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Dear Editor, 

 
We would like to thank you and the reviewers for the helpful review.  
 
We took all your points into consideration and revised the manuscript accordingly.  
 
A detailed reply to reviewers is attached below. In preparing our response, all references to line 
numbers, equations, and figures are based on the revised manuscript; authors’ replies as well as the 
changes tracked in the manuscript are in blue. 
 
 
Sincerely, 

 

  



Referee comment #1 

This is an interesting paper that ultimately I would like to see published in Hydrology and Earth 
System Sciences journal. This manuscript proposes a procedure for automatically extracting snow-
related information from heterogeneous sources. I really enjoyed reading the paper, which deal with 
the important and timely issue of notable interest and modernity especially for the HESS readership. 
The paper accurately presents the methods and results. I have just a couple of minor 
comments/suggestions for the authors to consider.  
We thank the referee for the positive comment. 
 
From the introduction and methods sections, the authors mainly focused in the description of the 
approach used to derive VSI information from webcams and people pictures. However, in the 
results sections only a figure is reported to discuss the benefits of such approach. I would like to see 
more analysis regarding the results achieved using the method reported in sections 2.1, 2.2 and 2.3. 
For example, it would be interesting to discuss issues in define skyline or to show a comparison 
between snow information extractions (of a certain point) using both web camera and user 
generated picture (if possible).  
The results focus on quantifying the value of crowdsourced information in the operations of water 
systems, which is the main contribution of the paper. A detailed technical analysis of the image 
processing architecture is reported in Fedorov et al. (2015) including, for example, the comparison 
of the accuracy obtained with different feature extractors algorithms or the performance in the 
photo-to-terrain alignment (see tables below). To avoid replication, we did not include them in the 
paper and, following the reviewer suggestion, we added a sentence to direct the reader interested in 
the first part of the procedure toward the other paper (pag. 3, lines 29-30).  
Finally, we agree with the reviewer that a direct comparison between the information extracted 
from both a webcam and a user-generated photo would be absolutely interesting. Unfortunately, at 
this stage we have not overlapping data to perform such comparison. We added this analysis as a 
possible future research, which, hopefully, will be possible thanks to the continuous acquisition of 
new web content through our portal (pag. 19, lines 13-14). 
 

 

 
 
It is not clear to me how the information of VSI was used to estimate physical variable like ht in 
eq(10). Did the authors used any hydrological models? If yes, I think it would be appropriate to give 
a brief description in the methods section.  



We did not use any hydrological model because we adopt a model free approach and directly pass 
the VSI information to the controller. This is due to the fact that a process informed translation of 
the index into a hydrological model would be extremely complex. The index is extracting 
information from a localized context and the upscaling to the whole basin would require a physical 
interpretation of the index, which is beyond the scope of this work. We better clarified this point in 
the revised manuscript (pag. 11, lines 12-14).  
 
Finally, I believe authors should clearly define the limitations of this study (e.g. computational time 
of the imagine process and availability of public photo from people) in the conclusion section 
Following the referee's suggestion, also pointed out by the second referee, we will add a more 
balanced discussion about the requirements and limitations of the proposed approach. 
The paper represents a proof of concept on the possible use of public media for improving water 
resources monitoring and management. Our experiment relies on a small portion of the data we 
crawled and processed. In the revised manuscript, we added a discussion about the main factors 
which may limit our approach both in terms of computation power and data availability (pag. 18, 
lines 21-24 and pag. 19, lines 1-7). 
For example, the generation of a 1500 px X 12000 px panoramic view requires approximately 1000 
ms with a GeForce GTX 850M graphic card. The alignment of an image to the virtual panorama 
requires approximately 30.000 ms on an OpenStack virtual instance with 4 2.5GHz VCPUs and 
8Gb of RAM. 
In our case, we split the 300 X 160 km region of the Italian and Switzerland Alps using a 5 X 5 km 
step grid. We analyzed all the photographs and webcam images acquired in the specified region 
over a 6 months’ period (from December 1st, 2014 to May 31, 2015), for which the availability of 
photographs and webcams is the following one: 

- Photographs: spatial coverage 38%, temporal frequency ~10. 
- Webcams: spatial coverage 10%, temporal frequency ~10000. 

where the spatial coverage is defined as the fraction of grid cells containing at least one image over 
the considered observation period, while the temporal frequency is defined as the average number 
of images contained in a non-empty grid cell in the observation period. 
  



Referee comment #2 

This paper presents an approach to supplement in situ and satellite data in snow dominated 
watersheds by using publicly available webcam images and flickr photographs. The authors 
describe a complete procedure from the crawling of the images to the application of the extracted 
information on the regulation policy of a reservoir lake.  
I enjoyed reading this paper and I concur with reviewer 1 that it deserves publication.  
We thank the referee for the positive comment. 
 
I am also left with the feeling that the authors may have somehow eluded the limitations of their 
approach. The discussion should provide a more balanced analysis, e.g. by discussing the 
computation cost and data storage issues, the minimal amount or frequency of images to reach a 
stable solution in the VSI, and most importantly the steps that require human intervention (see 
specific comments marked (A) and (B) below). I spent some time to play around with this type of 
data so I can imagine the tedious work and the challenges to automatically filter, align and classify 
webcams or photos. 
Following the referee's suggestion, which was also pointed out by the first referee, we will add a 
more balanced discussion about requirements and limitations of the proposed approach. 
As far as the human intervention is concerned, it is worth noting that the requirements of our 
method are very low. Human intervention is indeed required only for the skyline annotation and the 
for setting up the experiment on Lake Como basin (e.g., select the webcam to use, ensuring it has 
enough information). In the revised manuscript, we discuss in detail the main factors currently 
limiting our approach, especially in terms of its applicability to the entire web media content (pag. 
18, lines 21-24 and pag. 19, lines 1-7). 
 
I encourage the authors to distribute an open source implementation of their processing to foster the 
development of similar applications in other regions.  
We are going to release our algorithms as open source implementation. Furthermore, our intent is to 
transform the web platform into a unique mountain-related media repository, that would provide 
computer science and environmental researches not only with input data and algorithms, but also 
with intermediate step results (e.g., somebody interested in testing a new snow pixelwise 
classification method could start from already aligned and weather-filtered images). We specified 
this in the revised manuscript (pag. 19, lines 15-17). 
 
I provided below a list of points that should be clarified. I hope that the authors will find my 
comments useful and look forward to reading an updated version. (NB. the line numbering of the 
manuscript is awkward, maybe an issue with the Copernicus LaTeX style file)  
Specific comments:  
P02-L12: AMSR-E derived SWE is generally not considered as "accurate" in mountain regions. 
Please modify or provide a reference to justify.  
The sentence was modified as suggested by the reviewer: Space-board passive microwave 
radiometers (e.g., AMSR-E) penetrate clouds but have coarse spatial resolution (25 km).  
 
