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Abstract. Soil erosion is one of the major environmental problems in China. From 2010-2012 in China, the
fourth national census for soil erosion sampled 32,364 Primary Sampling Units (PSUs, small watersheds) with
the areas of 0.2-3 km?. Land use and soil erosion controlling factors including rainfall erosivity, soil erodibility,
slope length, slope steepness, biological practice, engineering practice, and tillage practice for the PSUs were
surveyed, and soil loss rate for each land use in the PSUs were estimated using an empirical model Chinese Soil
Loss Equation (CSLE). Though the information collected from the sample units can be aggregated to estimate
soil erosion conditions on a large scale, the problem of estimating soil erosion condition on a regional scale has
not been well addressed. The aim of this study is to introduce a new model-based regional soil erosion
assessment method combining sample survey and geostatistics. We compared five spatial interpolation models
based on Bivariate Penalized Spline over Triangulation (BPST) method to generate a regional soil erosion
assessment from the PSUs. Land use, rainfall erosivity, and soil erodibility at the resolution of 250>250 m
pixels for the entire domain were used as the auxiliary information. Shaanxi province (3,116 PSUs) in China
was used to conduct the comparison and assessment as it is one of the areas with the most serious erosion
problem. The results showed three models with land use as the auxiliary information generated much lower
mean squared errors (MSE) than the other two models without land use. The model assisted by the land use,
rainfall erosivity factor (R), and soil erodibility factor (K) is the best one, which has MSE less than half that of

the model smoothing soil loss in the PSUs directly. 56.5% of total land in Shaanxi province has annual soil loss
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greater than 5t hat y*. High (20-40 t haty %), severe (40-80 t haty) and extreme (>80 t ha™*y) erosion
occupied 14.3% of the total land. The farmland, forest, shrub land and grassland in Shaanxi province had mean
soil loss rates of 19.00, 3.50, 10.00, and 7.20 t ha y%, respectively. Annual soil loss was about 198.7 Mt in
Shaanxi province, with 67.8% of soil loss originated from the farmlands and grasslands in Yan’an and Yulin
districts in the northern Loess Plateau region and Ankang and Hanzhong districts in the southern Qingba
mountainous region. This methodology provides a more accurate regional soil erosion assessment and can help

policy-makers to take effective measures to mediate soil erosion risks.

1 Introduction

With a growing population and a more vulnerable climate system, land degradation is becoming one of the
biggest threats to food security and sustainable agriculture in the world. Water and wind erosion are the two
primary causes of land degradation (Blanco and Lal, 2010). To improve the management of soil erosion and aid
policy-makers to take suitable remediation measures and mitigation strategies, the first step is to monitor and
assess the related system to obtain timely and reliable information about soil erosion conditions under present
climate and land use. The risks of soil erosion under different scenarios of climate change and land use are also
very important (Kirkby et al., 2008).

Scale is a critical issue in soil erosion modeling and management (Renschler and Harbor, 2002). When the
spatial scale is small, experimental runoff plots, soil erosion markers (e.g. Caesium 137) or river sediment
concentration measurement devices (e.g. optical turbidity sensors) are useful tools. However, when the regional
scale is considered, it is impractical to measure soil loss across the entire region. A number of approaches were
used to assess the regional soil erosion in different countries and regions over the world, such as expert-based
factorial scoring, plot-based, field-based and model-based assessments, etc.

Factorial scoring was used to assess soil erosion risk when erosion rates are not required, and one only need a
spatial distribution of erosion (CORINE, 1992; Guo and Li, 2009; Le Bissonnais et al., 2001). The classification
or scoring of erosion factors (e.g. land use, rainfall erosivity, soil erodibility and slope) into discrete classes and
the criteria used to combine the classes are based on expert experience. The resulting map depicts classes
ranging from very low to very high erosion or erosion risk. However, factorial scoring approach has limitations
on subjectivity and qualitative characteristics (Morgan, 1995; Grimm et al., 2002). Plot-based approach

extrapolated the measurements from runoff plots to the region (Gerdan et al., 2010; Guo et al., 2015). However,
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Gerdan et al. (2010) discussed that the direct extrapolation may lead to poor estimation of regional erosion rates
if the scale issue is not carefully taken into consideration. Evan et al., (2015) recommended a field-based
approach combining visual interpretations of aerial and terrestrial photos and direct field survey of farmers’
fields in Britain. However, its efficiency, transparency and accuracy were questioned (Panagos et al., 2016a).
The model-based approach can not only assess soil loss up to the present time, but also has the advantage of
assessing future soil erosion risk under different scenarios of climate change, land use and conservation
practices (Kirkby et al., 2008; Panagos et al., 2015). USLE (Wischmeier and Smith, 1965; Wischmeier and
Smith, 1978) is an empirical model based on the regression analyses of more than 10,000 plot-years of soil loss
data in the USA and is designed to estimate long-term annual erosion rates on agricultural fields. (R)USLE
(Wischmeier and Smith, 1978; Renard et al., 1997; Foster, 2004) and other adapted versions (for example,
Chinese Soil Loss Equation, CSLE, Liu et al., 2002), are the most widely used models in the regional scale soil
erosion assessment due to relative simplicity and robustness (Singh et al., 1992; Van der Knijff et al., 2000; Lu
etal., 2001; Grimm et al., 2003; Liu, 2013; Bosco et al., 2015; Panagos et al., 2015). A physically based and
spatially distributed model, the Pan-European Soil Erosion Risk (PESERA) model (Kirkby et al., 2000), is
recommended for use in a policy framework (DPSIR, driving-force-pressure-state-impact-response) in Europe
(Gobin et al., 2004). However, the input data required by the PESERA model was not always available with
sufficient accuracy, which limited its use at regional and continental scale (Borrelli et al., 2016). Bosco et al.
(2015) used an Extended RUSLE (e-RUSLE) model in the recent water erosion assessment in Europe due to its
low-data demand. Panagos et al. (2015) presented the application of RUSLE2015 to estimate soil loss in Europe
by introducing updated and high-resolution datasets for deriving soil erosion factors.

