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Abstract. Daily, quasi-global (50°N-S and 180°W-E), satellite-based estimates of actual evapotranspiration at 0.25° spatial
resolution have recently become available, generated by the Global Land Evaporation Amsterdam Model (GLEAM). We
investigate the use of these data to improve the performance of a simple lumped catchment-scale hydrologic model driven by
satellite-based precipitation estimates to generate streamflow simulations for a poorly gauged basin in Africa. In one approach,
we use GLEAM to constrain the evapotranspiration estimates generated by the model, thereby modifying daily water balance
and improving model performance. In an alternative approach, we instead change the structure of the model to improve its
ability to simulate actual evapotranspiration (as estimated by GLEAM). Finally, we test whether the GLEAM product is able to
further improve the performance of the structurally modified model. Results suggest that both the approaches can provide
improved simulations of streamflow, whereas the second approach also significantly improves the simulations of actual
evapotranspiration, which substantiates the importance of ‘diagnostic structural improvement’ of hydrologic models.
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1 Introduction

1.1 Statement of the Problem

As a primary mechanism in the surface-to-atmosphere portion of the water cycle, evapotranspiration (ET) plays a
crucial role in the water and energy budgets of a hydrologic system. In practice, ET can be estimated either from model
simulations or from remotely sensed observations. For example, ET can be estimated as a residual of water balance
computations, or via a land-surface energy budget (e.g. Monteith, 1965; Priestley and Taylor, 1972), and simple empirical
physically based schemes (Hargreaves and Samani, 1985) can be applied in data-scarce regions. Ultimately, the quality of a
model-derived estimate of ET depends on the various sources of uncertainty (inputs, parameters, process representation,
structure, etc.) inherent to the model-based scheme used, and common problems include both over- and under-estimation of
evaporative fluxes (Trambauer et al., 2014). Recently, methods that use satellite-based remotely sensed climatic and
environmental observations provide an alternate approach to the estimation of ET and its different components (e.g.
Bastiaanssen et al., 1998; Arboleda et al., 2005).



Several studies have advocated and/or implemented the idea of using physically consistent estimates for the parameters
of hydrologic models (Pokhrel et al., 2008, 2012; Savenije, 2010; Schaefli et al., 2011; Kumar et al., 2013; Troch et al., 2015
and references therein). However, in catchment-scale modeling, it is common practice to use parameter estimates that are
calibrated by adjusting the simulated streamflows to try and match observed data. If due care is not implemented during the
calibration strategy, this approach can result in conceptually unrealistic estimates for the parameters. Such a result defeats an
important purpose of using conceptual/physically based models (as opposed to empirical data-based models), which is to help
us better understand the dynamical behavior of the system.

In principle, the potential of such models can be better realized by incorporating more information about the physical
system during model development. Such information can take various forms and be incorporated in different ways.
Evapotranspiration (ET) can be used to constrain model parameters that are sensitive to the ET process (Winsemius et al.,
2008; van Emmerik et al., 2015). Alternatively, ET can be used as a calibration target along with streamflow within a multi-
objective setting (Zhang et al., 2009). There has also been a recent drive towards structurally flexible models that are able to
both better characterize the uncertainty associated with model structure and use additional information to help reduce such
uncertainty (Wagener et al., 2001; Marshall et al., 2006; Clark et al., 2008; Savenije, 2010; Schaefli et al., 2011; Fenicia et al.,
2008a, 2008b, 2011; Bulygina and Gupta, 2009, 2010, 2011; Martinez and Gupta, 2011; Nearing, 2013; Nearing and Gupta,
2015; Clark et al., 2015).

A variety of satellite-based remotely sensed estimates of daily precipitation have been available for some time (e.g.
Hsu et al., 1997; Joyce et al., 2004; Huffman et al., 2007; Funk et al., 2014), making it possible to consider the model-based
generation of streamflow simulations for ungaged locations. Recently, satellite-based remotely sensed estimates of daily ET
have become available, based on a variety of different retrieval algorithms of varying complexity (e.g. Bastiaanssen et al.,
1998; Arboleda et al., 2005; Miralles et al., 2011a). Worldwide evaluations suggest that satellite-based ET estimates are

strongly correlated (~0.83) with ground-based observations made at flux towers (Demaria and Serrat-Capdevila, 2016).

We use the Global Land Evaporation Amsterdam Model (GLEAM) as the source of the satellite-based ET (SET) data
for this study. In GLEAM algorithm, ET is computed using only a small number of satellite-based inputs, which is largely
beneficial for sparsely gauged basins. Miralles et al. (2011) have shown that GLEAM estimates of evaporation are strongly
correlated (0.80) with annual cumulative evaporation estimated via eddy covariance at 43 stations, and have very low (-5%)
average bias. The correlations at individual stations are strong (0.83) for all vegetation and climate conditions, and improve to
0.9 for monthly time series (Miralles et al., 2011). McCabe et al. (2016) have found satisfactory statistical performance (R? =
0.68; Root Mean Square Difference = 64 Wm™2; Nash-Sutcliffe Efficiency = 0.62) of GLEAM while compared against the data
from 45 globally-distributed eddy-covariance stations. Michel et al. (2016) compared Priestley-Taylor Jet Propulsion
Laboratory model (PT-JPL), Moderate Resolution Imaging Spectroradiometer evaporation product (PM-MOD), Surface
Energy Balance System (SEBS), and GLEAM simulations against 22 FLUXNET tower-based flux observations and found
GLEAM and PT-JPL to be more closely matching the in-situ observations for the selection of towers and the reference period

(2005-2007). Their extended analysis with 85 towers had similar overall outcomes. Miralles et al. (2016) compared three



process-based ET methods (PM-MOD, GLEAM and PT-JPL) against surface water balance from 837 globally distributed
catchments, and reported that GLEAM and PT-JPL provide more realistic estimates of ET. They found these two products to
provide superior overall performance for most ecosystem and climate regimes, while PM-MOD tends to underestimate the flux

in tropics and subtropics.