 
P03-L20: I disagree that the assessment of the VSI through the Lake Como experiment is the "only 
viable evaluation method". There are other validation approaches, including more direct approaches 



like a comparison with terrestrial time lapse cameras, comparison with high resolution satellite 
snow maps, etc. Please clarify or remove this sentence.  
The sentence was modified as suggested by the reviewer: This form of assessment provides an 
indirect validation of the utility of web and crowdsourced information as the VSI extracted from 
general-purpose mountain images and the traditional observational data collected with dedicated 
tools are not comparable directly due to the difference in their physical interpretation and spatio-
temporal resolution. 
 
P05-L19: the skyline is manually defined for a first image. Do you mean that a skyline was 
manually digitalized on 2000 images (see P05-L09)? If yes this should be more clearly 
acknowledged. (A)  
We are currently running a crowdsourcing experiment for annotating all 2000 skylines as part of 
our effort to release a public dataset. The experiment described in the paper, instead, relies on a 
single webcam and required a single skyline annotation. We clarified this aspect in the revised 
version (pag. 5, lines 22-23). 
 
P05-Eq1: symbols p’ and τ are not defined.  
In the equation, p’ is a pixel different from p and τ is a threshold on the Euclidean norm || p – p’ ||. 
We fixed the definition of both variables in the revised manuscript (pag. 5, line 25).  
 
P05-L26: specify what is the edge detection algorithm.  
We used the Compass algorithm (Ruzon et al., 2001), an advanced edge detector that uses color 
distributions. We added this information in the revised manuscript (pag. 5, lines 22-23). 
Ruzon, Mark A., and Carlo Tomasi. "Edge, junction, and corner detection using color 
distributions." IEEE Transactions on Pattern Analysis and Machine Intelligence 23.11 (2001): 
1281-1295. 
 
P06-L09: why "cross" correlation? I would say correlation only.  
We are measuring cross-correlation because we want to quantify not only the similarity between the 
two edge maps, but the entire set of similarities at every possible position of one w.r.t. another. 
Correlation alone in this case would be a mere measurement of non-causality of the two edge maps. 
We clarified this point in the revised manuscript (pag. 6, lines 21-24). 
 
P06-L11: do you define a maximum offset to reduce the computation time, and if yes, how?  
We do use a maximum offset of 10 pixels to reduce the computation time (and also to reduce the 
possible error, since the webcam trembling shifts the image not more than few pixels). The 
threshold was defined through a trial and error method. We clarified this point in the revised version 
of the paper (pag. 6, lines 24-25). 
 
P08-L21: this is unclear to me: from the edge images, how do you extract the skyline? If this 
algorithm works, why was it not applied to the webcam images as well? I foresee many obstacles at 
this step, like the confusion of cloud edges or snow patches edges with skyline edges.  
The skyline is extracted from the edge map with a modified version of  the multi-stage graph 
algorithm by Lie et al. (2005). This was not applied to the webcams as a single annotation was 
sufficient for obtaining a precise skyline extraction. As the referee correctly pointed out, the 
algorithm suffered from clouds and challenging meteorological conditions when applied to the user-



generated photographs. To overcome this issue, we are currently working on a Convolutional 
Neural Network model trained on large sets of images to extract a more robust skyline. We fixed 
this point in the revised manuscript (pag. 8, lines 25-29). 
Lie, Wen-Nung, et al. "A robust dynamic programming algorithm to extract skyline in images for 
navigation." Pattern recognition letters 26.2 (2005): 221-230. 
 
P09-L05: what does "local refinement" mean? do you mean a locally varying transformation of the 
image? If yes specify the method.  
The local refinement step is the application of the same edge-alignment procedure, which is first 
performed during the global step, with a small max radius (50 pixel) and for each mountain peak 
independently. This allows the peaks to slightly move in their neighborhood to better adapt to the 
edges. We will clarify this local refinement step in the revised version of the paper.  
 
P09-L05 (sect 2.3): here I understand that you have used a supervised classification to get the snow 
mask. Then I suggest to explicit the number of samples and the method to define them. (B)  
Yes, we used a supervised classifier trained on a dataset that includes 59 images manually 
segmented in snow/non-snow areas, ending up with more than 7 million annotated pixels. We 
clarified this point in the revised manuscript (pag. 9, lines 2-3). 
 
P12-L07 (at the end of the page...): please indicate the number of webcam images and the number 
of flickr photos that were used for this experiment. 
The experiment described in the paper was performed by using the images of a single webcam in 
Livigno, which ensures a continuous time series of daily images over the time horizon 2013-2014 
(see Experiment Setting section). We do expect to obtain better, and more valuable, information by 
using more webcams along with Flickr photos, where webcams produce a temporally dense series 
of images of the same view, while crowdsourced photos have better spatial distributions but lower 
time coverage. Yet, we did not have such data over the period 2013-2014. We mentioned this 
analysis as a possible future research, which, hopefully, will be possible thanks to the continuous 
acquisition of new web content through our portal (pag. 19, lines 8-9). 
 
P14-Eq9: define r.  
In the equation, r is the daily release from the lake. We added the definition of this variable in the 
revised manuscript (pag. 14, lines 6-7).  
 
P16-L32: did you try to use the freezing level as an input to the regulation model?  
We did not use the freezing level as argument of the operating policy because, in a previous 
analysis, we run an automatic selection procedure with the Input Variable Selection techniques for 
identifying which variables are more valuable for informing the lake operations (see the 
Information Selection and Assessment framework in Giuliani et al. (2015)). The results of this 
analysis showed that snow-information is more valuable than the freezing level: SWE was always 
selected as the most informative variable to be considered for improving the baseline solution, 
while the IVS algorithm never selected the freezing level. This result can be explained by two 
reasons: 1) the dynamics of freezing level is highly correlated with the seasonality and, therefore, it 
does not add too much information to the day of the year, which is one of the argument of the 
baseline policy; 2) the freezing level is independent from the amount of snow stored in the 
mountains and, therefore, similar values of freezing levels may be associated to the beginning of the 



lake inflow peak due to large snow melt as well as to lower inflow if a limited amount of snow was 
accumulated in the previous months. As a consequence, the freezing level is not able to provide the 
kind of long lead-time prediction of the volume of water that will be available in the future, which 
is instead captured by snow-related information. 
 
P18-L05: I created an account and logged in to this website to give it a try but the alignment tool 
was not really working. The page was not responding when I clicked "continue". It might be a 
browser issue (I used Firefox 49 on MacOS).  
We apologize for this, the problem has been fixed and we invite the referee to try it again. 
 
P19-L09: I am not convinced with the potential of this method in the Atlas mountains because there 
are few operating webcams and probably a much lower amount of wintertime public photos than in 
the Alps. 
The point is well taken. We removed the reference to the Atlas Mountains and better outlined in the 
conclusions (pag. 19, lines 2-3 and lines 17-20) the potential limitations of the approach in 
catchments with few operating webcams and lower number of photos (like Atlas). 
 