The applications of USLE and its related models in the assessment of regional soil erasion can be generally
grouped into three categories. The first category is the area sample survey approach. One representative is the
National Resource Inventory (NRI) survey on U.S. non-Federal lands (Nusser and Goebel, 1997; Goebel, 1998;
Breidt and Fuller, 1999). The NRI survey has been conducted at 5-year interval since 1977, and changed to the
current annual supplemented panel survey design in 2000. The point level soil erosion estimate is produced
based on the USLE before 2007, and RUSLE estimate is produced after 2007. The 2012 NRI is the current NRI
data, which provides nationally consistent data on the status, condition, and trends of land, soil, water, and
related resources on the Nation’s non-Federal lands for the 30-year period 1982-2012. USDA-NRCS (2015)
summarized the results from the 2012 NRI, which also include a description of the NRI methodology and use. A

summary of NRI results on rangeland is presented in Herrick et al. (2010). See for example Brejda et al. (2001),
3
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Hernandez, et al. (2013) for some applications using NRI data. Since a rigorous probability based area sampling
approach is used to select the sampling sites, the design based approach is robust and reliable when it is used to
estimate the soil erosion at the national and state level. However, due to sample size limitations, estimates at the
sub-state level are more uncertain.

The second category is based on the multiplication of seamless grids. Each factor in the (R)USLE model is a
raster layer and soil loss was obtained by the multiplication of numerous factors, which was usually conducted
under GIS environment (Lu et al. 2001; Bosco et al., 2015; Panagos et al., 2015; Ganasri and Ramesh, 2015;
Rao et al., 2015; Bahrawi et al., 2016). Raster multiplication is a popular model-based approach due to its lower
cost, simpler procedures and easier explanation of resulting map. If the resolution of input data for the entire
region is enough to derive all the erosion factors, raster multiplication approach is the best choice. However,
there are several concerns about raster multiplication approach: (1) The information for the support practices
factor (P) in the USLE was not easy to collect given the common image resolution and was not included in some
assessments (Lu et al., 2001; Rao et al., 2015), in which the resulting maps don’t reflect the condition of soil
loss but the risk of soil loss. Without the information of P factor, it is also impossible to assess the benefit from
the soil and water conservation practices. (2) The accuracy of soil erosion estimation for each cell is of concern
if the resolution of database used to derive the erosion factors is limited. For example, Thomas et al. (2015)
showed that the range of LS factor values derived from four sources of DEM (20 m DEM generated from
1:50,000 topographic maps, 30 m DEM from ASTER, 90 m DEM from shuttle radar topography mapping
mission (SRTM) and 250 m DEM from global multi-resolution terrain elevation data (GMTED)) were
considerably different, which suggested the grid resolutions of factor layers are critical and are determined by
the data resolution used to derive the factor. A European water erosion assessment which introduced high-
resolution (100 m) input layers reported the result that the mean soil loss rate in the European Union’s erosion-
prone lands was 2.46 t ha* y* (Panagos et al., 2015). This work is scientifically controversial mainly due to
questions on these three aspects: (1) Should the assessment be based on the model simulation or the field
survey? (2) Are the basic principles of the (R)USLE disregarded? and (3) Are the estimated soil loss rates
realistic (Evans and Boardman, 2016; Fiener and Auerswald, 2016; Panagos et al., 2016a, b)? Panagos et al.
(20064a, 2016b) argued that field survey method proposed by Evans et al. (2015) is not suitable for the
application at the European scale mainly due to work force and time requirements. They emphasized their work
focused on the differences and similarities between regions and countries across the Europe and RUSLE model

with the simple transparent structure can achieve their goal if harmonized datasets were inputted.
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The third category is based on the sample survey and geostatistics. One example is the fourth census on soil
erosion in China, which was conducted during 2010-2012 (Liu, 2013). Ministry of Water Resources of the
People's Republic of China (MWR) has organized four nationwide soil erosion investigations. The first three (in
mid-1980s, 1999 and 2000) were mainly based on field survey, visual interpretation by experts and factorial
scoring method (Wang et al., 2016). The third investigation used 30 m resolution of Landsat TM images and
1:50000 topography map. Six soil erosion intensities were classified mainly based on the slope for the arable
land and a combination of slope and vegetation coverage for the non-arable land. The limitations for the first
three investigations include the limited resolution of satellite images and topography maps, limited soil erosion
factors considered (rainfall erosivity factor, soil erodibility factor, and practice factor were not considered),
incapability of generating the soil erosion rate, and incapability of assessing the benefit from the soil and water
conservation practices. The fourth census was based on a stratified unequal probability systematic sampling
method (Liu et al., 2013). In total, 32,364 Primary Sampling Units (PSUs) were identified nationwide to collect
factors for water erosion prediction (Liu, 2013). CSLE was used to estimate the soil loss for the PSUs. A spatial
interpolation model was used to estimate the soil loss for the non-sampled sites.

