ensemble Kalman filtetKE;
Reichle and Koster, 2003; De Lannoy and Reichle, 2016) id.uBkis system simultaneously assimilates multiple spatia
distributed observation sets, using horizontal and v&rgcror covariance structures, to update the simulatibeaeh 36-km
model grid cell. The details of the Th assimilation system explained in De Lannoy and Reichle (2016) and differ only in
that the observations are here associated with a spatailghle antenna pattern reaching out to a radius of 40 km.

During the model integration, a data assimilation step fvated every 3 hours. All the SMOS observatignscollected
within 1.5 hours of the analysis timiare assimilated simultaneously to update the forecaamfég at locationk as follows:
3 =307+ Kialy! - 977, (1)
with j denoting the ensemble membkKT, ; the Kalman gainy{ the perturbed observatiorgsf;_ =h; (ﬁcf‘) the observation
predictions, andh; (.) the observation operator mapping the simulated land seiffagables to observed quantities. Bias in the
observation-minus-forecast residuals is addressedtoribe analysis (section 3.2). The ensemble is created byrperg the
model forcing, the model forecasts and the observatiomsi¢se3.3). The Kalman gain is calculated as:

Ky = Cov(%;,,97) [Cov(3i,97) +Ri] 2)
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whereCov(%;,;,¥; ) is the (sample) error covariance (across the ensemblegbettie forecasted land surface state and the
forecasted Tb or SM. Similarl¥yov(y; ,y; ) is the (sample) error covariance of the Th or SM forecasts Ranis the Tb or
SM observation error covariance. The Kalman gain is idahtar all ensemble members.

In the case of SM retrieval assimilation, the observatiogratrh; (.) performs the spatial aggregation of soil moisture sim-
ulations from the 36-km grid cells to the satellite footpyin the case of Th data assimilation, the observation dpeirzcludes
both the RTM and the spatial aggregation of gridded Tb sitiaria to the footprint (section 2.3). For the Tb_7ang adsitioin,
one observation set at locatiancontains Tb observations at a maximum of 7 angles and botméiVgpolarization, i.e., up
to 14 individual observationg, ,.; € y.,;. The subscripi refers to the polarization and incidence angle of the imtligi Th
observations. In the middle part of the swath, all 14 obdema are typically available, whereas slightly fewer alvagons
are available in the outer portions of the swath, where tlsenfations with lower incidence angles are missing.

For the Tb_fit assimilation, one observation set usuallytaios 2 observations, i.e. both H- and V-polarization ThGt 4
incidence angle. For the SM retrieval assimilation, eacseolation set contains only one observation. In all cabesplbser-
vation vectory{ collects multiple perturbed observation sets that araapatlistributed within an influence radius of 1.25
around the model grid cell, and each observation vectytj has a forecasted counterp&tft‘ . After removal of the persis-
tent errors (section 3.2) from the O-F residuals (or innioves), the incrementh[yf —5'?_] are calculated and applied
to the state variables. Figure 1 illustrates the forwarcugition from 36-km gridded land surface simulations to foitt-
scale observation predictions of Th, and the downscalingefootprint-scale Th innovations to 36-km gridded landate
increments.

The subset of prognostic variables updated in Eq. 1 diffepedding on the assimilation experiment. The state veotor f
Tb assimilation ¥ = [catdef, srfexc, rzexc, tcl, tc2, tc4, ght)Jincludes prognostic variables related to soil moistureé an
soil temperature (section 2.3), because Th observatiensyadefinition sensitive to surface soil moisture and terafpee. In
contrast, the state vector for SM retrieval assimilatierr([catdef, srfexc, rzexé]) contains only model prognostic variables
related to soil moisture, because the SM retrievals do noy direct information about the soil temperature. The cele
updates will be propagated to all other variables withinlémel surface modeling system through energy and water egeha
between various soil layers and land-vegetation-atmasgwenpartments. For the discussion of the soil moistunements
we will focus on the total profile water increments\tot=Asrfexc+ArzexcAcatdef) in units of kg/rh (that is, mm of water
equivalent). This quantity is easily understandable and gimplifies the discussion.

Figure 2 and Figure 3 illustrate the concept for Th assimoiteind SM retrieval assimilation, respectively. Figuragizshow
swaths of footprint-scale bias-corrected Tbh_fit innovasiimapped onto the 36-km EASEV2 grid), for H- and V-polariraat
40 incidence angle from the single-angle Tb assimilationeystThe Th innovations are then transformed into soil moéstu
and temperature increments using Eq. 1. Where Tb innowwataoe warm, the soil water is reduced and the temperature is
increased. Figure 2c shows the total profile water incresm@mitot and Figure 2d shows increments to the first soil layer
temperaturé\tpl. Increments to the surface temperature prognostiahi@s (section 2.3\tc1, Atc2, Atc4) are similar (not
shown). Finally, the increments are added to the forecdkis to create spatially complete analysis maps of suréiack
root-zone soil moisture, as well as surface temperaturesaihtemperature (Figures 2e-g).
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Similarly, Figure 3a shows the SM innovations from the SMiegtl assimilation at the same time as in Figure 2. Areas
with positive (wet) SM innovations in the SM retrieval askition roughly correspond with negative (cold) Tb innovas
in the Tb assimilation system (Figures 2a-b ). Note that thlerbars for Tb and SM throughout the manuscript are chosen
according to the rule of thumb that a 2-3 K change in Tb cowadp to a 0.01 rhm~2 change in soil moisture, but keep
in mind that the relationship between Th and SM is non-lireeat varies with time, location and incidence angle. Next, th
SM innovations are converted to soil moisture incremediwtot; Figure 3b); no increment to surface or soil tempetsr
calculated. Figures2c and 3b show that the Th and SM ret@egimilation systems produce wtot increments with sonagwh
different large-scale patterns, which is further discdssesection 4.2. Finally, Figures 3c-d show the resultingaste and
root zone soil moisture analysis fields obtained by addiegribrements to the model forecast fields. For both the Th &hd S
retrieval assimilation systems, the analysis incremeletsdossmoothly into the forecast fields, that is, the analysps do not
reveal sharp spatial edges that would reveal the geometheadssimilated satellite swaths. Further details abasiffitjure
are discussed in section 4.1.

3.2 Tband SM Innovation Bias

To limit the long-term biases between Th observations amdilsitions, the RTM was calibrated (section 2.3). The 5-year
average absolute bias between SMOS Tb and forecasted Tbus 2K across the domain. In general, slightly warm model
biases are found in the boreal zones and cold model biasetheveentral part of the US (not shown). But larger seasohal T
biases remain, primarily due to systematic errors in theetemtitemperature and vegetation. The seasonally varyimg<€l
tological Tb bias is removed prior to data assimilation facle angle, polarization and overpass time separately,sasided

in De Lannoy and Reichle (2016). The Tb innovation biasesaleulated over the period 1 July 2010 - 1 May 2015 for each
individual 36-km grid cell without spatial sampling.