 



Using crowdsourced web content for informing water systems
operations in snow-dominated catchments
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Italy
2Institute of Environmental Engineering, ETH, Wolfgang-Pauli-Str. 15, CH-8093 Zurich, Switzerland

Abstract. Snow is a key component of the hydrologic cycle in many regions of the world. Despite recent advances in envi-

ronmental monitoring are making a wide range of data available, continuous snow monitoring systems able to collect data at

high spatial and temporal resolution are not well established yet, especially in inaccessible high latitude or mountainous re-

gions. The unprecedented availability of user generated data on the Web is opening new opportunities for enhancing real-time

monitoring and modeling of environmental systems based on data that are public, low-cost, and spatio-temporally dense. In5

this paper, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web images,

either produced by users or generated by touristic webcams. A fully automated process fetches mountain images from multi-

ple sources, identifies the peaks present therein, and estimates virtual snow indexes representing a proxy of the snow covered

area. Our procedure has the potential for complementing traditional snow-related information, minimizing costs and efforts

for obtaining the virtual snow indexes and, at the same time, maximizing the portability of the procedure to several locations10

where such public images are available. The operational value of the obtained virtual snow indexes is assessed for a real world

water management problem, the regulation of Lake Como, where we use these indexes for informing the daily operations of

the lake. Numerical results show that such information is effective in extending the anticipation capacity of the lake operations,

ultimately improving the system performance.

1 Introduction15

Snow accumulation and melting are fundamental components of the hydrological cycle in many watersheds across the world

(e.g., Mote et al., 2005; Holko et al., 2011). Approximately 40-50% of the Northern Hemisphere is covered by snow (Pepe

et al., 2005) and snow plays a key role in mountain areas, which, in Europe, account for 40% of the total surface (Schuler et al.,

2004).

In such contexts, an accurate characterization of snow availability and its evolution in time can be extremely valuable for20

a variety of operational purposes, from avalanche prediction (e.g., Perona et al., 2012; Schweizer et al., 2009), water systems

operations through medium to long-term streamflow forecast (e.g., Wood and Lettenmaier, 2006; Anghileri et al., 2016), or

drought risk management (e.g., Staudinger et al., 2014). The projected temperature increase induced by climate change, with

1



consequent reductions of large volumes of snowpack and acceleration of the water cycle in many mountainous areas, will

further amplify the importance of better understanding snow dynamics (Barnett et al., 2005; Kunkel et al., 2016).

Snow processes are generally monitored through both ground monitoring networks (e.g., Brown and Braaten, 1998; López-

Moreno and Nogués-Bravo, 2006) and remote sensing (for a review, see König et al., 2001; Dietz et al., 2012, and references

therein). Yet, both sources have serious limitations in alpine contexts mainly related to the high spatial (e.g., Newald and5

Lehning, 2011) and temporal variability of snow related processes (Blöschl, 1999; Egli, 2008; Gleason et al., 2016). Ground

stations are generally very coarsely distributed. Satellite products provide data on a denser grid but are diversely constrained

depending on the sensors installed (Muñoz et al., 2013). High spatial and temporal resolution imagery (i.e., daily maps with

spatial resolution of about 500 m) can be derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products,

which are, however, strongly affected by the weather because optical sensors cannot see the earth surface when clouds are10

present (Parajka and Blöschl, 2008). Space-board passive microwave radiometers (e.g., AMSR-E) penetrate clouds but have

coarse spatial resolution (25 km). Finally, the use of active microwave systems (e.g. RADARSAT) is so far limited to the

detection of liquid water content.

The last few years have seen a rising interest in complementing traditional observations by using cameras and short-range

visual content analysis techniques (Bradley and Clarke, 2011), which allow improving the temporal and spatial resolutions for15

specific applications. Many case studies showed that the use of one or several time-lapse cameras allows mapping both the

spatial and temporal patterns of a variety of snow characteristics, including glacier velocity, snow cover changes, or detailed

monitoring of snowfall interception (see Parajka et al., 2012, and references therein). However, most of these systems generally

rely on cameras designed and positioned ad hoc (e.g., Hinkler et al., 2002), possibly including in the camera view some specific

objects, such as flags or sticks, which simplifies the calibration of geometry and colors (e.g., Floyd and Weiler, 2008; Laffly20

et al., 2012; Garvelmann et al., 2013). In addition, the use of these cameras is generally very expensive and often requires

intensive manual efforts in the image processing phase. This latter includes a variety of crucial, time-consuming operations,

such as the selection of photographs with good meteorological and visibility conditions, the photo-to-terrain alignment and

orientation, and the labeling of snow covered pixels for estimating the total snow cover (e.g., DeBeer and Pomeroy, 2009;

Farinotti et al., 2010).25

The availability on the web of large volumes of public, low-cost, and spatio-temporally dense data raises the question of

whether it is possible to use such data as a supplement, or at least as a complement, to traditional monitoring systems in

operational contexts. The main advantage of such public data, albeit collected for completely different purposes and with

much lower quality standards, is that they can significantly increase the spatial and temporal coverage at little/no cost (Jacobs

et al., 2009; Graham et al., 2010). This idea is part of a growing application of so called “citizen science” approaches to water30

resources systems operation (Buytaert et al., 2014) and, more generally, to diverse environmental problems (Fraternali et al.,

2012). Crowdsourced observations may act as low-cost virtual sensors in a variety of environmental contexts (Lowry and

Fienen, 2013), for example, contributing to monitoring the dynamics of forests (e.g., Daume et al., 2014), storms (e.g., Good

et al., 2014), or streamflow (e.g., Michelsen et al., 2016), with potential benefit in terms of the prediction of flood events and of

the timely delivery of alarms (e.g., Smith et al., 2015; Mazzoleni et al., 2015a, b; Fohringer et al., 2015; Le Boursicaud et al.,35
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2016). However, despite this interest in environmental public web and user generated data (Vitolo et al., 2015), most works

focus on data collection and analysis, with limited assessment of the practical value of such crowdsourced information.

In this paper, we explore the potential for web and crowdsourced data to retrieve relevant information on snow availability

and dynamics in a river basin, and assess the utility of such information in informing a real world decision making problem.

More precisely, we contribute a novel crowdsourcing procedure for extracting snow-related information from public web5

images, either produced by users or generated by touristic webcams, and we quantify the operational value of this information

compared to other more traditional snow information, such as ground observations and a hybrid mix of satellite retrieved

information, ground data, and model outputs. Our procedure employs an articulated architecture (Fedorov et al., 2015), which

automatically crawls content from multiple web data sources with a content acquisition pipeline integrating public webcams

and user-generated photographs posted on Flickr. Next, the procedure retains only geo-tagged images containing a mountain10

skyline with high probability and identifies the visible mountain peaks in each image, using a digital elevation model (DEM).

Then, a supervised learning classifier extracts a snow mask from each image, which distinguishes the image pixels as snow or

no-snow. Finally, the resulting snow masks are post-processed to derive time series of virtual snow indexes (VSI) representing

a proxy of the snow covered area.