Remote sensing technique has unparalleled advantage and potential in the work of regional scale soil erosion
assessment (Veirling, 2006; Le Roux et al., 2007; Guo and Li, 2009; Mutekanga et al., 2010; El Haj El Tahir et
al., 2010). The aforementioned assessment method based on the multiplication of erosion factors under GIS
interface was largely dependent on the remote sensing dataset (Panagos et al., 2015b; Ganasri and Ramesh,
2015; Bahrawi et al., 2016), which also provide important information for the field survey work. For example,
NRI relied exclusively on the high resolution remote sensing images taken from fixed wing airplanes to collect
land cover information. However, many characteristics of soil erosion cannot be derived from remote sensing
images. Other limitations include the accuracy of remote sensing data, the resolution of remote sensing images,
financial constraints and so on, which result in some important factors influencing soil erosion being not
available for the entire domain. It is important to note is that the validation is necessary and required to evaluate
the performance of a specific regional soil erosion assessment method, although the validation process is
difficult to implement in the regional scale assessment and is not well addressed in the existing literature (Gobin
et al., 2004; Vrieling, 2006; Le Roux et al., 2007; Kirkby, et al., 2008).

There is an important issue arising in the regional soil erosion assessment based on survey sample, which is how
to infer the soil erosion conditions including the extent, spatial distribution and intensity for the entire domain

from the information of PSUs. NRI used primarily a design based approach to estimate domain level statistics.
5
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While robust and reliable for large domains which contain enough sample sites, such method cannot be used to
compute the estimate for the small domain. In the fourth census of soil erosion in China, a simple spatial model
was used to smooth the proportion of soil erosion directly. Land use is one of the critical pieces of information
in the soil erosion assessment (Ganasri and Ramesh, 2015) which is available for the entire domain. The erosion
factors rainfall erosivity and soil erodibility are also available for the entire domain. The other factors including
the slope length, slope degree, biological, engineering and tillage practice factors are either impossible or very
difficult to obtain for the entire region at this stage. We sampled small watersheds (PSUs) to collect detailed
topography information and conducted field survey to collect soil and water conservation practice information.
The purpose of this study is to introduce a new regional soil erosion assessment method combining sample
survey and geostatistics and compare five semi-parametric spatial interpolation models based on bivariate
penalized spline over triangulation (BPST) method to generate regional soil loss (A) assessment from the PSUs.
The five models are: smoothing A directly (Model 1), estimating A assisted by R and K factors (Model 11),
estimating A assisted by land use (Model I11), estimating A assisted by R and land use (Model 1V) and
estimating A assisted by R, K and land use (V). There are 3116 PSUs in the Shaanxi province and its
surrounding areas which were used as an example to conduct the comparison and demonstrate assessment
procedures (Fig. 1). For many regions in the world, data used to derive erosion factor such as conservation
practice factor is often not available for all area, or the resolution is not adequate for the assessment. Therefore,

the assessment method combining sample survey and geostatistics proposed in this study is valuable.

2 Data and Methods

2.1 Sample and field survey

The design of the fourth census on soil erosion in China is based on a map with Gauss—KrUger projection, where
the whole China was divided into 22 zones with each zone occupying three longitude degrees width (From
central meridian towards west and east 1.5 degrees each). Within each zone, beginning from the central meridian
and the equator, we generated grids with a size of 40 km %40 km (Fig. 2), which are the units at the first level
(County level). The second level is Township level with a size of 10 km > 10 km. The third level is the control
area, with a size of 5 km x5 km. The fourth level is the 1 km <1 km grid located in the middle of the control
area. The 1 km > 1 km grid is the PSU in the plain area, whereas in the mountainous area, a small watershed

with area between 0.2-3 km? which also intersects with the fourth level 1 km > 1 km grid is randomly picked as

6
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the PSU. The area for the mountainous PSU is restricted to be between 0.2-3 km?, which is large enough for the
enumerator and not too large to be feasible to conduct field work. There is a PSU within every 25 km?, which
suggests the designed sample density is about 4%. In practice, due to the limitation of financial resources, the
surveyed sample density is 1% for most mountainous areas. The density of sample units in our survey depends
on the level of uncertainty and the budget of the survey. We sampled a density of 4% in four experimental
counties in different regions over China and found a density of 1% was acceptable given the current financial
condition. The density for the plain area is reduced to 0.25% due to the lower soil erosion risk (Li et al., 2012).
The field survey work for each PSU mainly included: (1) recording the latitude and longitude information for
the PSU using a GPS; (2) drawing boundaries of plots in a base map of the PSU; (3) collecting the information
of land use and soil conservation measures for each plot; and (4) taking photos of the overview of PSUs, plots
and soil and water conservation measures for future validation. A plot was defined as the continuous area with
the same land use, the same soil and water conservation measures, and the same canopy density and vegetation
fraction in the PSU (difference <=10%, Fig. 3). For each plot, land use type, land use area, biological measures,
engineering measures and tillage measures were surveyed. In addition, vegetation fraction was surveyed if the

land use is a forest, shrub land or grassland. Canopy density is also surveyed if the land use is a forest.