The CLSM soil moisture was not calibrated for lack of globlbservations that would support such an effort and because
modeled soil moisture does not necessarily represent sistare as observed in the field anyway (Koster et al., 2008ljke
biases in Tb innovations, the biases in the SM innovatioamaore stationary and do not depend on seasonal temperature
variations. Therefore, the SM innovation biases are notcted seasonally, but instead cumulative distributiorcfion (CDF)
matching between the observations and simulations is peefd (Reichle and Koster, 2004) to reconcile the differsrine
long-term mean, variance and higher moments, as in eagligeval assimilation studies (Liu et al., 2011; Draperlet212).

The observed and simulated SM CDFs are computed for theeestitidy period are computed for 1 July 2010 - 1 May 2015 at
each 36-km grid cell individually.

3.3 Random Forecast and Observation Error

The imposed ensemble forecast perturbations for Tb and 8Mval assimilation are identical to those of De Lannoy Reichle
(2016) and not repeated here. The total observation emodatd deviation for SMOS Tbh_7ang is set to 6 K, which yields
near-optimal assimilation diagnostics on average actasglbbe. However, the diagnostics are not necessarilyopanal

in individual regions (De Lannoy and Reichle, 2016). Theuinpbservation error standard deviation for SM retrievals i
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0.04 m¥.m~3, in line with the soil moisture accuracy requirement for teeent SMOS and SMAP missions. The SM re-
trieval error standard deviation is rescaled following @BF-matching of the SM observations and results in an efect
mean error standard deviation of 0.02.m=3, with larger values in the wetter eastern part, which exgiaihigher temporal
variability in soil moisture simulations, and lower valuesthe drier, western part of the study domain (not shownjlln
cases, the spatial observation error correlation lengil2®’. In case of multi-angle Th_7ang assimilation, interangetaor
correlations are imposed as in De Lannoy and Reichle (2016).

Observation errors in Th data or SM retrievals are a comisinaif instrument error and representation error (Cohn;7199
van Leeuwen, 2015). The 6 K Tb error consists of radiometriareof about 4 K for individual incidence angles (instrurhen
error), plus 4.5 K representation inaccuracies (in ouresyst.e. based on the near-optimal 6 K observation errorjaleerors
in the RTM, the spatial aggregation, or other discrepariéseen Tb observations and forecastsy(8Z+ 4.52). For Th_fit
observations, the instrument error may be slightly redwmedpared to that for Th_7ang after the angular smoothinigthlsu
representation error remains similar. SM observationsagometrieval errors due to errors in the RTM and in the inpliTb
observations, as well as representation error due totleegnherently different nature of simulated and obseregdsoisture
(Koster et al., 2009). In either case, the representatiam depends on the soil moisture and temperature dynamitsteould
ideally be modeled as function of time and location, but weseha constant input observation error standard deviatitiris
paper for simplicity. For SM retrieval assimilation, sonpasal error variability is introduced after rescaling ind with the
CDF-matching.

3.4 Tbor SM Retrieval Assimilation

In our experiments, we do not expect the SMOS Tbh and SM retressimilation systems to yield the same results. During
the SMOS L2 SM retrieval optimization, the Th data are useestonate surface soil moisture anaetation opacity, given

soil temperature background fields provided by the Europzarter for Medium-Range Weather Forecasts (ECMWF), and
look-up parameter information that differs significantigrh the NASA GEOS-5 land data assimilation system. In cahtoar
SMOS Tb assimilation scheme estimates soil moisturetemperature, given vegetation information. Furthermore, the data
screening is necessarily different for Th data and SM nedtse and the approach for bias correction is intentiondiffigrent.
The soil moisture information extracted during the L2 mtal process or Th assimilation is thus by design expectdxt to
different. Finally, differences in the Th and SM retrievasanilation results could also be due to differences in hioseeach

of the systems is to an optimal calibration of its model anskeotation error parameters.
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4 Results
4.1 Observation and Forecast Diagnostics
4.1.1 Number of Assimilated Observations

Let us revisit Figures 2a-b and 3a to further highlight soriffeidences between the various assimilated SMOS obsenati
First, the swath width for Tb innovations is much narrowerthhat of the SM innovations because the assimilated Tb ob-
servations are strictly limited to the alias-free zone itthe full swath while the assimilated SM retrievals araimtd in

the extended alias-free zone. Furthermore, the swath widtie Th_fit innovations is narrower than that of the mukgke
assimilation (not shown) because the fitting requires saffialata at a range of incidence angles and lower angle dataoa
available at the outer edges of the swaths. Note that SMAW¢es useable Th measurements over a much wider swath (not
shown).

The different swath widths result in different numbers obelvation sets assimilated in each of the three experiments
Figures 4a-c show the average number of assimilated oligemsets (defined in section 3.1) over the study period 1 July
2010 - 1 May 2015. The number of observation sets is smathest €very 4 days) for Th_fit and largest for SM retrievals (one
every 2 days), because the swath width is narrowest for Tanditvidest for SM retrievals. The northern areas and theanest
mountain ranges have fewest observations, because datatarsed when the soil is frozen or snow covered. Th obsenati
are not assimilated in many small areas scattered aroursditig domain where more than 5% of open water is found in the
footprint, based on the underlying GEOS-5 land mask. FoBtfieetrievals, the screening for excessive5%) water fraction
is only based on the product science flags, not on GEOS-5ation. Data gaps in the SM retrievals are found in the waster
mountain ranges and in the vegetated southeastern pag &f3hThe data coverage is also different for Tb and SM retfiev
assimilation because the availability of the climatol@gioformation needed for the innovation bias correcti@c{®ns 3.2)
is different for the Th and SM retrieval observations.