The extracted VSI are used to inform water system operations. The evaluation is performed in the snow-dominated catchment15

of Lake Como, a regulated lake in Northern Italy, where snow melt is the most important contribution to the seasonal storage.

The VSI operational value is quantified by comparing, via simulation, the performance of the lake operating policies designed

using crowdsourced and traditional snow information, with the performance of the baseline policy obtained by regulating the

lake without snow information (Giuliani et al., 2015). This form of assessment provides an indirect validation of the utility

of web and crowdsourced information as the VSI extracted from general-purpose mountain images and the traditional obser-20

vational data collected with dedicated tools are not comparable directly due to the difference in their physical interpretation

and spatio-temporal resolution (e.g., geo-located photos allow estimating the presence of snow, but not the physical measures

usually employed in snow process models, such as the snow water equivalent).

The paper is organized as follows: in the next section, we introduce our methodology for the computation of VSI based on

public web content and the assessment of their operational value. Section 3 describes the Lake Como study site, followed by25

the discussion of the numerical results. The last section concludes with final remarks and directions for further research.

2 Methods and tools

This section describes the methodology adopted in this work, which is illustrated in Figure 1. Details about each phase of

the procedure are provided in the following sub-sections. A detailed technical analysis of the outputs of the image processing

architecture is reported in Fedorov et al. (2015).30
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Web content crawling and pre-processing 

Web cams
Around 2000 web cams are queried, 
checking for frame updates every 
minute and producing from 10 to 1500 
images per web cam per day.

Skyline visibility filtering
Depending on a skyline visibility score, 
an automatic filter discard images that 
are not suitable for snow cover 
analysis due to bad meteorological 
conditions, insufficient visibility, or 
web cam occlusion.

Daily Image Aggregation
Biases due to heterogenous 
illumination, shadows, or small 
obstacles under the skyline are 
removed by aggregating all the 
images acquired in the same day, 
applying an offset to remove the 
trembling of the web cam.

Orientation and mountain peak idenfitcation
The image edges are aligned with the contour of a virtual panorama generated from a 
Digital Elevation Model, which specifies the position of the visible mountains peaks in 
the panorama. The alignment is automatically computed via Vector Cross Correlation.

Snow mask extraction and computation of virtual snow indexes
Each aligned image is first converted into a binary mask identifying the pixels 
belonging to the mountain using the information from the virtual panorama, and then 
processed by a Random Forest supervised learning classifier with spatio-temporal 
filtering to produce a snow mask representing the portion of the terrain covered with 
snow. The resulting snow mask is used for computing virtual snow indexes (VSI). 

Users generated photographs
Flickr was selected for querying 
images within a 300 x 160 km region 
in the Alps, producing a dataset of 
600,000 candidate photos.

Classification of photos with 
mountains
A support vector machine classifier 
fed with Dense SIFT and Bag-of-
Visual-Worlds feature selection was 
trained with a dataset of 6,940 labeled 
images obtained through a 
crowdsourcing experiment, where 
each image was labeled by three 
users who replied to the following 
question: “Does the following image 
contain a significant mountain 
profile?”

Assessment of the operational value of virtual snow indexes
The operational value of the extracted VSI is assessed as the difference in system 
performance between an operating policy based on the VSI and a policy relying on 
traditional information. The value is quantified by two metrics, accounting for the 
proximity to a pre-defined target solution and for the distribution of the solutions in the 
objective space.

Figure 1. Flowchart of the methodology adopted in this study.

2.1 Web content crawling and pre-processing

Two types of public web content are considered, namely touristic webcams and mountains photographs from Flickr. In partic-

ular, webcams produce a temporally dense series of images of the same view, while crowdsourced photos have better spatial

distributions but lower time coverage.
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2.1.1 Public webcams

A webcam is a standalone camera positioned at a fixed known location, usually with a fixed orientation, which captures frames

with a certain frequency and exposes them via a web service. Differently from surveillance webcams, which can provide

real time updates (several frames per second, resulting basically in a video stream), public webcams deployed for touristic,

meteorological, and publicity reasons update the current frame with lower frequency, typically from one minute to one hour.5

The public webcam processing phase consists of three main steps:

1. Webcam image crawling: public webcams most often expose a single fixed URL for the current frame, and change

the image itself over time. This method simplifies the crawling, which amounts to checking the URL of the webcam

periodically and downloading the image, when it changes with respect to the last acquisition. We collected the address

of more than 3,500 webcams in the European Alps and manually inspected them, discarding those that do not frame a10

significant mountain profile, retaining nearly 2,000 webcams. Since December 2014, a crawler acquires all the images

of these webcams, checking for frame updates every minute, thus obtaining from 10 to 1,500 images per webcam per

day, depending on the update frequency.

2. Skyline Visibility Filtering: webcams are crawled independently of the weather conditions. As a consequence, although

the temporal density of webcam images guarantees a high number of input frames, filtering must be applied to discard15

unsuitable images that may bias the VSI computation (e.g., an image of a mountain covered by fog can be considered

as completely covered by snow in the next steps). A random sampling of 1,000 images from 4 webcams in our data

set revealed that 67% of the images were not suitable for snow cover analysis due to adverse weather conditions (e.g.,

fog, heavy snowfall, or rain), insufficient visibility, or presence of mobile obstacles such as cars or persons. Therefore,

the implemented filter automatically discards unsuitable images, identified by checking for occlusions of the mountain20

skyline. In practice, for each webcam, the pixels that belong to the skyline L are first identified manually on a sample

frame through a crowdsourcing experiment. Then, the binary skyline neighborhood mask L, which identifies pixels

p= (x,y) close to the skyline, is determined as follows:

L(p) =

8
<

:
1 if 9p0 2 L : kp� p0k  ⌧

0 otherwise
, (1)

where k ·k is the Euclidean norm and ⌧ is a distance threshold. In other words, L is a binary mask of the same dimension25

as the webcam image containing a dilated skyline profile.

Then, for each webcam image, its binary edge map E is computed by the Compass algorithm (Ruzon and Tomasi, 2001),

where a pixel is marked as an edge when it corresponds to an abrupt color variation. The binary matrix E�L, where �

5



denotes the pixel-wise product between two images of the same size, represents the edges of the image that belong to

the skyline. To check for occlusions, we compute a skyline visibility score v defined as

v = f(E�L) / f(L) (2)

where f(·) is a function that, given an image, returns the number of columns containing at least one non-zero entry.

The value of v ranges between 0 and 1, and can be intuitively seen as the percentage of the skyline which is visible

in the given image. After set-up trials, we discard images with v < v̄, where v̄ is a fixed threshold equal to 0.75. The5

experimental validation of the filtering algorithm on 1,000 manually annotated images (i.e., frames manually classified

as “good visibility” or “bad visibility”) showed that the algorithm achieves a True Positive Rate (TPR) equal to 87.4%,

while having False Positive Rate (FPR) equal to 3.5%.