While previous studies have used SET estimates to constrain the parameters of hydrologic models (Winsemius et al.,

2008; van Emmerik et al., 2015), the recent interest in diagnostic improvements to model structure (Gupta et al., 2008, 2012;

Gupta and Nearing, 2014) suggests that it would be potentially more valuable to use the ET data to actually improve the model
structure when possible. This study attempts to explore this possibility in the context of using satellite-based data to drive a

streamflow simulation model for a poorly gauged basin in Africa.

1.2 Objectives and Scope

In this study, we explore the use of the GLEAM daily SET product (Miralles et al., 2011; Martens et al., 2016) to
improve the performance of a simple lumped catchment scale hydrologic model driven by satellite-based precipitation
estimates to generate streamflow simulations for a poorly gauged basin in Africa. We first use the GLEAM product to
constrain the evapotranspiration estimates generated by the model, thereby improving the daily water balance. Next, we instead
change the structure of the model to improve its ability to simulate actual evapotranspiration (as estimated by GLEAM).
Finally, we test whether the use of GLEAM SET can further improve the performance of the structurally modified model, and

whether there is any drop in the performance of the model if GLEAM SET data become unavailable.

2 Study Area, Data and Methodology
2.1 Study Area

This study is carried out for the Nyangores River basin, which is a sub-basin of the Mara River basin flowing through
Kenya (Fig. 1). The Nyangores River basin has an aerial coverage of 697 km? and is located at the northeastern side of the
Mara River Basin (Location: 33°88'E 35°90'E 0°28'S 1°97'S). The perennial Nyangores River originates from the Mau
Escarpment (3000 m ASL) fault scarp passing through the western side of the Great Rift Valley in Kenya. It then merges with
the Amala River at the Napuiyapi swamp (2932 m ASL) to form the Mara River, which flows all the way to Lake Victoria at
Musoma Bay, Tanzania (1130 m ASL). Mara River basin (or Nyangores River basin) has two wet seasons consequent to the
yearly oscillations of the inter-tropical convergence zone (ITCZ), the primary wet season occurring during March to May and
the secondary during October to December. The long-term mean rainfall in the Mau Escarpment is around 1500 mm. The
rainfall in the basin is influenced by factors like topography, elevation gradient, regional influence of Lake Victoria, sea-

surface temperature (SST) of the Indian Ocean, etc.
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Fig. 1. The Mara River basin and the Nyangores River sub-basin. The discharge station is located at Bomet Bridge (red
dot). Meteorological stations (green dots) are located in the surrounding regions.

2.2 Data

2.2.1 Estimates of Actual Evapotranspiration

The source of the SET data used in this study is the Global Land Evaporation Amsterdam Model (GLEAM) Version
3.0. GLEAM comprises a set of algorithms that use remotely sensed climatic and environmental observations to estimate
various components of ET. Satellite-based observations of surface net radiation and near-surface air temperature are processed
via the Priestley-Taylor Equation (Priestley and Taylor, 1972) to calculate Potential Evapotranspiration (PET), which is then
converted to Actual Evapotranspiration (AET) by incorporating an evaporative stress factor obtained from microwave
observations of vegetation optical depth (as a proxy for vegetation water content) and root-zone soil moisture (simulations).

Interception loss is calculated using the Gash analytical model (Gash, 1979).

Three different versions of the GLEAM datasets are currently available, depending on the satellite observations used.
The version used in this study (GLEAM_v3.0b) is based solely on satellite observations, is quasi-global (50°N-S, 180°W-E),
has a spatial resolution of 0.25°, and has a daily temporal coverage of 13 years (2003 to 2015).

Fig. 2 shows the annual mean of GLEAM AET (GAET) over the entire Mara River basin. As can be seen, GAET
increases towards the western side of the basin. The annual average GAET varies between 900 mm/year to 1200 mm/year. We
computed corresponding estimates of PET via the Hargreaves Equation (HPET) using temperature data collected from the six
met stations surrounding the Mara River basin (Fig. 1); maximum and minimum temperatures were averaged to obtain time
series of maximum and minimum temperatures and processed through the Hargreaves Equation to calculate PET. For a small
number (~0.6%) of days, the lumped GAET values were found to be larger than the lumped HPET values; for these few
anomalous values, HPET was replaced by GAET. Fig. 3 shows the time series of HPET and GAET for the Nyangores River

basin.
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Fig. 2. Annual mean of GAET over the entire Mara River basin.
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Fig. 3. Time series of HPET and GAET for the Nyangores River basin.

2.2.2 Estimates of Precipitation

The Real Time Multi-satellite Precipitation Analysis of the NASA Tropical Rainfall Measuring Mission (TMPA-RT)
combines information from multiple satellites to produce a quasi-global (50°N-S, 180°W-E), near-real-time (March 1, 2000 to
near-present) precipitation product at 0.25° x 0.25° spatial and 3-hourly temporal resolution (this product is the real-time
version of TMPA (Huffman et al., 2007)). TMPA used to include the TRMM Microwave Imager (TMI) products until it was
shut down on 8 April 2015 due to fuel deficiency and battery issues in the satellite. TRMM was the first satellite dedicated for
precipitation studies. The after-real-time TMPA product also incorporates rain gauge information wherever feasible. In this
study, we aggregated the 3-hourly TMPA-RT data to daily level, resampled from the coarse resolution (0.25° x 0.25°) to a
resolution of 0.05° x 0.05°, and implemented a bias correction using the “Climate Hazards Group InfraRed Precipitation with
Station” product (CHIRPS; Funk et al., 2014, 2015) and rain gauge measurements (details not included).



2.2.3 Estimates of Streamflow

Streamflow data were computed using the calibrated stage-discharge relationship for the Bomet Bridge discharge
station (Station ID: 1LAO03; Location: 0°47'23.50"S 35°20'47.45"E) on the Nyangores River (drainage area approximately 697
km?), which is one of the two main tributaries of the Mara River. Data is available for the period Jan 1, 1996 to Jun 30, 2010,

during which time only about ~8% of the records are missing.

