
We would like to thank the editor and two referees for their valuable comments. 

We revised the manuscript thoroughly taking into account all the comments from the 

editor and referees. Here is a detailed author response to all comments from the editor 

and referees. Please refer to the CLEAN VERSION in the supplement for the page 

and line information in the response.  

 

AUTHOR RESPONSE TO THE EDITOR 

1. Try to reach a more interesting balance of the paper, i.e. you can reduce the 

introduction according to ref #2 suggestions, and extend the discussion and 

conclusions regarding possibly (missing) validations and regarding sensitivity of 

input parameters etc.  

Response: We have reduced the introduction into 3 pages and extended the 

discussion into 4 pages according to ref #2 suggestion. We have added the 

conclusions about the validation (MSE and Nash-Sutcliffe model efficiency 

coefficient, ME) and the sensitivity of topography factors derived from different 

resolutions of DEM data.  

2. Try to improve the validation of your approach. This is the essential core of your 

work. You may also consider to more clearly present (a) methods and (b) results 

and validation of results, see suggestions of ref. #2 

Response: We added ME to assess the performance of models together with the 

MSE (Page11 Line 22-25). We added a table (Table 2) to show the ME for all 

seven models per land use and a scatterplot (Figure 6) to show the deviation of the 

simulation from the observation for four main land uses. Method (Section 2.5), 

Result (Section 3.1) and Conclusion were revised accordingly. 

3. Please explain again, why you think that available slope data (30 m Aster or 90/30 

m SRTM) are less relevant than large-distance interpolated R- and K- factors. And 

discuss the related uncertainty.  

Response: We compared seven models based on Bivariate Penalized Spline over 

Triangulation (BPST) method to generate a regional soil erosion assessment from 

the PSUs in the revision. Among them, four models assisted by the land use and 

single erosion factor (Model II: land use and R; Model III: land use and K; Model 

IV: land use and L; Model V: land use and S) were compared with the model 

assisted by the land use only (Model I). Ten-fold cross-validation results based on 

the PSU data demonstrated that slope steepness factor derived from 1:10000 

topography map is the best single covariate, reducing about 20% of the MSE for 

the interpolation of soil loss by comparing the model assisted by the land use and 

S factor with the model assisted by the land use. Soil erodibility and slope length 

information reduced about 10% of the MSE. Rainfall erosivity contribution is 

insignificant, with the MSE decreasing less than 1%.  

In addition, since we don’t have 1:10000 topography maps available for the entire 

region at present, we conducted a sensitivity analysis by preparing LS-factor from 

30-m or 90-m SRTM DEM data and replacing the LS-factor derived from 1:10000 



topography maps in the PSUs to detect if coarser resolution of topography data 

can be used as the covariate in the interpolation process. The result showed that 

the LS-factor derived from 30-m DEM or 90-m DEM deteriorated the estimation 

when they were used as the covariates together with the land use, R and K, with 

the MSEs increasing about two times than those for the model assisted by the land 

use! We think the finding is very interesting and important and added it in the 

manuscript (see Section 2.6 and Section 3.1 for details). 

4. Please also follow comment #5 of ref. #2. This comment seems reasonable for me. 

Or - we both may be wrong - you may explain why the results of model I and II 

contains new knowledge, and why you think that a linear interpolation [excluding 

land-use boundaries] might be appropriate. 

Response: Model I and Model II in the original manuscript were deleted and we 

redesigned seven models for the comparison (see Section 2.4.1 and Result for 

details).  

 

AUTHOR RESPONSE TO RC #1 

1. - P3L4. It is Evans and not Evan 

Response: Revised. 

 

2. - P4L1: “2012 NRI is the current NRI data “ …this is not correct sentence..please 

rephrase. 

Response: This sentence was deleted due to the simplification of the introduction.  

  

3. - P4L15. Please add a reference in the sentence This is somehow importance and 

you should somehow use a literature reference for this 

Response: This sentence was moved to the discussion part and a reference (Liu et 

al., 2013) was added.  

 

4. - P5L2: Panagos et al 2016a (and not 2006). 

Response: Revised. 

 

5. - P6L2: “It is important to note is….” It is not correct English 

Response: Revised. 

 

6. - In references, CORINE reference is not needed (neither in the text)…This is too 

old 

Response: Deleted. 

 

7. - In the text, you refer to the estimation of C-factor in Europe and you compare 

with yours but in the references you missed to add the reference of the European 

Cover management factor paper (in Land use policy). 

Response: Reference to Panagos et al. (2015a) was added. Panagos, P., Borrelli, P., 

Meusburger, K., Alewell, C., Lugato, E., Montanarella, L.: Estimating the soil 

http://www.baidu.com/link?url=_IImPqAxH0vnAJUEJzvXewJ2rnzP_GS8uwVrtdbuBjjOf1Pg7NKTR6YuPPj5K-PfVhbGUOh0m4XhlKmjOxz059tCEFPGmmHvy3B7DVcS1iu


erosion cover-management factor at the European scale. Land Use Policy, 48, 38–

50, 2015a. 

 

8. - Table 1: It should be “Mean square error……………………triangulation (BPST) 

per land use “ 

Response: Revised. 

 

9. - Table 3: Replace “rate” header with “Mean Rate” 

Response: Revised. 

 

10. - Figure 5. Attention in the units of K-factor and R-factor. A parenthesis is not 

well positioned.  

Response: Revised. 

 

 

AUTHOR RESPONSE TO RC #2 

1. The structure of the paper is unbalance. The author provide an extensive 

introduction (approx. 5 pages; whereas it is not clear why all the different 

approaches to estimate regional/national erosion need to be presented here in so 

much detail), while the entire results and discussion is similar in length. A lot of 

information from the literature would be better placed/discussed in the discussion. 

Response: Firstly, we reduced the introduction to about three pages by deleting 

some information which was not closely related and moving some information to 

the discussion part. Secondly, we carried out a more in-depth discussion about the 

uncertainty of the proposed assessment method (Section 4.1) and the comparison 

with raster layer multiplication method (Page 17 Line 12-30). The discussion part 

is more than four pages after the revision.  

2. The authors present an interesting interpolation scheme but the validation of their 

approach is weak (a few lines in chapter 3.1). In general, I would expect two 

major parts of the paper: (a) methods and (b) results and validation of results. I 

would, for example, expect different goodness-of-fit parameters as well as a more 

extensive discussion where the model performs appropriate and where major 

errors can be expected. Errors in interpolation and PSU data! The comparison 

with the data of Guo et al. (2015) (in discussion) shows that the results are in a 

similar rage but this is not a validation.  

