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1 Introduction 8 
It is interesting to try and classify the spatial data to infer the spatial scales associated with certain characteristics within a 9 
group of time series. It is indeed very important for operational practices such as flood management and/or climate change 10 
adaptation to not only know the severity of a potential impact but also predict the spatial extent of the impact, since similar 11 
stations should suffer similar consequences. Classifications on streamflow have already been studied (Hannah et al.(2000; 12 
Renard et al.(2006; Wilson et al.(2013) and climate to rainfall or streamflow classification has also been realized by Boé and 13 
Terray(2008), Martinez et al.(2008)Martinez and Garavaglia et al.(2010)Garavaglia. Most of those studies establish 14 
classification based on annual hydrological regimes. This is in deep contrast with the study that focuses on low frequency 15 
time series. There are two axes that the present study aims at improving on. First most of the previous works were carried on 16 
raw signals while it is known that different scales of variability (TSV) characterize variabilities of geophysical signals. For 17 
instance, atmospheric pressure, precipitation, annual cycle, aquifer contribution or even tidal cycle variability may all be 18 
contributing to streamflow variabilities (Labat et al.(2000; Massei and Fournier(2012)). Several studies have highlighted the 19 
correlation between some time scales of variability in streamflow or rainfall and the corresponding scales in climatic fields 20 
(Massei et al.(2007; Massei et al.(2010; Feliks and Ghil(2010); Fritier et al.(2012; Pinault(2012)). More specifically on 21 
streamflow, Boé and Habets(2013) have shown that multi-decadal variability in streamflow in France was impacted by large 22 
multi-decadal climate oscillation especially the Atlantic Multi-decadal Variability. Dieppois et al.(2013)Dieppois highlighted 23 
the importance of considering the different TSV in assessing the link between climate fields and local temperature and 24 
rainfall variability. Relation of hydroclimate time scales to spatial scales has also been recently also investigated by Laepple 25 
and Huybers(2014). Those studies highlight the importance of considering each time scale separately. Thus prior to doing a 26 
clustering analysis, the input signals must be decomposed into nearly independent components (as Palus(2014) and Jajcay 27 
et al.(2016)Jajcay pointed out, pure independence is rarely seen). The second axis is the classification method itself. 28 
Classifying fields is always difficult because the extension in two dimensions brings the notion of “general similarity” which 29 
is different from “local similarity” i.e two fields may have differences pointwise but an otherwise similar global shape. To 30 
deal with it, fields are either represented as index (Boé and Habets(2013); Lopez and Frances(2013)) which necessarily lose 31 
a lot of spatial information or a mean of taking into account the global shape has to be found like, for example, the Teweles-32 
Wobus score. However the performance of such score is very variable dependent (it works well on pressure fields but less on 33 
other field variables) (Teweles and Wobus(1954)). This study presents a method called Geostatistical Euclidean Distance 34 
Clustering (GeoEDC) whose performance, by considering the field as an image, is less variable-dependent. 35 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-395, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 26 August 2016
c© Author(s) 2016. CC-BY 3.0 License.

FedRo
Evidenziato

FedRo
Nota
need citation

FedRo
Evidenziato

FedRo
Nota
bad reference management in all the paper

FedRo
Evidenziato

FedRo
Evidenziato



2 
 

The present study aims at finding out if a classification of climate fields that are correlated with the 6, 10 and 21 year TSV 36 
streamflow over France is possible and does so by introducing a clustering method called GeoEDC. 37 

2 Case Study 38 
Data used in this study comes in two types: streamflow data and climate field data. In 2009, IRSTEA (Institut national de 39 
Recherche en Sciences et Technologies pour L’Environnement et l’Agriculture) compiled a set of daily streamflow time 40 
series spanning 1948-2008, over 200 stations in France. Those stations were based on their small influence by anthropogenic 41 
activities (they are said to be “climate sensitive”). For this study, 152 of those stations were chosen (those which presented 42 
continuous data from 1968 to 2008) and the sample rate was converted to monthly. The spatial repartition of stations is 43 
shown in Figure 1. Areas without stations are known to be heavily influenced by human activities especially the Northern 44 
part, were one third of the total France population lives.  45 