3. Daily Image Aggregation: the images selected by the skyline visibility filter can still present several undesirable features

due to shadows, solar glare, or temporary obstacles below the skyline (e.g., people standing in front of the camera). To

attenuate such biases, assuming that the snow cover does not vary during a day significantly, we produce a single image

for each webcam per day by aggregating all the images acquired in a same day. Such a Daily Median Image (DMI) is

obtained as the median of every pixel across all the daily images accepted by the filter. Given a daily sample of N images

I1, . . . , IN , the DMI is formally defined as5

DMI(x,y) =med{I1(x,y), I2(x,y), . . . , IN (x,y)} (3)

where med{·} is the median operator applied to the image pixel values. Figure 2 shows a DMI obtained from 11 daily

images: it attenuates transient light conditions and removes the people standing in front of the webcam.

A second challenging aspect of DMI creation is the presence of webcam trembling (Latecki et al., 2005). The webcam

orientation is not perfectly constant in time but may change slightly, especially in windy regions and when webcams are10

fixed to poles. To overcome this problem, we extract edge maps of all daily images and calculate their cross correlation

to quantify not only the similarity between the two edge maps, but the entire set of similarities at every possible position.

The value of cross correlation is then used to derive the best offset of every image with respect to the reference represented

by the first image of the day. We consider a maximum offset of 10 pixels to reduce the computation time and avoid

possible correction errors. Finally, the DMI is determined from images normalized with such offset. Intuitively, this15

procedure can be seen as applying a small displacement to each image in order to obtain the best possible overlap

between its edges and the edges of the first image of the day.

2.1.2 User generated photographs

The second source of mountain images are the photographs generated by common people and publicly available on social

networks and photo sharing platforms. Although the volume of user generated photographs can not obviously reach the number20
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Figure 2. Example of Daily Median Image obtained from 11 images acquired in the same day.

of webcam images, user-generated photographs present higher spatial density. The webcams are indeed located in a few fixed

locations, whereas the user photographs can be potentially acquired in any place.

We selected Flickr as the content source because it contains a high number of public photographs with associated geo-

tag (e.g., Serdyukov et al., 2009). Furthermore, Flickr does not remove the EXIF information present in the original images

(Tesic, 2005); the EXIF container specifies several photo-related details, in particular the GPS location, the camera model25

and manufacturer, and optical information, such as the focal length used during the shot. This information is fundamental

for the peak detection algorithm (see Section 2.2). A continuous search system was set up for querying images within a

300⇥160 km region in the Alps. At present, the Flickr search pipeline examined around 600,000 candidate photos. Differently

from registered webcams, which produce thousands of images of the same view, the user-generated photograph are taken

at unknown location and may have an irrelevant content, and thus must be classified as relevant one-by-one. To this end, a30

supervised content-based classifier was developed to perform mountain image detection. The classifier was trained on a set
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of 6,940 images randomly sampled from the very large crawled data set; the ground-truth images were classified manually

through a crowdsourcing experiment. For each image, three users were asked to reply to the following question: “Does the

image contain a significant mountain profile?”. A web interface proposed a tutorial on how to annotate an image as positive

(mountain image) or negative (non-mountain image). The experiment was conducted using an internal (non paid) crowd,

collecting a total of more than 20,000 image classification labels. The aggregated ground-truth label of each image was then

derived via majority voting. Approximately 23% of the original 6,940 images were classified as positive.

The automatic classification was performed with a Support Vector Machine (SVM) classifier fed with Dense SIFT and Bag-

of-Visual-Worlds (BoVW) feature selectors (Fei-Fei and Perona, 2005). This technique relies on the idea that every image is5

composed by small patches (i.e., image portions), which somehow share common features with the images in the same class

(i.e., images that do contain or do not contain mountains). Since the number of possible patches to observe is very large, the

patches are split into a finite number of clusters. Each patch represents a visual word, which contributes to defining the content

of the image. All the visual words of the image are aggregated into a histogram, which is then used as feature vector for the

SVM classifier. To create a balanced data set, we retained all the positive samples and randomly selected the same number of10

negative samples. Then, we used around 70% of these images for training and validation, and the remaining 30% for testing.

The performance attained by the classifier on the test data set is: 95.1% accuracy, 94.0% precision, and 96.3% recall.

2.2 Orientation and mountain peak identification

The orientation and mountain peak identification procedure (see Figure 3) is applied to the user generated photographs clas-

sified as positive and to the median daily images of webcams. In fact, although webcams are geo-located, the information15

regarding the orientation of the webcam and, consequently, the corresponding mountain peaks observed, is not available. In

both cases, image orientation is estimated through the alignment with respect to a 360� virtual panorama generated using a

digital elevation model (DEM) that specifies the position of the visible mountain peaks in the panorama.

The automatic alignment of an image to the virtual panorama requires scaling the image to achieve the same angular/pixel

dimension. This step is performed by computing the image Field Of View (FOV), namely the size of the angle comprising the20

view. The FOV can be estimated from the image EXIF information, such as focal length, camera model, and manufacturer.

The procedure extracts the edge maps for both the scaled image and the virtual panorama. In particular, a modified version of

the multi-stage graph algorithm by Lie et al. (2005) was used for extracting the skyline from the edge maps and to eliminate

all the edges above the skyline (clouds and obstacles) by reducing gradually the strength of the edges below the skyline.

This step was not applied to the webcams as a single annotation was sufficient for obtaining a precise skyline extraction.25

Then, the best overlapping position between the image and the virtual panorama is identified with a Vector Cross Correlation

(VCC) procedure (Baboud et al., 2011). The VCC finds the best horizontal overlap position of the image with respect to

the panorama by maximizing the cross correlation score of the edges, also considering the estimated image orientation. The

identified overlap position allows projecting the peak positions from the panorama to the image to estimate which peaks are

visible and their coordinates in the image. When the image does not contain the EXIF information, the automatic orientation30

and mountain peak identification procedure can not be applied and the image requires a manual alignment with respect to the
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Figure 3. Example of the orientation and mountain peak identification procedure: (a) input image (top) and corresponding panorama (bot-

tom); (b) edge maps; (c) skyline detection; (d) global alignment; (e) local alignment.

panorama. Finally, a local refinement of the alignment is obtained by repeating the VCC procedure with a maximum radius

equal to 50 pixel and for each mountain peak independently to adjust its position through the identification of the best match

in its neighborhood region.

The orientation and peak identification algorithm was tested on a data set of 162 images randomly sampled from the web

and manually aligned to the corresponding virtual panoramas to create the ground-truth data. Considering a tolerance of 3 deg,

75% of the image orientations were correctly estimated. The accuracy grows to 77.6% for photos with no clouds and to 81.6%

for photos with no mountain slopes in the very short range (the effect of GPS errors is more sensible if mountains are close to5

the shooting location). The average peak positioning error resulted to be 0.78 deg.