2.2.4 Estimates of Temperature

We computed PET using the Hargreaves Equation (Hargreaves and Samani, 1985), the annual mean of which closely
matched the reported PET value for the study area (WREM, 2008). The temperature data used in the Hargreaves Equation
were extracted from the Global Surface Summary of the Day (GSOD) product produced by the National Climatic Data Center
(NCDC) in Asheville, NC. The daily temperature data includes multiple observations and are available in three forms:

maximum, minimum, and average.

2.3 The Hydrologic Model

The spatially lumped HyMod Version 1 (HyMod-V1) conceptual rainfall-runoff model with six parameters has
previously been implemented for satellite-rainfall-based simulation and forecasting of streamflow for the study area. The
model is driven using daily precipitation and PET data to generate daily estimates of AET (HAET: HyMod-generated AET)
and streamflow. Nonlinear vertical flow processes are controlled by a two-parameter soil moisture accounting (SMA) module
based on the Moore (1985) rainfall excess model. Horizontal routing is achieved via a linear (ROUT) module that includes
quick-flow routing for fast overland flow and slow-flow routing for baseflow. Details of the model structure and process
equations are presented in Appendix A. We will refer to the structurally modified version of the model as HyMod Version 2
(HyMod-V2), as shown in Fig. 4.
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Fig. 4. Schematic diagram of HyMod-V2.



2.4 Study Approach

We conducted the investigation in two stages. The first stage consists of five steps designed to improve model
performance with respect to both streamflow and evapotranspiration (as assessed against data), but without making structural
modifications to the model. The strategy includes using GAET to constrain simulated evapotranspiration, recalibration of
model parameters, and constraint adjustments. In doing so, we specifically do not directly assimilate GAET into the model
(either by a Bayesian data assimilation “nudging” procedure such as the Ensemble Kalman Filter, or by direct insertion), so
that the model’s representation of overall water balance is not compromised. Accordingly, while we are extracting information
from the GLEAM product, we do so via a process of “constraining” rather than “assimilation”. In the second stage, we modify
the structure of the model to directly improve its ability to simulate ET (using GAET as the target). The steps followed in stage
one are repeated so that results of the different strategies can be compared.

Conceptually, the main difference between Stage | and Stage Il is that, in the former, the information provided by
GAET is used only to constrain the evapotranspiration fluxes of the (re-calibrated) model, whereas in the latter the information
contained in GAET is used to alter the model structure. While the former provides a temporary improvement to model
performance, achieved as long as GLEAM data are available, the latter is expected to provide a lasting improvement to model
performance that should persist even when GLEAM data are not available. In the final step of Stage Il, we check to see
whether the GAET product contains residual information that, not having yet been used to improve the model structure,

remains useful for improving model performance via the constraining operation.

2.4.1 Stage One — Constraining HyMod using GAET

Step I-1: Benchmark: HyMod-V1 is forced with TMPA-RT satellite-based precipitation and the parameters are calibrated
against observed streamflows. GAET satellite-based evapotranspiration is not used. This is the benchmark step

against which model performance improvements are assessed.

Step 1-2:  GAET Constrained: GAET is used to constrain HyMod-V1 HAET. The model parameters remain the same as in
Step I.

Step I-3:  Recalibrated GAET Constrained: GAET is used to constrain HyMod-V1 HAET. The model parameters are re-

calibrated to match simulated to observed streamflows.

Step I-4:  Recalibrated GAET Constrained (Adjusted): Adjustments are applied to the GAET constraint and adjustment
parameters are calibrated together with model parameters to match the simulated and observed streamflows. Two

empirical adjustment formulations are tested as shown below:
y = f(x,---) and x = a - GAET (1)

y = f(x,---) and x = a - GAET? (2



Step I-5:

where y represents the streamflows after the adjustment of GAET constraint, and a and b are parameters of the

adjustment formulations (a controls the variance and b controls the degree of non-linearity).

GAET Removed: The model obtained in Step IV is run without using GAET as a constraint. No recalibration is
performed. This shows what would happen to model performance if real-time GAET data were to become

unavailable.

2.4.2 Stage Two — Modifying HyMod Structure using GAET

Step 11-1;

Step 11-2:

Structurally Modified: The ET equation of HyMod-V1 is modified to improve its ability to reproduce GAET.
Four ET equations of progressive complexity are tested. In each case the model parameters are re-calibrated to

match simulated streamflows to observed data. The final result is a structurally modified model called HyMod-V2.

More specifically, the ET equation of HyMod-V1 is multiplied by a function K(-) such that 0 < K(-) < 1. This
function acts as a resistance to the ET flux of the model. Four different forms for K(-) that represent incremental

increases in complexity (Table 1) are tested. Writing the main ET equation in the general form:

Yt = Kt . Xt . EDRt (3)

where Y; is the AET generated by HyMod (HAET,), X, is the soil moisture storage (Csma,), and EDR; is the

. . . PET
evaporation demand ratio computed as mln{l, X t
t

}. The most general form for K, is given by:

K¢ = Kmin + [Kmax = Kmin] - f($¢) (4)

where, K,in and K. are lower and the upper limits for K, and s, is the ratio of actual to maximum storage
CapaCity (lljt = Xt/Xmax)-

Table 1: K-function in different cases.

Cases | Kpay Kmin £(U,) er‘;ﬁgt”ei
a 1 0 1 None
b K, 0 1 K,
c K, 0 Xe/X max K,
d Kinax Y Kmax | Xe/Xmax)®® Kmax» ¥, BE

GAET Constrained: Using the “best” structurally modified model (HyMod-V2) from Step I1-1, we repeat Step I-
2.



Step 11-3: Recalibrated GAET Constrained: GAET is used to constrain HAET simulated by HyMod-V2. The model

parameters are re-calibrated to match the simulated and observed streamflows.

Step 11-4: Recalibrated GAET Constrained (Adjusted): The empirical constraint adjustment formulations (Eq. 1 and 2)
are applied to GAET, and the adjustment parameters are calibrated together with the modified model (HyMod-V2)
parameters to match the simulated and observed streamflows.

Step 11-5:  GAET Removed: HyMod-V2 is run without using GAET as a constraint. No recalibration is performed. This

shows what would happen to the performance of HyMod-V2 if real-time GAET data were to become unavailable.