2.2 Database of PSUs in Shaanxi and its surrounding areas

A convex hull of the boundary of Shaanxi province was generated, with a buffer area of 30 km outside of
the convex hull (Fig. 4). The raster of R factor, K factor and 1:100000 land use map with a resolution of
250 X 250 m pixels for the entire area were collected. PSUs located inside the entire area were used, which
included 1775 PSUs in the Shaanxi province and 1341 PSUs from the provinces surrounding the Shaanxi
province, including Gansu (430), Henan (112), Shanxi (345), Inner Mongolia (41), Hubei (151),
Chongging (55), Sichuan (156) and Ningxia (51). There were 3116 PSUs in total. We had the information
of longitude and latitude, land use type, land use area and factor values of R, K, L, S, B, E and T for each
plot of the PSU. The classification system of the land use for the entire area and that for the survey units
were not synonymous with each other. They were grouped into eight land use types include (1) farmland,
(2) forest, (3) shrub land, (4) grassland, (5) water body, (6) construction land, (7) bare land and (8) unused

land such as sandy land, Gebi and uncovered rock to make them corresponding to each other.
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2.3 Soil loss estimation for the plot, land use and PSU

Soil loss for a plot can be estimated using CSLE equation as follows:

A =Ry - Ky - L - Sy ‘BB - T )

where Auc is the soil loss for the k™ plot with the land use u (t hat y1), Ru is the rainfall erosivity (MJ mm
-1 K1y 1 Kk' 1 ibi -1 -1 -1 I‘k' Sk'

ha' h*y™), ~"Ukis the soil erodibilty (t ha h MJ™* ha't mm™), ~Ukis the slope length factor, ~U¥is the

slope steepness factor, By is the biological practice factor, Eue is the engineering practice factor, Tk is
the tillage practice factor. The definitions of A, R and K are similar to that of USLE. Biological (B),
Engineering (E) and Tillage (T) factor is defined as the ratio of soil loss from the actual plot with
biological, engineering or tillage practices to the unit plot. Biological practices are the measures to increase
the vegetation coverage for reducing runoff and soil loss such as trees, shrubs and grass plantation and
natural rehabilitation of vegetation. Engineering practices refer to the changes of topography by
engineering construction on both arable and non-arable land using non-normal farming equipment (such as
earth mover) for reducing runoff and soil loss such as terrace, check dam and so on. Tillage practices are
the measures taken on the arable land during ploughing, harrowing and cultivation processes using normal
farming operations for reducing runoff and soil loss such as crop rotation, strip cropping and so on (Liu et
al., 2002).

Liu et al. (2013) introduced the data and methods for calculating each factor. Here we present a brief
introduction. Land use map with a scale of 1:100000 is from China's Land Use/cover Datasets (CLUD), which
were updated regularly at a five-year interval from the late 1980s through the year of 2010 with standard
procedures based on Landsat TM/ETM images (Liu et al., 2014). Land use map used in this study was the
version of 2010 (Fig. 5a). 2678 weather and hydrologic stations with erosive daily rainfall from 1981 through
2010 were collected and used to generate the R factor raster map over the entire China (Xie et al., 2016). And
for the K factor, soil maps with scales of 1:500,000 to 1:200,000 (for different provinces) from the Second
National Soil Survey in 1980s generated more than 0.18 million polygons of soil attributes over mainland

China, which was the best available spatial resolution of soil information we could collect at present. The

physicochemical data of 16,493 soil samples (belong to 7764 soil series, 3366 soil families, 1597 soil subgroups

and 670 soil groups according to Chinese Soil Taxonomy) from the maps and the latest soil physicochemical

data of 1065 samples through the ways of field sampling, data sharing and consulting literatures were collected
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to generate the K factor for the entire country (Liang et al., 2013; Liu et al., 2013). We assumed the result of the
soil survey could be used to estimate the K factor in our soil erosion survey. R factor raster map for the study
area was clipped from the map of the country as well as the K factor raster map (Fig. 5b, ¢). Previous research
showed topography factors should be derived from high resolution topography information (such as 1:10000 or
larger scale topography contour map). Topography factors based on smaller scale of topography map (such as
1:50000 or 1:100000) in the mountainous and hilly area have large uncertainties. Topography contour maps with
a scale of 1:10000 for the entire region were not available at present. Fig. 5d was based on SRTM 90m DEM
dataset and it was used to demonstrate the variation in the topography, which was not used in the interpolation
process due to its limited resolution. Topography contour map with a scale of 1:10000 for PSUs were collected
to derive the slope lengths and slope degrees and to calculate the slope length factors and slope steepness factors
(Fu et al., 2013). The land use map was used to determine the boundary of forest, shrub, and grass land. For
these three land use types, MODIS NDVI and HJ-1 NDVI were combined to derive vegetation coverage. For the
shrub and grass land, an assignment table was used to assign a value of the half-month B factor based on their
vegetation coverage; For the forest land, the vegetation coverage derived from the aforementioned remote
sensing data was used as the canopy density, which was combined with the vegetation fraction under the trees
collected during the field survey to estimate the half-month B factor. The B factor for the whole year was
weight-averaged by a weight of rainfall erosivity ratio for this half-month. Both C factor in Panagos et al. (2015)
and B factor in this study for forest, shrub land and grassland were estimated based on the vegetation density
derived from satellite images. The difference is that C factor in Panagos et al. (2015) for arable land and non-
arable land was estimated separately based on different methodologies, whereas in this study, B factor was used
to reflect biological practices on the forest, shrub land or grassland for reducing runoff and soil loss and T factor
was used to reflect tillage practices on the farmland for reducing runoff and soil loss. For the farmland,
biological factor equals 1 and for the other land uses, tillage factor equals 1. The engineering practice factor and
tillage practice factor were assigned values based on the field survey and assignment tables for different
engineering and tillage measures, which were obtained from published references (Guo et al., 2015).

In a PSU, there may be several plots within the same land use. Soil loss for the same land use was weight-

averaged by the area of the plots with the same land use:
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where A is the averaged soil loss for the land use u in the sample unit i; A is the soil loss for the plot k

with the land use u; Suik is the area for the plot k with the land use u.

Soil loss for the entire PSU was weight-averaged by the area of the plots.

N

D (AS,)
A=, )

2.5y

p=1

where A is the averaged soil loss for the sample unit i with N plots; A"’ is the soil loss for the plot p and P

is the area for the plot p.

