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Abstract. Much of our knowledge about future changes in precipitation relies on global (GCM) and/or regional climate models
(RCM) that have resolutions which are much coarser than typical spatial scales of precipitation, particularly extremes. The
major problems with these projections are both climate model biases and the gap between gridbox and point scale. Wong
et al. developed a model to jointly bias correct and downscale precipitation at daily scales. This approach, however, relied
on pairwise correspondence between predictor and predictand for calibration, and thus, on nudged simulations which are
rarely available. Here we present an extension of this approach that separates the downscaling from the bias correction and
in principle is applicable to free running GCMs/RCMs. In a first step, we bias correct RCM-simulated precipitation against
gridded observations at the same scale using a parametric quantile mapping (QMy,;4) approach. In a second step, we bridge
the scale gap: we predict local variance employing a regression based model with coarse-scale precipitation as predictor. The
regression model is calibrated between gridded and point scale (station) observations. For this concept we present one specific
implementation although the optimal model may differ for each studied location. To correct the whole distribution including
extreme tails we apply a mixture distribution of a gamma distribution for the precipitation mass and a generalized Pareto
distribution for the extreme tail in the first step. For the second step a vector generalized linear gamma model is employed. For
evaluation we adopt the perfect predictor experimental setup of VALUE. We compare our method also to the classical QM as
it is usually applied, i.e., between RCM and point scale (QM,,;,¢). Precipitation is in most cases improved by (parts of) our
method across different European climates. The method generally performs better in summer than in winter and in winter best
in the Mediterranean region with a mild winter climate and worst for continental winter climate in mid & eastern Europe or
Scandinavia. While QM,,;,,; performs similar (better for continental winter) to our combined method in reducing the bias and
representing heavy precipitation it is not capable to correctly model point scale spatial dependence of summer precipitation. A
strength of this two-step method is that the best combination of bias correction and downscaling methods can be selected. This

implies that the concept can be extended to a wide range of method combinations.
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1 Introduction

To assess the impacts of hydrometeorological extremes in a changing climate high quality precipitation projections on the point
scale are often demanded. Much of our knowledge about future changes in precipitation is based on global (GCMs) and/or re-
gional climate models (RCMs). These have resolutions which are much coarser than typical spatial scales of processes relevant
for precipitation. This concerns particularly extreme precipitation, which is far more sensitive to resolution than mean precip-
itation (Volosciuk et al., 2015). Although horizontal resolution of GCMs has successively increased since the first assessment
report of the Intergovernmental Panel on Climate Change (IPCC, 1990), resolving all important spatial and temporal scales
remains beyond current computational capabilities for transient global climate change simulations (Le Treut et al., 2007). The
simulation of precipitation depends heavily on processes that are parameterized in current GCMs, and also in most RCMs
(Flato et al., 2013). Biases related to parametrization schemes and unresolved processes thus remain in addition to systematic
biases related to the large scale circulation (e.g., Flato et al., 2013; Kotlarski et al., 2014).

Different approaches have been employed to downscale and/or reduce biases of simulated precipitation, particularly ex-
tremes: (a) high-resolution GCMs, (b) dynamical downscaling using RCMs that are nested into the GCMs (Rummukainen,
2010), and (c) statistical downscaling including post-processing with bias correction methods (Maraun et al., 2010). But even
though high-resolution GCMs and RCMs improve the representation of extreme precipitation by better resolving mesoscale at-
mospheric processes, biases remain and there is still a scale gap between the simulated gridbox values of precipitation and point
scale data (i.e., rain gauges). Hence, statistical bias correction methods are also applied to such high-resolution simulations.
These so-called Model Output Statistics (MOS)-approaches employ a correction function derived in present day simulations
to future simulations of the same model (Maraun et al., 2010).

Quantile mapping (Piani et al., 2009), one example MOS-approach, is widely applied to statistically post-process simulated
precipitation. While this might be a reasonable approach for correcting biases on the same spatial scale, variability on local
scales is not fully determined by grid-scale variability, e.g., the exact location, size or intensity of a thunderstorm. This is part
of the representativeness problem between gridbox and point values (Zwiers et al., 2013). Quantile mapping is a deterministic
approach that cannot add random variability. It simply inflates the variance leading to an overestimation of spatial extremes,
and too smooth a variance in space and also in time (von Storch, 1999; Maraun, 2013a). Grid-box precipitation, e.g., is the
area average of sub-grid precipitation. The aggregation averages local variations in time such that grid-box time series are
smoother in time than local time series. Quantile mapping can not overcome this mismatch in temporal structure (apart from
correcting the drizzle effect). This temporal effect is more difficult to trace than the spatial effect (Maraun, 2013a). Standard
downscaling approaches in turn have a limited ability to correct systematic biases. Wong et al. (2014) developed a model that
jointly bias corrects and downscales precipitation at daily scales. However, this approach relies on pairwise correspondence
between predictor and predictand for calibration that is only provided by nudged GCM/RCM-simulations, and is not able to
post-process standard, free-running GCM-simulations (Eden et al., 2014).

Here we present a modification of the Wong et al. (2014)—approach that is designed to also work in principle for free

running GCM/RCMs, such as those available from ENSEMBLES (van der Linden and Mitchell, 2009) or CORDEX (e.g.,
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Jacob et al., 2013). With the aim of combining their respective advantages we combine a statistical bias correction and a
stochastic downscaling method. Thereby we separate bias correction from downscaling by inserting a gridded observational
dataset as reference between these two steps. In particular, as first step we apply a parametric quantile mapping approach
between an RCM and a gridded observational dataset. In a second step we bridge the scale gap between gridded and point
scale by employing a stochastic regression-based model that is calibrated between gridded and station observations and then
applied to the bias corrected precipitation from the first step.

In section 2 the general concept is introduced, the data used are described in section 3. In section 4 we present the bias
correction and the stochastic downscaling model. Results of the evaluation of our model for example stations across Europe

are provided in section 5 and finally, section 6 contains the conclusion.

2 General concept

We separate bias correction from downscaling into two steps to overcome the shortcomings of each method and to combine their
respective strengths. Our concept is illustrated schematically in Fig. 1. In the first step, we use the advantage of distribution-
wise bias correction (i.e., the correction function is calibrated on long-term distributions) to eliminate systematic biases in
the RCM. While this distribution-wise setting may correct systematic RCM-biases it cannot bridge the gap between gridbox
and point scale for two reasons. First, a considerable portion of subgrid variability is random for precipitation and has to be
modeled as stochastic noise. Yet, distribution-wise MOS-methods are deterministic and do thus not add unexplained random
variability. Second, distribution-wise methods cannot separate local variability into systematic explained variability and small-
scale unexplained variability. Moreover, when simulated short-term variability is inflated to match local variability, long-term
trends are also inflated (Maraun, 2013a). Therefore, we only apply this distribution-wise method to correct biases on the
same spatial scale, i.e., as reference we use gridded observations on the same grid as the RCM. In the second step, we employ a
stochastic regression-based model to overcome the representativeness problem. This regression model corrects systematic local
effects (e.g., whether a rain gauge is positioned on the lee or windward side of a mountain). It also adds random (unexplained)
small scale variability, in contrast to approaches of combined methods that employ spatial interpolation for downscaling (Wood
and Maurer, 2002; Wood et al., 2004; Payne et al., 2004) or rescale the grid-scale precipitation with a factor to match the
observations (Ahmed et al., 2013). We calibrate the probabilistic regression model between gridded and point scale observations
and apply it then to the corrected grid-scale time series in the validation period. This corresponds to a perfect prog (PP) setting
for the regression, while the bias is corrected in the first step. This combined approach is an extension of the model by
Wong et al. (2014) that jointly bias corrects and downscales precipitation (see Fig. 1). They employ a probabilistic regression
model that is calibrated between RCM and point scale observations (MOS-approach). It requires nudged RCM-simulations for

calibration since temporal correspondence is essential.
[Figure 1 about here.]