4.1.2 Actual Observation and Forecast Errors

The long-term mean observation-minus-forecast diffeesr(©-F, or innovations) are unbiased by design (section Bz
Hovmuiller plots for two data assimilation cases in Figure®eal that the temporal pattern in area-averaged biasaslis f
random for the Th_7ang assimilation case (very similar forfit assimilation, not shown), whereas it shows a slightseal
pattern in the SM retrieval assimilation case. This smdfedence is not surprising, given that the Tb innovationshig
seasonally corrected, whereas the SM innovation bias is not
The time series standard deviation of the innovations, if)ahe root-mean-square-difference (RMSD) between SMOS

observations and simulations, represents the total oéisenvand forecast error that is present in the assimilagisiem
(Desroziers et al., 2005). The spatial patterns of thisrhagc are very different for Tb and SM retrieval assimdati Fig-
ures 4d-e show values of about 7.4 K for Tb_7angand Th_fit, iger values (exceeding 10 K) in the central plains andglo
the Mississippi, where agricultural practices, such aialg crop rotation and irrigation, are observed by SMOSn&hs in-
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terannual variations in vegetation are not simulated byrtbdel or provided as input to the model. Along the East caadira
the Southeast, the temporal standard deviation in the atians is low (2-3 K): forests show a limited interannualiability,
and under dense vegetation Tb is only marginally sensitig®il moisture and depends primarily on vegetation charetics
and (physical) temperature.

The standard deviation in the SM innovations in the SM resdi@ssimilation (Figure 4f) is 0.03 fm~—3, showing larger
values in the wetter vegetated East and smaller values oiridie\West, with the exception of the West coast. Surprigireyen
though altering crop rotation and irrigation are not sintedg the values over the central agricultural area are mbtdnithan
elsewhere in the domain. This good agreement between SMORtsiklals and our simulations is partly due to the bounded
nature of SM (unlike Tb) and the CDF-matching between both.

Our current system has a Tb sensitivity to soil moisture afuali.3 K/0.01 m.m~3 across the domain, averaged over all
incidence angles and polarizations. A standard deviati&M innovations of 0.03 fim~2 would thus roughly correspond to
a standard deviation in Tb innovations of about 4 K, but iadtee find 7.4 K across the study domain in the Th assimilation
systems. The Tb observations thus either have a comparigblgrtobservation (incl. representation) error or theytaommore
information than the SM retrievals. At this point, we antiie that the higher Tb innovations in the central plains mdigate
that the Tb observations contain more unfiltered infornmatibout soil moisture (e.qg. irrigation) and that the Th obaton
error is higher due to shortcomings e.g. in the vegetatiodeting (representation error).

4.1.3 Actual versus Simulated Observation and Forecast Errors

In a near-optimal filtering system, that is, a system thatamily simulates the actual model and observation erroesstandard

deviation of thenormalized innovations[y . ; — 5/;1;]A/\/[RK71; + Cov(¥y,..i»¥.:)]ax is close to unity (Reichle et al., 2002).
Figures 4g-i show that, averaged across the domain (andsaatibangles and polarizations for Th assimilation), thetrin
is 1.14, 1.11 and 1.23 [-] for Tb_7ang, Th_fit and SM retrieasgimilation. The figure thus suggests that, on average, the
simulated errors in the assimilation system only slightiderestimate the actual errors. But the figures also showthba
metric varies strongly across the domain and exhibits véfgrdnt spatial patterns for Tb and SM retrieval assinolat For
Thb_7ang and Tb_fit assimilation, values are much larger thanthe central area and much smaller than 1 in the eastern
forested area. This indicates that the assigned obsemvatio forecast errors are severely underestimated in tlieatanea
and overestimated in the eastern forested area. Overdpiesan be assumed that the assigned representation gardof
observation error) should be smaller. The Tb forecast asralready very small (see below), because the Tb unceytaint
only marginally sensitive to soil moisture uncertaintieslar dense vegetation. For SM retrieval assimilation, e is
reversed, with the largest values in the eastern half of timeadn, suggesting that here the simulated errors underatstithe
actual errors. Values less than 1 are found in most of theanebialf of the domain, where the SM retrieval assimilatieass
to overestimate the actual errors.

To further interpret the actual and simulated error magi&g, Figures 4j-k show the ensemble spread in the Tb fosecast

(that is, the simulated forecast error standard deviatw()‘ov(y;’i,y;’i)]M. Averaged across all angles and polarizations
A, the values are around 2 K when averaged across the entirainlobarger values (3 K) are found in the central and dry
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western part, and smaller values (1 K) in the wetter eastern phis pattern is similar for the SM ensemble spread irSikle
retrieval assimilation system (Figure 4l). In dry climattfge root-zone soil moisture often drops to the wilting poiemains
stagnant and no longer replenishes the surface. Thissesuticreased sensitivity of the surface soil moisture tdyvbations
in meteorological conditions, and thus in higher uncetya@stimates for surface soil moisture in dry climates.

Given that the Tb observation errm is set to 6 K for each individual angle, polarization and gess time in the
Tb assimilation, the approximate total assigned obsemwatnd forecast error is 6.1 K/62 + 22) across the study domain,
6.7 K (/62 + 32) in the central area, and 6 K/2 + 12) in the eastern Appalachian area. Because the assignec/atise
error is uniformly set to 6 K, the spatial variability in thetal simulated errors is thus too small compared to the aetuars
(Figures 4d-e), which ranges from more than 10 K in the céatea to around 2-3 K in the eastern Appalachian area.

The SM observation error (after rescaling) is 0.02mm 3 on average across the domain, with higher values in thereaste
part and lower values in the western part, with the excepfdvexico, California and West Oregon where higher obséowat
errors are found (section 3.3). This general pattern isrsexkin the SM forecast errors. Combined, the spatial viitiaim
the SM observation and forecast errors is not capturingghead variability in the actual errors (Figure 4f), whigalds to an
overestimation of the errors in the West and an underestmat the East.

4.2 Analysisincrements
4.2.1 Spatio-Temporal Patterns

The Kalman filter translates footprint-scale innovatiam® i36-km increments. Because of the spatially distrib8£) fil-
tering (section 3.1), the number of increments in Figures Gaabout 1.4 times the number of assimilated observagts s
(Figures 4a-c). Many areas with missing observations (senlation predictions) are filled through interpolation &xtrap-
olation. With SM retrieval assimilation, there is almoseancrement per day.

Figures 6d-f show the temporal standard deviations in tbreiments for the total soil profile watekwtot=Asrfexc+Arzexc-
Acatdef). The area averagegtandard deviation) values are &8.7 mm for Th_7ang assimilation, 5:8.5 mm for Th_fit
assimilation and 421.9 mm for SM retrieval assimilation. After scaling for theafiable) profile depth, the area-average
values in volumetric soil moisture units aet + 1.7 x 10~2 m3.m~3 for Tb_7ang assimilatior2.9 4+ 1.7 x 10~3 m3.m=3 for
Tb_fit assimilation an@.3 & 1.9 x 10~3 m*.m~3 for SM retrieval assimilation.