2.5 Calibration Methodology and Benchmark Model Calibration

Calibration of the model (and adjustment) parameters was performed by running the SCE-UA algorithm (Duan et al.,
1992) with 10 complexes for 25 loops. Calibration was performed to match streamflows in a A-transformed space (with
modifications to the original transformation equation of Box and Cox, 1964; see Appendix B) to minimize the effects of
skewness and reduce heteroscedasticity. The performance criterion used was the Mean Squared Error (MSE) of transformed
flows. The model was run continuously for the 7.5-year period Jan 2003 to June 2010, with the first 4 years (2003 to 2006)
used for calibration and the remaining 3.5 years (2007 to mid-2010) used to provide an additional assessment of model
performance. Results are shown for the “calibration (4-years)”, “evaluation (3.5 years)” and “total (7.5 years)” simulation
periods. All the streamflow errors statistics reported in this study are in the A-transformed space.

2.6 Metrics Used for Performance Evaluation

Four metrics are used in this study to assess the model performance (Table 2). These metrics measure performance in
regards to overall mean squared error, bias, variability, and correlation (see Gupta et al., 2009), are computed in the

transformed space where applicable (e.g. for streamflows), and are normalized to be comparable.

Table 2: Performance evaluation metrics used in this study.

Metrics Equations
Normalized Mean Square Error _ o2y _ MSE
(NMSE) MSE = mean((0; — S;)*); NMSE = ar (o)
Normalized Bias in Mean NBu — mean(S) — mean(0)
(NBp) = mean(0)
Normalized Bias in Standard Deviation NBo — std(S) — std(0)
(NBo) - std(0)

N
(0 — 0))(S; — S
Correlation Coefficient 2i=1(0; — mean(0))(S; — mean(s))

p =
(p) Z(0, ~ mean(0))? T (5; — mean(s))?

0: Observed flows; S: Simulated flows; N: Number of data points.




3 Results
3.1 Results from Stage | (Constraining Simulated AET)

3.1.1 Benchmark Model (Step 1-1)

The performance of the benchmark model HyMod-V1, driven using TMPA-RT satellite-based precipitation and with
parameters calibrated to match simulated streamflow to observed data, is reported in Table 5. The NMSE varies between 0.56
(calibration period) and 0.84 (evaluation period), where NMSE = 0.56 means that on average only about 44% (1.0 - 0.56 =
0.44) of the variability in the flows has been explained. This is not surprising given the use of a simple lumped conceptual
model driven by satellite-based estimates of precipitation for a poorly gauged basin. The flow biases are small (NBu < 15%)
indicating that long-term water balance is approximately preserved. The calibrated values of the model parameters are reported

in Appendix C.

Table 3 presents a comparison of the model generated HAET with the GAET data (for the total 7.5 year simulation
period). HAET tends to be larger on average, varies over a wider range, is considerably more skewed, and is less kurtotic.
Some of the reasons for this can be understood from the time-series plot and scatterplot shown in Fig. 5. The behavior of
HAET tends to be more erratic and, although both HAET and GAET show seasonal patterns, the former regularly drops to zero
or near zero (explained by the very simple, threshold-like, ET process representation in the model, which does not contain a
resistance term). The result is that HAET and GAET are not well correlated (Fig. 5b) and have different shapes for their
empirical probability distributions (Fig. 6). Even if we were to ignore the time-steps when HAET drops closer to zero, HAET
is strongly positively biased (too large), which results from trying to satisfy the potential evapotranspiration (PET).

Table 4 reports a water balance estimate WBAET of the mean annual AET for the basin, obtained by subtracting mean
annual streamflow (at the discharge station) from mean annual precipitation (estimated from TMPA-RT). WBAET is similar in
magnitude to GAET, and we have GAET < WBAET < HAET < HPET, indicating that the AET computed by the model tends
to be a little high.

Table 3: Descriptive statistics of GAET and HAET.

Statistics GAET HAET
Maximum 4.62 6.12
Minimum 0.119 0.00
Mean 3.03 3.52
Median 3.08 4.21
Mode 0.11 0.00
Std. Dev. 0.59 1.72
Skewness -0.58 -1.03
Kurtosis 3.84 2.62

10
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Fig. 6. Histogram and ECDF plots of GAET and HAET.

Table 4: Annual mean of AETs and HPET.

Source Annual Mean (mm)
GAET 1100
HAET 1263
WBAET 1146
HPET 1704

3.1.2 Using GLEAM AET to Constrain the Model (Step 1-2)

Next, GLEAM satellite-based daily estimates of AET (GAET) were used to constrain the HAET estimates generated
by HyMod-V1. The constraint is imposed by modifying the original evapotranspiration equation of the model (Eq. A5) from
HAET = min{PET, Cgp4} to the new form HAET = min{PET, GAET, Cgua}; this is not a ‘structural” modification to the form

of the process equation —

11

it simply constrains HAET < GAET. The parameters of the model were not recalibrated.



Table 5 indicates that the model performance has become significantly worse due to streamflow becoming positively
biased. Given that GAET < HAET on average in the previous step, this makes sense because imposing GAET as a constraint

alters the water balance of the model.

3.1.3 Recalibration of the Model Constrained Using GLEAM AET (Step 1-3)

To try and fix the water-balance problem introduced during Step 1-2, we recalibrated the parameters of the model to
improve the match to observed streamflows (while continuing to use GAET to constrain HAET in the model). Although the
large positive bias was reduced (Table 5) and the NMSE statistic is improved compared to Step 1-2, most of the error statistics
deteriorated for all three periods (calibration, evaluation, and total simulation) compared to Step I-1. Importantly, this
calibration step resulted in an unrealistically large value of 17.36 meters for the size of the soil moisture storage (previously a

more realistic 0.76 meters). This value is clearly conceptually and physically inconsistent (the realistic range is about zero to 2
meters), and while it improves calibration period performance, the lack of consistency is reflected in the sharp deterioration in
performance during evaluation. Unrealistic parameter values, such as this, are indications of either severe errors in the data, or
structural errors in the model. Since GAET agrees well with WBAET on average, it is likely that the major cause here is model
structural inadequacy (Gupta et al., 2012). For completeness, we next check (Step 1-4) to see whether this problem can instead

be resolved by implementing an empirical adjustment to GAET.