With this concept in place, basically in the first step any reasonable distribution-wise MOS-approach, and in the second step

any adequate stochastic model can be employed. A strength of this concept is its flexibility, i.e., the best suitable combination
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of statistical models for a given location and season can be determined. In this study, we employ a quantile mapping (QMg;;q)
approach based on the mixture distribution of a gamma and a generalized Pareto distribution (Vrac and Naveau, 2007) in the
first step. The model used in the second step consists of a logistic regression for wet day probabilities and a vector generalized
linear model predicting the parameters of a gamma probability distribution (VGLM gamma) for precipitation intensities. Note
that this combination of methods may not be optimal in all studied locations. However, the aim of this study is rather to
introduce and evaluate the concept of this combined approach than to find the optimal specific implementation for all studied
locations.

To evaluate and illustrate our method we adopt the perfect predictor experimental setup of the VALUE-framework (Maraun
etal., 2015). Employing the same evaluation framework as VALUE allows for comparing our method to all models participating
in the VALUE-experiment. In this context, a reanalysis-driven RCM is used which allows to evaluate the ability of the method
to correct RCM-biases, before evaluating GCM-driven simulations where biases of both GCM and RCM need to be corrected.
We note that although this is a pairwise setup where simulated and observed weather states are in principle synchronized (with
the exception of the internal variability generated within the RCM) we only use the simulated and observed distribution for the
bias correction. Thus, as explained above, the approach can be transferred to any simulation setup, e.g., GCM-driven RCM-
simulations or GCM-simulations. For comparison we also applied the classical QM-approach, i.e., directly between RCM and
point scale (QMpoint).

The method is evaluated by five-fold cross validation for the time period 1979-2008, i.e., five 6-year long periods are
predicted by the model that was fitted to the remaining 24 years. Artificial predictive skill is thus not present as the predicted
period is not part of the training period. The model is fitted and evaluated for each season separately. 86 stations across Europe
are studied (as selected for the VALUE experiment, see Fig. 2) representing different climates. In the evaluation of our model
we compare eight European subdomains (dashed lines in Fig. 2): the British Isles (BI), the Iberian Peninsula (IP), France (FR),
Mid-Europe (ME), Scandinavia (SC), the Alps (AL), the Mediterranean (MD) and eastern Europe (EA). These domains have
been defined within the PRUDENCE-project (Christensen and Christensen, 2007) and are often used for RCM-evaluation (e.g.,
Kotlarski et al., 2014). Although climatic differences within these subdomains remain they summarize European climate zones
and intercomparison amongst them allows for studying large-scale gradients (e.g., from maritime (west) to continental (east)
or from cold (north) to mild (south) winters). We slightly extended the PRUDENCE-regions SC, AL and MD such that all

studied rain gauges are included in the analysis.

[Figure 2 about here.]

3 Data and grid box selection

As prescribed by the perfect predictor experiment within the VALUE framework we use the RCM RACMO?2 from the KNMI
(van Meijgaard et al., 2012) to test our method for the time period from 1979-2008. The RCM has been driven with ERA-
Interim reanalysis (Dee et al., 2011) within the EURO-CORDEX framework (Jacob et al., 2013). The simulation has been
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carried out at a horizontal resolution of 0.44° (~50 km) over a rotated grid. Note that the resolution we employ (0.44°) differs
from the resolution used in the VALUE experiment (0.11°).

As gridded observational dataset E-OBS version 10 (Haylock et al., 2008) is used, also at 0.44° resolution. The reason for
chosing the 0.44° horizontal resolution for both RCM and E-OBS is that the actual resolution of E-OBS might in some regions
be lower than the nominal 0.22° due to sparse rain gauge density included in the dataset'. Gridding very few rain gauges to a
high resolution might in particular result in too smooth extremes (Haylock et al., 2008; Hofstra et al., 2009a, b; Maraun et al.,
2011a). Hence, too high a resolution of a gridded dataset may be an unreliable reference for bias correction, at least for summer
extreme events. Moreover, this could cause artificial smoothing of extremes by bias correction. In some regions where station
density is very sparse this might even hold true for the chosen resolution. Although E-OBS is probably not an appropriate
reference in some regions it is the best available gridded dataset covering the whole EURO-CORDEX domain.

The E-OBS reference gridbox for both steps (bias correction and downscaling) is generally the closest gridbox to the re-
spective station. If the closest gridbox is an ocean gridbox (i.e., for coastal and island stations) and only contains missing
values we select the gridbox with the highest correlation in winter between daily precipitation at the given station and the
five closest E-OBS-gridboxes. In winter the spatial decorrelation length of precipitation is generally large implying that often
several gridboxes are affected by the same weather system, and thus, the gridbox with the most similar climate can be reliably
identified.

The RCM-gridbox that is bias-corrected and downscaled is generally chosen as the closest gridbox to the E-OBS reference
gridbox — also for coastal and island stations where the chosen RCM-gridbox might thus differ from the closest RCM-gridbox
to the final reference (i.e., rain gauge). For locations in the rain shadows we choose the RCM-gridbox which best represents
the climate at the given location to correct too low precipitation values caused by not enough windward air masses crossing
the mountain range (“location bias”, Maraun and Widmann, 2015). To this end, the highest correlation between the winter
seasonal mean of RCM and gridded observations within 250 km around the closest gridbox to the observations is determined.
Note that when transferring this approach to free running RCM-simulations this gridbox selection step needs to be carried out
employing a reanalysis-driven simulation of the same RCM to ensure temporal correspondence.

For local scale observations we used 86 stations across Europe from ECA&D (Klein Tank et al., 2002) selected by the
VALUE experimental framework (Maraun et al., 2015). The locations and ids of these stations are illustrated in Fig. 2. A

detailed analysis is carried out for some example stations representing different climates (highlighted in blue in Fig. 2).

4 Statistical Model
4.1 Step 1: Bias correction

In our model we correct several biases. In a first step, the “location bias” is corrected by gridbox selection (see section 3

for details). In the second step, the “drizzle” effect is corrected by increasing the wet day threshold for the RCM such that

!For station density of actual E-OBS versions refer to the ECA&D website: http://www.ecad.eu/dailydata/datadictionary.php
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the number of wet days (closely) matches the gridded observations with a threshold of 0.1 mm d~'. Finally, we correct
precipitation intensities of wet days (i.e., exceeding the corrected wet day threshold) using a quantile mapping (QM) approach
which is described in the following. The correction function y = f(x) between the simulated () and the corrected (y) values
of daily precipitation intensities such that the corrected values match the observations is based on the cumulative distribution
functions (cdfs) as: cdf,ps(f(x)) = cdf roas () (Piani et al., 2009). To allow for extrapolation in a future climate to unobserved
precipitation intensities and to avoid deterioration of future extremes that might occur with an approach that relies on empirical
cdfs we chose a parametric QM-approach.