Climate data comes from NCEP/NCAR reanalysis data set. Four climate variables were selected on the basis of their known 46 
role in the water cycle of Europe: geopotential height, air humidity, zonal and meridional wind. The area selected spans -47 
77/40E,-5/78N and from 1968 to 2008, at monthly rate. This area was selected based on the known influence of both 48 
Atlantic and African climate fields on precipitation and streamflow over France. When applicable, geopotential at level 49 
850mb was chosen which approximately ensures a close to surface measurement while preventing relief thresholding in most 50 
of the area (except in the Alps for instance). 51 

It is commonly reported in the literature that links between large-scale circulation and local variable such as precipitation or 52 

streamflow are clearer in winter in the Euro-Atlantic sector. Thus, only winter months are presented here. 53 

3 Methods 54 
The basic workflow can be seen in Figure 2. Both streamflow and climate field data are first decomposed using 55 
multiresolution analysis. The climate field of interest is associated with streamflow via a point-wise correlation analysis 56 
giving a so-called correlation climate field (CCF), i.e. map of correlation between each climate variable and a streamflow 57 
station. Once the correlation fields are obtained, a Geostatistical Euclidean Distance Clustering is applied. The analysis 58 
produces both cluster maps (stations that share the same climate drivers) and sets of CCFs inside each cluster. We first assess 59 
the existence of a classification according to a time scale of variability (TSV) and climate driver then look at the shape of the 60 
representative climate drivers in each cluster. 61 

Wavelet transform are used to decompose the data into different TSVs. 62 

The wavelet transform theory has been and is still extensively studied. Detailed explanation of the theory dedicated to 63 
hydrologists can be found in Labat et al.(2000)Labat. A signal can be represented in a Hilbert space, with a complete 64 
orthonormal system basis generated by an orthonormal wavelet. The basis is formed by a family of wavelet functions that are 65 
all identical, except that each is dilated/contracted, translated version of the others. 66 

The signal can thus be represented as follows: 67 

�(�) = ∑ ��,���,�(�)�
�,����           (1) 68 

This means that the value at time � of the variable � from the time series, �(�) can be perfectly represented the sum at 69 
different scales � and position � of wavelet function ��,� and a wavelet coefficient ��,�. 70 
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Equation 1 states that the signal can be both represented on this orthonormal basis (wavelet analysis), and perfectly 71 
reconstructed from its Hilbert representation (wavelet synthesis). 72 

The wavelet functions families that form the orthonormal basis of the Hilbert space are defined as: 73 

��,�(�) = 2
�

��(2�� − �)          (2) 74 

As equation 2 states, the wavelet at a given scale and position is a scaled and translated version of the same wavelet from the 75 
next/previous scale. One can see that wavelet transforms are by nature multiresolution transforms like Fourier transforms but 76 
they differ in that the wavelet is not periodic. 77 

This allows the wavelet transform to act as a time-frequency transform, providing not only information on the time scales 78 
(that can also be approximated as Fourier frequencies), but also on the temporal evolution of those scales. ��,�, the wavelet 79 

coefficients, express how the signal varies from one position to another, those position depending on the scale (Precise 80 
interpretation of wavelet coefficients depends on the wavelet function family chosen and can sometimes be very tedious). 81 
The choice of the wavelet function family is important. This choice must be based on three parameters: the function itself 82 
(which conditions the interpretation of wavelet coefficients and the reconstruction process), the size of its support (the size 83 
where the wavelet value is non zero), and the number of its vanishing moments. The choice will mainly be a compromise 84 
between frequency and time resolution. A wavelet with a short support will have a very good time resolution (being able to 85 
detect singularities) but a bad frequency resolution and vice versa. A number of wavelet functions have been developed and 86 
more information can be found in the reference previously cited.  87 