Response: We kept Mean squared prediction error (MSE) and added 

Nash-Sutcliffe model efficiency coefficient (ME) as the goodness-of-fit 

parameters to assess the performance of models. We added a table (Table 2) 

showing the ME for all seven models per land use and a scatterplot (Figure 6) 

showing the deviation of the simulation from the observation for four main land 

uses. Method (Section 2.5), Result (Section 3.1) and Conclusion were revised 

accordingly. A more extensive discussion (Section 4.1) on the uncertainty of the 



assessment including possible errors in the PSU and interpolation were added.   

3. Any kind of evaluation how sensitive the results are regarding quality of input 

data is missing? Which are the most important co-variables. At least some 

sensitivity analysis would be very helpful to underline the quality of the method.  

Response: We added a sensitivity analysis about topography factors derived from 

different resolutions of DEM data (1:10000 topography map with 5-m contour 

intervals, 30-m and 90-m SRTM DEM data) on the soil loss estimation since the 

topography factors are the dominant small scale modulators of soil erosion and 

the lack of the high resolution DEM data is often the case (Section 2.6 and 

Section 3.1). Seven models were designed (Section 2.4.1) and it showed that 

among the four erosion factors as the covariates, S factor derived from 1:10000 

topography map contributed the most information, followed by K and L factors 

derived from 1:10000 topography map, and R factor made almost no contribution 

to the spatial estimation of soil loss. However, LS-factor derived from 30-m or 

90-m SRTM DEM data worsened the estimation when they were used as the 

covariates for the interpolation of soil loss by increasing two times of the MSE. 

Due to the unavailability of 1:10000 topography map for the entire area in this 

study, the model assisted by the land use, R and K factor was used to generate the 

regional assessment of the soil erosion for Shaanxi province. 

 

4. The authors argued that the available slope data (30 m Aster or 90/30 m SRTM) 

are not good enough to be included as co-variables in their interpolation. I agree 

that these data are far from perfect, but compared to an interpolated R factor, soil 

information derived from a relatively coarse map (K factor), I assume that the 

slope data show less uncertainty. As slope is one of the dominant small scale 

modulator of soil erosion (compared to all other data used) I disagree to omit 

slope as co-variable from the interpolation.  

Response: We agree that slope is one of the dominant factors in the assessment 

of the regional soil loss, which was confirmed in this study. By comparing four 

models assisted by the land use and single erosion factor (Model II: land use and 

R; Model III: land use and K; Model IV: land use and L; Model V: land use and S) 

with the model assisted by the land use only (Model I), we quantified the relative 

importance of the erosion factors. The slope steepness factor derived from 

1:10000 topography map is the best single covariate, reducing about 20% of the 

MSE for the interpolation of soil loss by comparing the model assisted by the 

land use and S factor with the model assisted by the land use. Soil erodibility and 

slope length information reduced about 10% of the MSE. Rainfall erosivity made 

almost no contribution with the MSE decreasing less than 1%. However, 

LS-factor derived from 30-m or 90-m SRTM DEM data worsened the estimation 

when they were used as the covariates for the interpolation of soil loss (see 

Section 2.4.1, Result and Conclusion for details). 

5. I strongly suggest to remove model I and II from paper. This has two reasons: (a) 

It is obvious from the results (e.g. line 6-8 and line 17-19 on page 15 in tracked 



changed document) that the interpolation without taking land use into account 

leads to an underestimation of erosion on farmland and an overestimation in 

forested areas. This is obvious and not worth to be published. Comparing models 

III to V with models I to II (e.g. Fig. 9) is misleading. (b) Land use produces 

discrete borders resulting in specific non-continuous changes in soil erosion. An 

interpolation without taking the ‘steps’ in erosion into account will always 

produce artificial results (and e.g. in geostatistics would violate general 

assumptions of the method). 

Response: Model I and Model II in the original manuscript were deleted and we 

redesigned seven models for the comparison (Section 2.4.1), which were:  

(1) Estimating A with the land use as the auxiliary information (Model I);  

(2) Estimating A with R and land use as the auxiliary information (Model II);  

(3) Estimating A with K and land use as the auxiliary information (Model III);  

(4) Estimating A with L and land use as the auxiliary information (Model IV); 

(5) Estimating A with S and land use as the auxiliary information (Model V);  

(6) Estimating A with R, K and land use as the auxiliary information (Model VI); 

(7) Estimating A with R, K, L, S and land use as the auxiliary information (Model 

VII).  

MSE and ME from ten-fold cross-validation based on PSU data were used to 

compare and evaluate the performance of the models. Due to the unavailability of 

1:10000 topography map for the entire area, 30-m DEM and 90-m DEM were also 

used to generate LS-factor and replace the LS-factor in Model VII to determine if 

it can be used as the covariate in the interpolation of soil loss (Section 2.6 and 

Section 3.1). 
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 12 

Abstract. Soil erosion is one of the majorost significant environmental problems in China. From 2010-2012 in 13 

China, the fourth national census for soil erosion sampled 32,364 Primary Sampling Units (PSUs, small 14 

watersheds) with the areas of 0.2-3 km2. Land use and soil erosion controlling factors including rainfall erosivity, 15 

soil erodibility, slope length, slope steepness, biological practice, engineering practice, and tillage practice for the 16 

PSUs were surveyed, and soil loss rate for each land use in the PSUs were estimated using an empirical model 17 

Chinese Soil Loss Equation (CSLE). Though the information collected from the sample units can be aggregated to 18 

estimate soil erosion conditions on a large scale, the problem of estimating soil erosion condition on a regional 19 

scale has not been well addressed. The aim of this study is to introduce a new model-based regional soil erosion 20 

assessment method combining sample survey and geostatistics. We compared fiveseven spatial interpolation 21 

models based on Bivariate Penalized Spline over Triangulation (BPST) method to generate a regional soil erosion 22 

assessment from the PSUs. Shaanxi province (3,116 PSUs) in China was used to conduct the comparison and 23 

assessment as it is one of the areas with the most serious erosion problem. Ten-fold cross validation based on the 24 

PSU data shownshowed Land use, rainfall erosivity, and soil erodibility at the resolution of 250×250 m pixels for 25 

the entire domain were used as the auxiliary information. Shaanxi province (3,116 PSUs) in China was used to 26 

conduct the comparison and assessment as it is one of the areas with the most serious erosion problem. The results 27 

showed three models with land use as the auxiliary information generated much lower mean squared errors (MSE) 28 

than the other two models without land use. Tthe model assisted by the land use, rainfall erosivity factor (R), and 29 
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soil erodibility factor (K), slope steepness factor (S) and slope length factor (L) derived from 1:10000 topography 1 

map is the best one, with the model efficiency coefficient (ME) being 0.75 and the which has MSE being 55.8% 2 

of that for less than half that of the model assisted by the land use alonesmoothing soil loss in the PSUs directly. 3 