To model precipitation intensities the gamma distribution is commonly used (Katz, 1977). While the bulk of precipitation is
generally well represented the tail of the gamma distribution is usually too light to capture high and extreme rainfall intensities
(e.g., Vrac and Naveau, 2007; Maraun et al., 2010). Thus, an extreme value distribution, such as the generalized Pareto (GP)
distribution (Coles, 2001), might be required to model the extremes of the precipitation distribution. To correct the .whole
precipitation distribution including extreme tails we apply the mixture distribution of Vrac and Naveau (2007) which consists
of a gamma distribution for the precipitation mass and a GP distribution for the extreme tail. This model is a variant of Frigessi

et al. (2002). The distribution {4 (x) of observed precipitation x on wet days is modeled as

lp(2) = c(@) ({[1 = Wi (2)] fr (@)} + [0, (€) 9,0 (€)])
¢:(>\777§7O—7m77—)7 (l)
where f) - is the probability density function (pdf) of the gamma distribution with the rate parameter A and the shape parameter

Y,

Y
I'(A)

f)\,’y(x) = lﬁilei)\wa >\,’)/ > 07 (2)

and g¢ . is the pdf of the GP distribution:

9ge.o(r) = for x> u, 3)

1
g
with the scale parameter o > 0 and the shape parameter £ which determines the tail behavior of the GP distribution as follows:
& < 0: bounded tail; £ — 0: exponential distribution (light tailed); and £ > 0: infinite heavy tail. Here, we constrain £ > 0 to
ensure that our model can be applied to a future climate that may experience higher values than those observed during the

present day training period for the model. The function w,, - is a weight function that determines the transition between the

gamma and GP pdfs as
1 1 "

W, +(T) = = + —arctan (l m) , m,T >0, 4
2 7 T
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with the location parameter m denoting the location of the center of this transition and the transition rate 7 influencing the
rapidity of the transition between the two distributions. To finally obtain the mixture pdf the mixture function (Eq. 1) must be
normalized which is carried out here by multiplying the mixture function by a constant ¢(¢). In the mixture pdf (Eq. 1) the
threshold u in the GP distribution (Eq. 3) is set to zero, as the location parameter m of the weight function (Eq. 4) fulfills the
purpose of a threshold in Eq. 1. Moreover, setting the threshold to zero and applying a weight function instead solves also the
problem of threshold selection with unsupervised estimation and avoids discontinuity in the mixture pdf ;(x) (Eq. 1) (Vrac
and Naveau, 2007). The parameters for [, (x) are estimated using maximum likelihood estimation (MLE). For technical details
on the implementation of this model please refer to appendix Al.

Since the mixture model is a complex model with six free parameters, a thorough statistical model selection is necessary. We
select between the mixture model and the simpler gamma only model separately for the observed (F,;s) and RCM-simulated
(Frce ) distributions. For the selection, we apply the Akaike information criterion (AIC, Akaike, 1973), which asymptotically
selects the model that minimizes the mean squared error between prediction and observation (Shao, 1997). The AIC is defined
as —2log(L) + 2k with the likelihood L corresponding to the maximum likelihood estimate of the k£ model parameters. The
AIC is dominated by the most densely populated region of the distribution. Hence, a good fit for the bulk of the distribution
(and thus a low AIC) might nevertheless come along with large biases in the extremes (see appendix A2 for an example). To
avoid a model choice with unreasonably high extremes we therefore introduce a criterion based on a comparison between the
100 season return levels estimated by the mixture model (Eq. 1) and by the GP distribution (Eq. 3) before the AIC-based model
selection is applied. For technical details on these model selection procedures please refer to appendix A2.

To strictly avoid that bias correction deteriorates the predictor and introduces biases both the complete cross-validated
corrected time series and the raw RCM output are compared to gridded observations as reference using the Cramér-von Mises
(CvM) criterion. The CvM is a measure for the distance between two empirical cdfs (cdf-bias hereafter; Darling, 1957) and
has been used to evaluate cdf-based correction models before (e.g., Michelangeli et al., 2009; Vrac et al., 2012). If cdf,.. ;(z)
is the empirical cdf of observations as reference (i.e., the perfect bias correction would match this reference) and cdf..,.-(z)
is the empirical cdf of the bias corrected time series the CvM-statistics is defined as the integrated squared difference between

cdf,cy and cdfc,,, as follows

CvM = / | cdf corr (z) — cdfre () | dx (5)

Here, the CvM is computed for both the corrected daily precipitation time series and the uncorrected RCM simulated precipi-
tation time series with E-OBS as reference. The predictor for downscaling is selected based on the lower CvM. In other words,
the bias corrected time series is only used as predictor for the downscaling step if it improves the predictor compared to the

raw uncorrected RCM.
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4.2 Step 2: Stochastic downscaling

To bridge the scale gap we apply the regression model developed by Wong et al. (2014) as follows. We determine the statistical
relationship between gridded and station observations. This statistical relationship is then applied to coarse-scale precipitation
as predictor which is selected in the first step, i.e., QMg,.;4-bias corrected or uncorrected RCM-simulated precipitation. To be
able to estimate the distribution of precipitation as a function of a given predictor a stationary distribution is not sufficient.
The family of generalized linear models (GLMs) extends linear regression to such purposes (e.g., Dobson, 2001). In this
framework the time-dependent expectation of a random variable is linked via a monotonic link function to a linear combination
of predictors. The logistic regression model belongs to the class of GLMs and is often used to model the changing probability
of rainfall occurrence (Chandler and Wheater, 2002). We model the probability p; of a day 7 being wet (i.e., greater than the

threshold selected earlier at 0.1 mm d~1) as a function of coarse-scale precipitation z; as

h(p;) = log (1 %p) =ax; + (6)

where h(-) is the logit link function and the parameters « and § are estimated by MLE. The logit link function gives the
logarithm of the odds.

Subsequently, precipitation intensity on wet days is modeled using a vector generalized linear model (VGLM) as regres-
sion model (Yee and Wild, 1996; Yee and Stephenson, 2007). VGLMs are an extension of GLMs. While GLMs describe the
conditional mean of a wide range of distributions VGLMs allow for prediction of a vector of parameters from the same set of
predictors which is useful if one is also interested in the variance or the extremes of a distribution. Wong et al. (2014) imple-
mented a mixture model-version (see Eq. 1) and a gamma model-version (see Eq. 2) employing a VGLM. Here we apply the
VGLM gamma version since the calibration and model selection procedure for the VGLM mixture model is computationally
rather expensive. The simpler gamma model might be sufficient here as in the downscaling step a predictor is employed that
already explains a large portion of the variance. The quality of downscaled precipitation does not only depend on the chosen
model but also on the quality of the predictor. Employing the mixture model for the bias correction step is thus meaningful
to ensure a good representation of higher quantiles and extremes in the predictor although downscaling is performed with a
simpler gamma model. The scale 8 (the inverse of A in Eq. 2) and the shape ~ parameters depend linearly on the predictor

(coarse-scale precipitation) x;. The model has the form

0; = 0o + Yox;

Vi = Yo + Yy )

where the regression parameters v, and ., are estimated by MLE.
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Combining the probability of wet day occurrence and the gamma model distribution defining the precipitation intensities we
get the probability that observed precipitation on a given day (R;) is less than or equal to a particular precipitation intensity

(r):

Pro(Ri <r) =Ty (R <7 |W)p;i+ (1 —p;) (®)

where I'g - (R; <1 | W) is the gamma-cdf and p; is the probability of that given day being wet.
4.3 Evaluation metrics

We evaluate our combined model based on the following metrics:

Mean bias: Absolute difference between seasonal means as (model — reference).

cdf-bias: Cramér-von Mises (CvM) criterion which represents the mean squared error of a cdf compared to a reference

cdf (for details see section 4.1).

Yosim > perc95.1s: percentage of simulated wet days exceeding the observed 95th percentile.

QO-Plots: The quantiles (i.e., sorted time series) of modeled precipitation are plotted against the quantiles of the ref-
erence. For the evaluation of the second step (downscaling) standardized QQ-plots are used which are explained in

section 5.2.2.