The individual components of the wtot increments are shawFigures 6g-i for the surface excess increments, Figures 6j
for the root zone excess increments, and Figures 6m-o facdteiment deficit increments. The patterns in wtot incrésen
are dominated by catdef increments, and they generallyctafie patterns in the respective innovations standarcatiens
(Figures 4d-f), which are very different for Tb and SM retekassimilation. The catdef increments pertain to thereiptiofile
depth (which typically ranges between 2 m and 3 m) and thesupnably have a relatively small impact on the upper 5 cm
soil layer (surface soil moisture): the domain-averagedmtade of 5.4 mm, 4.9 mm and 3.5 mm for catdef incrementsdue t
Tb_7ang, Tb_fit or SM retrieval assimilation, respecti@ligures 6m-o), would linearly scale to about 0.1 mm for a Ssoih
layer. This is a rough approximation: in reality the part afdef that contributes to the 5 cm soil moisture cannot beutzted
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without computing the entire balanced profile. Yet, the agpnate 0.1 mm is considerably less than the 0.6, 0.4 and h4 m
for the corresponding srfexc increments (Figures 6g-ijctviare directly applied to the upper 5 cm soil layer. Theémeents
in rzexc (Figures 6j-1) are relatively smallest, because tariable is not perturbed by design.

Both Th and SM retrieval assimilation show similar spatiatterns in the standard deviations of srfexc incrementg (Fi
ures 6g-i): the largest increments are found in the dry Wedtthe smallest in the wetter East. The patterns in srfexeinc
ments agree with the patterns in the ensemble forecasttamagrfor this variable (not shown, but implied by the Th awil
moisture uncertainty in Figures 4j-1). The srfexc valuessmall with small uncertainties, and the increments are similarly
bounded in both Th and SM retrieval assimilation, yieldiogparable spatial increment patterns.

Finally, Figure 7 compares spatially and temporally cakec wtot, srfexc and rzexc increments obtained with Thg7an
assimilation, Tb_fit assimilation and SM retrieval assatidn, i.e., the figure shows all pairs of increments avégl&éiom two
assimilation cases. The scatter plots show that the inarenage usually small and unbiased. The correlation betilezn
wtot increments (Figure 7a) obtained by Tb_7ang and Tb_git@ktion is 0.7, and aligns with the expectation that @ith
Th assimilation experiment roughly corrects for the sanmengs: In contrast, the correlation between the incremdsttsreed
by Th_7ang and SM retrieval assimilation is only 0.3 (Figdb@. The figure is similar when comparing the Tb_fit and SM
retrieval assimilation (not shown). For srfexc and rzexg(Fes 7c-f), the increments are again similar for Tb_7aryEb_fit
assimilation, but different for Tb and SM retrieval assatitn. For all soil moisture prognostic variables, Th adlsition leads
to larger increments than SM retrieval assimilation. THéedent assimilation systems thus introduce distinct ections to
the modeled soil moisture trajectories.

4.2.2 Discussion

In a nutshell, Eq. 1 expresses that the increments are givérelproduct of the Kalman gain and the innovations. To érpla
the differences in increment patterns between Th and SNevetrassimilation, we must therefore consider each system
innovations and Kalman gains. The relatively larger magfetof the Tb innovations compared to the SM innovations-(sec
tion 4.1.2) contributes to the fact that the Th assimilatiesults in larger soil moisture increments. This is the casn
though the SM retrieval assimilation (unlike Th assim@ali applies increments only to moisture variables and doeadjust
modeled temperatures.

Furthermore, the Kalman gain matricks, ; (Eq. 2) for Tb and SM retrieval assimilation are differentaese the two
systems employ different observation operatess) and different observation error covariand®s First, we note that the
non-linear inversion of Th innovations to soil moisturerements, driven by the RTM in the observation operatonais
responsible for the larger wtot increments in the centrakgrand crop areas, because these areas exhibit low vatube fo
microwave roughness parametér<0.2, not shown) and a high sensitivity of Tb to soil moistuae ¢onfirmed by the high
forecast Tb errors in Figures 4j-k). That is, in these aremsmensurately large Th innovations (O-F) values resuly aml
small updates to soil moisture.

Second, the choice of a spatially uniform observation exoeariance in the Th assimilation experiment creates animaf
the innovation pattern in the increment pattern. Higherénents are found in the agricultural areas with large Thwation
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standard deviations (Figures 4d-e), because irrigationtisnodeled and vegetation is not accurately parametei®&ede the
filter is not set up to correct the latter, occasional exeessicrements to soil moisture and temperature may be intedl
Such shortcomings could be mitigated by a more sophistidsignment of Th observation (representation) errors.

For SM retrieval assimilation, the pattern of the SM innavMatstandard deviation (RMSD) is similarly visible in the in
crements, with smaller values in the West and higher valndgke East. Here again, the true spatio-temporal natureeof th
observation errors is not captured in the assigned obsemvatror covariance and therefore propagated into theements.
Note also that the 0.03 m~3 SM innovation standard deviation (top 5 cm, Figure 4f) ims$iated to a standard deviation
of profile moisture increments of 0.002°m~3 (Figures 6f rescaled by profile depth), but these incremamsiot equally
distributed, i.e. larger increments are found for surfakrsoisture and smaller increments for the deeper profile.

4.3 |n Situ Validation

The above discussion highlights similarities and starkiemts in how the Tb and SM retrieval assimilation systeneraie.

In this section, we look at the effect of these differenceshenskill of the assimilation estimates versus in situ obestons.
Figure 8 shows the RMS[) (section 2.4) for the model-only open loop (OL) simulatiand the change in RMS] (sec-
tion 2.4) between the OL simulation and either the Th_7ang§Miretrieval data assimilation (DA) experime@XRMSD,,;,

= RMSD,;(DA) - RMSD,,;(OL)) at individual SCAN and USCRN sites, for the period 1yJ2010 - 1 May 2015. The gray
background shading indicates areas with modest topograggmplexity and vegetation cover and where the satellite ob
servations are most sensitive to surface soil moistureaildénh De Lannoy and Reichle, 2016). The OL simulation has an
average RMSD, value of 0.054 m.m~3 for surface soil moisture and 0.039>m~3 for root-zone soil moisture. Looking
more closely, the RMS[) values are generally higher in the central and wetter eastgiions. In dry areas, the RM$Dis
limited, because the time series show a limited variabiititlack of much precipitation. On average, both assinolagxper-
iments introduce improvements at about 80% of the sitesuidase soil moisture, with spatially averagddRMSD,,;, values

of -0.004 and -0.003 /im~2 for Th_7ang and SM retrieval assimilation, respectivedpdtial average metrics are computed
using a cluster-based algorithm, Section 2.4.) The imprearés are also propagated to the root-zone soil moistus @5
sites improved) with smaller averageRMSD,,;, values of -0.002 and -0.001%xm~3, respectively.