Among four erosion factors as the covariates, S factor contributed the most information, followed by K and L 4 

factors ranked the second, and R factor made almost no contribution to the spatial estimation of soil loss. 5 

LS-factor derived from 30-m or 90-m SRTM DEM data worsened the estimation when they were used as the 6 

covariates for the interpolation of soil loss. Due to the unavailability of 1:10000 topography map for the entire area 7 

in this study, the model assisted by the land use, R and K factor with a resolution of 250 m was used to generate the 8 

regional assessment of the soil erosion for Shaanxi province. It showndemonstrated that 5654.53% of total land in 9 

Shaanxi province had s annual soil loss equal to or greater than 5 t ha-1 y-1. High (20-40 t ha-1 y-1), severe (40-80 t 10 

ha-1 y-1) and extreme (>80 t ha-1 y-1) erosion occupied 14.30% of the total land. The farmlanddry land and irrigated 11 

land, forest, shrub land and grassland in Shaanxi province had mean soil loss rates of 2119.7700, 3.510, 10.00, and 12 

7.270 t ha-1 y-1, respectively. Annual soil loss was about 20198.7.3 Mt in Shaanxi province, with 68.967.8% of soil 13 

loss originatinged from the farmlands and grasslands in Yan’an and Yulin districts in the northern Loess Plateau 14 

region and Ankang and Hanzhong districts in the southern Qingba mountainous region. This methodology 15 

provides a more accurate regional soil erosion assessment and can help policy-makers to take effective measures 16 

to mediate soil erosion risks.  17 

 18 

1 Introduction 19 

With a growing population and a more vulnerable climate system, land degradation is becoming one of the 20 

biggest threats to food security and sustainable agriculture in the world. Two of the primary sources of land 21 

degradation are water and wind erosion. Water and wind erosion are the two primary causes of land degradation 22 

(Blanco and Lal, 2010). To improve the management of soil erosion and aid policy-makers to take suitable 23 

remediation measures and mitigation strategies, the first step is to monitor and assess the related system to 24 

obtain timely and reliable information about soil erosion conditions under present climate and land use. The 25 

risks of soil erosion under different scenarios of climate change and land use are also very important (Kirkby et 26 

al., 2008).  27 

Scale is a critical issue in soil erosion modeling and management (Renschler and Harbor, 2002). When the 28 
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spatial scale is small, experimental runoff plots, soil erosion markers (e.g. Caesium 137) or river sediment 1 

concentration measurement devices (e.g. optical turbidity sensors) are useful tools. However, when the regional 2 

scale is considered, it is impractical to measure soil loss across the entire region. A number of approaches were 3 

used to assess the regional soil erosion in different countries and regions over the world, such as expert-based 4 

factorial scoring, plot-based, field-based and model-based assessments, and so onetc.  5 

Factorial scoring was used to assess soil erosion risk when erosion rates are were not required, and one only 6 

need a spatial distribution of erosion (CORINE, 1992; Guo and Li, 2009; Le Bissonnais et al., 2001). The 7 

classification or scoring of erosion factors (e.g. land use, rainfall erosivity, soil erodibility and slope) into 8 

discrete classes and the criteria used to combine the classes are based on expert experience. The resulting map 9 

depicts classes ranging from very low to very high erosion or erosion risk. However, factorial scoring approach 10 

has limitations on subjectivity and qualitative characteristics (Morgan, 1995; Grimm et al., 2002). Plot-based 11 

approach extrapolated the measurements from runoff plots to the region (Gerdan et al., 2010; Guo et al., 2015). 12 

However, Gerdan et al. (2010) discussed that the direct extrapolation may lead to poor estimation of regional 13 

erosion rates if the scale issue is not carefully taken into consideration. Evans et al., (2015) recommended a 14 

field-based approach,  combining visual interpretations of aerial and terrestrial photos and direct field survey of 15 

farmers’ fields in Britain. However, its efficiency, transparency and accuracy were questioned (Panagos et al., 16 

2016a).  17 

The model-based approach can not only assess soil loss up to the present time, but also has the advantage of 18 

assessing future soil erosion risk under different scenarios of climate change, land use and conservation 19 

practices (Kirkby et al., 2008; Panagos et al., 2015b). USLE (Wischmeier and Smith, 1965; Wischmeier and 20 

Smith, 1978) is an empirical model based on the regression analyses of more than 10,000 plot-years of soil loss 21 

data in the USA and is designed to estimate long-term annual erosion rates on agricultural fields. (R)USLE 22 

(Wischmeier and Smith, 1978; Renard et al., 1997; Foster, 2004) and other adapted versions (for example, 23 

Chinese Soil Loss Equation, CSLE, Liu et al., 2002), are the most widely used models in the regional scale soil 24 

erosion assessment due to relative simplicity and robustness (Singh et al., 1992; Van der Knijff et al., 2000; Lu 25 

et al., 2001; Grimm et al., 2003; Liu, 2013; Bosco et al., 2015; Panagos et al., 2015b). A physically based and 26 

spatially distributed model, the Pan-European Soil Erosion Risk (PESERA) model (Kirkby et al., 2000), is 27 

recommended for use in a policy framework (DPSIR, driving-force-pressure-state-impact-response) in Europe 28 

(Gobin et al., 2004). However, the input data required by the PESERA model was not always available with 29 

sufficient accuracy, which limited its use at regional and continental scale (Borrelli et al., 2016). Bosco et al. 30 
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(2015) used an Extended RUSLE (e-RUSLE) model in the recent water erosion assessment in Europe due to its 1 

low-data demand. Panagos et al. (2015) presented the application of RUSLE2015 to estimate soil loss in Europe 2 

by introducing updated and high-resolution datasets for deriving soil erosion factors.  3 

The applications of USLE and its related models in the assessment of regional soil erosion can be generally 4 

grouped into three categories. The first category is the area sample survey approach. One representative is the 5 

National Resource Inventory (NRI) survey on U.S. non-Federal lands (Nusser and Goebel, 1997; Goebel, 1998; 6 

Breidt and Fuller, 1999). The NRI survey has been conducted at 5-year interval since 1977, and changed to the 7 

current annual supplemented panel survey design in 2000. The point level soil erosion estimate is produced 8 

based on the USLE before 2007, and RUSLE estimate is produced after 2007. The 2012 NRI is the current NRI 9 

data, which provides nationally consistent data on the status, condition, and trends of land, soil, water, and 10 

related resources on the Nation’s non-Federal lands for the 30-year period 1982-2012. USDA-NRCS (2015) 11 

summarized the results from the 2012 NRI, which also included a description of the NRI methodology and use. 12 