— Spatial autocorrelation: Correlation of a variable with itself in geographical space. The correlogram is estimated by
centred Mantel statistic using the R-package ncf (Bjornstad, 2015). The correlation for a set of distances at discrete
distance classes is calculated. Significance is assessed by 1000 random permutations. The correlogram is estimated for
daily values and then averaged. For the VGLM the correlogram is computed for 100 realisations of the stochastic model
and then averaged. The correlogram is centred on zero, i.e., zero represents similarity across the region. Crossing the
zero-line implies thus that the pair of distances is not more similar than what would be expected by chance alone across

the region.

5 Results

We first evaluate the mean bias of our combined model (selected predictor & VGLM) against station observations and compare
it to the raw uncorrected RCM and to classical QM ,,,: (between RCM and point scale). Then the performance of the two steps
(bias correction and downscaling) is assessed individually and in combination. Finally, all analysed models are compared. The
evaluation is carried out for the time period 1979-2008 by analyzing the cross-validated (five-fold) time series’. The first step
(bias correction) is evaluated against the gridded E-OBS dataset although E-OBS might underrepresent the extremes in some
regions where station density is sparse. The second step (downscaling) and the combined model (step 1 & 2) are evaluated

against station observations.
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5.1 Evaluation of mean precipitation bias

Figure 3 shows the mean bias of precipitation (against station observations) as modeled by (a, b) the RCM , (c, d) the classical
QM,,0in¢-approach applied directly between RCM and station observations and (e, f) our combined model. The RCM has a
stronger bias in DJF than in JJA. In DJF it is rather too wet whereas in JJA many locations have a dry bias. In both seasons
the bias is improved by QM,,;,; With a slight remaining wet bias. Our combined model also improves the mean bias of the
RCM in JJA. Yet, in DJF wet biases remain and got even worse in some locations. This raises the question why the results
become worse when statistical post-processing is applied. Yet, the bias of the seasonal mean does not give information on how

the precipitation distribution is represented nor the predictive power of the model. These issues are evaluated in the following.
[Figure 3 about here.]

5.2 Evaluation of Combined Model

First both steps of the combined model are evaluated individually. Second, the combination of both steps is evaluated. In this

combined model the predictor selected in the first step is used for the regression model in the second step.
5.2.1 Evaluation of Step 1: Bias Correction vs. E-OBS

Figure 4 shows the cross-validated selected predictor (uncorrected RCM: triangles, QM,,.;4-corrected RCM: circles) that is
used in the second step for downscaling. For predictor selection we apply the Cramér-von Mises-score (CvM, Eq. 5, section 4.1)
which represents the mean squared error of a cdf compared to a reference cdf (cdf-bias hereafter). The predictor is selected
based on the lowest CvM-score of the cross-validated QM,;4-corrected time series and the raw uncorrected RCM with gridded
observations as reference. Generally our bias correction often improves precipitation. It is selected 73 times in December—
February (DJF) and 49 times in June—August (JJA) out of 86 rain gauges.

The CvM-values of the selected predictor (Fig. 4a, b) indicate that the cdf-bias is generally lower in JJA than in DJF. In
DIJF the cdf-bias is lowest in the Mediterranean region with a mild winter climate. Yet, the CvM-criterion is quite sensitive to
small deviations between the cdfs. The highest selected CvM-values are found for Graz (Austria) in JJA, and Leba (northern
Poland), Siedlce (eastern Poland) and Dresden (eastern Germany) in DJF. QQ-Plots for these high CvM-values (Fig. 5) suggest
that the corrected time series are still usable and show improvements compared to the raw RCM although they are of course
not a perfect match of the observations. These remaining inaccuracies of the QM,,.;4-approach can be related to both a time-
varying correction function and the parametric correction function. Figure 6 summarizes Fig. 4 over the European subdomains
by boxplots. Spatial variability throughout the subdomain is quantified by CvM-variability represented by the box. In DJF the
boxplots confirm the lowest cdf-bias in the Mediterranean region (MD & IP) that is already visible in the map (Fig. 4a). The
highest median is in ME. Yet, although the median is slightly lower than in ME spatial variability is largest in EA, extending
to the highest CvM-values. This indicates that there are problems with continental winter climate which persist after bias
correction as in ME and EA mostly the bias corrected model is selected (Fig. 4a). QQ-Plots of the two worst examples in EA

(Leba and Siedlce; Fig. 5) show that the complete precipitation time series remains too wet whereas in the worst example of ME

10
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(Dresden; Fig. 5) the bias correction performs well for most values and only fails in the highest quantile. In JJA the CvM-score,

and hence the cdf-bias, is very low and no pronounced differences between the subdomains can be identified (Fig. 6a).
[Figure 4 about here.]
[Figure 5 about here.]
[Figure 6 about here.]

The representation of heavy precipitation by the selected predictor is evaluated by the percentage of simulated values that
are higher than the 95th percentile of the observations on wet days (%sim > perc95.s, Figs. 4c, d, 6¢, d). Thus, in a “perfect”
model this would be exactly 5 % (yellow). In many locations there are slightly too many “extremes”, i.e., the occurrence of
heavy precipitation (> perc95.,s) is overestimated, particularly in DJF. Consistent with the CvM-score the overestimation in
heavy-precipitation-occurrence increases in DJF from west to east (FR — ME — EA) and is again highest in EA, followed
by ME and SC (Fig. 6¢). In JJA the occurrence of heavy precipitation is quite well represented in AL and BI (Fig. 6d), it
is, however, in some locations underestimated (Fig. 4d). In the other subregions the occurrence of heavy precipitation is also

slightly overestimated in JJA (Fig. 6d).
5.2.2 Evaluation of Step 2: Downscaling vs. Station

Here we present some examples to illustrate the performance of the VGLM gamma for different climates , calibrated between
gridded (E-OBS) and point scale (station) observations. All results that are shown for the evaluation of the downscaling step
(step 2, Figs. 7-10) are calibrated over the complete time period and then predicted by E-OBS as predictor for the same time
period. As we do not use the cross-validated time series here the best possible relationship is presented. This allows to evaluate
the goodness-of-fit and is a necessary step before evaluating the model in a cross-validation setup. For a detailed evaluation of
the VGLM gamma for the relationship between nudged RCM/GCM-simulations and station observations over the British Isles
refer to Wong et al. (2014) and Eden et al. (2014).

To evaluate the goodness-of-fit we use residual QQ-plots (Fig. 7 for DJF and Fig. 8 for JJA). As a QQ-plot requires quantiles
of an unconditional distribution we standardized the from day-to-day varying distribution to a stationary gamma distribution?
(Coles, 2001; Wong et al., 2014). This stationary distribution has no longer the predictor-dependent day-to-day variations, i.e.,
the effect of the predictor is approximately removed. Due to this procedure the goodness-of-fit of the regression model can be
evaluated separately, instead of evaluating only the combined effect of predictor and regression model which is present in the
time-varying gamma-parameters, and thus, also in realisations drawn from these varying distributions. Therefore, deficiencies
that are indicated by these standardized QQ-plots are either due to inappropriate model structure or not well fitting parameters.

Note that the values of model and observation are shifted due to the standardization, depending on the strength of the predictor.