The domain-averagdARMSD,,;, values caused by assimilation are only barely statisyicagjnificant for surface soil mois-
ture in ‘favorable’ areas, i.e. where the satellite obsgowg are most sensitive to soil moisture (indicated witeegr back-
ground shading in Figure 8). The differences between Thg,78D_fit or SM retrieval assimilation are not significant.eTh
assimilation contributes an average relative improvernmesiirface soil moisture of 7% of the OL RMS$Pin favorable loca-
tions and 4% in non-favorable areas. Both Tb and SM retrssimilation show improvements in the central and eastnts p
of the US, but perform poorly in the western dry mountain sye#ere the RMS[, for the OL was small and the assimila-
tion may have introduced some additional noise. The Tb_aasignilation shows the largest improvements in the cebigal
whereas the SM retrieval assimilation shows the largestorgments in the southeastern part, for both surface ariezow
soil moisture. It is possible that the Tb assimilation haargér impact in the central US than the SM retrieval asstioita
because irrigation events may be filtered in the SM retrie(aadd perhaps partly assigned to vegetation opacity vetsie
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The barplots in Figure 9 summarize the average anomR vatudbd open loop and data assimilation experiments, af-
ter stratifying all SCAN and USCRN sites into ‘favorable’daimon-favorable’ categories (gray versus white backgcbim
Figure 8). The figures show that the open loop anomR valuesuidace soil moisture are similar for both the favorable and
non-favorable areas (0.51 and 0.50, respectively). Howvelaga assimilation has a larger impact in favorable areaerev
all assimilation schemes introduce significant improvetméanomR=0.63, 0.61 and 0.59 for Th_7ang, Th_fit and SM re-
trieval assimilation). In non-favorable areas, the imgmoents are smaller but still significant (anomR=0.57, Orgb&54, for
Tb_7ang, Tb_fit and SM retrieval assimilation).

In the root-zone, data assimilation also improves the ekiir the open loop simulations, but without statisticahgfigance.
The open loop simulations yield anomR values of 0.56 andid.&Vorable and non-favorable areas, respectively. larkvle
areas, the assimilation increases the anomR to 0.64, 0db@.68, for Th_7ang, Th_fit and SM retrieval assimilationném-
favorable areas, the skill improvement is limited and theraR values are 0.54, 0.54 and 0.52, for Tb_7ang, Tb_fit and SM
retrieval assimilation. In any case, with assimilatiohaalomR values exceed 0.5, meaning that the skill becomésr lleain
a climatological forecast (Brier skill score larger than 0)

Overall, the skill metrics are comparable for the Tb_7and) 8o _fit assimilation (Figure 9). The results from SM retakv
assimilation are slightly worse than those from Tb assitioifa which may indicate that Tb observations indeed stih-c
tain more information (Section 4.2) than the SM retrievalsich are implicitly filtered during the retrieval proce¥et, the
differences between the domain-averaged skill valuessofdinious assimilation schemes are minimal. Furthermdreun-
ning the assimilation scheme with different spatially dans Th observation error parameters, the skill metricy chbinged
marginally. This reveals that our skill metrics are relalinsensitive to uniform changes in the data assimilgparameters.
One reason for this is that the skill metrics are presentédlastered) spatial averages, which compensate for |aigg Hif-
ferences. Itis expected that the skill of our data assiitedystems can only be further improved by using a moreilpedlin
space and time) approach to optimizing the assimilatedreatens (e.g. L2 SM retrievals), and the forecast and alagen
error parameters in the EnKF.

Finally, unlike Liu et al. (2011), the skill improvementstinis study are smaller when we correct the re-analysis jpreci
tation input with gauge-based precipitation data (Reielnie Liu, 2014). This and other recent improvements in the 650
modeling system make it increasingly challenging to obs&nificant skill improvements from the assimilation of noiwave
observations over areas for which high-quality forcingadate available, such as the domain studied here. The beokfits
the microwave-based soil moisture assimilation systenegpected to be greater in areas with poorer ancillary infoutse
modeling system. This aspect will be further investigatedugh the validation of the global SMAP L4 _SM data product.

5 Conclusions

The SMOS and SMAP satellite missions currently provide althex L-band data to monitor large-scale soil moisture. A ke
question is how to make the best use of these data in currahslaface data assimilation systems. The L1 Tb data frosethe
missions are often complex, because of their multi-podaidn and possibly multi-angle nature and their indirectregction

15



10

15

20

25

30

35

with soil moisture. In theory, the best approach is to dlyeassimilate Th observations using a consistent data #dasion
system, but a correct global characterization of the Thdaseand observation errors remains difficult. The L2 SMeeals
are easily handled products, but their assimilation is ictgh by errors introduced by inconsistent ancillary infation in
the SM retrieval algorithm and the assimilation system.hfitrther improvements in the assimilated retrievals arréfcd
selection of the ancillary data SM retrieval assimilatioaynfbecome a coequal alternative.

Three different data products from the SMOS mission areralsded separately into the GEOS-5 land surface model to
improve estimates of surface and root-zone soil moistucetarstudy the workings of each assimilation system. The first
product consists of L1-based data of multi-angle, duakpohtion Th observations at the bottom of the atmosphdne. T
second product is a derived 4Ub product that mimics SMAP data. The third product are therafional L2 SM retrievals.
Special care is taken during quality control and proceseinipe satellite observations prior to assimilation anchimitthe
assimilation system. The Th assimilation uses a distrib&teKF with a temporally variable Tb bias mitigation, a systihat
is also used for the SMAP L4_SM product (Reichle et al., 20IB SM retrieval assimilation uses a similar system, bth wi
CDF-matching instead to eliminate the more stationary Shdwation biases. The study covers most of North Americafer t
period of 1 July 2010 - 1 May 2015.