A summary of NRI results on rangeland is presented in Herrick et al. (2010). See for example Brejda et al. (2001) 13 

and , Hernandez, et al. (2013) for some applications using NRI data. Since a rigorous probability based area 14 

sampling approach is used to select the sampling sites, the design based approach is robust and reliable when it 15 

is used to estimate the soil erosion at the national and state level. However, due to sample size limitations, 16 

estimates at the sub-state level are more uncertain.  17 

The second category is based on the multiplication of seamless grids. Each factor in the (R)USLE model is a 18 

raster layer and soil loss was obtained by the multiplication of numerous factors, which was usually conducted 19 

under GIS environment (Lu et al. 2001; Bosco et al., 2015; Panagos et al., 2015b; Ganasri and Ramesh, 2015; 20 

Rao et al., 2015; Bahrawi et al., 2016). Raster multiplication is a popular model-based approach due to its lower 21 

cost, simpler procedures and easier explanation of resulting map. A European water erosion assessment which 22 

introduced high-resolution (100 m) input layers reported the result that the mean soil loss rate in the European 23 

Union’s erosion-prone lands was 2.46 t ha-1 y-1 (Panagos et al., 2015b). This work is scientifically controversial 24 

mainly due to questions on these three aspects: (1) Should the assessment be based on the model simulation or 25 

the field survey? (2) Are the basic principles of the (R)USLE disregarded? and (3) Are the estimated soil loss 26 

rates realistic (Evans and Boardman, 2016; Fiener and Auerswald, 2016; Panagos et al., 2016a, b)? Panagos et al. 27 

(2016a, 2016b) argued that the field survey method proposed by Evans et al. (2015) iswas not suitable for the 28 

application at the European scale mainly due to work force and time requirements. They emphasized their work 29 

focused on the differences and similarities between regions and countries across the Europe and RUSLE model 30 
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with the simple transparent structure was able to meet the requirementscan achieve their goal if harmonized 1 

datasets were inputted.  2 

Raster multiplication is a popular model-based approach due to its lower cost, simpler procedures and easier 3 

explanation of resulting map.If the resolution of input data for the entire region is enough to derive all the 4 

erosion factors, raster multiplication approach is the best choice. However, there are several concerns about 5 

raster multiplication approach: (1) The information for the support practices factor (P) in the USLE was not easy 6 

to collect given the common image resolution and was not included in some assessments (Lu et al., 2001; Rao et 7 

al., 2015), in which the resulting maps don’t reflect the condition of soil loss but the risk of soil loss. Without the 8 

information of P factor, it is also impossible to assess the benefit from the soil and water conservation practices. 9 

(2) The accuracy of soil erosion estimation for each cell is of concern if the resolution of database used to derive 10 

the erosion factors is limited. For example, Thomas et al. (2015) showed that the range of LS factor values 11 

derived from four sources of DEM (20 m DEM generated from 1:50,000 topographic maps, 30 m DEM from 12 

ASTER, 90 m DEM from shuttle radar topography mapping mission (SRTM) and 250 m DEM from global 13 

multi-resolution terrain elevation data (GMTED)) were considerably different, which suggested the grid 14 

resolutions of factor layers are critical and are determined by the data resolution used to derive the factor. A 15 

European water erosion assessment which introduced high-resolution (100 m) input layers reported the result 16 

that the mean soil loss rate in the European Union’s erosion-prone lands was 2.46 t ha-1 y-1 (Panagos et al., 2015). 17 

This work is scientifically controversial mainly due to questions on these three aspects: (1) Should the 18 

assessment be based on the model simulation or the field survey? (2) Are the basic principles of the (R)USLE 19 

disregarded? and (3) Are the estimated soil loss rates realistic (Evans and Boardman, 2016; Fiener and 20 

Auerswald, 2016; Panagos et al., 2016a, b)? Panagos et al. (2006a, 2016b) argued that field survey method 21 

proposed by Evans et al. (2015) is not suitable for the application at the European scale mainly due to work 22 

force and time requirements. They emphasized their work focused on the differences and similarities between 23 

regions and countries across the Europe and RUSLE model with the simple transparent structure can achieve 24 

their goal if harmonized datasets were inputted.  25 

The third category is based on the sample survey and geostatistics. One example is the fourth census on soil 26 

erosion in China during 2010-2012, which was conducted during 2010-2012 (Liu, 2013). Ministry of Water 27 

Resources of the People's Republic of China (MWR) has organized four nationwide soil erosion investigations. 28 

The first three (in mid-1980s, 1999 and 2000) were mainly based on field survey, visual interpretation by 29 

experts and factorial scoring method (Wang et al., 2016). The third investigation used 30 m resolution of 30 
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Landsat TM images and 1:50000 topography map. Six soil erosion intensities were classified mainly based on 1 

the slope for the arable land and a combination of slope and vegetation coverage for the non-arable land. The 2 

limitations for the first three investigations include the limited resolution of satellite images and topography 3 

maps, limited soil erosion factors considered (rainfall erosivity factor, soil erodibility factor, and practice factor 4 

were not considered), incapability of generating the soil erosion rate, and incapability of assessing the benefit 5 

from the soil and water conservation practices. The fourth census was based on a stratified unequal probability 6 

systematic sampling method (Liu et al., 2013). In total, 32,364 Primary Sampling Units (PSUs) were identified 7 

nationwide to collect factors for water erosion prediction (Liu, 2013). CSLE was used to estimate the soil loss 8 

for the PSUs. A spatial interpolation model was used to estimate the soil loss for the non-sampled sites.  9 

Remote sensing technique has unparalleled advantage and potential in the work of regional scale soil erosion 10 

assessment (Veirling, 2006; Le Roux et al., 2007; Guo and Li, 2009; Mutekanga et al., 2010; El Haj El Tahir et 11 

al., 2010). The aforementioned assessment method based on the multiplication of erosion factors under GIS 12 

interface was largely dependent on the remote sensing dataset (Panagos et al., 2015bb; Ganasri and Ramesh, 13 

2015; Bahrawi et al., 2016), which also provided important information for the field survey work. For example, 14 