Using equation 1, wavelet transforms can be used mainly in two ways: data analysis and data reduction. The former involves 88 
studying wavelet coefficients to gather information about the variation of the data at different scales and times (equation 1 89 
solved for ��,�), while the latter mainly involves decomposing the signal into a set of orthonormal components ( at chosen 90 

scales) and retaining only the most significant ones (in term of variability). Example of the first use is time series analysis 91 
while image/video compression is a common application of the second.  92 

The wavelet method used in this study is the multiresolution analysis (MRA) with the aim of decomposing both streamflow 93 
and climate fields into components of increasing time scale of variability (TSV). Detailed theory explaining the multi 94 
resolution nature of wavelets can be found in Mallat(1989) and one of its most famous applications for computers in Percival 95 
and Walden(2000).  The MRA analysis is based on equation 1, but the scales and positions are chosen so as to decrease the 96 
number of needed information as much as possible. The scales chosen are dyadic (i.e: power of 2), and positions are chosen 97 
so that the number of positions where the coefficients are calculated is decreased by 2 at each scale. This peculiar MRA 98 
technique is a discrete wavelet transform (DWT) process that satisfies the orthogonality of the basis both in translation and 99 
scale. It is also possible to use an undecimated discrete wavelet transform (MODWT) where the number of coefficients isn’t 100 
down sampled at each scale. This kind of MRA loses orthogonality in scale, but allows for shift invariance of the 101 
coefficients. For this study the DWT was chosen as the MRA technique. The wavelet chosen for the MRA is a D4 102 
(Daubechies 4 wavelet), which offers a good frequency-time resolution compromise. Both streamflow and climate data are 103 
decomposed into 9 components according to the following time scales: 3 Months, 7 months, Annual, 1.5 years, 4 years, 6 104 
years, 10 years and 21 years. The last component is composed of the rest of the signal (usually contains the mean).  For this 105 
study, only the 6, 10 and 21 year components are kept. 106 

Correlation Analysis between a streamflow time series and a climate field is done pointwise.  107 
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Once the correlation maps are obtained, a Geostatistical Euclidean Distance Clustering (GEDC) is undertaken to see which 108 
stations have similar climate fields. GEDC is a method adapted from the IMage Euclidean Distance (IMED) proposed by 109 
Wang et al.(2005)Wang who designed a Euclidean distance algorithm for images taking into account the distance between 110 
the pixels. The idea is that pixels that are close do not exhibit strong differences in gray levels and that when it happens it is 111 
due to a deformation. Thus the method gives importance to differences of gray levels that are spatially far enough from each 112 
other. The aim there is to be able to recognize global patterns that are similar even if locally small distortions exist. Such a 113 
method is thus adapted to the clustering of climate fields whose impact on streamflow depends both on actual values 114 
(pressure, wind strength etc ), but also the shape of the fields. For example it is well known that the pressure field pattern 115 
changes in the North Atlantic often identified as “NAO+/-, Atlantic Ridge or Scandinavian Blocking weather regime”, will 116 
dictate a large part of the climate variability over Western Europe. The IMED method was thus modified and adapted in this 117 
work into the GeoEDC method. The difference lies into the calculation of the distance between pixels which now becomes a 118 
distance between coordinates on the map and thus takes into account Earth curvature. 119 

The basic steps are as following: 120 

The Euclidean distance between two correlation maps is calculated as in: 121 

��(�, �) = 	((� − �)��(� − �)        (3) 122 

��(�, �), the distance between correlation map of station � and correlation map of station � can be calculated by the outer 123 

product of the two correlation maps �, � and the matrix of weights	�	: 124 

 125 

� =
1

2���
���(−

����
� �

�

2��
) 