2.4 Five spatial models based on BPST method

2.4.1 Five spatial models

Model I: Estimating A directly by spatial interpolation. Model | is a naive method which is used as a
baseline for comparison. We treat unit i as a point, and use longitude and latitude information and A1 value

of unit i to interpolate.

Model I1: Estimating A with R and K as the auxiliary information. For any sampling unit i, let

o (4)

where Ri is the rainfall erosivity value for unit i, and K‘ is the soil erodibility value for unit i. By

smoothing Qi ’s over the domain using longitude and latitude information, we obtain the interpolation of
Q . . e . . A

I°s over the entire domain. Then for the j*" pixel on the domain, we estimate the soil loss ! via
AJ.:QJ.-RJ.-KJ., (5)
where Qj is the estimator onj .

Model I11: Estimating A with the land use as the auxiliary information. For water body and unused area, the

10
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estimation of soil loss for the u™ land use and j™ pixel A’j was set to be zero. For the rest land use types, A

for each land use was interpolated separately first and soil loss values for the entire domain A” are the

combination of estimation for all land uses.

Model IV: Estimating A with R and land use as the auxiliary information. For any sampling unit i in land

use u, define
T = A
ul R ) 1
ui (6)

where Ri is the rainfall erosivity value. For land use u, we smooth "Y' ’s using the longitude and latitude

information, and obtain the interpolation over the domain. For any j pixel in land use u, we estimate the
soil loss Ay by

Ay =Ty Ry, )

>
>

where “is the estimation of “ for the land use u and the pixel j.

Model V: Estimating A with R, K and land use as the auxiliary information. For land use u and sampling

unit i, define
Q.= _Aa , (8)

Rui ’ I(ui
where Ky is the soil erodibility value. For land use u, smoothing Qi ’s over the domain, we obtain the
estimatorQUj of Q“j for every pixel j. Then, for any j™ pixel in land use u, we can estimate the soil loss A“j
by

2.4.2 Bivariate penalized spline over triangulation method

In spatial data analysis, there are mainly two approaches to make the prediction of a target variable. One approach
(e.g., kriging) treats the value of a target variable at each location as a random variable and uses the covariance
function between these random variables or a variogram to represent the correlation; another approach (e.g., spline
or wavelet smoothing) uses a deterministic smooth surface function to describe the variations and connections

among values at different locations. In this study, Bivariate Penalized Spline over Triangulation (BPST), which

11
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belongs to the second approach, was used to explore the relationship between location information in a two-

dimensional (2-D) domain and the response variable. The BPST method we consider have several advantages.

First, it provides good approximations of smooth functions over complicated domains. Second, the computational

cost for spline evaluation and parameter estimation are manageable. Third, the BPST doesn’t require the data to

be evenly distributed or on regular-spaced grid. Since our data are a little sparse in some area, we employed the

roughness penalties to regularize the spline fit; see the energy functional defined in equation (12). When the

sampling is sparse in certain area, the direct BPST method may not be effective since the results may have high

variability due to the small sample size. The penalized BPST is more suitable for this type of data because it can

help to regularize the fit.

To be more specific, let (x;,y;) € Q be the latitude and longitude of uniti for i = 1, 2, ..., n. Suppose we observe

z; atlocations (x;,y;) and {(x;,y; 2}, satisfy

z; = f(xy,y0) +&,i=1,2,...,n, (10)

where ;s are random variables with mean zero, and f(.) is some smooth but unknown function. To
estimate f, we adopt the bivariate penalized splines on triangulations to handle irregular domains. In the
following we discuss how to construct basis functions using bivariate splines on a triangulation of the
domain Q. Details of various facts about bivariate splines stated in this section can be found in Lai and
Schumaker (2007). See also Guillas and Lai (2010) and Lai and Wang (2013) for statistical applications of
bivariate splines on triangulations.

A triangulation of Q is a collection of triangles A = {14, T,, ..., Ty} Whose union covers Q. In addition, if

a pair of triangles in A intersects, then their intersection is either a common vertex or a common edge. For a

given triangulation A, we can construct Bernstein basis polynomials of degree p separately on each
triangle, and the collection of all such polynomials form a basis. In the following, let SP(A) be a spline
space of degree p and smoothness r over triangulation A. Bivariate B-splines on the triangulation are
piecewise polynomials of degree p (polynomials on each triangle) that are smoothly connected across
common edges, in which the connection of polynomials on two adjacent triangles is considered smooth if
directional derivatives up to the r'"" degree are continuous across the common edge.

To estimate f, we minimize the following penalized least square problem:

min (z; — f(xi,yi))2 + APEN(D), (11)
fesk (a)

Where A is the roughness penalty parameter, and PEN(f) is the penalty given below:
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PEND = [, (00" 4 (a;ffj;j))z + (%y”)2 dxdy, (12)

For Models |-V defined in Section 2.4.1, we consider the above minimization to fit the model, and obtain
the smoothed surface using the measurements of A (Models I and I11) or Q (Models Il and V) or T (Model

IV) and their corresponding location information.
2.5 Assessment methods

To compare different models, we estimate the out-of-sample prediction errors of each method using the 10-fold
cross validation. We randomly split all the observations over the entire domain (with the buffer zone) into ten
roughly equal-sized parts. For each k =1, 2, ...., 10, we leave out part k, fit the model to the other nine parts
(combined) inside the boundary with the buffer zone, and then obtain predictions for the left-out k™ part inside

the boundary of Shaanxi Province. In the Model | and Model 11, MSEyeran is calculated as follows:

Y10 SSE
MSEqyeran = k1—k’ (13)

n

In Models 111, 1V and V, we consider land use as one covariate. Therefore, the overall mean squared prediction
error (MSEoveran) is calculated by the average of the sum of the product of individual MSE and the corresponding

sample size. The overall MSEveran Was calculated as follows: we first calculated the MSE of land each use u, u =

1,2, ---, 8, similar as for Model | and Model Il,
10
MSE, = 2158 (14)

Then, the overall MSE can be calculated using

_ 23:1 MSEy*Cy
MSEoverall - 8
Xu=1Cu

(15)
where C, is the sample size for the land use u.
Six soil erosion intensity levels were divided according to the soil loss rate, which were mild (less than 5 t haly-

B, slight (5-10 t ha'y?), moderate (10-20 t haly?), high (20-40 t haly?), severe (40-80 t ha'y'), and extreme

(greater than 80 t halyl), respectively. Each pixel in the entire domain was classified as an intensity level

according to Jor'A\”. The proportion of intensity levels, soil loss rates for different land uses and the spatial
distribution of soil erosion intensity levels were based on the soil erosion conditions of pixels located inside of

the Shaanxi boundary.
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3 Results

3.1 Estimation for five models

Table 1 summarized the MSEs of the soil loss estimation based on different methods. Model V assisted by the
rainfall erosivity factor (R), soil erodibility factor (K) and land use generated the least overall MSE values and
the best result. MSE for Model V was 43.4% of that for Model 1, and MSE for Model 111 assisted by the land use
was 50.3% of Model I, which suggested that the land use is the key auxiliary information for the spatial model,

which contributed much more information than R and K factors did.

3.2 Soil erosion intensity levels

These five models can be divided into two groups in the proportion pattern of soil erosion intensity levels (Fig.
6). The first group is two models without the land use as the auxiliary information (Model I and I1) and the
second group is three models assisted with the land use (Model 11, 1V and V). The first group generated no
severe and extreme erosion levels and had a higher proportion of slight and moderate erosion levels than the
second group. The second group generated a higher proportion of mild, severe and extreme erosion levels than
the first group. Most severe and extreme erosion mainly occurred in the farmland and bare land (Fig. 7). The
first group mainly underestimated the erosion degrees for the farmland and bare land and overestimated those
for the forest, grassland and construction land. The main reason is when the land use is ignored, the extreme
erosion levels, mostly in farmland and bare land, were smoothed by the surrounding low erosion levels, mostly
in forest, shrub land, grassland and construction land.

The result of Model V with BPST method showed that the highest percentage is the mild erosion (43.5%),
followed by the slight (21.3%), moderate (20.9%) and high erosion (10.1%). The severe and extreme erosion
were 3.9% and 0.3%, respectively (Fig. 6). When it came to land use (Fig. 7), the largest percentage for the
farmland was the high erosion, which occupied 26.6% of the total farmland. The severe and extreme erosion for
the farmland were 11.3% and 0.9% of the total farmland, respectively. Most forest land and grassland had mild
erosion (75.4% and 42.5%, respectively). Each of mild, slight and moderate erosion degrees occupied about

30% of the total shrub land.

3.3 Soil loss rates for different land uses

Fig. 8 showed soil loss rates for different land use generated from five models. Similar to the estimation of soil

erosion intensity levels, the first group mainly underestimated the soil loss rates for the farmland and bare land
14
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and overestimated those for the forest, grassland and construction land. The standard deviations of the farmland
and bare land for the second group were much higher than those for the first group, which suggested the
variation of soil loss rates for farmland and bare land pixels for the second group were greater than for the first
group. The soil loss rate for four main land uses (farmland, forest, shrub land and grassland) by Model V was

reported in Table 2.

3.4 Spatial distribution of soil erosion intensity

All five models simulated generally similar spatial patterns of soil erosion intensity (Fig. 9 (a)-(¢)). Three
models assisted with the land use (Model 111, IV and V) showed more reasonable details (Fig. 9). Fig. 9(e)
showed that severe and extreme soil erosion mainly occurred in the farmlands in the southern Qingba
mountainous area. Fig 9(f) demonstrated the difference between Model V and Model I, which suggested Model

| overestimated the erosion intensity levels for most forests and grasslands, whereas it underestimated the
intensity of farmlands. The estimation from Model V showed that annual soil loss from Shaanxi province was
about 198.7 Mt, 49.8% of which came from farmlands and 35.0% from grasslands (Table 3). The soil loss rate
in Yan’an and Yulin in the northern part was 15.3 and 11.9 t ha y* and ranked the highest among ten prefecture
cities. About half of the soil loss for the entire province was from these two districts (Table 3). Ankang and
Hanzhong in the southern part also had a severe soil loss rate and contributed about one quarter of soil loss for

the entire province.

4 Discussion

The spatial pattern of soil erosion in Shaanxi province in this study is similar to the result of the third national
investigation. Since the expert factorial scoring method didn't generate the erosion rate for each land use, we
compared the percentage of soil erosion area for ten prefecture cities in Shaanxi province between the third and
the fourth investigations. Both investigations indicated Yan’an, Yulin and Tongchuan in the northern part and
Ankang in the southern part had the most serious soil erosion. The difference is that Hanzhong was
underestimated and Shangluo was overestimated in the third investigation, compared with the fourth
investigation. Guo et al. (2015) analyzed 2823 plot-year runoff and soil loss data from runoff plots across five
water erosion regions in China and compared the results with previous research across the world. The results