NRI relied exclusively on the high resolution remote sensing images taken from fixed wing airplanes to collect 15 

land cover information. However, many characteristics of soil erosion cannot be derived from remote sensing 16 

images. Other limitations include the accuracy of remote sensing data, the resolution of remote sensing images, 17 

financial constraints and so on, which result in some important factors influencing soil erosion being not 18 

available for the entire domain. It is important to note is that the validation is necessary and required to evaluate 19 

the performance of a specific regional soil erosion assessment method, although the validation process is 20 

difficult to implement in the regional scale assessment and is not well addressed in the existing literature (Gobin 21 

et al., 2004; Vrieling, 2006; Le Roux et al., 2007; Kirkby, et al., 2008).  22 

 23 

There is aAn important issue arising in the regional soil erosion assessment based on survey sample, which is 24 

how to infer the soil erosion conditions including the extent, spatial distribution and intensity for the entire 25 

domain from the information of PSUs. NRI used primarily a design based approach to estimate domain level 26 

statistics.  While robust and reliable for large domains which contain enough sample sites, such method cannot 27 

be used to compute the estimate for the small domain. In the fourth census of soil erosion in China, a simple 28 

spatial model was used to smooth the proportion of soil erosion directly. Land use is one of the critical pieces of 29 

information in the soil erosion assessment (Ganasri and Ramesh, 2015) which is available for the entire domain. 30 
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The erosion factors rainfall erosivity and soil erodibility are also available for the entire domain. The slope 1 

length and slope degree factors can be derived from 30-m and 90-m Digital Elevation Model (DEM) data from 2 

shuttle radar topography mapping mission (SRTM).  The other factors including the slope length, slope degree, 3 

biological, engineering and tillage practice factors are either impossible or very difficult to obtain for the entire 4 

region at this stage. We sampled small watersheds (PSUs) to collect detailed topography information (1:10000 5 

topography map with 5-m contour intervals) and conducted field survey to collect soil and water conservation 6 

practice information. The purpose of this study is to introduce a new regional soil erosion assessment method 7 

which combines ingdata from the sample survey with factor information over the entire domain usingand 8 

geostatistics. Weand compare five seven semi-parametric spatial interpolation models assisted by land use and 9 

single or multiple erosion factors based on bivariate penalized spline over triangulation (BPST) method to 10 

generate regional soil loss (A) assessment from the PSUs. The five models are: smoothing A directly (Model I), 11 

estimating A assisted by R and K factors (Model II), estimating A assisted by land use (Model III), estimating A 12 

assisted by R and land use (Model IV) and estimating A assisted by R, K and land use (V). A sensitivity analysis 13 

of topography factor derived from different resolutions of DEM data was also conducted. There are 3116 PSUs 14 

in the Shaanxi province and its surrounding areas which were used as an example to conduct the comparison 15 

and demonstrate assessment procedures (Fig. 1). For many regions in the world, data used to derive erosion 16 

factor such as conservation practice factor is often not available for all area, or the resolution is not adequate for 17 

the assessment. Therefore, the assessment method combining sample survey and geostatistics proposed in this 18 

study is valuable. 19 

2 Data and Methods 20 

2.1 Sample and field survey  21 

The design of the fourth census on soil erosion in China is based on a map with Gauss–Krüger projection, where 22 

the whole of China was divided into 22 zones with each zone occupying three longitude degrees width (From 23 

central meridian towards west and east 1.5 degrees each). Within each zone, beginning from the central meridian 24 

and the equator, we generated grids with a size of 40 km × 40 km (Fig. 2), which are the units at the first level 25 

(County level). The second level is Township level with a size of 10 km × 10 km. The third level is the control 26 

area, with a size of 5 km × 5 km. The fourth level is the 1 km × 1 km grid located in the middle of the control 27 

area. The 1 km × 1 km grid is the PSU in the plain area, whereas in the mountainous area, a small watershed 28 
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with area between 0.2-3 km2 which also intersects with the fourth level 1 km × 1 km grid is was randomly 1 

picked as the PSU. The area for the mountainous PSU is restricted to be between 0.2-3 km2, which is large 2 

enough for the enumerator and not too large to be feasible to conduct field work. There is a PSU within every 25 3 

km2, which suggests the designed sample density is about 4%. In practice, due to the limitation of financial 4 

resources, the surveyed sample density is 1% for most mountainous areas. The density of sample units in our 5 

survey depends on the level of uncertainty and the budget of the survey. We sampled a density of 4% in four 6 

experimental counties in different regions over China and found a density of 1% was acceptable given the 7 

current financial condition. The density for the plain area is reduced to 0.25% due to the lower soil erosion risk 8 

(Li et al., 2012).  9 

The field survey work for each PSU mainly included: (1) recording the latitude and longitude information for 10 

the PSU using a GPS; (2) drawing boundaries of plots in a base map of the PSU; (3) collecting the information 11 

of land use and soil conservation measures for each plot; and (4) taking photos of the overview of PSUs, plots 12 

and soil and water conservation measures for future validation. A plot was defined as the continuous area with 13 

the same land use, the same soil and water conservation measures, and the same canopy density and vegetation 14 

fraction in the PSU (difference <=10%, Fig. 3). For each plot, land use type, land use area, biological measures, 15 

engineering measures and tillage measures were surveyed. In addition, vegetation fraction was surveyed if the 16 

land use is a forest, shrub land or grassland. Canopy density is also surveyed if the land use is a forest.    17 

2.2 Database of PSUs in Shaanxi and its surrounding areas 18 

A convex hull of the boundary of Shaanxi province was generated, with a buffer area of 30 km outside of 19 

the convex hull (Fig. 4). The raster of R factor, K factor and 1:100000 land use map with a resolution of 20 

250×250 m pixels for the entire area were collected. PSUs located inside the entire area were used, which 21 

included 1775 PSUs in the Shaanxi province and 1341 PSUs from the provinces surrounding the Shaanxi 22 

province, including Gansu (430), Henan (112), Shanxi (345), Inner Mongolia (41), Hubei (151), 23 

Chongqing (55), Sichuan (156) and Ningxia (51). There were 3116 PSUs in total. We had the information 24 

of longitude and latitude, land use type, land use area and factor values of R, K, L, S, B, E and T for each 25 

plot of the PSU. The classification system of the land use for the entire area and that for the survey units 26 

were not synonymous with each other. Rather, Tthey were grouped into eight eleven land use types include 27 

(1) paddy, farmland, (2) dry land & irrigated land, (3) orchard & garden, (4) forest, (5) shrub land (3) shrub 28 

land, (654) grassland, (576) water body, (876) construction land, (9) transportation land, (1087) bare land 29 
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and (1198) unused land such as sandy land, Gebi and uncovered rock to make them corresponding to each 1 

other. 2 

2.3 Soil loss estimation for the plot, land use and PSU 3 

Soil loss for a plot can be estimated using CSLE equation as follows:   4 

,ukukukukukukukuk TEBSLKRA                          (1) 5 

where ukA
is the soil loss for the kth plot with the land use u (t ha-1 y-1), ukR

is the rainfall erosivity (MJ mm 6 

ha-1 h-1 y-1), ukK
is the soil erodibilty (t ha h MJ-1 ha-1 mm-1), ukL

is the slope length factor, ukS
is the 7 

slope steepness factor, ukB
is the biological practice factor, ukE

is the engineering practice factor, ukT
is 8 

the tillage practice factor. The definitions of A, R and K are similar to that of USLE. Biological (B), 9 