���
� 	is the matrix of distance between each coordinates. � can be seen as a Gaussian ponderation of the  variable (e.g. 126 

geopotentials correlation) difference between two coordinates based on their spatial distance. Instead of calculating the 127 
spatial distance using trigonometric functions the coordinates are translated into n-vectors. This prevents calculation errors 128 
when angles approach certain values. 129 

A n-vector is a 3 dimensional vector defined as: 130 

�� =

cos	(��������) ∗ cos	(���������)

cos(��������) ∗ sin	(���������)

sin	(��������)
 

 131 

When used on a computer, calculation of the spatial distance between two n-vectors is defined as: 132 

��� = � ∗ atan2(|�� × ��|, ��. ��) 

The spatial distance between a n-vector � and n-vector �, ���, is thus the product of radius of Earth � and the angle between 133 
the two coordinates represented by the n-vectors, ����2(|�� × ��|, ��. ��). 134 
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To sum up, due to matrix	�, neighbor’s coordinates will see their variable difference decreased and far away coordinates will 135 
have it untouched. Extremely far away coordinates are also filtered. 136 

The GeoEDC gives a distance matrix between correlation map, and an ascendant hierarchical clustering (AHC) is applied on 137 
the distance matrix using the complete metric distance. A silhouette optimization algorithm gives the best number of clusters 138 
for each climate driver by minimizing the inverse of the sum of the mean total silhouette width and the intra silhouette 139 
standard deviation. 140 

 141 

4 Results 142 

4.1 Cluster maps of streamflow based on their climate drivers 143 
Figure 3 shows the results of the GeoEDC applied to the correlation climate fields for the four climate drivers and for the 144 
three TSVs.  145 

Clear spatial patterns are visible for all climate drivers as well as for all TSV even when the number of clusters is only two. 146 
Even at the highest TSV clear spatial repartition shows up. 147 

Inter climate driver comparison shows that clusters are not necessarily the same depending on the climate driver. This 148 
highlights the complexity of climate influence, even for relatively close stations. Nevertheless as the TSV increases the inter 149 
climate driver variability decreases, that is more stations share the same climate drivers. 150 

Inter TSV comparison indicates that for a given climate driver the clustering changes quite significantly according to time 151 
scale. However one can see that as TSV increases the clusters shape and repartition are more and more dipolar (often with 152 
north/south shape and repartition). 153 

Spatially, the Mediterranean area is often a singularity even at high TSV.  154 

4.2 Climate Correlation Fields 155 
Figure 4 represents the average correlation fields corresponding to each cluster, for each climate driver, and each TSV. The 156 
GeoEDC method first distinguishes the general shape of the climate correlation field (CCF). If two are very similar then 157 
discrimination is made on the actual correlation values. 158 

The results can be broken down into two components. First the intra TSV comparison, for one given TSV, assesses the 159 
difference between clusters. The second one is an inter TSV comparison. The latter answers the question “Are CCFs 160 
different depending on the TSV?”. Indeed, it must be stressed that a certain cluster at one TSV, say cluster 1, do not contain 161 
the same stations at another TSV so this latter way of tackling the results cannot be called “intra-cluster”. It will be referred 162 
as inter-TSV. 163 

Intra TSV results show that climate driver clustering is sometimes based on shapes i.e for a given TSV, clusters CCF differ 164 
on their very shape, and sometimes only correlation values are distinct, which is the case as one go to higher TSV. 165 