2.3 Snow mask extraction and computation of virtual snow indexes

The third step of the procedure is the conversion of the snow information contained in the aligned image into one or more

VSI associated to the mountain viewpoint portrayed in the photo. This phase requires estimating a snow mask representing the

portion of the terrain that is covered with snow. Formally, let I denote an image and M a binary mask having the same size10

as I , where M(x,y) = 1 indicates that the pixel p(x,y) of the image belongs to the mountain area, or M(x,y) = 0 otherwise.

The binary mask M is derived from the alignment of the image with the virtual panorama (see the previous section), which

allows distinguishing pixels that correspond to terrain or sky.

The pair (I,M) is processed by a pixel-level binary classifier, which extracts the snow mask S by assigning to each pixel

a label denoting the presence of snow (S(x,y) =K1), non-snow (S(x,y) =K2), and sky (S(x,y) =K3) as shown in Figure15

4. We computed snow masks using the Random Forest supervised learning classifier with spatio-temporal median smoothing

of the output (Liaw and Wiener, 2002). Such classifier discriminates the presence of snow in a pixel based on its color and

on the color of the neighbor pixels. Moreover, it applies a spatio-temporal median filter to smooth the snow variation and

attenuate the errors. Smoothing implements the assumption that pixels close to each other in the same image and pixels in

the same position in images close in time should belong to the same class (i.e., snow/non-snow). The training and testing of

the supervised classifier was performed on a data set including 59 images annotated in snow/non-snow areas, containing more
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Figure 4. Example of an image (top) and the computed snow mask (bottom), where white stands for snow, black for non-snow, and blue for

sky.

than 7 million single pixel ground-truth labels. The accuracy attained by the classifier is 93.5%, outperforming other existing

methods for pixel-level classification of snow presence (Fedorov et al., 2015).5

Finally, different VSI are computed from the snow masks S, potentially considering also the altitude associated to each

pixel, which can be determined from the image to virtual panorama alignment. In this work, we report the results obtained with

a Virtual Snow Index � representing a proxy of the snow cover area, defined as follows:

� =

X

p(x,y)2I

�(p(x,y)) where

�(p(x,y)) =

8
><

>:

1 if S(x,y) =K1

0 otherwise
(4)

2.4 Assessment of the operational value of virtual snow indexes10

The operational value of the extracted VSI is assessed as the difference in system performance between an operating policy

based upon the VSI and a policy relying on more traditional information, including water availability in the lake and day of the

year. In particular, the operating policies are computed by solving a multi-objective optimal control problem (Castelletti et al.,

2008) formulated as follows:

p⇤ = argmin

p
J= |J1, . . . ,Jq| (5)15
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where the policy p is defined as a closed loop control policy that determines the release decision ut = p(dt,xt,It) at each time

step t as dependent on the day of the year dt, the current state of the system xt (i.e., the level of the lake at time t), and a vector

of exogenous information It (i.e., variables that are observed but are not endogenous in the problem formulation and hence

are not modeled). Note that the resolution of Problem (5) does not yield a unique optimal solution but a set of Pareto optimal

solutions.

The most common technique to solve Problem (5) is Dynamic Programming (Bellman, 1957). However, DP is severely lim-

ited by the curse of modeling in designing operating policies conditioned on exogenous information (Tsitsiklis and Van Roy,5

1996) and by the curse of multiple objectives in exploring multidimensional tradeoffs (Powell, 2007). We therefore solve

Problem (5) by means of Evolutionary Multi-Objective Direct Policy Search (Giuliani et al., 2016a), an approximate dynamic

programming approach that combines direct policy search, nonlinear approximating networks, and multi-objective evolution-

ary algorithms. EMODPS allows the direct use of exogenous information through a partially data-driven controller tuning

approach (Formentin et al., 2013). The operating policy, defined as a nonlinear approximating network, is directly conditioned10

on observations of exogenous information, which cannot be accurately modeled and would produce detrimental effects on

the performance of an operating policy conditioned on approximate model’s outputs (Formentin et al., 2012). The selected

policy parameterization strongly influences the selection of the optimization approach as the number of parameters necessary

to obtain a good approximation for the unknown optimal control policy grows with the increasing dimension of the policy’s

argument (Zoppoli et al., 2002). Since the optimization of the policy parameters requires searching high dimensional spaces15

that map to stochastic and multimodal objective function values, global optimization methods such as evolutionary algorithms

are preferred to gradient-based methods (Heidrich-Meisner and Igel, 2008).

Given the Pareto optimal solutions of Problem (5), the operational value of the estimated VSI is quantified by means of two

metrics (Giuliani et al., 2015). The first metric is a measure of the proximity between a pre-defined target solution JT and the

closest alternative in the Pareto front of the policy under examination, i.e.20

Dmin = min

i=1,...,N
kJT �Jik (6)

where k · k stands for the (normalized) Euclidean norm, N is the number of solutions in the Pareto front under exam, and Ji is

the performance of the i-th solution in the Pareto front. The lower Dmin, the closer to the target the performance.

A more informative assessment can be done by evaluating not only how close a given policy can get to a pre-defined target

solution but, more generally, how the Pareto approximate solutions distribute in the objectives space. Among the commonly25

used metrics adopted in the literature (see Maier et al. (2014) and references therein), we adopt the hypervolume indicator

(HV ), which captures both the convergence of the Pareto front under examination F to the optimal one F⇤ as well as the

representation of the full extent of tradeoffs in the objective space. The hypervolume measures the volume of objective space
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dominated (�) by the considered set of solutions. This metrics allows set-to-set evaluations, where the Pareto Front with higher

HV is considered better. HV is calculated as the hypervolume ratio between F and F⇤, formally defined as:

HV (F ,F⇤
) =

R
↵F (x)dxR
↵F⇤

(x)dx
where

↵F (x) =

8
><

>:

1 if 9x0 2 F such that x0 � x

0 otherwise
(7)5

3 Lake Como study site

3.1 System description

Lake Como is a regulated lake in the Adda River basin, Italy (Figure 5). The lake has an active storage capacity of 254 Mm3

and is fed by a 3,500 km2 alpine catchment that reaches altitudes over 4,000 m asl. Downstream from the lake, the Adda River

serves a dense network of irrigation canals belonging to four agricultural districts for a total irrigated area of 1,400 km2 (green10

area in Figure 5). Major cultivated crops are maize and temporary grasslands, while minor crops include rice, soybean, wheat,

tomato, and barley. The hydro-meteorological regime in the catchment is the typical sub-alpine one, with scarce discharge in

winter and summer, and peaks in late spring and autumn due to snowmelt and rainfall, respectively. In particular, snowmelt

from May to July is the most important contribution to the formation of the seasonal storage (Figure 6).