2standardization is performed as: 1) compute probabilities for reference values (here: station observations) from estimated non-stationary gamma-
distribution (i.e., gamma-parameters depend on the predictor and thus, vary from day-to-day); 2) compute quantiles of gamma-distribution with stationary
parameters for these probabilities of a non-stationary distribution; 3) plot these quantiles against quantiles of stationary gamma-distribution for theoretical
probabilities: (1:m)/(n+1).
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Improvements by the VGLM gamma compared to the predictor can be seen in most examples ranging from Scandinavia
to the Mediterranean and from the Atlantic coast to eastern Europe in both seasons. However, in some locations the quantiles
modeled by the VGLM gamma compare well to station observations (at least in Malaga better than the predictor) up to a
certain quantile (e.g., Sibiu: ~12 mm d~! and Malaga: ~42 mm d~! in DJF) while there is a wet bias for intensities of the
higher quantiles. It has been verified that precipitation at these locations is gamma-distributed (not shown). To understand
this model behavior we analyze the predictor-predictand relationship of both observations and VGLM in Fig. 9 for DJF and
Fig. 10 for JJA. Circles are the observed gridded against point scale precipitation intensities, showing the spread of point scale
predictands for a given grid scale predictor. The lines represent the 10 %, 25 %, 50 % (median), 75 %, 90 % and 95 % quantiles
of the VGLM gamma model as a function of the predictor. This function of course fits best in the range where most of the
values used to estimate the relationship are. For instance, in Sibiu (Malaga) for higher predictor values (Sibiu: >15 mm d—!,
Malaga: >42 mm d—!) the predictands are around or below the 25 % (50 %) quantile of the model, and thus, simulated
systematically too high by the VGLM. In both cases the bulk of the distribution is well captured however. This problem is also
visible at other stations, e.g., Dresden or Karasjok. In JJA it is even more pronounced (Fig. 10), particularly in Dresden and
Sibiu where the high predictor values are even below the modeled 10 % quantile. These examples indicate that the VGLM
basically allows for three different generalized linear relationships between the predictor and the parameters of the gamma
distribution: concave (i.e., Brocken DJF), straight (i.e., San Sebastian DJF) or convex (i.e., Malaga DJF). No changes from
lower to higher quantiles between these three types are possible. In some locations this appears to be not flexible enough to
capture the true relationship which can be non-linear. A more flexible relationship that allows for a changed model behavior for
higher values could improve the results but comes along with the risk of overfitting. Additionally, in eastern Europe the station
density included in E-OBS is low®. Hence, in the E-OBS-gridbox closest to Sibiu, there may be only very few (one or two)
stations included, implying most likely a misrepresentation of gridbox-precipitation. This problem affects the calibration of the
model where E-OBS is used as reference as well as simulations employing E-OBS or precipitation that is corrected to E-OBS
as predictor. We do not show results of the cross-validation here as the described problems with the VGLM in some locations
are already present when repredicting the calibration period where the skill should be higher than in a cross-validation setup
where a period is predicted that is not part of the calibration period. This clearly highlights deficiencies in the model for these
locations.

In both DJF (Fig. 9) and JJA (Fig. 10) Sonnblick and Brocken show a concave function whereas the function in the other
example-stations is generally convex. The rain gauges at Sonnblick and Brocken are on top of the respective mountain. Al-
though their climate is quite different as Sonnblick is a high mountain in the Alps (altitude: 3106 m) whereas the Brocken is the
highest mountain in the northern German low mountain range Harz (altitude: 1142 m) they have an exposed position, coming
along with high variability, in common. These results show that the VGLM gamma is capable to model the scale relationship

for such exposed places of high variability quite well (Figs. 7 — 10).

[Figure 7 about here.]

3For station density of actual E-OBS versions refer to the ECA&D website: http://www.ecad.eu/dailydata/datadictionary.php

12



10

15

20

25

30

[Figure 8 about here.]
[Figure 9 about here.]
[Figure 10 about here.]
5.2.3 Evaluation of the Combination of Steps 1 & 2: Bias Correction & Downscaling vs. Station

In the combined model the VGLM gamma, calibrated against E-OBS, is applied to the predictor selected in section 5.2.1
(Fig. 4). Here we evaluate precipitation simulated by predictor& VGLM with station observations as reference, and compare
it to the uncorrected RCM-simulated precipitation and to the QMg,.;4-corrected precipitation. The cross-validated time series’
are evaluated. For the VGLM the evaluation-criteria were computed for 100 realisations and then averaged.

To evaluate the predictor& VGLM-combined model we apply the same criteria as for the first step (bias correction, sec-
tion 5.2.1) but with station observations (i.e., point scale) as reference. The CvM-scores (a, b) and the percentage of simulated
values that are higher than the 95th percentile of the observations on wet days (%sim > perc95.ys, ¢, d) for the selected best
model based on the CvM-criterion are shown in Fig. 11, and summarized by boxplots for the European subdomains in Fig. 12.
QQ-Plots for example stations are provided in Figs. 13 and 14 for DJF and JJA respectively. Precipitation is improved in most
cases by (parts of) our method. The uncorrected RCM (Fig. 11, triangles) is only selected at 8 (7) stations in DJF (JJA). Yet,
even if the RCM is selected the other models do not necessarily perform much worse such as in Stornoway in DJF (Fig. 13)
or in Malaga in JJA (Fig. 14). The predictor& VGLM model (plotted as squares) is selected by CvM 25 times (45 times) in
DJF (JJA). The more frequent selection of the VGLM in JJA compared to DJF is likely related to the dominant underlying
mechanism, i.e., in summer there are many small scale convective precipitation events whereas in winter precipitation is mainly
caused by large scale weather systems.

The CvM-values of the selected model (Fig. 11a, b) indicate that the cdf-bias is again generally lower in JJA than in DJF,
and for DJF lowest in the Mediterranean region. In eastern Europe and Scandinavia in DJF the VGLM is only rarely selected
— in these regions the QM,,.;4-corrected time series which is on grid scale is mostly selected although the reference-cdf is on
point scale (Fig. 11a). This might be due to problems with the VGLM gamma as explained in section 5.2.2. The rather large
cdf-bias in ME, SC and EA in DJF could hence be related to the remaining scale gap as the QM,;4-corrected time series is
not expected to correctly represent the point scale. The QQ-Plot of Sibiu in DJF (Fig. 13) illustrates this problem. The higher
QM,,.;4-corrected quantiles are as expected too low and the VGLM fails at this station in DJF (see also section 5.2.2). Finding
an adequate stochastic model to bridge the scale gap might improve the representation of precipitation in such cases. Also in
JJA there are examples where the VGLM has not been selected but a suitable VGLM would likely further improve the results
(Fig. 14, San Sebastian, Dresden & Karasjok). For, e.g., Brocken JJA and Sion DJF an improved VGLM may likely even
improve the result although the VGLM has been selected. However, finding the optimal model for all 86 stations is beyond the
scope of our study. The boxplots confirm again the good performance for DJF in the Mediterranean region (MD & IP), and also
in AL (Fig. 12a). The CvM-score and thus, the cdf-bias is again very low in JJA, indicating good performance of our method
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with no pronounced difference between the European subregions (Fig. 12b). Yet, the sensitivity of the CvM-score is illustrated
by Stornoway in JJA (Fig. 14) as this example still yields suitable results despite the relatively high CvM-score.

The occurrence of heavy precipitation in the CvM-selected model is slightly overestimated in most subregions in DJF
(Figs. 11c & 12c¢), though quite well represented in IP & FR (Fig. 12c). In JJA heavy precipitation occurence is quite well
estimated (Figs. 11d & 12d). The median of most subregions is very close to 5 % (the “perfect” model would have exactly
5 %). However, some stations, particularly in EA, underestimate the occurrence of heavy precipitation. These are in most cases
stations where the VGLM has not been selected, likely indicating problems with the VGLM and the remaining scale gap (see
paragraph before & section 5.2.2).