Inter TSV results show significant variability in CCF depending on the TSV. Geopotential and wind show very different 166 
structures for each of their TSV. 167 
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Of course fields themselves are of particular interest. At the 6 year TSV, geopotential is organized with clear pressure dipole 168 
in the Euro-Atlanic zone with a negative correlation zone over England and a positive correlation zone, located along an arc 169 
starting from Western Africa coast to South Mediterranean basin for stations of Central to Eastern France (Figure 5a). 170 
Interestingly, for the Mediterranean stations (cluster 2) streamflow is not correlated with Mediterranean geopotential (Figure 171 
5a). Correlation values are not very high with values up to ±0.6. Zonal Wind patterns clearly show Westward reinforcing 172 
influence with a positive correlation zone over the North Atlantic. Differences between clusters result from the latitudinal 173 
localization of the high positive correlation band (Figure 5b). For example southern stations are mainly correlated with 174 
southernmost westerlies. Meridional wind shows evolution towards two vortices identified by their opposing poles, one 175 
corresponds to a counterclockwise vortex over England, the other to a clockwise vortex over western coast of Africa which 176 
is in line with the geopotential CCFS previously described (Figure 5c). Correlation values for winds are high, with some 177 
areas having higher than ±0.7 correlation values. Air humidity show a local pattern with high correlation over France for all 178 
but the southern stations where streamflow is positively correlated with air humidity over the Eastern North Atlantic (Figure 179 
5d). Correlation values are high with values up to ±0.7. 180 

At the 10 year TSV, geopotential shows a clear dipole correlation pattern with a strong negative band from the Eastern US 181 
coast to England, and a strong positive correlation band from Eastern Canada to Scandinavia. The difference between 182 
clusters is the presence or absence of a positive correlation area over the African continent (Figure 5a). Correlation values 183 
are high up to ±0.8. Zonal wind shows a similar arrangement with the decrease in the western wind from North America 184 
Eastern Coast to England, and a positive correlation zone at the south of that band. Difference between clusters seems to be 185 
the presence or absence of vortex like systems with some clusters more uniform along the band (Figure 5b). Indeed 186 
Meridional wind show vortex-like circulations on the eastern coast of North America and over Northern Europe (Figure 5c). 187 
Correlation values are high for winds, going up to ±0.9. Air humidity shows positive correlation value at the location of the 188 
wind and geopotential vortex-like systems. Cluster differences are based on the strength of a positive correlation band going 189 
from England to the Middle-East (Figure 5d). Correlation values are high (±0.9). 190 

At the 21 year TSV, Geopotential shows a structure reminiscent of the 10 year band with the band of negative correlation 191 
over the Eastern US coast to England, and a positive band over Eastern Canada to Scandinavia. The difference between 192 
clusters is the general level of correlation. While most stations are highly (anti)correlated with geopotential, the 193 
Mediterranean and South Britany stations are not (Figure 5a). Both winds CCFs are also very close to their 10 year TSV 194 
counterpart and they are both having high correlation values. Note that the number of clusters has gone from 3 in the 10 year 195 
TSV, to 2 in the 21 year TSV (Figure 5b and 5c). Air humidity on the other hand shows a different shape from its previous 196 
TSV with a generalization of positive correlation zones over the Northern Atlantic (Figure 5d). High correlation values are 197 
still present. 198 

 199 

  200 

5 Discussion 201 

5.1 About GeoEDC clustering  202 
The GeoEDC method is not the first to focus on the shape of fields rather than strict values of the variables, however the 203 
method differs from those of Boé and Terray(2008), Martinez et al.(2008)Martinez or Garavaglia et al.(2010)Garavaglia in 204 
that GeoEDC is essentially a pattern recognition clustering technique. The former are focused on pressure fields, and look at 205 
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their gradient because it translates into the notion of wind patterns (gradient of pressure effectively being the main driver 206 
with Coriolis force behind wind direction). It follows that such technique work well with pressure fields, but may not be 207 
adaptable to humidity fields for example. By treating fields as images, the GeoEDC method seems quite suitable for any type 208 
of field where global shape is more important that the mean values. The real strength of GeoEDC lies in its ability to account 209 
for local deformation and thus concentrate on global shapes. When those are comparable between stations, the method 210 
performs classification on mean values as is it still a Euclidean Distance based method. 211 