showed that there were no significant differences for the soil loss rates of forest, shrub land and grassland
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worldwide, whereas the soil loss rates of farmland with conventional tillage in northwest and southwest China
were much higher than those in most other countries. Shaanxi province is located in the Northwest region. Soil
loss rates for the farmland, forest, shrub land and grassland based on the plot data for the NW region in Guo et
al. (2015) were extracted and presented in Table 2 for comparison. Soil loss rate for the farmland based on the
plot data varied greatly with the management and conservation practices and the result in this study was within
the range (Table 2). The soil loss rate for the shrub land is similar with that reported in Guo et al. (2015). The
soil loss rate for the forest in this study was 3.50 t ha* y* with a standard deviation of 2.78 t hay?, which is
much higher than 0.10 t ha* y* reported in Guo et al. (2015, Table 2). Our analysis showed that it came from the
estimation of PSUs and was not introduced by the spatial interpolation process. Possible reasons include: the
different definitions of forest and grassland, concentrated storms with intense rainfall, the unique topography in
Loess plateau and the sparse vegetation cover due to intensive human activities (Zheng and Wang, 2014). The
minimum canopy density (crown cover) threshold for the forest across the world vary from 10-30%
(Lambrechts et al., 2009) and a threshold of 10% was used in this study, which suggests on average a lower
cover coverage and higher B factor. Annual average precipitation varies between 328-1280 mm in Shaanxi, with
64% concentrating in June through September. Most rainfall comes from heavy storms of short duration, which
suggests the erosivity density (rainfall erosivity per unit rainfall amount) is high. Field survey result on the PSUs
in this study showed that the slope degree is steeper and slope length is longer for the forest than the forest plots
in Guo et al. (2015). The forest plots in Guo et al. (2015) were with an averaged slope degree of 25.9<and slope
length of 21.1 m, whereas 74.0% of forest lands were with a slope degree greater than 25<and 97.2% of them
with a slope length longer than 20 m. The runoff and sediment discharge information for two watersheds (Fig. 1,
Table 4) showed that the soil loss rate for the forest in study area has large variability ranging from 1.3t0 19.0 t
ha'l y! (Wang and Fan, 2002). Our estimation is within the range. The soil loss rate for the grassland in this
study was 7.20 t hay1, which was smaller than 11.57 t haly reported in Guo et al. (2015). The reason may be
due to the lower slope degree for the grassland in Shaanxi province. The mean value of the slope degree for
grassland plots was 30.7 <in Guo et al. (2015), whereas 68.6% of the grass lands were with a slope degree
smaller than 30 =from the survey in this study.

Remarkable spatial heterogeneity of soil erosion intensity was observed in the Shaanxi province. The Loess
Plateau region is one of the most severe soil erosion regions in the world due to seasonally concentrated and
high intensity rainfall, high erodibility of loess soil, highly dissected landscape, and long-term intensive human

activities (Zheng and Wang, 2014). Most of the sediment load in the Yellow River is originated and transported
16
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from the Loess Plateau. Recently, the sediment load of the Yellow River declined to about 0.3 billion tons per
year from 1.6 billion tons per year in the 1970s, which benefited from the soil and water conservation practices
taken in the Loess Plateau region (He, 2016). However, more efforts on controlling human accelerated soil
erosion in the farmlands and grasslands are still needed. Soil erosion in southern Qingba mountainous region is
also very serious, which may be due to the intensive rainfall, farming in the steep slopes and deforestation (Xi et
al., 1997). According to the survey in Shaanxi province, 11.1% of the farmlands with a slope degree ranging 15-
25<nd 6.3% of them greater than 25<were without any conservation practices. Mountainous areas with a slope
steeper than 25°need to be sealed off for afforestation (grass) without the disturbance of the human and
livestock. For those farmlands with a slope degree lower than 25< terracing and tillage practices are suggested
which can greatly reduce the soil loss rate (Guo et al., 2015, Table 2).

The survey result showed that there were 26.5% of grasslands with a slope degree of 15-25<and 57.6% of them
steeper than 25 “without any conservation practices. Enclosure and grazing prohibition are suggested on the
grasslands with steep slope and low vegetation coverage.

Note that CSLE, as well as USLE-based models, simulate sheet and rill erosion, so erosion from gullies is not
taken into consideration in this study. Erosion from gullies is also very serious in the Loess Plateau area and

there were more than 140,000 gullies with length longer than 500 m in Shaanxi province (Liu, 2013).

5 Conclusions

The regional soil erosion assessment focused on the extent, intensity, and distribution of soil erosion on a
regional scale and it provides valuable information to take proper conservation measures in erosion areas.
Shaanxi province is one of the most severe soil erosion regions in China. A field survey in 3116 PSUs in the
Shaanxi province and its surrounding areas were conducted, and the soil loss rates for each land use in the PSU
were estimated from an empirical model (CSLE). Five spatial interpolation models based on BPST method were
compared in generating regional soil erosion assessment from the PSUs. Following are our conclusions:

Land use is the key auxiliary information and R and K factors provide some useful information for the spatial
geostatistical models in regional soil erosion assessment.

Our results show that 56.5% of total land had annual soil loss rate greater than 5 t ha y, and total annual soil
loss amount is about 198.7 Mt in Shaanxi province. Most soil loss originated from the farmlands and grass lands
in Yan’an and Yulin districts in the northern Loess Plateau region, and Ankang and Hanzhong districts in the
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southern Qingba mountainous region. Special attention should be given to the 0.11 million km? of lands with
soil loss rate greater than 5 t ha™* y*2, especially 0.03 million km? of farmlands with severe erosion (greater than
20 thaty?).