The Tb and SM innovations show very different spatial pag@nd the number of assimilated observations differs tseoaiu
different needs for data screening and bias mitigationeBas the average sensitivity of Th to soil moisture, the ntage of
the Th innovations is comparably larger than that of the Shbuations, which may either introduce more information aren
error into the Tb assimilation system. The Th and SM rettiegaimilation schemes also yield surprisingly differguaitso-
temporal increment patterns, leading to very differentisipents to the modeled soil moisture trajectories. Despése stark
differences, the various assimilation schemes yield soibtare estimates with similar average skill metrics, cated from
a set of 187 SCAN and USCRN sites across the US. Compared ito iobservations, both Th and SM retrieval assimilation
yield anomaly correlations around or larger than 0.6 fohttbé surface and root-zone soil moisture in ‘favorableaarevhere
the satellite data are expected to better represent thee@ture conditions, i.e. in areas with limited topograptomplexity
and limited vegetation. The anomaly correlation with dasirailation is between 0.5 and 0.6 in non-favorable arelas.data
assimilation introduces significant improvements overrioglel-only simulations for surface soil moisture everyvehdut
the improvement are much larger in favorable areas. Fordbezone, improvements are also found, but without stesikti
significance. While no significant differences in domaimraged skills can be found between the various assimilatistems,
there are large local differences in performance betweefilthand SM retrieval assimilation which may be due to difiess
in information content and screening of the observationd, differences in how close each of the systems is to an optima
calibration of its model and observation error parametengrefore, we expect that soil moisture data assimilatjatess
can be further improved only if the systems manage to bdttarlate the spatial and temporal variations of the actualrer
in the model and the observations. Furthermore, the SMexetrassimilation results will benefit from any future impement
in the SM retrievals.

In line with our findings for the SMOS data assimilation, wéicpate that future versions of the Tb assimilation system
the SMAP L4_SM product may benefit from an improved char&aé&on of spatial model and observation error structures,
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and from a better representation of some modeling compensuth as e.g. vegetation. In addition, given that SMOS and
SMAP both provide L-band Th observations, future assingitasystems should consider a joint assimilation of SMOS and
SMAP Tb data. In such a system, it is important to considediffierent instrument, Tb processing and Tb error charésttes

of the two L-band missions (De Lannoy et al., 2015).

5 Acknowledgements. The NASA Soil Moisture Active Passive (SMAP) mission sugpdrthis study. The NASA Center for Climate Sim-

ulation (NCCS) at the Goddard Space Flight Center providedputational resources through the NASA High-End Compu(iHEC)
Program.

17



10

15

20

25

30

35

References

Al-Yaari, A., Wigneron, J.-P., Ducharne, A., Kerr, Y., WagnW., Lannoy, G. D., Reichle, R., Bitar, A. A., Dorigo, W.idRaume, P., and
Mialon, A.: Global-scale comparison of passive (SMOS) acti/a (ASCAT) satellite based microwave soil moistureiesfals with soil
moisture simulations (MERRA-Land), Remote Sensing of Envinent, 152, 614-626, 2014.

Alvarez-Garreton, C., Ryu, D., Western, A. W., Su, C.-H.o®@rW. T., Robertson, D. E., and Leahy, C.: Improving operai flood
ensemble prediction by the assimilation of satellite saisture: comparison between lumped and semi-distributedraes, Hydrology
and Earth System Sciences, 19, 1659-1676, 2015.

Bell, J., Palecki, M., Baker, C., Collins, W., Lawrimore, leeper, R., Hall, M., Kochendorfer, J., Meyer, T., Wilsdn,and Diamond, H.:
U.S. climate reference network soil moisture and tempegatbservations, Journal of Hydrometeorology, 14, 977-2883.

Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Drap€., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, ®/argan, K., Chao,
W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., ColldA., Firth, S., Labow, G., Partyka, G., Pawson, S., RealeSthubert, S. D., ,
and Suarez, M.: MERRA-2: Initial Evaluation of the Climatech. rep., National Aeronautics and Space AdministratBoddard Space
Flight Center, Greenbelt, Maryland, USA, 2015.

Brodzik, M. J., Billingsley, B., Haran, T., Raup, B., and 8& M.: Correction: Incremental but Significant Improvertgefor Earth-Gridded
Data Sets, ISPRS International Journal of Geo-InformaBpi154-1156, 2014.

Chakrabart, S., Bongiovanni, T., Judge, J., Zotarelliahd Bayer, C.: Assimilation of SMOS Soil Moisture for Quéyitig Drought Impacts
on Crop Yield in Agricultural Regions, IEEE journal of sefled topics in applied earth observations and remote sensji8$67—-3879,
2014.

Cohn, S.: An Introduction to Estimation Theory, Journaltef Meteorological Society of Japan, 75, 257-288, 1997.

De Lannoy, G. and Reichle, R.: Global Assimilation of Multitgle and Multi-Polarization SMOS Brightness TemperatOteservations
into the GEOS-5 Catchment Land Surface Model for Soil Mestastimation, Journal of Hydrometeorology, 17, 669—-6%11,62

De Lannoy, G., Reichle, R., and Pauwels, V.: Global Calibrabf the GEOS-5 L-band Microwave Radiative Transfer Mooler Non-
Frozen Land Using SMOS Observations, Journal of Hydrometegy, 14, 765—785, http://dx.doi.org/10.1175/JHM-R-092.1, 2013.

De Lannoy, G., Koster, R., Reichle, R., Mahanama, S., and Qiu An Updated Treatment of Soil Texture and Associated relyiic
Properties in a Global Land Modeling System, Journal of Awdes in Modeling Earth Systems, 6, 23, 2014a.

De Lannoy, G., Reichle, R., and Vrugt, J.: Uncertainty Qifimation of GEOS-5 L-Band Radiative Transfer Model Parametusing
Bayesian Inference and SMOS Observations, Remote Serfditnyioonment, 148, 146-157, doi:10.1016/j.rse.2014083, 2014b.

De Lannoy, G., Reichle, R., Peng, J., Kerr, Y., Castro, Rm K&., and Liu, Q.: Converting Between SMOS and SMAP Levelriliness
Temperature Observations Over Nonfrozen Land, IEEE Gepseiand Remote Sensing Letters, 12, 1908-1912, 2015.

Desroziers, G., Berra, L., Chapnik, B., and Poli, P.: Diginof observation, background and analysis-error stzist observation space,
Q. Journal of the Royal Meteorological Society, 131, 338863 2005.

Diamond, H., Karl, T., Palecki, M., nad J. Bell, C. B., Legder, Easterling, D., Lawrimore, J., Meyers, T., Helfert, l@oodge, G., and
Thorne, P.: U.S. climate reference network after one deofdperations: status and assessment, BAMS, 94, 485-498, 20

Draper, C. S., Reichle, R. H., Lannoy, G. J. M. D., and Liu, ssimilation of passive and active microwave soil moistteievals,
Geophysical Research Letters, 39, L04 401, 2012.

Ducharne, A., Koster, R., Suarez, M., Stieglitz, M., and Kuni.: A catchment- based approach to modeling land supiaeesses in a
GCM, Part 2, Parameter estimation and model demonstrati@eophys. Res., 105, 24823-24838, 2000.

18



10

15

20

25

30

35

Entekhabi, D., Reichle, R. H., Koster, R. D., and Crow, W.Performance Metrics for Soil Moisture Retrievals and Agglion Require-
ments, Journal of Hydrometeorology, 11, 832—840, 2010.