One important aspect of the GeoEDC method is its capacity to produce smooth clustering i.e. making smooth transitions 212 
between stations belonging to different clusters but close spatially.  Here we will verify this property by the following two 213 
step approach: The first one only consists in comparing CCF at stations located at the interface between two clusters, to see 214 
if they share similar CCFs. The second step is more complex, and requires finding the point at the center of the cluster, based 215 
on the rational that closest stations to this point are also the farthest from the interfaces and thus should have the most 216 
representative characteristics of the cluster’s CCF. Finding a center for a cluster is easy; however this center is only relevant 217 
if the cluster is physically bounded by other clusters. If the boundaries aren’t made of other clusters (for example, the cluster 218 
is limited on one of its side by sea or if the cluster has sides on the borders of the stations coverage) then the cluster is not 219 
totally representative of the CCF, and the real physical center may lie elsewhere. This is the case for the cluster maps 220 
produced for this study. The clusters all have an artificial boundary and thus are never completely bounded by other clusters. 221 
Finding the geometric center of the clusters as they are may be of some use however. Computing it and comparing stations 222 
close to that center with stations on interfaces will give information about the real spatial extent of the cluster. If stations 223 
close to that center are very different from those at interfaces, this means that the real extent of the cluster is close to the one 224 
provided by the study, otherwise this indicates that one should look at stations close to artificial boundaries as they may 225 
provide very different CCFs.  226 

Figure 5 illustrates the latter point. The spatial structure of CCFs on the Mediterranean part of the cluster 2 (black points) of 227 
geopotential for the 6 year TSV is shown. The cluster has North and West boundaries with another cluster, but the South and 228 
East boundaries are artificial (respectively coastline and France/Italy border). Analyzing the stations at the interface between 229 
clusters shows that indeed the GeoEDC provides smooth transitions as stations from two different clusters that are the closest 230 
do produce similar CCFs (Arrows on Figure 5 point at stations from different clusters that are close together). The 231 
geometrical center of the cluster was calculated using a convex set minimization problem with linear constrains taking into 232 
account the Earth curvature. This problem can be explained as finding the smallest spherical cap that contains all the stations 233 
of the cluster, and then finding the center line of the spherical cap. This is equivalent to finding the smallest vector from the 234 
center of Earth to the base plane of the spherical cap. One can see that the stations at the interface seem to follow a counter 235 
clockwise differencing scheme. Starting from the Southeast most stations, going counter clockwise, CCFs change gradually 236 
towards a Scandinavia-Equatorial/Mid latitudes pressure dipole. The stations that are closest to the geometric center actually 237 
take the CCF of the northern stations even those on interfaces. Since those stations are not different from stations at the 238 
interfaces, this means the real geometric center of the cluster lies probably much further south (possibly over the 239 
Mediterranean Sea). 240 

5.2 Cluster maps 241 
The results show that for one TSV, clusters are sometimes different depending on the climate drivers. The exploration of the 242 
physical processes behind this repartition is beyond the scope of this study, and should be treated in future work. However 243 
one thing that appears in the results is that with increasing TSV, the clustering is more and more the same between climate 244 
drivers especially between geopotential and wind. Indeed, already from the 10 year TSV, the clusters are all along the same 245 
lines, only the number of clusters differs. This translates into stations sharing more and more of the same climate drivers. 246 
This suggests that the spatial scales of climate drivers correlated with stations increase with increasing TSV. This is a 247 
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commonly accepted hypothesis that large TSV are correlated with large spatial scales. This is however something that would 248 
have to be verified in future work. One interesting detail is that for each TSV, geopotential always displays the smallest 249 
number of clusters, and the most homogeneous spatial patterns. This suggests that the causal chain of climate drivers 250 
correlated with streamflow in France is first geopotential, then winds and humidity. This is what was highlighted in the 251 
results section i.e. winds and air humidity clusters differ in either latitude or longitude, while the geopotential CCF are more 252 
similar and have a far more homogeneous structure.  253 