The alpine orography constrains the accurate monitoring of snow dynamics. The existing ground stations (46 over the 10,50015

km2 alpine area in the Lombardy region) provide a very coarse coverage of the region and are not sufficient to reliably moni-

tor the snow coverage and the associated water content. This is instead estimated by the Regional Agency for Environmental

Protection (Agenzia Regionale per la Protezione dell’Ambiente - ARPA), which produces estimates of snow water equivalent

(SWE) through a hybrid procedure combining snow height and temperature data from ground stations, measures of snow den-

sity in few specific locations, satellite retrieved data of snow cover from MODIS, and model outputs for spatially interpolating

these data. As a result of this complex procedure, ARPA elaborates a weekly estimate of SWE. Such reports are delivered only5

weekly due to the well known limitations of snow products derived from optical sensors associated to the frequent satellite

occlusion by cloud coverage. This limitation is particularly restrictive in the alpine region, where previous studies observed an

average cloud occlusion of 63% over a five year monitoring period (Parajka and Blöschl, 2006), with critical episodes of cloud

coverage lasting for more than 25 days per month in winter time. On the contrary, webcams are less affected by cloud coverage

and can provide observations during cloudy days as shown illustratively in Figure 7. In this study, we contrast the operational

value in informing the lake operation of three different snow-related data sources: (i) daily observations of snow height from

coarsely distributed ground stations; (ii) weekly SWE estimate provided by ARPA; (iii) daily values of the VSI � extracted5

from public web images.

12



Figure 5. Adda River Basin: Lake Como, Adda River, downstream agricultural districts, ground stations, and public webcams.
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Figure 6. Hydro-meteorological regime of Lake Como.

The existing regulation of the lake is driven by two primary, competing objectives: water supply, mainly for irrigation,

and flood control in the city of Como, which is the lowest point of the lake shoreline. In particular, the agricultural districts

downstream would like to store the snowmelt volume for the summer water demand peak, when the natural inflow is not

sufficient to satisfy the irrigation requirements (see the magenta area in Figure 6). Yet, storing such water increases the lake10

level and, consequently, the flood risk, which would be instead minimized by keeping the lake level as low as possible. On the
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Figure 7. Comparison of MODIS daily snow cover map (left panel) with the images acquired by a webcam (right panel) on Jan. 9, 2014 at

the location denoted by the asterisk in the map.

basis of previous works (e.g., Castelletti et al., 2010; Giuliani and Castelletti, 2016; Culley et al., 2016; Giuliani et al., 2016b),

these two objectives are formulated as follows:

– Flood control: the average annual number of flooding days in the evaluation horizon H , defined as days when the lake

level ht is higher than the flooding threshold (¯h=1.24 m):15

Jflood
=

1

H/365

HX

t=1

⇤(ht) where

⇤(ht) =

8
><

>:

1 if ht > ¯h

0 otherwise
(8)

– Irrigation supply: the daily average quadratic water deficit between the lake release rt+1 and the daily water demand

wt of the downstream system, subject to the minimum environmental flow constraint qMEF to ensure adequate environ-

mental conditions in the Adda River:

J irr
=

1

H

HX

t=1

max

�
wt �max(rt+1 � qMEF ,0),0

�2
(9)20

This quadratic formulation aims to penalize severe deficits in a single time step, while allowing for more frequent, small

shortages (Hashimoto et al., 1982).

14



3.2 Experiment setting

Our assessment of the operational value of the VSI relies on the comparison of the performance attained by informing the

operating policies of Lake Como with alternative snow-related information: (i) policies P1 informed by snow height observa-25

tions from ground stations; (ii) policies P2 informed by SWE estimates provided by ARPA; (iii) policies P3 informed by the

virtual snow index �. Performance is evaluated against an upper bound solution, designed assuming perfect foresight of future

inflows, and a baseline solution, corresponding to a traditional regulation conditioned on the day of the year and the lake level.

The experimental setting is structured as follows:

– Observational data: we consider the time horizon 2013-2014 over which time series of snow height, SWE estimate, and5

VSI are available. In particular, snow height data are measured at the Truzzo ground station, while the VSI derives from

the images of a webcam in Livigno (see Figure 5); both sources have time series covering the selected time horizon.

– Informed solutions: the operating policies P1, P2, and P3 are designed via EMODPS by parameterizing the policies as

Gaussian radial basis functions, which have been demonstrated to be effective in solving this type of multi-objective

policy design problems (Giuliani et al., 2014a, b), particularly when exogenous information is used for conditioning the10

operations (Giuliani et al., 2015). To perform the optimization, we use the self-adaptive Borg MOEA (Hadka and Reed,

2013), which has been shown to be highly robust in solving multi-objective optimal control problems, where it met or

exceeded the performance of other state-of-the-art MOEAs (Zatarain-Salazar et al., 2016). Each optimization was run

for 2 million function evaluations. To improve solution diversity and avoid dependence on randomness, the solution set

from each formulation is the result of 30 random optimization trials. The final set of Pareto optimal policies for each15

experiment is defined as the set of non-dominated solutions from the results of all the optimization trials.

– Upper bound solution: this ideal set of operating policies, which assume perfect foresight of future inflows, were de-

signed via Deterministic Dynamic Programming over the 2-years (2013-2014). The weighting method is used to aggre-

gate the 2 operating objectives (i.e., flood control and irrigation) into a single objective, via convex combination.

– Baseline solution: the traditional regulation of the lake is represented in terms of a set of operating policies conditioned20

on the day of the year dt and on the lake level ht. Also these policies were designed via EMODPS.

4 Results and discussion

A first qualitative analysis of the Virtual Snow Index � defined in eq. (4) can be performed by comparatively analyzing the

trajectory of this VSI with respect to the snow height observations in the closest ground station (i.e., Oga San Colombano,

located around 15 km far from the webcam) or with respect to some physical variables closely related to the snow dynamics.25

Figure 8 contrasts the historical trajectory of � in 2013 with the trajectories of snow height observations at Oga San Colombano

station (left panel) and of the freezing level (right panel). Despite some differences due to the different locations of the webcam

and the ground station, the first comparison shows similar temporal patterns: most of the snowmelt occurs between April and
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Figure 8. Comparison of the trajectories in 2013 of the Virtual Snow Index � with the snow height measured at Oga San Colombano (left

panel) and with the freezing level (right panel).

first half of May, followed by a late snowfall at the end of May; no snow is present since late June, with the first snowfall of the

next winter observed in early October. The comparison between � and the freezing level shows a negative correlation between30

low values of freezing level from January to March as well as in November and December, which are associated to high values

of �. On the contrary, the freezing level increases in summer time in correspondence to low and zero values of �. Moreover, it

is worth noting the consistency in the oscillations of the two trajectories especially in winter time, when the snow accumulation

is captured by increasing values of � associated to decreasing freezing levels and, viceversa, the snow melting corresponds to

decreasing values of � and increasing freezing levels.