Ideal performance of our combined model is illustrated in the example QQ-Plot of Malaga in DJF (Fig. 13), i.e., QMg,iq
corrects the RCM-simulated precipitation on the same scale and the VGLM bridges the remaining scale gap, resulting in a good
match of the observations. Sonnblick in DJF (Fig. 13) and JJA (Fig. 14) and Brocken in DJF (Fig. 13) are also well performing
examples. The QQ-Plot of San Sebastian in DJF (Fig. 13) shows the benefit of selecting the predictor by CvM as in this case
the RCM is used as predictor for the VGLM. Here using the QMg,;q-corrected time series may result in too high extremes.
Sion in JJA (Fig. 14) is another good example for the benefit of model selection where the RCM has been selected as predictor.
Here the high VGLM-simulated quantiles are already overestimated in this setting and would likely be even higher should the

QMy,;4-corrected predictor be employed.
[Figure 11 about here.]
[Figure 12 about here.]
[Figure 13 about here.]
[Figure 14 about here.]
5.3 Intercomparison of all Models

In this section an intercomparison of all models (not only the selected best model from section 5.2) for all subregions is
presented and compared to the classical application of QM,in:. Figure 15 shows boxplots for the CvM-score. Generally the
cdf-bias is lower in JJA than in DJF for all models, already for the uncorrected RCM (apart from BI). In the Mediterranean
region (MD & IP) there is a very low cdf-bias in all models, indicating general good performance. The QM improves the cdf-
bias in many regions with QMg,.;q and QM,,,;,,; being similar in many cases. The effect of the VGLM depends on region and
season. The representation of precipitation is generally improved by the VGLM in BI, IP, AL and MD in both seasons. However,
in FR, ME, SC and EA in DJF the VGLM introduces biases. The bias increases from west to east (FR — ME — EA) with
largest spatial variability in EA, extending to high CvM-values. For continental winter climate the used VGLM gamma model
appears thus to be not the ideal model which suggests that in these regions it may be better to only correct the bias. This raises
the question why the results become worse when statistical post-processing is applied. One potential reason for these problems

with the VGLM in some regions is that the VGLM gamma is not flexible enough to capture the true predictor-predictand
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relationship if this relationship is non-linear as discussed in sections 5.2.2 & 5.2.3. The final downscaled marginal distribution
may thus be wrong even though it was properly adjusted by the bias correction step. As the predictor-predictand relationship is
always estimated such that it follows well the bulk of the distribution this problem occurs for predictand values at the very low
ends of the VGLM conditional distribution. Furthermore, particularly in EA and FR, E-OBS may be an inappropriate reference
for calibration in both QM,;4 and VGLM due to low station density. Yet, in SC stations in E-OBS are relatively dense and
thus, the bias introduced by the VGLM is in that case not attributable to E-OBS quality. In DJF SC has the highest RCM-bias

among all subregions. This suggests a detailed evaluation of this high bias which is beyond the scope of our study however.
[Figure 15 about here.]

To infer the performance of all studied models in estimating the occurrence of heavy precipitation boxplots for the percentage
of simulated values that are higher than the 95th percentile of the observations on wet days (%sim > perc95,1,s) for all models
are provided in Fig. 16. Particularly in JJA the QM,,.;q improves the occurrence of heavy precipitation but remains slightly
too dry which is expected due to the remaining scale gap. The estimated occurrence of heavy precipitation is improved by the
VGLM in many cases, although generally slightly overestimated. The results of the VGLM and QM1 are generally similar
with the QM+ being often slightly closer to the 5%-line and the VGLM slightly too wet. In AL the VGLM considerably
improves the cdf-bias (Fig. 15f) and the occurrence of heavy precipitation (Fig. 16f) in both DJF and JJA compared to the
uncorrected and QM ;;q-corrected RCM. In SC in DJF one should be careful as although the occurrence of heavy precipitation
is considerably improved by the VGLM (Fig. 16e) it introduces biases when the whole cdf is evaluated (Fig. 15e) and is thus
not recommended. Concerning heavy precipitation occurrence our model shows a similar behavior for all subregions in JJA
and for IP also in DJF (Fig. 16). The QM,,;4 bias correction improves the representation but remains too dry. The dry bias is
then eliminated by the VGLM though to slightly too many “extremes”. This model behavior as exhibited in JJA is exactly what
would be expected due to the scale gap between gridded and point scale. Due to more small scale convective extremes this
scale gap has a larger impact in summer whereas in winter most extremes are caused by large scale weather systems that are
generally better represented by the gridbox scale, also in coarser resolutions. While the cdf-bias and the occurrence of heavy
precipitation reveal how well properties of the precipitation distribution are represented they do not allow to draw conclusions

about the predictive power of the model.
[Figure 16 about here.]

To infer whether our model has predictive power we cannot assess temporal correspondence compared to observations as
in Wong et al. (2014) and Eden et al. (2014) because we use an RCM that is not nudged and even though driven with perfect
boundary conditions (reanalysis) this is not a clean pairwise setup. Instead, we evaluate spatial autocorrelation which is the
correlation of a variable with itself in geographical space. This allows to evaluate whether the model correctly reproduces
daily spatial autocorrelations and thus, the spatial extent of precipitation patterns including its variability in time compared
to observed precipitation. In Fig. 17 correlograms of the cross-validated time series’ of all models (RCM, QMy;iq, QMypoint,

100 VGLM-realisations) and station observations as reference are provided. The spatial autocorrelation of QM-bias corrected
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precipitation decays very similar to uncorrected RCM-precipitation and shows thus only little improvement of spatial autocor-
relation compared to point scale observations. Differences between QMg,;q and QM1 are negligible. This confirms that
the QM-approach is not capable to model small scale variability, and a stochastic model is thus needed to bridge the scale
gap. The spatial autocorrelation of VGLM-downscaled precipitation decays more similar to the station observations than the
QM-corrected or uncorrected RCM, particularly in JJA. The spatial dependence is thus improved by the stochastic downscaling
step. The long decorrelation length in DJF is underestimated by our stochastic, single-site model, which indicates a slightly too
strong noise component. A spatial model considering more than one station or including more physical based predictors (i.e.,

sea level pressure) might improve the predictive power of our model in DJF.

[Figure 17 about here.]

6 Conclusions

We introduced the concept of a combined statistical bias correction and stochastic downscaling method for precipitation.
We thereby extend the stochastic Model Output Statistics (MOS)-approach developed by Wong et al. (2014) beyond nudged
simulations to free running GCM/RCM-simulations. We applied our method to precipitation simulated by the RCM KNMI-
RACMO?2 driven with ERA-Interim boundary conditions within the EURO-CORDEX framework. As the RCM is driven with
reanalysis we only correct RCM-biases. Our method corrects the “drizzle effect” (i.e., too many wet days), too low precipitation
values in the rain shadows caused by not enough windward air masses crossing the mountain range (“location bias”, Maraun
and Widmann, 2015), and precipitation intensity. To correct the “drizzle effect” we increased the wet day threshold such
that the number of wet days (closely) matches the gridded observations with a threshold of 0.1 mm d~! (Maraun, 2016). To
overcome the “location bias” we selected the RCM-gridbox that best represents the climate in the respective gridbox of the
gridded observations (Maraun and Widmann, 2015). Note that when transferring the approach to free-running simulations this
grid box selection step has to be calibrated with a reanalysis-driven simulation of the RCM to ensure temporal correspondance.
Consequently, only the location bias caused by the RCM is corrected. How a potential location bias of the driving GCM may
affect the results should be analyzed in future work. Precipitation intensities were corrected by a parametric quantile mapping
(QM) approach between RCM and gridded observations on the same spatial scale. As precipitation is highly variable in space
and time not all variability can be explained by the gridbox scale (Maraun, 2013a). To bridge the gap between gridbox and
point scale we applied a stochastic regression-based model. For evaluation we adopted the experimental framework of VALUE
(Maraun et al., 2015). In this context, we applied our method to 86 example rain gauges across Europe representing different
climates, and carried out a five-fold cross-validation for the time period 1979-2008. Both steps of the combined method were
evaluated individually and combined. A comparison to classical QM between RCM and point scale is also provided.