Entekhabi, D., Yueh, S., O'Neill, P., and Kellogg, K.: SMARktbook, JPL 400-1567, Pasadena, CA, USA, 2014.

Fascetti, F., Pierdicca, N., Crapolicchio, L. P. R., and bas#Sabater, J.: A comparison of ASCAT and SMOS soil moisteigevals over
Europe and Northern Africa from 2010 to 2013, Internatiai@irnal of Applied Earth Observation and Geoinformatids), 35142,
2016.

Ford, T., Harris, E., and Quiring, S. M.: Estimating root emoil moisture using near-surface observations from SM@8rol. Earth Syst.
Sci., 18, 139-154, 2014.

Kerr, Y., Waldteufel, P., Wigneron, J.-P., Delwart, S., 6ali~, Boutin, J., Escorihuela, M.-J., Font, J., Reul, Nwit@er, C., Juglea, S.,
Drinkwater, M., Hahne, A., Martin-Neira, M., and MecklemguS.: The SMOS Mission: New Tool for Monitoring Key Elemsif the
Global Water Cycle, Proceedings of the IEEE, 98, 666—-681020

Kornelsen, K. C., Davison, B., and Coulibaly, P.: Applicatiof SMOS Soil Moisture and Brightness Temperature at HigedRution With
a Bias Correction Operator, IEEE JSTAR, 9, 1590-1605, 2016.

Koster, R., Guo, Z., Yang, R., Dirmeyer, P., Mitchell, K.dadhuma, M.: On the Nature of Soil Moisture in Land Surface Medéournal of
Climate, 22, 4322—-4335, 2009.

Koster, R., Brocca, L., Crow, W., Burgin, M., and De Lannoy; Brecipitation Estimation Using L-Band and C-Band Soilidore Re-
trievals, Water Resources Research, in review, 2016.

Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, Md &umar, P.: A catchment-based approach to modeling laffdciprocesses in
a general circulation model 1. Model structure, Journal eb@hysical Research, 1050, 24 809-24 822, 2000.

Lievens, H., Tomer, S., Bitar, A. A, Lannoy, G. D., Drusch,,Mumedah, G., Hendricks-Franssens, H.-J., Kerr, Y., RapRoundy, J.,
Vereecken, H., Walker, J., Wood, E., Verhoest, N., and PEyWe SMOS soil moisture assimilation for improved stredow simulation
in the Murray Darling Basin, Australia, Remote Sensing ofiEonment, 168, 146162, 2015.

Liu, Q., Reichle, R. H., Bindlish, R., Cosh, M. H., Crow, W, @e Jeu, R., Huffman, G. J. M. D. G. J., and Jackson, T. J.: ®h&ibu-
tions of precipitation and soil moisture observations ® $kill of soil moisture estimates in a land data assimitagstem, Journal of
Hydrometeorology, 12, 750-765, 2011.

Mahanama, S. P., Koster, R., Walker, G., Tackacs, L., RejdRl, Lannoy, G. D., Liu, Q., Zhao, B., and Suarez, M.: Landiitary
Conditions for the Goddard Earth Observing System Modesigar5 (GEOS-5) Climate Modeling System - Recent UpdatesCatd
File Descriptions, Tech. rep., National Aeronautics andcgpAdministration, Goddard Space Flight Center, Gre¢nldieryland, USA,
2015.

Munoz-Sabater, J., de Rosnay, P., Jiminnez, C., Isakseant.Albergel, C.: SMOS Brightness Temperature AngulasBloCharacteriza-
tion, Filtering, and Validation, IEEE transactions on ggesce and remote sensing, 52, 5827-5839, 2014.

Piles, M., Sanchez, N., Vall-llossera, M., Camps, A., M&#-Fernandez, J., Martinez, J., and Gonzaliez-GambawW, Bownscaling
Approach for SMOS Land Observations: Evaluation of Higls®etion Soil Moisture Maps Over the Iberian Peninsula, BEEESTAR, 7,
3845-3857, 2014.

Reichle, R. H. and Koster, R.: Assessing the impact of haticerror correlations in background fields on soil moistestimation, Journal
of Hydrometeorology, 4, 1229-1242, 2003.

Reichle, R. H. and Liu, Q.: Observation-Corrected Preatfmih Estimates in GEOS-5, Tech. rep., National Aeronawitd Space Admin-
istration, Goddard Space Flight Center, Greenbelt, Magjl&JSA, 2014.

19



10

15

20

25

30

35

Reichle, R. H., Walker, J. P., Houser, P. R., and Koster, RERtended versus Ensemble Kalman filtering for land dataraisgion, Journal
of Hydrometeorology, 3, 728-740, 2002.

Reichle, R. H., Koster, R.: Bias reduction in short recorfdsatellite soil moisture, Geophysical Research Lettets]| 39501, 2004.

Reichle, R. H., Lucchesi, R. A., Ardizzone, J., Kim, G.-Kmith, E., and Weiss, B.: Soil Moisture Active Passive (SMAR$sion Level 4
Surface and Root Zone Soil Moisture (L4_SM) Product Speatifica Document, Tech. rep., NASA Goddard Space Flight CeBG&IAO
Office Note No. 10 (Version 1.4), 2015.

Reichle, R. H., De Lannoy, G. J. M., Liu, Q., Ardizzone, J.e8hF., Colliander, A., Conaty, A., Crow, W., Jackson, Tmikall, J., Koster,
R., and Smith, E. B.: Soil Moisture Active Passive Mission BM Data Product Assessment (Version 2 Validated RelebBe3A
GMAO Office Note, No. 12 (Version 1.0), 2016.

Ridler, M., Madsen, H., Sitsen, S., Bircher, S., and FerisRol Assimilation of SMOS-derived soil moisture in a fulltegrated hydrological
and soil-vegetation-atmosphere transfer model in We®ermark, Water Resources Research, 50, 8962—8981, 2014.

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R.,Baister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., de%, L., Kim, G.-K.,
Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., ®4, Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Ow€enh, Pawson, S.,
Pegion, P., Redder, C. R., Reichle, R., Robertson, F. RdiRkidA. G., Sienkiewicz, M., and Woollen, J.: MERRA - NASA¥%odern-Era
Retrospective Analysis for Research and Applicationsiridwof Climate, 24, 3624-3648, doi:10.1175/JCLI-D-1108, 2011.

Rodriguez-Fernandez, N., Aires, F., Richaume, P., KerPNXgent, C., Kolassa, J., Cabot, F., Jimenez, C., Mahmdéodand Drush, M.: Soil
moisture retrieval using neural networks: Application {d@S, IEEE Transactions on Geoscience and Remote Sensing9%3-6007,
2015.