3.1.4 Applying an Adjustment to the GLEAM AET (Step 1-4)

We tested two empirical constraint adjustment schemes (Eqg. 1 and 2) applied to the GAET data, and calibrated the
additional parameters (from these equations) along with HyMod-V1 parameters. Results for both schemes were similar, but
Eqg. 2 provided slightly better performance for the evaluation and total simulation periods and so we selected Eg. 2. Compared
to the Benchmark Step I-1, NMSE and NBp calibration period statistics reduced from 0.56 to 0.43 and 12% to 6%,
respectively (Table 5) while p increased from (0.76/0.66/0.72; Cal/Eval/Tot) to (0.83/0.74/0.78). Perhaps more important, the

calibrated value of parameter H is now 0.65 meters, which is within the conceptually acceptable range.

3.1.5 GLEAM Data Removed (Step I-5)

Finally, the model obtained in Step I-4 was run without the use of GAET to see how well the model would perform if
GAET data were to become unavailable. The results (Table 5) results indicate that model performance does not deteriorate

significantly when GAET data become unavailable and, in some cases, is better than the benchmark.

12



Table 5: Streamflow error statistics for calibration, evaluation, and total simulation (in parenthesis)

for all five different cases in Stage | analysis.

Calibration
Metrics Step I-1 Step 1-2 Step 1-3 Step 1-4 Step I-5
NMSE 0.56 1.68 0.64 0.43 0.60
NBp 0.09 0.32 0.12 0.09 -0.09
NBo -0.12 -0.15 -0.19 -0.06 -0.04
R 0.76 0.81 0.74 0.83 0.75
Evaluation (Total Simulation)
Metrics Step I-1 Step 1-2 Step 1-3 Step 1-4 Step I-5
NMSE 0.84 (0.77) 2.13(2.17) 0.92 (1.19) 0.88 (0.75) 0.64 (0.56)
NBp 0.14 (0.14) 0.38 (0.38) 0.09 (0.22) 0.15(0.16) | -0.01(-0.02)
NBo -0.04 (-0.08) -0.03 (-0.10) 0.04 (-0.01) 0.17 (0.02) 0.14 (0.05)
R 0.66 (0.72) 0.71 (0.76) 0.61 (0.69) 0.74 (0.78) 0.73 (0.74)

3.2 Results from Stage 11 (Modifying Model Structure)

3.2.1 Modifying Model Structure to Improve AET Simulation (as Estimated by GLEAM) (Step 11-1)

Results from Stage | confirm that GAET constraining can improve the overall performance of HyMod. However, for
operational implementation, the method requires real-time estimates of SET, which could sometimes pose a challenge for
practical applications. To overcome the need for real-time data availability, a simple approach could be to establish a
functional relationship between HAET and GAET from the historical records and use that relationship to adjust HAET. In our
case, however, HAET and GAET did not show a sufficiently strong relationship (Fig. 5). Therefore, we instead investigated
whether we could use the historical GAET data to improve the structure of the model itself.

Our previous results (Fig. 5) showed that HAET generated by HyMod-V1 did not match well with GAET. This is
likely because the entire soil moisture storage is exposed to the ET process. Consequently, it is common for all of the soil
moisture to evaporate away during a single time step, leaving no water available for evaporation at the next time step (provided
no precipitation is added), so that HAET drops to zero. This tendency can be reduced by modifying the ET process
representation so that HAET more closely follows GAET.

(a) Results from Step 11-1a

This step is identical to the benchmark step (Sect. 2.5) where the calibrated HyMod-V1 is run without GAET
estimates. Results are summarized in Table 6.

13



(b) Results from Step 11-1b

In this case, K; = K, is applied as a constant multiplier to the ET equation (see Table 1), thereby acting as a constant
surface resistance to ET. Calibration (of all of the model parameters) resulted in improved error statistics (Table 6). The
estimate obtained for the surface resistance was K, = 0.73. However, we again obtained a conceptually unrealistic value (H =
9.5 meters) for the soil moisture storage parameter.

(c) Results from Step I1-1c

In this case, the more complex form K, = K, - f({;) was used (see Table 1). This produced a model performance
(Table 6) comparable to that of the previous Step I1-1b, but with a more realistic calibrated value of the soil moisture storage

(H = 0.90 meters). Interestingly, the calibrated value for Ko was 1, implying that Ko becomes irrelevant once f({s;) is
introduced to the ET equation.

(d) Results from Step 11-1d

Finally, the most complex form K; = Kin + [Kmax — Kminl - f(0;) was used. The calibration parameter Ko was used
to represent Kmax, and Kmin Was defined as Knin = ¥ * Kmmax Via @ second calibration parameter y (ranging from 0 to 1) (see
Table 1). Results indicate that although the calibration error statistics (Table 6) are similar to that of Step I1-1c, the evaluation
and total simulation statistics are better. The calibrated value of parameter ‘BE’ (derived by transforming the parameter ‘be’;
see Eq. B1) was 0.86, indicating only a mildly non-linear relationship between s, and K (or HAET). The minimum and the
maximum limits of Ko were close to zero and one, respectively, confirming the findings of Step Il-1c that once f({s;) is
introduced to the ET equation, the need for Kmax, and Kmin parameters largely disappears.

Table 6: Streamflow error statistics for calibration period, evaluation period, and total simulation period (in parenthesis)

for all four different cases in Stage 11-1 analysis.