To further demonstrate the value of �, we then quantified its operational value for informing the Lake Como operations (see

Section 2.4). The performance of this set of informed operating policies (P3) is contrasted with the baseline solution, namely5

the traditional lake regulation conditioned on the day of the year and the lake level, and the upper bound solution, namely an

ideal set of policies designed under the assumption of perfect foresight of future inflows. The same experiment is repeated

using either ground observations of snow height (P1) or SWE data provided by the ARPA (P2) in order to validate the value of

the VSI information with respect to traditional data sources.

Figure 9 illustrates the performance of the different set of solutions in terms of flood control (Jflood) and irrigation supply10

(J irr), evaluated over the horizon 2013-2014. The arrows indicate the direction of increasing preference, with the best solution

located in the bottom-left corner of the figure. Visual comparison of the baseline (blue circles) and upper bound solutions (black

squares) shows the potential space for improvement generated by the ideal perfect information of the future inflows trajectories.

A quantitative measure of this space is provided by the values of the two metrics Dmin and HV introduced in Section 2.4.

Table 1 shows that the normalized distance between the closest baseline solution to the target upper bound solution is 0.342,15

with this gap confirmed also for the entire set of solutions by the 0.292 difference in terms of hypervolume indicator. Valuable
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Figure 9. Performance obtained by different Lake Como operating policies informed with ground observations (P1 - green circles), SWE

estimated by ARPA (P2 - cyan circles), or virtual snow indexes (P3 - red circles). The performance of these solutions is contrasted with the

upper bound of the system performance (black squares) and the baseline operating policies (blue circles).

snow-related information is hence expected to fill the gap between the baseline and upper bound solutions. It is interesting to

observe that, beside improving the performance of the operating policies with respect to both the objectives, the use of perfect

information reduces the conflict between flood control and water supply, and discovers a number of solutions close to the

independent optima of the two objectives, including the selected target solution JT = (4.5;250.6).

Given the references provided by the baseline and upper bound solutions, we can assess the operational value of different

snow-related information by looking at the performance of informed operating policies, represented by the green, cyan, and

red circles in Figure 9. Not surprisingly, numerical results show that enlarging the information used in the lake operations by

accounting for the snow dynamics in the upstream catchment is producing an improvement of the system performance. In fact,

the baseline solutions are completely dominated by the sets P1, P2, and P3. These informed operating policies successfully

exploit the available snow data to implicitly obtain a medium to long term forecast of the future water availability due to snow5

melt, which supports the daily operations of the lake balancing flood protection on the short term and water supply on the long

one. Overall, the three sets of Pareto optimal solutions, obtained using different snow information, attain similar performance,

thus suggesting that the VSI can be considered equivalent to the other two physically based indexes. Figure 9 also shows that
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policies P1 are the best for very low values of Jflood but high values of J irr, while policies P3 result to be the best in the

compromise region of the objectives space (i.e., Jflood < 10 days and J irr < 275 (m3/s)2), which is likely including the most10

interesting solutions for the lake operator as they successfully balance the system tradeoffs.

Table 1. Operational value of the VSI quantified by the two metrics introduced in Section 2.4.

Policy Dmin �Dmin HV �HV

baseline 0.342 - 0.708 -

P1 (snow height) 0.291 15.1% 0.788 11.3%

P2 (SWE) 0.290 15.2% 0.785 10.9%

P3 (�) 0.238 30.4% 0.790 11.6%

upper bound 0.0 - 1.0 -

Finally, the values of the metrics reported in Table 1 confirm this visual evaluation. The three sets P1, P2, and P3 attain

similar values of hypervolume indicator, which assesses the quality of the entire set of solutions. Interestingly, the policies

P3 relying on the VSI outperform the other informed solutions both in terms of proximity to the target solution (i.e., lowest

value of Dmin) as well as quality of the entire Pareto front (i.e., highest value of HV ). Although the differences in terms of15

hypervolume are limited, the operational value of � in terms of Dmin is relevant and improves the performance of the baseline

solutions by 30%, doubling the improvement achievable by using either snow height or SWE data.

5 Conclusions

In this paper, we present a web content processing architecture for extracting snow-related information from public web im-

ages, either produced by users or generated by touristic webcams. The images, crawled from multiple web data sources, are20

automatically processed to derive time series of virtual snow indexes representing a proxy of the snow covered area. We then

quantify the operational value of such data for informing the operations of Lake Como.

Numerical analysis shows that the time series of the virtual snow index extracted from a representative webcam is positively

correlated with the snow height observations from ground stations and negatively correlated with the freezing level’s dynamics.

Moreover, our results demonstrate that the operational value of the virtual snow index meets or exceeds the one of traditional25

snow information. While the use of any snow information allows attaining a 10% increase in the hypervolume indicator with

respect to the baseline system operations, the operating policies that use the virtual snow index are the closest to the target

solution, selected as a good compromise between flood control and irrigation supply.

It is worth noting that our results require a large computing effort for crawling and processing webcams and user-generated

photos for the selected study site. For example, the generation of a 1500⇥12000 px panoramic view requires approximately30

1000 ms with a GeForce GTX 850M graphic card. The alignment of an image to the virtual panorama requires approximately

30.000 ms on an OpenStack virtual instance with 4 2.5GHz VCPUs and 8Gb of RAM. On the contrary, the requirements in
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terms of human intervention are very low. Human intervention is indeed required only for the skyline annotation and the for

setting up the experiment on Lake Como basin (e.g., select the webcam to use, ensuring it has enough information). Finally, the

availability of public information, either in terms of webcams or photos, represents a key point for implementing our approach.

In our case, we split the 300⇥160 km region of the Italian and Switzerland Alps using a 5⇥5 km grid. We analyzed all the

images acquired in the specified region over a 6 months’ period (from December 1st, 2014 to May 31, 2015) obtaining a spatial

coverage (i.e., the fraction of grid cells containing at least one image over the considered observation period) of 38% and 10%5

for photographs and webcams, respectively.

Future research efforts will focus on consolidating this approach by extending the evaluation horizon and by using at the

same time multiple webcams and photographs to better understand the system dynamics in terms of snow accumulation and

melting as well as of the informed lake operations. In parallel, the amount of web content is expected to increase, potentially

improving the spatial and temporal resolution of the generated snow-related information and its operational value. We have10

indeed developed a gamified web portal (http://snowwatch.polimi.it/) where users can cooperatively access and enrich the data

set of alpine mountain images, possibly allowing a direct comparison between the information extracted from a webcam and

from a user-generated photo in the same location, which is currently unfeasible because we have not overlapping data. The

gamified portal is also expected to facilitate the users’ engagement, fostering a more active participation to our image collection

effort. Furthermore, our intent is to transform the web platform into a unique mountain-related media repository for testing

novel methods and tools. Finally, we are going to release our algorithms as open source implementation in order to maximize

the portability of our architecture in other snow-dominated catchments where public webcams and user-generated photos are

available, also exploring its potential in different environmental problems that may benefit from using public web content5

sources as low-cost virtual sensors, including sediment monitoring in river beds or vegetation monitoring in remote mountain

regions.
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