A new model-based regional soil erosion assessment method was proposed, which is valuable when input data
used to derive soil erosion factors is not available for the entire region, or the resolution is not adequate. When
the resolution of input datasets was not adequate to derive reliable erosion factor layers and the budget is
limited, our suggestion is sampling a certain amount of small watersheds as primary sampling units and put the
limited money into these sampling units to ensure the accuracy of soil erosion estimation in these units. Limited
money could be used to collect high resolution data such as satellite images and topography maps and conduct
field survey to collect information such as conservation practices for these small watersheds. Then we can use
the best available raster layers for land use, R, and K factor for the entire region, construct spatial model to
exploit the spatial dependence among the other factors, and combine them to come up with better regional
estimates. The information collected in the survey and the generated soil erosion degree map (such as Fig. 9¢)
can help policy-makers to take suitable erosion control measures in the severely affected areas. Moreover,
climate and management scenarios could be developed based on the database collected in the survey process to

help policy-makers in decision making for managing soil erosion risks.
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Tables

Table 1. Mean squared errors of soil loss (A) using bivariate penalized spline over triangulation (BPST)

Land use and sample size

Construc Overall
Model Farmland Forest  Shrubland  Grassland . Bare land
tion land

1134 1288 573 683 401 32 4111
' - - - - - - 352.5
I - - - - - - 345.5
1] 399.7 25.3 455 20.0 165.7 4264.6 177.2
v 404.3 25.3 45.4 195 164.5 3691.2 173.8
V 365.4 24.3 38.0 16.3 162.5 3555.1 152.9
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1 Table 2. Soil loss rates (t haly?) for the farmland, forest, shrub land and grassland by Model V in this study and in

2 Northwest region of China from Guo et al. (2015).

Land use Mean Standard deviation
This study Farmland 19.00 17.94
Forest 3.50 2.78
Shrub land 10.00 7.51
Grassland 7.20 5.23
Guo et al. (2015) Farmland (Conventional) 49.38 57.61
Farmland (Ridge tillage) 19.27 13.35
Farmland (Terracing) 0.12 0.28
Forest 0.10 0.12
Shrub land 8.06 7.47
Grassland 11.57 12.72
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1 Table 3. Annual soil loss amount, rate and main sources by Model V for ten prefecture cities in Shaanxi province.

Source (%)

Prefecture Amount Rate

. Area (10 ha) Shrub Grass

city (106t y?) (thatly?) Farmland Forest
and land
Xi'an 100.4 6.3 6.3 52.9 11.6 7.9 20.6
Ankang 230.0 26.6 11.6 42.8 10.7 2.8 42.7
Baoji 178.5 13.2 7.4 39.3 15.1 75 37.9
Hanzhong 266.7 21.8 8.2 425 12.3 3.6 40.2
Shangluo 193.0 8.5 4.4 68.0 13.1 5.9 12.9
Tongchuan 38.6 3.7 9.6 37.9 7.8 23.6 28.5
Weinan 1295 6.4 5.0 54.4 3.9 9.5 26.7
Xianyang 101.0 52 5.2 44.4 8.2 8.9 35.3
Yan'an 364.9 55.9 15.3 54.5 3.1 12.1 30.0
Yulin 427.7 50.9 119 51.4 2.6 3.7 40.4
Overall 2030.4 198.7 9.8 49.8 6.8 7.1 35.0




2
3

Table 4 Soil erosion rate for the forest and sediment discharge for two watersheds

Sediment Soil loss Percent of Soil loss rate
Area Runoff .
discharge rate forest for forest
10% ha 10°miy?!
Qotha)  AOMYD oty ehaty?) (%) (thay)
Jinghe? 454.2 1.837 246.7 54.3 6.5 19.0
Luohe® 284.3 0.906 82.6 29.1 38.4 1.3~2.1

a.

b.

Based on the observation at Zhangjiashan hydrological station from 1950 through 1989.
Based on the observation of at Zhuanghe hydrological station from 1959 through 1989.
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Figure 1: Location of Shaanxi province.

Luohe and Jinghe watersheds were referred in the Table 4 and discussion part.

27



County .
40 km Township

10 knr >

10 knr

40 knr

5 ko

R

Primary

5 km

Sampling
Unit

Control area

Figure 2: Schematic of sampling strategy for the fourth census on soil erosion in China
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Figure 3: An example of a PSU with five plots and three categories of land uses (Farmland, Forest and Residential

area).
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blue line is the convex hull of the boundary and green line is the 30 km buffer of the convex hull.
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106° E 108° E 1n0°E 106° E 108° E 10°E
40°N 40°N 40°N 40°N

(a) Model | (b) Model Il

38N 38N

136°N 36°N

340N

N N N

32°N 3N 32°N 32°N
[ 1020 [ 2040
[ 20-49 [ <0-3q
106° E 108°E 1H0°E 106° E 108° E n°E
106° E 108° E 1H0°E 106° E 108° E 1H0°E
40°N 40°N 40°N 40°N

(c) Model I (d) Model IV

38N 38N 38N

36°N 136°N 36°N 36°N

3N 34N 34N 3N

t(ha-y)

‘ l:lms

32°N 32°N 32°N




o U B~ W N P

106° E 108° E H°E 106° E 108° E HoeE
40°N 40°N 40°N 40°N

(f) Difference between
Model Vand |

38°N 38°N 38°N 38N

36°N 36°N 36°N 36°N

34N 34°N 34°N 34N

Value [ 1
[ B
| Blamk
[ B E
[ o I 5

106° E 108° E H°E 106° E 108° E 1H0°E

o

32°N 32°N 2° N
0|

Figure 9: Distribution of soil erosion intensity levels for five models: (a) Model I; (b) Model I1; (c) Model 111; (d)
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greater than 80 t ha y* were defined as the levels 1-6, respectively and the difference was the deviation of levels for

Model V from Model I.
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