Engineering (E) and Tillage (T) factor is defined as the ratio of soil loss from the actual plot with 10 

biological, engineering or tillage practices to the unit plot. Biological practices are the measures to increase 11 

the vegetation coverage for reducing runoff and soil loss such as trees, shrubs and grass plantation and 12 

natural rehabilitation of vegetation. Engineering practices refer to the changes of topography by 13 

engineering construction on both arable and non-arable land using non-normal farming equipment (such as 14 

earth mover) for reducing runoff and soil loss such as terrace, check dam and so on. Tillage practices are 15 

the measures taken on the arable land during ploughing, harrowing and cultivation processes using normal 16 

farming operations for reducing runoff and soil loss such as crop rotation, strip cropping and so on (Liu et 17 

al., 2002). 18 

Liu et al. (2013) introduced the data and methods for calculating each factor. Here we present a brief 19 

introduction. Land use map with a scale of 1:100000 is from China's Land Use/cover Datasets (CLUD), which 20 

were updated regularly at a five-year interval from the late 1980s through the year of 2010 with standard 21 

procedures based on Landsat TM/ETM images (Liu et al., 2014). The Lland use map used in this study was the 22 

2010 version of 2010 (Fig. 5a). 2678 weather and hydrologic stations with erosive daily rainfall from 1981 23 

through 2010 were collected and used to generate the R factor raster map over the entire China (Xie et al., 2016). 24 

And for the K factor, soil maps with scales of 1:500,000 to 1:200,000 (for different provinces) from the Second 25 

National Soil Survey in 1980s generated more than 0.18 million polygons of soil attributes over mainland China, 26 

which was the best available spatial resolution of soil information we could collect at present. The 27 

physicochemical data of 16,493 soil samples (belong to 7764 soil series, 3366 soil families, 1597 soil subgroups 28 
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and 670 soil groups according to Chinese Soil Taxonomy) from the maps and the latest soil physicochemical 1 

data of 1065 samples through the ways of field sampling, data sharing and consulting literatures were collected 2 

to generate the K factor for the entire country (Liang et al., 2013; Liu et al., 2013). We assumed the result of the 3 

soil survey could be used to estimate the K factor in our soil erosion survey. R factor raster map for the study 4 

area was clipped from the map of the country as well as the K factor raster map (Fig. 5b, c). Previous research 5 

showed topography factors should be derived from high resolution topography information (such as 1:10000 or 6 

larger scale topography contour map). Topography factors based on smaller scale of topography map (such as 7 

1:50000 or 1:100000) in the mountainous and hilly area have large uncertainties. Topography contour maps with 8 

a scale of 1:10000 for the entire region were not available at present. Fig. 5d was based on SRTM 90m DEM 9 

dataset and it was used to demonstrate the variation in the topography, which was not used in the interpolation 10 

process due to its limited resolution. Topography contour map with a scale of 1:10000 for PSUs were collected 11 

to derive the slope lengths and slope degrees and to calculate the slope length factors and slope steepness factors 12 

(Fu et al., 2013). Topography contour maps with a scale of 1:10000 for the entire region were not available at 13 

present. Fig. 5d was based on SRTM 90-m DEM dataset and it was used to demonstrate the variation in the 14 

topography. The land use map was used to determine the boundary of forest, shrub, and grass land. For these 15 

three land use types, MODIS NDVI and HJ-1 NDVI were combined to derive vegetation coverage. For the 16 

shrub and grass land, an assignment table was used to assign a value of the half-month B factor based on their 17 

vegetation coverage; For the forest land, the vegetation coverage derived from the aforementioned remote 18 

sensing data was used as the canopy density, which was combined with the vegetation fraction under the trees 19 

collected during the field survey to estimate the half-month B factor. The B factor for the whole year was 20 

weight-averaged by a weight of rainfall erosivity ratio for this half-month. Both C factor in Panagos et al. 21 

(2015a) and B factor in this study for forest, shrub land and grassland were estimated based on the vegetation 22 

density derived from satellite images. The difference is that C factor in Panagos et al. (2015a) for arable land 23 

and non-arable land was estimated separately based on different methodologies, whereas in this study, B factor 24 

was used to reflect biological practices on the forest, shrub land or grassland for reducing runoff and soil loss 25 

and T factor was used to reflect tillage practices on the farmland for reducing runoff and soil loss. For the 26 

farmland, biological factor equals 1 and for the other land uses, tillage factor equals 1. The engineering practice 27 

factor and tillage practice factor were assigned values based on the field survey and assignment tables for 28 

different engineering and tillage measures, which were obtained from published references (Guo et al., 2015).  29 

In a PSU, there may be several plots within the same land use. Soil loss for the same land use was 30 
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weight-averaged by the area of the plots with the same land use:     1 
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where uiA
is the averaged soil loss for the land use u in the sample unit i; uikA

is the soil loss for the plot k 3 

with the land use u; uikS
is the area for the plot k with the land use u. 4 

Soil loss for the entire PSU was weight-averaged by the area of the plots.  5 
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where iA
is the averaged soil loss for the sample unit i with N plots; ipA

is the soil loss for the plot p and7 

ipS
is the area for the plot p.  8 

2.4 SevenFive spatial models based on BPST method 9 

2.4.1 Five Seven spatial models 10 

Model I: Estimating A directly by spatial interpolation. Model I is a naive method which is used as a 11 

baseline for comparison. We treat unit i as a point, and use longitude and latitude information and iA value 12 

of unit i to interpolate. 13 

Model II: Estimating A with R and K as the auxiliary information. For any sampling unit i, let 14 

,
ii

i

i
KR

A
Q




                             (4) 15 

where iR
is the rainfall erosivity value for unit i , and iK

is the soil erodibility value for unit i. By 16 

smoothing iQ
’s over the domain using longitude and latitude information, we obtain the interpolation of17 

iQ
’s over the entire domain. Then for the jth pixel on the domain, we estimate the soil loss jA

via 18 

,ˆˆ
jjjj KRQA                           (5) 19 

where jQ̂
is the estimator of jQ

.  20 
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Model III: Estimating A with the land use as the auxiliary information. For the water body, transportation 1 

land and unused area, the estimation of soil loss for the uth land use and jth pixel ujÂ
was set to be zero. For 2 

the rest of the land use types, uiA
 for each land use was interpolated separately first and soil loss values for 3 

the entire domain ujÂ
are the combination of estimation for all land uses.  4 

Model IIV: Estimating A with R and land use as the auxiliary information. For eachany sampling unit i in 5 

land use u, define  6 

,
ui

ui
ui

R

A
Q                                   (63) 7 

where uiR
is the rainfall erosivity value. For land use u, we smooth uiQ

’s over the entire domain uiQ ’s using 8 

the longitude and latitude information, and obtain the estimator ujQ̂
of ujQ

for every pixel jobtain the 9 

interpolation over the domain. . Then, Ffor anythe jth pixel in land use u, we estimate the soil loss ujA
by 10 