Looking at inter-TSV difference in clustering, the same remark can be made. With increasing TSV, the clusters align more 254 
and more along a latitudinal repartition with Southern, Central and Northern France apart. The number of clusters decreases 255 
for each climate driver as the TSV increases. This again suggests that spatial scales increase with TSV.  256 

5.3 Climate Correlation fields 257 
On a general note, it is important to understand one nuance that comes from wavelet analysis. Components of a wavelet 258 
transform are subtracted not from the mean but from the original signal. It means that the CCF should be understood not as 259 
e.g. “streamflow increases when winds are westward”, but as “streamflow increases when the winds tend to be accentuated 260 
westward” (an eastward wind becoming less eastward falls in this last category). Thus, the correlation field map should be 261 
treated as correlation between streamflow and climate driver variations of variation (Correlation analysis treats with 262 
variations, but wavelet analysis do so too hence the “variations of variation”). As an example, the zonal wind CCF at 10 and 263 
21 year TSVs doesn’t show easterly winds at the North (negative correlation area), and westerly at the south of the North 264 
Atlantic. Similarly, they do not show that vortices develop on eastern US coast and over north England. Rather, they show 265 
that streamflow reacts to some dynamics that tend towards those structures. The total (the actual field of wind values) field 266 
for this TSV may still be different as shown in Figure 6. One can see that the field is in fact mostly made of westerlies on the 267 
Northern part of the North Atlantic, while the inverse is true for the Southern part. 268 

Establishing the climate fields that drive either precipitation or streamflow over France has already been achieved, for 269 
example by Boé and Terray(2008) and Garavaglia et al.(2010)Garavaglia focusing on spatial extent like this study. However 270 
other studies have been realized focusing more on the temporal evolution of climate forcing at some TSV. For example, 271 
Sutton and Hodson(2005), Sutton and Dong(2012) inspected the role of multi-decadal variability in SST to explain changes 272 
in Europe climate. In particular Boé and Habets(2013) studied the multi-decadal streamflow variability in France for a 273 
number of rivers, and studied their link with large scale fields such as sea level pressure and Atlantic Multidecadal 274 
Variability. Their work concentrated on spring months but they noted that in winter (the months chosen for this study), 275 
multidecadal variabilities were not synchronously connected with local climate variation (e.g temperature, precipitation).The 276 
authors found that when correlation existed, streamflow were correlated with negative pressure fields over continental 277 
Europe, and  positive pressure fields over central Atlantic. The results of this study are consistent with those from the authors 278 
in that the same field at that scale was found. However, the present study found good correlation between geopotential and 279 
streamflow during winter months in contrary to the previous authors. It should be noted that Boé and Habets(2013) used an 280 
index, while “original” fields were used in this study. This may explain the differences in correlation results. In addition, it 281 
should be noted that stations from the second cluster at the 21 year scale are far less correlated that the one in the first 282 
cluster. Those stations almost all lie in the Western Mediterranean area. 283 

Finally, the spatial to temporal scale relationship is really interesting. As noted previously, station clustering in France tends 284 
to get less complex as TSV increases both intra-climate driver and inter-TSV. This is confirmed by CCF maps which show 285 
that the patterns at the higher TSV become more “global”, and the difference between clusters more due to differences in 286 
correlation values instead of field shape (weather regimes tend to be similar). However a close look highlights areas where 287 
changes of shape exist. For instance in zonal wind 21 year CCF (Fig 5b), difference between clusters is indeed due to the 288 
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main dipole value differences, but some distinct differences in shape are visible on the Eastern coast of the South African 289 
continent. Similarly, the Western Siberia seems to be under westerlies reinforcement area in the first cluster but completely 290 
out in the second. The same can be said of air humidity 21 year TSV CCF (Figure 5d), where Western Mediterranean basin 291 
is either under a highly positive correlation area or not at all. This leads to think that several spatial scales actually coexist 292 
within one TSV. Future work is needed to investigate this temporal-spatial scale relationship.  293 