Calibration
Metrics Step ll-1a Step 11-1b Step 1l-1c Step 11-1d
NMSE 0.56 0.52 0.51 0.51
NBn 0.09 0.10 0.10 0.10
NBo -0.12 -0.19 -0.04 -0.04
R 0.76 0.77 0.80 0.80
Evaluation (Total Simulation)
Metrics Step 1l-1a Step 11-1b Step 11-1c Step 11-1d
NMSE 0.84 (0.77) 0.65 (0.77) 0.88 (0.72) 0.84 (0.70)
NBp 0.14 (0.14) 0.07 (0.16) 0.14 (0.14) 0.14 (0.13)
NBo -0.04 (-0.08) 0.00 (-0.06) 0.16 (0.10) 0.16 (0.10)
R 0.66 (0.72) 0.70 (0.75) 0.73 (0.78) 0.74 (0.78)
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3.2.2 Final Model Selection from Step 11-1

In this section, we address two main questions: (a) Does the structural modification of the model (to the representation
of the ET process) improve ET estimation? If so, then (b) what level of complexity is adequate? Table 7 presents the
streamflow and AET performance statistics for the total simulation period for the four cases. Since Step Il-1a provided very
poor error statistics for AET (e.g. NMSE = 8.93 and NBo = 1.89), we disregarded this case. Although Step I1-1b provided the
best NBo (-0.06) statistics for streamflow, and the best NMSE (1.28) and NBp (0.12) statistics for AET, the value obtained for
the soil moisture storage capacity (H) was unrealistic; we therefore also disregarded Step 11-1b. Comparison of Step Il-1c and
Step 11-1d shows that while their streamflow and AET simulations were similar (Fig. 7), Step I1-1d provided slightly better
NMSE (0.70) and NBp (0.13) statistics for streamflow and slightly better R (0.49) statistics for AET (Table 7 and Fig. 8). We
therefore selected the most complex form K; = Kyin + [Kmax — Kminl * f(@¢) for the ET function (Step 1I-1d). The

corresponding model is hereafter referred to as ‘HyMod-V2’.

Table 7: Streamflow and AET error statistics in total simulation for all four cases in Step 11-1.

Metric Step ll-1a Step 11-1b Step 11-1c Step 11-1d
Streamflow
NMSE 0.77 0.77 0.72 0.70
NBpu 0.14 0.16 0.14 0.13
NBo -0.08 -0.06 0.10 0.10
R 0.72 0.75 0.78 0.78
AET
NMSE 8.93 1.28 1.70 1.71
NBn 0.18 0.12 0.17 0.17
NBo 1.89 -0.26 -0.10 -0.13
R 0.22 0.43 0.48 0.49
AET Streamflow
' 2
P g,
wn wn
0 0
0 2 4 0 2 4
Step ll-1c Step ll-1c

Fig. 7. Scatter plots of streamflow and AET from Step Il-1a and Step 11-1b.
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Fig. 8. Streamflow and AET error statistics in total simulation for all four cases in Step I1-1.

Comparing the streamflow error statistics of Step 1-4 (Table 4) and Step 1l-1d (Table 6), we see that they are quite
similar, indicating that the ET constraining (first approach) and diagnostic structural improvement (second approach) strategies

produce dynamical behaviors that are similar (as measured by the four performance metrics used).

The modified model (HyMod-V2) was next used with GAET in a similar manner to Steps I-2 to I-5, to address two
questions: (1) Could more information from GAET be incorporated (via constraining) into the model, or is the improved model
structure (without GAET) already good enough? (2) Is the constraint adjustment on GAET (Step-IV) still relevant once the

model structure has been improved?

3.2.3 Using GLEAM AET to Constrain the Modified Model (Step 11-2)

GAET was used to constrain the ET process in HyMod-V2, without model recalibration (the parameters used were
from Step IlI-1d). This introduced significant overestimation bias in the simulation of streamflows (Table 8). Clearly,

recalibration of the modified model is necessary when GAET is imposed as a constraint on ET.

3.2.4 Recalibration of the Modified Model Constrained Using GLEAM AET (Step 11-3)

Recalibration of HyMod-V2 improved the error statistics (Table 8); compare these results with the Step I-3 results in
Table 4 derived the same way for HyMod-V1. While a small improvement was obtained for the soil moisture storage capacity
parameter H (reduced from 17.4 meters to 12.8 meters), this value remained conceptually inconsistent (too large). Overall, the

error statistics deteriorated compared to the best results from Step 11-1.
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3.2.5 Applying Constraint Adjustment on the GLEAM AET (Step 11-4)

The HyMod-V2 parameters were calibrated along with the parameters of the GAET adjustment equation (using Eg. 2),
as in Step I-4. Although the results improved (Table 8), and the value of H parameter became conceptually realistic (0.88

meters), the results were not significantly different from Step 11-1.

3.2.6 GLEAM Data Removed (Step 11-5)

This step is similar to Step 1-5 but with HyMod-V2. The performance of the model remained stable even when GAET
was not used (Table 8).

Table 8: Streamflow error statistics for calibration, evaluation, and total simulation (in parenthesis)

for all five different cases in Stage Il analysis.

Calibration
Metrics Step 11-1 Step 11-2 Step 11-3 Step 11-4 Step 11-5
NMSE 0.51 1.82 0.64 0.51 0.50
NBp 0.10 0.32 0.12 0.10 0.10
NBo -0.04 0.16 -0.19 -0.04 -0.04
R 0.80 0.81 0.74 0.80 0.80
Evaluation (Total Simulation)
Metrics Step 11-1 Step 11-2 Step 11-3 Step 11-4 Step 11-5
NMSE 0.84 (0.70) 2.46 (2.29) 0.92 (1.19) 0.84 (0.70) | 0.84 (0.70)
NBu 0.14 (0.13) 0.37 (0.36) 0.10 (0.22) 0.14 (0.14) 0.14 (0.13)
NBo 0.16 (0.10) 0.38 (0.31) 0.05 (-0.01) 0.16 (0.10) 0.16 (0.09)
R 0.74 (0.78) 0.70 (0.77) 0.61 (0.69) 0.74 (0.78) | 0.74(0.78)

In regards to the two questions that motivated this section, the results indicate that; (1) once information from GAET
was incorporated into the model as a modification to the structure, there was no further need for use of GAET to constrain the
simulation of ET (use of GAET even caused some of the results to deteriorate), and (2) implementation of a constraint

adjustment to GAET (Step 11-4) did improve the error statistics.