The proposed parametric model structure appears not to be the optimal choice for all considered stations. Yet given that the
aim of our study is a proof of concept, the idenfification of an optimal model for all individual cases would be beyond the
scope of this work. Nevertheless, where our implementation is not adequate we provide suggestions for improvements within

the presented framework. Our specific implementation for the QM-bias correction (first step) of wet day intensities employs
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the mixture distribution of a gamma distribution for the precipitation mass and a generalized Pareto (GP) distribution for the
extreme tail (Frigessi et al., 2002; Vrac and Naveau, 2007). The stochastic regression-based model for downscaling (second
step) was calibrated between observations on gridded and point scale, and then transferred to bias corrected RCM-simulated
precipitation. This corresponds to a perfect prog (PP)-approach. The regression model consists of a logistic regression to model
wet day probabilities and a vector generalized linear model (VGLM) predicting the parameters of a gamma probability dis-
tribution for precipitation intensities. The QM-corrected time series (first step) was used as predictor for downscaling (second
step) if it improves the representation of precipitation compared to the uncorrected RCM. Thus, we selected the predictor based
on the lower cdf-bias by applying the Cramér-von Mises (CvM)-criterion with the gridded E-OBS dataset as reference.

Precipitation was in most cases improved by (parts of) our combined method across different European climates, to what
extent depends on region and season though. The method generally performs better in JJA than in DJF and in DJF best
in the Mediterranean region with a mild winter climate and worst for continental winter climate in mid & eastern Europe
or Scandinavia. Seasonal and regional differences depending on the underlying mechanism have already been reported for
resolution dependence of extreme precipitation in GCMs (Volosciuk et al., 2015) and RCMs (Prein et al., 2013; Meredith et al.,
2015). Hence, for a good representation of precipitation extremes the complexity of the model can be chosen at each step of
the modeling cascade based on the underlying mechanism in order to use computational resources efficiently.

Although our bias correction (first step) improved simulated precipitation for many locations in both seasons wet biases may
remain even after bias correction, particularly for continental winter. In agreement with our results large improvements by bias
correction over the Alps, Spain and France have been reported by Dosio and Paruolo (2011). Yet, in contrast to our results these
authors also obtain good results for middle and eastern Europe where we find persisting biases even after bias correction. In
the cases where the quantile mapping approach does not improve RCM simulated precipitation another transfer function might
be more suitable. Choosing between different parametric transfer functions as proposed by Piani et al. (2010) could improve
the results. By employing a quantile mapping approach we presumed both a stationary statistical relationship and stationary
cdfs that also apply in a changed future climate. However, in a climate change context RCM-simulated trends in the cdf are
modified by applying such statistical post-processing. For cases where the GCM/RCM simulates plausible climate change
trends the CDF-t concept suggested by Michelangeli et al. (2009) and Vrac et al. (2012) might be an appropriate framework. In
their concept the correction function explicitly accounts for future trends in the RCM-simulated distribution. Thereby simulated
trends in all moments are approximately preserved after bias correction. For instance, regions where an increase in extreme
precipitation accompanied by a decrease in mean precipitation is projected (e.g., in Central European summer, Christensen
and Christensen, 2003; Maraun, 2013b) these trends might be better represented by employing a CDF-t method. Yet, in this
study we have not employed this variant as in our setting the validation period is too short to achieve an appropriate fit of
the future mixture distribution. Quantifying the differences between the quantile mapping approach we employed here and a
CDF-t approach is left for future work when our combined method will be applied to climate change scenarios.

The stochastic downscaling (second step) improves the estimated occurrence of heavy precipitation in many regions but
introduces biases in continental winter climate. Furthermore, spatial autocorrelation in JJA is improved by the VGLM showing

the importance of randomization in the framework of downscaling as already pointed out by, e.g., von Storch (1999) and

17



10

15

20

25

30

35

Maraun (2013a). Moreover, when downscaling climate change scenarios the randomization component of the VGLM that adds
small scale unexplained variability does not modify trends in contrast to purely deterministic methods, e.g., QM (Maraun,
2013a). Yet, the deterministic part of the VGLM that corrects systematic local effects (e.g., lee/windward side of a mountain)
alters the pdf, and may thus also change trends. The stochastic downscaling-step is more important in JJA than in DJF for both
estimation of heavy precipitation occurence and spatial autocorrelation. This can be attributed to the different underlying main
mechanism for heavy precipitation. In summer heavy precipitation is often caused by small scale convective events whereas
in winter large scale weather systems dominate. Hence, there is less small scale variability unexplained by the gridbox in
DIJF. In DJF spatial autocorrelation is slightly underestimated by the VGLM which is likely related to the long decorrelation
length of precipitation in winter that is not correctly represented in our single-site model, indicating a slightly too strong noise
component. An extension of our method to a multi-site model and/or including more physical based predictors (i.e., sea level
pressure) would likely improve this feature and can be subject of future work. A good representation of the mild climate on
the British Isles is consistent with Wong et al. (2014) and Eden et al. (2014). In France, Mid-Europe, eastern Europe and
Scandinavia in DJF the VGLM introduces biases, raising the question why the results become worse when statistical post-
processing is applied. Particularly in France and eastern Europe the E-OBS gridded observational dataset may be an unreliable
reference for model calibration for both the QM and the VGLM due to low station density. The “true” resolution of E-OBS
in these regions might be coarser than the resolution it is gridded to. This highlights that the applicability of our method is
limited to regions where high quality gridded datasets are available. Yet, a detailed evaluation of the sensitivity of our method
to station density in the gridded dataset is beyond the scope of this study. The bias introduced by the VGLM generally increases
from west to east, and thus, from maritime to continental winter climate. However, in Scandinavia the VGLM also introduces
biases even though station density is high. This indicates that although the quality of the E-OBS data may contribute to these
problems it can not be identified as the main source of error. It is rather one potential reason among others. For instance, in
some cases the generalized linear relationship between the predictor and the parameters of the gamma distribution appears
to be not flexible enough to capture the true predictor-predictand relationship which can be non-linear, particularly in but not
restricted to continental winter climate. In these regions there may be a more adequate parametric relationship than our specific
implementation. Problems with the current implementation may be related to, e.g., the linear structure of the model or the
choice of the link function. For instance, another distribution in the VGLM (e.g., mixture model), splines as applied in Maraun
et al. (2011b) or a vector generalized additive model (VGAM, Yee and Wild, 1996) are potential approaches. Yet, employing a
more complex model also comes along with the risk of overfitting. Finding the optimal model for each of the analyzed stations
is beyond the scope of this study however.