 294 

6 Conclusion 295 
This study aimed at assessing whether a regional classification of streamflow variability in France based on large-scale 296 
climate drivers was possible according to interannual to interdecadal time-scales. The study covers on 152 climate sensitive 297 
streamflow watersheds over France. Our work focused on three time scales of variability (TSV): 6, 10 and 21 years. In order 298 
to test this hypothesis, a clustering by hierarchical ascendant classification was applied to 4 types of correlation maps 299 
between climate fields and streamflow time series in France: Geopotential, zonal and meridional wind and air humidity (all 300 
at 850mb). To this end, we developed a method called Geo Euclidean Distance (GeoEDC), adapted from Image Euclidean 301 
Distance first proposed by Wang et al.(2005)Wang for image processing. This method computes similarity between fields 302 
based on their global shapes before looking at mean values. By treating field as images, GeoEDC works on more types of 303 
fields that methods previously developed. The results of the clustering show distinct spatial patterns for every climate drivers 304 
and for all time scales of variability considered.  The general trend is that at the lowest TSV (6 year) stations that share one 305 
climate driver do not necessarily share the others. As the TSV increases, more stations share the same climate drivers. 306 
Results also show that for a given climate driver, the clustering of stations differs depending on the TSV. As TSV increases 307 
the clustering becomes simpler, with less clusters for a given climate driver. Correlation climate fields (CCF) associated with 308 
streamflow in France are consistent with those found in the literature but that study brings up more information by 309 
considering different TSV as well as considering true fields and not indices. The clustering also suggests hypothesis on the 310 
order of causality of climate drivers in the forcing chain. The results suggest that, as expected, geopotential are the source for 311 
most of the variation of streamflow in France with wind and air humidity following, even considering the large TSV 312 
involved. Future work focusing on the time-space evolution characteristics of the CCFs, exploration of the large-scale and 313 
watershed physics explaining the clustering maps obtained would be needed in order to better understand how climate fields 314 
influence streamflow in France. 315 

 316 
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 372 

Fig. 1. Streamflow time series stations map; Stations chosen are those with little anthropogenic impact. 373 

 374 
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 376 

Fig. 2. Workflow of the study:  (1) Streamflow and climate fields 6, 10 and 21 years TSV are extracted by multiresolution analysis; 377 
(2) A point wise correlation analysis is performed; (3) A climate correlation field (CCF) is obtained for each of the 152 streamflow 378 
gauging stations; (4) GeoEDC clustering is applied to each set of CCFs for given climate field and TSV allowing to establish a 379 
cluster map. 380 
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 381 

Fig. 3. Cluster map of climate drivers correlated with streamflow over France: rows are the different TSVs : 6 year (1st row), 10 382 
year (2nd row) and 21 year (3rd row) time scales 383 
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 384 

Fig. 4(a). Average climate correlation fields for geopotential; TSVs in rows, clusters in columns. 385 
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 386 

Fig.  4(b). 1Average climate correlation fields for zonal wind; TSVs in rows, clusters in columns. 387 
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 388 

Fig.  4(c). Average climate correlation fields for meridional wind; TSVs in rows, clusters in columns. 389 
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 390 

Fig.  4(d). Average climate correlation fields for humidity; TSVs in rows, clusters in columns. 391 
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 392 

Fig.  5. map of the 6 year TSV geopotential CCFs for some selected stations that are some distance away from the geometric center 393 
(red point) of cluster 2 (the set of black points). Sampled stations are station at the interface between cluster 1 and 2 (left and 394 
upper left CCFs), the closest station from the geometric center (upper right CCF) and stations at the administrative boundaries of 395 
the cluster (lower right and bottom CCFs) 396 
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 397 

Fig.  6. Average Zonal wind Field over the Euro Atlantic Area 398 
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