,ˆˆ
ujujuj RQA                                 (74) 11 

where ujT̂
is the estimation of ujT

for the land use u and the pixel j.  12 

Model III: Estimating A with K and land use as the auxiliary information. SThis model is similar towith 13 

Model II, except that we , useing uiK instead of uiR  in equations (3) and ujK  instead of ujR  in 14 

equation (4).  15 

Model IV: Estimating A with L and land use as the auxiliary information. This model is sSimilar towith 16 

Model II, except that we useusing uiL instead of uiR
 in equations (3) and ujL  instead of ujR  in 17 

equation (4).  18 

Model V: Estimating A with S and land use as the auxiliary information. This model is similar to Model II, 19 

except that we use Similar with Model II, using uiS instead of uiR
 in equations (3) and  ujS  instead of 20 

ujR  in equation (4).  21 

Model VI: Estimating A with R, K and land use as the auxiliary information. This model is similar to 22 

Model II, except that we use Similar with Model II, using uiuiKR instead of uiR
 in equations (3) and 23 

ujujKR  instead of ujR  in equation (4).  24 
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Model VII: Estimating A with R, K, L, S and land use as the auxiliary information. This model is similar to 1 

Model II, except that we useSimilar with Model II, using uiuiuiui SLKR instead of uiR
I in equations (3) 2 

and ujujujuj SLKR  instead of ujR in equation (4).  3 

 4 

 For land use u and sampling unit i, define   5 
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                             (8) 6 

where uiK
is the soil erodibility value. For land use u, smoothing uiQ

’s over the domain, we obtain the 7 

estimator ujQ̂
of ujQ

for every pixel j. Then, for any jth pixel in land use u, we can estimate the soil loss ujA
by 8 

,ˆˆ
ujujujuj KRQA 

                           (9) 9 

2.4.2 Bivariate penalized spline over triangulation method 10 

In spatial data analysis, there are mainly two approaches to make the prediction of a target variable. One 11 

approach (e.g., kriging) treats the value of a target variable at each location as a random variable and uses the 12 

covariance function between these random variables or a variogram to represent the correlation; another 13 

approach (e.g., spline or wavelet smoothing) uses a deterministic smooth surface function to describe the 14 

variations and connections among values at different locations. In this study, Bivariate Penalized Spline over 15 

Triangulation (BPST), which belongs to the second approach, was used to explore the relationship between 16 

location information in a two-dimensional (2-D) domain and the response variable. The BPST method we 17 

consider in this work have has several advantages. First, it provides good approximations of smooth functions 18 

over complicated domains. Second, the computational cost for spline evaluation and parameter estimation are 19 

manageable. Third, the BPST doesn’t require the data to be evenly distributed or on a  regular-spaced grid. 20 

Since our data are a little sparse in some area, we employed the roughness penalties to regularize the spline fit; 21 

see the energy functional defined in equation (12). When the sampling is sparse in certain area, the direct BPST 22 

method may not be effective since the results may have high variability due to the small sample size. The 23 

penalized BPST is more suitable for this type of data because it can help to regularize the fit.  24 
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To be more specific, let (xi, yi) ∈ Ω be the latitude and longitude of unit i for i = 1, 2, … , n. Suppose we 1 

observe zi at locations (xi, yi) and {(xi, yi, zi)}i=1
n  satisfy 2 

zi = f(xi, yi) + εi, i = 1,2, … , n,                    (105) 3 

where εi′s are random variables with mean zero, and f(. ) is some smooth but unknown bivariate function. 4 

To estimate f, we adopt the bivariate penalized splines overon triangulations to handle irregular domains. 5 

In the following we discuss how to construct basis functions using bivariate splines on a triangulation of 6 

the domain Ω. Details of various facts about bivariate splines stated in this section can be found in Lai and 7 

Schumaker (2007). See also Guillas and Lai (2010) and Lai and Wang (2013) for statistical applications of 8 

bivariate splines on triangulations.   9 

A triangulation of Ω is a collection of triangles Δ = {τ1, τ2, … , τN} whose union covers Ω. In addition, if 10 

a pair of triangles in Δ intersects, then their intersection is either a common vertex or a common edge. For a 11 

given triangulation Δ, we can construct Bernstein basis polynomials of degree p separately on each 12 

triangle, and the collection of all such polynomials form a basis. In the following, let Sr
p

(Δ) be a spline 13 

space of degree p and smoothness r over triangulation Δ. Bivariate B-splines on the triangulation are 14 

piecewise polynomials of degree p (polynomials on each triangle) that are smoothly connected across 15 

common edges, in which the connection of polynomials on two adjacent triangles is considered smooth if 16 

directional derivatives up to the rth degree are continuous across the common edge.  17 

To estimate f, we minimize the following penalized least square problem: 18 

min
f∈Sr

p
(Δ)

(zi − f(xi, yi))
2

+ λPEN(f),                        (116) 19 

Where λ is the roughness penalty parameter, and PEN(f) is the penalty given below: 20 

PEN(f) = ∫ (
∂2f(x,y)

∂x2 )
2

+ (
∂2f(x,y)

∂x ∂y
)

2

+ (
∂2f(x,y)

∂y2 )
2

τ∈Δ
dxdy,              (127) 21 

For Models I-VII defined in Section 2.4.1, we consider the above minimization to fit the model, and obtain 22 

the smoothed surface using the measurements ofdata A (Models I and III) or Q (Models II and V) or T 23 

(Model IV) and their corresponding location information. 24 

2.5 Assessment methods 25 

MTo compare different models, ean squared prediction error (MSE) and Nash-Sutcliffe model efficiency 26 

coefficient (ME) are used to assess the performance of models. wWe estimate the out-of-sample prediction 27 

errors of each method using the ten10-fold cross validation. We randomly split all the observations over the 28 
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entire domain (with the buffer zone) into ten roughly equal-sized parts. For each k t = 1, 2, …., 10, then we 1 

leave out part kt, fit the model using to the other nine parts (combined) inside the boundary with the buffer zone, 2 

and then obtain predictions for the left-out kth tth part inside the boundary of Shaanxi Province. T In the Model I 3 

and Model II, MSEoverall is calculated as follows:  4 

MSEoverall =
∑ SSEk

10
k=1

n
,                               (13) 5 

In Models III, IV and V, we consider land use as one covariate. Therefore, thehe overall mean squared 6 

prediction error (MSEoverall) is calculated by the average of the sum of the product of individual MSEu and the 7 

corresponding sample size. The overall MSEoverall was calculated as follows: wWe first calculated the MSE of 8 

land each use u, u = 1, 2, …, 811, similar as for Model I and Model II,: 9 

MSEu =
∑ SSEtk

10
tk=1

10n
,                            (148) 10 

Then, the overall MSE can be calculated using 11 

MSEoverall =
∑ MSEu∗118

u=1 Cu

∑ Cu
811
u=1

.                        (159) 12 

where Cu is the sample size for the land use u.  13 

Model efficiency coefficient MEu for the land use u is calculated as follows (Nash and Sutcliffe, 1970): 14 
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Apresim,u (i) and Aobs,u (i) are the predictedsimulated and observed soil loss for the plot i for land use u. 16 

