
Supplement A: Mathematical formulation of Groundwater-Surface water interaction model 

At each layer (𝑚 = 1 … 𝑀) of an unconfined aquifer, the exact 3D solution to the saturated steady flow governing 

equation, with no-flow conditions along the sides of the domain, was obtained in terms of discharge potential 

function (𝜙𝑚
 = 𝐾𝑚ℎ𝑠) as (Ameli and Craig, 2014): 

𝜙𝑚 (𝑥, 𝑦, 𝑧) = ∑ ∑ 𝑐𝑜𝑠 𝜔𝑗𝑥 𝑐𝑜𝑠 𝜔𝑛𝑦 [𝐴𝑗𝑛
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In eq. (S.1), ℎ𝑠(𝑥, 𝑦, 𝑧) is the total hydraulic head, and 𝐾𝑚 (LT-1) is the mth layer saturated hydraulic conductivity. A 

continuous map of hydraulic head was then obtained as:  

ℎ𝑠(𝑥, 𝑦, 𝑧) =
𝜙𝑚(𝑥,𝑦,𝑧)

𝐾𝑚
           (S.2) 

To complete the solution, the unknown series solution coefficients of each layer (𝐴𝑗𝑛
𝑚 , 𝐵𝑗𝑛

𝑚) were calculated by 

imposing infiltration rate along the topographic surface, the no-flow condition along the bottom boundary, and the 

continuity of flux and head conditions along the layer interfaces of the multi-layer unconfined aquifer. A simple 

numerical least square scheme was used to impose these boundary and continuity conditions. In general, this 

continuous solution (Eq. (S.1)) exactly satisfies the mass balance and Darcy equations in the entire watershed, 

except along the boundaries where mass balance and Darcy equations are prone to numerical least square error.  

Ameli and Craig (2014) showed that this error can be negligible when sufficient number of control points was used 

within numerical least square algorithm.   

The continuous maps of Darcy fluxes at the mth layer and at each x, y and z directions can be computed by the 

following equation:  
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Equation (S.3) can also be used to determine groundwater discharge fluxes at discharge areas (seepage faces) along 

the land surface as well as groundwater recharge fluxes where the water table is below the land surface. A 

subsurface map of pore water velocities (V), which is required to perform subsurface water particle tracking, was 

obtained as:  
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where 𝜃𝑠 is subsurface porosity. Inputs to the model included: (1) the location and water level of wetlands; and (2) 

material properties of the subsurface. For (1), the delineated wetlands explained in Sect. 2.2 were used, and we 

assumed that the water level was equal to the average elevation of each wetland boundary. This water level was used 



as a constant head boundary condition at each wetland. For (2), a two-layer unconfined aquifer with a 5 m thick 

shallow layer was used to characterize the subsurface (as suggested in van der Kamp and Hayashi, 2009). The 

bottom boundary of the computational domain was assumed to be at Z = 0 with a no-flow condition. No-flow side 

boundaries were also placed on average 20 km away from the watershed border; this treatment minimized the 

impact of side boundaries on flow behaviour and subsurface connections. A porosity (𝜃𝑠) value of 0.14 equal to the 

average measured porosity at the Beaverhill watershed (Gleeson et al., 2014) was also used. 

 