3.3 Overall Comparison and Analysis of Uncertainty (in Streamflow and AET)

Fig. 9 compares the streamflow time series obtained from Step I-4 (constraining ET) and Step 1I-1d (structural
modification) against the benchmark (Step I-1) in both actual and A-transformed space. Simulations from the structurally
modified model HyMod-V2 (Step 11-1d) follow the observations most closely, followed by the simulations from Step 1-4 (ET
constraining) and Step I-1 (Benchmark). Clearly, while the streamflow simulations are improved by both ET constraining and

model structural modification, the latter performs best.
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Fig. 9. Time series plots of streamflow for the best simulations in Step | and Step I, the benchmark simulation,

and the observations.

Using the best model from Step Il (HyMod-V2), we next investigate the change in simulation uncertainties for
streamflow and AET due to the model structural improvement. The calibration period residual distributions (assumed
stationary) were calculated in the A-transformed space and superimposed on the daily estimates of the corresponding variables
for the total simulation period. Fig. 10 shows the histograms of calibration period residuals for the Benchmark and Final steps
(Step 11-1d). In both cases (AET and streamflow) the residuals become more normally distributed, with the improvement being
more prominent for AET. This result is expected, since HyMod-V1 in Step-l showed poor performance in regards to AET.

Overall, the structural modification is clearly beneficial.

Benchmark AET Error Final AET Error
300 300
200 200
100 100
0 0
-4 -2 0 2 4 -4 -2 0 2 4
Benchmark Streamflow Error Final Streamflow Error
300 300
200 200
100 100
0 0

-1 0 1 -1 0 1

Fig. 10. AET and streamflow error distributions for the benchmark and the final steps.
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10

Fig. 11 shows the streamflow and AET time series along with their corresponding 90% confidence intervals for the
Benchmark and the Final steps. Both the streamflow and AET simulations improve as a result of the model structural
modification. Although the streamflow uncertainty bounds have not narrowed significantly, the flow series is clearly less
biased and tracks the recessions better. Meanwhile the AET simulations have improved significantly: (a) the bias has been
reduced, (b) the uncertainty bounds are narrower, and (c) the erratic behavior originally seen in the AET simulations (frequent
drops to zero) has disappeared. Further, although the improvement in streamflow performance is evident from the statistics in
Table 5 and 6, the improved behavior is even more apparent in Fig. 11 where the model can be seen to now track the recessions

quite well.

Benchmark Results Final Results
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Fig. 11. Time series plots of streamflow (A-transformed and actual) and AET for the benchmark and the final (Stage 11-1d)

steps. For clarity, we only show a window of 1000 days.

4 Discussion and Conclusions

This study has explored two different approaches to the use of recently available SET data from GLEAM to improve
the realism and performance of the conceptual catchment-scale hydrologic model HyMod. In the first approach, SET data were
used to constrain the ET estimates, while in the second we modified the model structure itself. Our study shows that use of
satellite-based information can clearly benefit the process of hydrologic modeling for poorly gauged basins by providing new
sources of information to reduce the epistemic component of model structural uncertainty through improved physical process

representation.
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4.1 Constraining ET

The use of ET data as a constraint can improve streamflow forecasts, provided some additional processing steps are
implemented. Direct insertion of GAET into the ET equation of the HyMod model resulted in bias (Step 1-2); the type of bias
will, of course, be subject to change depending on the SET data used. While recalibration of the model improved the
performance (Step 1-3), it resulted in a conceptually unrealistic estimate for the storage capacity of the basin. Application of
constraint adjustments on GAET improved the streamflow forecasts and also resulted in a more realistic estimate for basin
storage capacity (Step 1-4); use of multiplicative and power-law type adjustment schemes produced almost similar results, with
slightly better error statistics for the latter. The streamflow simulations of the model from Step I-4 do not deteriorate if the
GAET data become unavailable.

4.2 Structural Modification

SET data can prove useful for improving the representation of the ET process in a hydrologic model. Our study was
able to derive a simple structural form for HyMod that is robust and enabled the model to produce more accurate estimates of
AET. We tested several conceptually reasonable structural modifications to the model of varying levels of complexity (Step

Ila- 11d), and selected the one that provided the best simulations of both GAET and observed streamflow.

We found that relatively simple changes to the HyMod ET equation significantly improved the ET simulations (as
assessed by GAET). However, while a simple multiplicative factor (parameter K) to control AET produced excellent
streamflow and AET forecasts (Step I1-1b), it resulted in an unrealistic estimate of basin storage capacity. In contrast, inclusion
of a soil moisture dependent function f({s,), resulted in a more realistic estimate of basin storage capacity without
compromising the streamflow and AET simulations. The final model structure (HyMod-V2) establishes a non-linear

relationship between AET and evaporative demand.

Once the HyMod model structure was appropriately modified to provide good simulations, the model simulations were
robust/stable, and there was no need for imposing the ET constraint (with/without constraint adjustment). The modified model
structure provided significantly improved AET forecasts with much narrower uncertainty intervals (see Fig. 11), along with

reduced bias in streamflow and improved tracking of the streamflow recessions.

4.3 Overall Outlook

The validation and total simulation streamflow error statistics from Step I1-4 (Table 4) and Step 1l-1d (Table 6) were
quite similar, indicating that both the ET constraining (first approach) and diagnostic structural improvement (second
approach) can produce comparable results. However, the latter also resulted in improved AET forecasts, even when SET data

were made unavailable. Combining the two schemes did not result in notable additional improvements.

Overall, by incorporating an additional source of external information in a sensible manner (here by structural
modification), the need for calibration can be reduced (note that the model was not calibrated against GAET); see the extensive

discussion by Gharari et al., (2014) and Bahremand (2016) on this topic. Nevertheless, given the simplistic nature of the

20



hydrologic models and the large uncertainties that exist therein, some degree of calibration will generally remain important and
relevant. We do not mean to imply, therefore that calibration is not essential, because we will rarely (correctly) know
everything we need to know about the system we are modeling. Instead, we should be aware of the strengths and weaknesses
involved in the use of calibration and apply it carefully in such a way that useful information is gained about the underlying
nature of the actual physical system. In this study, we demonstrate the need for both approaches. On the one hand, improving
the model structure resulted in improved AET simulations without any need for calibration (to AET). On the other hand, the

best streamflow performance was achieved when the structurally modified model was tuned via a calibration procedure.