The varying performance of our specific implementation clearly shows that bias correction and downscaling methods should
be reevaluated when transferring it to locations with different climatic conditions. In some regions a specific implementation
different from the one we used is required. We recommend our model in summer for all studied regions. Yet, in winter it
should only be used for the British Isles, the Alps, the Mediterranean region and the Iberian peninsula but not for continental
winter climates (Scandinavia, Mid-Europe and eastern Europe) and France. While the stochastic downscaling step (VGLM)

is very important to represent spatial autocorrelation in summer it is less important in winter where the applicatin of solely
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the bias correction step might be sufficient. The concept can generally be extended to a wide range of method combinations.
Transferring this concept to other climate variables should in principle be possible. Our specific implementation should be
applicable to any gamma-distributed variable. However, our approach has so far only been evaluated for precipitation. Thus,
users need to evaluate the model for the particular variable at the chosen location when transferring it.

We developed our model in present day climate. In a climate change context the model does not explicitly modify cli-
mate trends on a physical basis. Our model is thus only applicable where changes are correctly simulated by the GCM/RCM.
For instance, changes in the dynamics of local extreme convective events in summer that need even higher resolution up to
convection-permitting simulations (e.g., Kendon et al., 2014; Chan et al., 2014; Meredith et al., 2015) will also not be repre-
sented after statistical post-processing is applied. Bias correction and (dynamical and statistical) downscaling of precipitation is
only applicable if the large scale patterns and changes therein are simulated reasonably by the driving GCM (Eden et al., 2012;
Hall, 2014). Therefore, when transferring our method to a GCM or GCM-driven RCM the relevant processes for precipitation
in the studied region need to be correctly simulated. For instance, biases in simulated precipitation related to biases in the storm
track (Chang et al., 2012), El Nifio-Southern Oscillation (ENSO; Zhang and Sun, 2014), the monsoon (Hasson et al., 2013) or
persistent weather regimes (Petoukhov et al., 2013; Palmer, 2013) cannot be statistically corrected in a physical sensible way.

The general concept of combining two methods and thereby separating bias correction (MOS) and downscaling (PP) into
two steps is a powerful approach as it benefits from the respective methodological advantages. Additionally, the strength of
this two-step method is that the best combination of methods can be selected. This implies that the concept can be extended to

a wide range of method combinations.

Appendix A: Technical Details for Bias Correction Implementation and Model Selection
Al Technical Details for Model Implementation

A non-zero wet day threshold assigns zero probability density to all intensities between zero and the threshold, resulting in a
misfit of the gamma distribution (Wong et al., 2014). To avoid this we shift precipitation on all wet days by subtracting the
threshold for calibration. The estimated distribution is subsequently shifted back by the threshold.

Numeric instabilities in the estimation of the mixture cdf may in rare cases result in a discontinuous cdf (Fig. 18a). In these
cases we interpolate linearly between the continuous probabilities surrounding the discontinuity. The example cdf in Fig. 18a
illustrates that this procedure is a reasonable estimation for these quantiles. If the cdf does not “jump back” as in Fig. 18a but
continues as illustrated in Fig. 18b the model has to be sorted out as there is no straightforward possibility to handle this artifact

caused by numerical instability. Yet, the latter case only occurs extremely seldom.

[Figure 18 about here.]
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A2 Technical Details for Model Selection

The AIC performs best for the part of the distribution where most of the values are. Hence, a good fit for the bulk of the
distribution might include large biases in the extremes and still have the lowest AIC (example: Fig. 18c). To avoid such a
model choice with unreasonable high extremes we introduce a criterion based on the extremes to sort out mixture model
fits yielding too high extremes before AIC-model selection is applied. This criterion is based on a comparison between the
100 season return level estimated by the mixture model (RL100S,,,;,+vre) and the 95 % confidence interval of the RL100Ssp
estimated by the GP distribution only. The RL100S ¢ p and the corresponding 95 % confidence interval are estimated according
to Coles (2001). This criterion is applied differently for F,;s and Froas considering the respective relevant quantity for the
correction function. For F,;4 this criterion is based on the return level itself whereas for Frc s the probability for the return
level is considered. In particular, for F,;s the RL100S,,,;, ¢ must not exceed the 95 % confidence interval of the RL100Ssp.
For Frc s the mixture model-probability (pyiqture) for the RL100S o p must not exceed pg p for the 95 % confidence interval
of RL100S¢ p. Furthermore, pyizture for the 95 % confidence interval of the RL100Ss p must not be very close to 1 (i.e.,

>1-1e-15) as a reasonable extrapolation to potentially higher values under climate change would not be possible in that case.
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Calibration Prediction

Regional climate model Regional climate model
< 1) Bias correction

Gridded observations / Corrected at grid scale
< 2) Stochastic Downscaling

Station observations Corrected & downscaled to point scale

Figure 1. Schematic of (black) our combined statistical bias correction and stochastic downscaling model, and (grey) the Wong et al. (2014)-
model.
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Figure 11. Step 1 & 2: Combined model. (a, b) CvM-values for selected cross-validated model. (c, d) Percentage of cross-validated model
values exceeding the 95th percentile of station observations (%sim > perc95,ys) for cross-validated CvM-selected model. For the VGLM the
criteria were computed for 100 realisations and then averaged. Selected model: squares: predictor& VGLM, circles: QM,;4-corrected RCM,
triangles: uncorrected RCM. Note the different color scales than in Fig. 4.
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Figure 12. Step 1 & 2: Combined model. Boxplots of (a, b) CvM-score and (c, d) percentage of simulated wet days exceeding the observed
95th percentile (%sim > perc95,1s) for cross-validated CvM-selected model. Regions: British Isles (BI), Iberian Peninsula (IP), France (FR),
Mid-Europe (ME), Scandinavia (SC), Alps (AL), Mediterranean (MD) and eastern Europe (EA). Note the different scales of the y-axes than
in Fig. 6. Outliers out of range in (a) ME & all: 22.19; SC & all: 27.12 & 31.35.
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Figure 13. QQ-Plots for example stations of different models (cross-validated) against station observations for DJF (mm d™1). For the
VGLM the quantiles (i.e., sorted time series) of 100 realisations are averaged. Predictor for VGLM as selected by CvM-criterion: (red
circles) QMg;q-bias corrected RCM, (brown triangles) uncorrected RCM; For examples to illustrate model performance and predictor
selection (San Sebastian and Malaga) the VGLM is plotted for both predictors. Selected predictor: San Sebastian: RCM, Malaga: QMgy-q.
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Figure 14. As in Fig. 13, but for JJA. Highest VGLM-modeled quantile in Dresden out of range: 3609 mm d~*.
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Figure 15. Intercomparison of all cross-validated models (not only selected best model). Boxplots of CvM-score for all models in different
subregions: British Isles (BI), Iberian Peninsula (IP), France (FR), Mid-Europe (ME), Scandinavia (SC), Alps (AL), Mediterranean (MD)
and eastern Europe (EA). For the VGLM the CvM-score was computed for 100 realisations and then averaged. Outlier out of range in (d, 1)
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Figure 16. As in Fig. 15, but for percentage of simulated wet days exceeding the observed 95th percentile (%sim > perc95,ns). Outlier out

of range in (g, i) QMg,;q DIF: 41.07 %.
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Figure 17. Spatial autocorrelation (cross-validated). Correlogram (circles) and smoothed spline fitted to correlogram (lines). Correlogram is
estimated by centred Mantel statistic using the R-package ncf (Bjornstad, 2015). For the VGLM 100 realisations of the stochastic model for
each station were used to estimate the correlogram.
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(a) Numerical instability (b) Numerical instability (c) Model selection problem
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Figure 18. Examples for problems with the mixture model. (a) numerical instability: discontinuous cdf, (b) numerical instability: cdf that
jumps to the upper bound of 1000 mm d~! and does not jump back as in (a), and (c) problematic model selection: QQ-plot of a selected
mixture model that fits well for most quantiles but corrects the extremes to too wet.
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