Schaefer, G. L., Cosh, M. H., and Jackson, T. J.: The USDARdBResources Conservation Service Soil Climate Analysiswdrk (SCAN),
Journal of Atmospheric and Oceanic Technology, 24, 2073#22007.

van der Schalie, R., Kerr, Y., Wigneron, J., Rodriguez-Badez, N., Al-Yaari, A., and Jeu, R.: Global SMOS Soil MoistRetrievals from
The Land Parameter Retrieval Model, International Joushalpplied Earth Observation and Geoinformation, 45, 12&-2016.

Vinnikov, K., Robock, A., Speranskaya, N., Schlosser, &al8s of temporal and spatial cariability of midlatitudd swisture, Journal of
Geophysical Research, 101, 7163—-7174, 1996.

van Leeuwen, P. J.: Representation errors and retrievdilseiar and nonlinear data assimilation, Q. Journal of thgaR®eteorological
Society, 141, 1612-1623, 2015.

Wanders, N., Pan, M., and Wood, E.: Correction of real-tiatelte precipitation with multi-sensor satellite obsgions of land surface
variables, Remote Sensing of Environment, 160, 206—-2215.20

Wigneron, J., Kerr, Y., Waldteufel, P., Saleh, K., Escoelay M.-J., Richaume, P., Ferrazzoli, P., de Rosnay, Pn&uR., Calvet, J., Grant,
J., Guglielmetti, M., Hornbuckle, B., Matzler, C., Pellaril., and Schwank, M.: L-band Microwave Emission of the Bluese (L-MEB)
Model: Description and calibration against experimentdhdets over crop fields, Remote Sensing of Environmenf,689~655, 2007.

Wigneron, J., Jackson, T. J., O'Neill, P., et al.: Modellthg passive microwave signature from land surfaces: awesigecent results and
application to the SMOS & SMAP soil moisture retrieval aifoms, Remote Sensing of Environment, in review, 2016.

Ye, N., Walker, J., Guerschman, J., Ryu, D., and Gurney, Rnding water effect on soil moisture retrieval from L-bgassive microwave
observations, Remote Sensing of Environment, 169, 232-2015.

Zhao, L., Yang, K., Qin, J., Chen, Y., Tanga, W., Lud, H., arah, Z.-L.: The scale-dependence of SMOS soil moistureracgland its
improvement through land data assimilation in the centifz¢fn Plateau, Remote Sensing of Environment, 152, 345288 4.

20



Zhao, T., Shi, J., Bindlish, R., Jackson, T. J., Kerr, Y. Hos@8, M. H., Cui, Q., Li, Y., Xiong, C., and Che, T.: RefinemeftSMOS
Multiangular Brightness Temperature Toward Soil MoistRetrieval and Its Analysis Over Reference Targets, JSTARBR89-603,
2015.

21



Forward simulation Innovations and increments

(c) . N
:ggreg.atlop Simulated (d) SMOS Radiometer
pproximate Brightness temperature Brightness temperature
antenna pattern %
weighting a
€
(b) = {GED g
RTM 3
Brightness 7
temperature 4—/
o) P ? LT T T (e) 3D EnkF y
7 7 7 ) Q
CLSIM Update CLSM S
Soil temperature Soil temperature ]
Soil moisture AV Soil moisture A ANNANY b
Vegetation v
(]
e
LT 77 2

Figure 1. Flowchart of Th assimilation. The forward simulation catsiof (a) land surface model simulations and (b) Tb simateation
the 36-km EASEV2 grid. The Tb simulations are subsequenjlaggregated using weights based on an approximate anpattean. The
resulting footprint-scale brightness temperature olagem predictions are compared to (d) SMOS observationsltutate innovations
(O-F) at the footprint scale. (e) The 3D EnKF maps the foatgstale innovations to the 36-km EASEV2 grid based on theeteal error
correlations between the footprint-scale Tb and the 36-Gim®oisture and soil temperature state variables (per gl and 2).
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Figure 2. Soil moisture and temperature analysis on 30 April 2015 &3ARTC for the Th_fit assimilation system. (a,b) Th innowat (O-
F) at 40 incidence angle for H- and V-polarization respectivelydjdéncrements in total profile wateAfvtot) and first soil layer temperature
(Atpl), respectively; (e,f,g) Assimilation analyses of aod soil moisture (sfmc), root-zone soil moisture (rzma) soil temperature (tpl),

respectively.
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Figure 3. Soil moisture analysis on 30 April 2015 at 12:00 UTC for the 8Nfieval assimilation system. (a) SM innovations (O-B) (
Increments in total profile water\wtot); (c,d) Assimilation analyses of surface soil moist¢gsfmc) and root-zone soil moisture (rzmc).
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Figure 4. Observation-space assimilation diagnostics for the gefriom 1 July 2010 to 1 May 2015. Number of assimilated obseama
sets for (a) Th_7ang assimilation, (b) Th_fit assimilatiand (c) SM retrieval assimilation. Standard deviation & (d) Tb innovations

from Th_7ang assimilation, (e) Thb innovations from Th_f#iaglation, and (f) SM innovations from SM retrieval asdiation. (g,h,i) same

as (d,e,f), but for normalized innovations (normO-F). Enkke standard deviation of the (j) Tb forecast error for Tang assimilation, (k)

Tb forecast error for Th_fit assimilation, and (I) surfacé swisture forecast error for SM retrieval assimilatioreTtitles show the spatial
mean (m) and standard deviation (s) across each map.
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Figure 6. Statistics of the increments, calculated for the perioanfrb July 2010 to 1 May 2015. Number of increments per day for (a)
Tb_7ang assimilation, (b) Tb_fit assimilation, and (c) Siimslation. Temporal standard deviation of total profiletergwtot) increments
for (d) Th_7ang assimilation, (e) Th_fit assimilation, afjdSM assimilation. (g,h,i) same as (d,e,f) but for srfexcrements. (j,k,I) same as
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Figure 9. Performance of open-loop and data assimilation expersriarierms of anomaly correlations (anomR) calculated ac3edsourly
analyses and forecast time steps from 1 July 2010 to 1 May,206d.&) surface and (b) root-zone soil moisture. The baosvs$kill metrics
averaged over sites in either favorable or non-favoratdasarwhere favorable areas refer to the areas indicatedebgrély background

shading in Figure 8. The variable N is the total number of SGaN USCRN sites considered for each category, with the nuoflodusters
in parentheses. The error bars reflect cluster-averaged:8fitlence intervals.
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