Note that this study is based on testing of a single catchment scale conceptual rainfall-runoff model on a single basin,
using a single satellite-based precipitation product and a single satellite-based AET product. While not demonstrating universal
applicability, the results are clearly indicative and the methodology illustrates how such data can be used to investigate
potential improvements to the structures of simple catchment scale models used for hydrologic studies in data scarce regions.
For more detailed process-based models, the ET process parameters can be calibrated against some reliable SET estimates (e.g.
GLEAM), or the process representation itself can be improved by adapting some similar strategies the SET products are based

on.

4.4 Conclusions

In conclusion, SET data can be used to improve model performance in different ways. However, strategies that result
in model structural modifications can generally be expected to provide longer lasting benefits than ones that simply update or
constrain the state trajectories of the model. This is because structural modifications can both improve the initial estimates of
the state at each time step, and sustain these improvements into future time steps (Bulygina and Gupta, 2009, 2010, 2011,
Nearing and Gupta, 2015). In contrast, even though data assimilation to directly improve state estimates can improve model
performance, inadequacies in model structure will tend to cause the state estimates to drift away from their ideal values over
time, so that performance deteriorates markedly when the constraining data are not available. Of course, we have only tested a
“constraining ” strategy to assimilating ET information, which is a relatively simple form of data assimilation (DA) (Houser et
al., 1998), and more sophisticated approaches such as the Ensemble Kalman Filter (EnKF) could instead be implemented.
However, the efficiency of the EnKF for soil moisture retrieval has been shown to be as low as 30% (Nearing et al., 2013a,
2013b) and so it is not clear that more sophisticated forms of DA are justified, especially given the large uncertainties
associated with both the data and the model structure for this poorly gauged catchment. We leave such investigation for future

work.
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APPENDIX

Appendix A: Original HyMod Equations

The benchmark version of the spatially lumped conceptual rainfall-runoff model HyMod has six parameters. The model is
driven by mean daily precipitation and PET data to generate daily estimates of AET and streamflow. It has two main
components, a two-parameter soil moisture accounting (SMA) module based on the Moore (1985) rainfall excess concept, and
a linear routing (ROUT) module with parallel quick-flow (fast overland flow) and slow-flow (baseflow) pathways. In the SMA
module, the state variable (soil moisture storage, C) and the indicator variable (storage height, H) are non-linearly related via

the following equation (Moore, 1985):

1+b
c(t) = cmax(l - (1 - Hm) ) (A1)

Hmax
where the maximum storage capacity (Cmax) and the maximum indicator height (Hmax) are related as:

H
Cmax = T4 #2

First, the initial storage (Cueg) is calculated from the initial indicator height (Hyeg) using Eq. Al. Next, Hmax is subtracted from
the sum of precipitation (P) and Hyeg to calculate overland flow (OV) as:
OV = P + Hpeg — Hpax (A3)

Infiltration (I) is then calculated by subtracting OV from P:
[=P-0V (A4)

and an intermediate indicator height (Hin) is computed by adding | to Hyeg, and used to calculate the intermediate storage (Cint)
via Eq. A2. By subtracting Cin: from the sum of | and Creq We obtain the interflow (IF). Finally, the total runoff is obtained by
adding together OV and IF.

Finally, the HyMod AET (called HAET) is taken to be the smaller of available water Ciy; and potential demand PET (which is

provided as input to the model):
HAET = min{PET, C;,,¢} (A5)
and the storage at the end of the time step is computed by subtracting AET from Cix:
Cena = Cine — HAET (A6)

The power coefficients in HyMod (‘BE’ in Table 5 and ‘b’ in Eq. A1 & A2) can have values ranging from 0 to infinity. For
calibration it is useful to be able to impose finite values to the feasible ranges of the parameters; therefore we applied the
following transformation (Eq. A7) which converts the [0,inf) range of parameter BE to the [0,2) range of transformed
parameter ‘be’ so that the search can be conducted on finite range of parameter ‘be’ instead (similarly for parameter ‘b’ in Eq.

Al and Eqg. A2):
BE = In(1 — be/2)/In(0.5); be = [0, 2) (A7)
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Appendix B: The A-Transformation Used

The A-transformation on streamflows used in this work is given by the equation:

A
TQ, =< R ) (B1)
HQobs

where Q, and TQ, represent streamflows in the actual space and the transformed space, pqops is the mean of the observations
in the actual space, and A is the transformation parameter that reduces the skewness. This expression differs slightly from the

A
form TQ; = (Qt)}\ ! recommended by (Box and Cox, 1964), in that the flows are normalized by the mean pqops instead of by

1.0 before transformation, and the transformed flows all remain positive. This form works as long as the transformation

parameter A = 0 which is true in our case; if A = 0, then one should use TQ; = In(Q,) as discussed by Box and Cox (1964).

Appendix C: Calibrated HyMod (Actual and Modified) Parameters

The following table provides calibrated parameters of the actual and the modified HyMod models.

Step Step Step Step Step Step Step Step
1-1 1-3 1-4 11-1b 11-1c 11-1d 11-3 -4
761.0 | 17364.0 | 646.4 | 9494.0 | 903.7 | 866.0 | 12763.8 | 878.7
B 1.93 1.95 1.24 1.87 0.29 0.34 1.86 0.32
o 0.48 0.37 0.67 0.38 0.31 0.27 0.45 0.31
Ng 1.44 4.54 1.25 4.22 4.80 4.71 3.51 4.50
Ks 0.00 0.09 0.00 0.10 0.10 0.09 0.10 0.10
Kq 0.10 0.22 0.10 0.19 0.24 0.24 0.18 0.20

Para

Kmax - - - 0.73 1.00 1.00 1.00 1.00
Y - - - - - 0.00 1.00 0.00
BE - - - - - 0.86 0.06 0.90
a - - 1.33 - - - - 1.82
b - - 0.93 - - - - 2.00
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