MEoverall stands for the overall model efficiency by pooling all samples for different land uses together. The 17 

ME compares the simulated and observed values relative to the line of perfect fit. The maximum possible 18 

value of ME is 1, and the higher the value the better the model fit. An efficiency of ME < 0 indicates that 19 

the mean of the observed soil loss is a better predictor of the data than the model.   20 

The soil loss rate is divided into sSix soil erosion intensity levels, were divided according to  the soil loss rate, 21 

which were mild (less than 5 t ha-1y-1), slight (5-10 t ha-1y-1), moderate (10-20 t ha-1y-1), high (20-40 t ha-1y-1), 22 

severe (40-80 t ha-1y-1), and extreme (no less than greater than 80 t ha-1y-1), respectively. Each pixel in the entire 23 

domain was classified as into an intensity level according to jA
or ujA

. The proportion of intensity levels, soil 24 

loss rates for different land uses and the spatial distribution of soil erosion intensity levels were computed based 25 

on the soil erosion conditions of pixels located inside of the Shaanxi boundary.   26 
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2.6 Sensitivity analysis of topography factors derived from different resolutions of DEM on the regional 1 

soil loss estimation 2 

Previous research suggestedshowed topography factors should be derived from high resolution topography 3 

information (such as 1:10000 or larger scale topography contour map, Thomas et al., 2015). Topography factors 4 

based on smaller scale of topography map (such as 1:50000 or 30-m DEM1:100000) in the mountainous and 5 

hilly area have large uncertainties (Wang et al., 2016). Topography contour maps with a scale of 1:10000 for the 6 

entire region were not available at present. To detect if coarser resolution of topography data available for the 7 

entire region, such as SRTM 30-m DEM and 90-m DEM, can be used as the covariate in the interpolation process, 8 

L and S factor were derived from 30-m DEM and 90-m DEM data, respectively (Fu et al., 2013). The L and S 9 

factors derived from 1:10000 topography map for PSUs were used for the cross validation analysis of Model IV, 10 

V and VII to determine the relative contribution of erosion factors as the covariates to the spatial estimation of soil 11 

loss. The L and S factors generated from 30-m and 90-m DEM data, together with those generated from 1:10000 12 

topography map, were used for the sensitivity analysis based on Model VII. MSEu and MSEall based on Eqs. (8) 13 

and (9) were used to assess the effect of DEM resolution, from which topography factors were derived, on the 14 

interpolation accuracy of soil loss.  15 

3 Results  16 

3.1 Comparison of MSEsEstimation and MEs for sevenfive models and sensitivity of DEM resolution on 17 

the MSEs 18 

Table 1 summarized the MSEs of the soil loss estimation based on different methods.  19 

Model VII assisted by the rainfall erosivity factor (R), soil erodibility factor (K, L, S) and land use generated the 20 

least overall MSE values and the best result, when L and S were derived based on 1:10000 topography map.. 21 

MSE for Model VII was 5543.84% of that for Model I. The comparison of four models with single erosion factor 22 

as the covariate (Model II, III, IV and V) shownshowed S factor is the best covariate, with MSEoverall for Model V 23 

being 80.1% of that for Model I, whereas R is the worst, with MSEoverall for Model II being 99.3% of that for 24 

Model I. For dry land & irrigated land and shrub land, Model II with R factor and land use as the auxiliary 25 

information performed even worse than Model I assisted by the land use. K and L contributed the similar amount 26 

of information for the spatial model, decreasing the MSE about 10% comparing with Model I. Model VI with R, K 27 

and land use as the auxiliary information is superior to any model with land use and single erosion factor as the 28 
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covariates (Models I-V). When L and S factor were derived from 30-m DEM or 90-m DEM, the MSEs are much 1 

greater than Model I, which suggested the topography factors help the interpolation only if the resolution of DEM 2 

used to generate them is high enough, such as 1:10000 topography map. The use of factors derived from DEM 3 

with a resolution equal or lower than 30-m seriously worsen the estimation.   4 

Table 2 summarized the MEs for different land uses and overall data based on different models. All MEs were 5 

greater than 0, except four cases for the Paddy land, which may be due to the limited sample size. Shrub land 6 

and Grassland were the best estimated land use for Model I-VI. All seven models had the overall ME no less 7 

than 0.55, with Model VII having the highest (0.75). The improvements of Model VII comparing with the other 8 

six models were obviousmarked for most land uses. Fig. 6 demonstratedshownshoweded the comparison of 9 

simulatedpredicted and observed soil loss based on Model VII for four main land uses including dry land & 10 

irrigated land, forest, shrub land and grassland, with the area ratio occupying 30.2%, 15.9%, 7.2%, 37.7% of the 11 

total area for Shaanxi province, respectively. It also shownshowed the predictions of soil erosion on the shrub 12 

land and grassland were superior to those ofon the dry land & irrigated land and forest, the latter of whichwhich 13 

existed a degree of underestimation for larger soil loss values (Fig. 6).   14 

, and MSE for Model III assisted by the land use was 50.3% of Model I, which suggested that the land use is the 15 

key auxiliary information for the spatial model, which contributed much more information than R and K factors 16 

did.  17 

3.22 Soil erosion intensity levels and soil loss rates for different land uses 18 

Models IV, V, and VII require the high resolution of topography maps to derive L and S factor, which we can’t 19 

afford in this study; therefore, four soil loss maps based on Models I, II, III and VI were generated. These five 20 

models can be divided into two groups in tThe proportion pattern of soil erosion intensity levels for all land uses 21 

(Fig. 67) and that for different land use (Fig. 8) were very similar among four models. The first group is two 22 

models without the land use as the auxiliary information (Model I and II) and the second group is three models 23 

assisted with the land use (Model III, IV and V). The first group generated no severe and extreme erosion levels 24 

and had a higher proportion of slight and moderate erosion levels than the second group. The second group 25 

generated a higher proportion of mild, severe and extreme erosion levels than the first group. Most severe and 26 

extreme erosion mainly occurred in the farmland and bare land (Fig. 7). The first group mainly underestimated 27 

the erosion degrees for the farmland and bare land and overestimated those for the forest, grassland and 28 

construction land. The main reason is when the land use is ignored, the extreme erosion levels, mostly in 29 
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farmland and bare land, were smoothed by the surrounding low erosion levels, mostly in forest, shrub land, 1 

grassland and construction land.    2 

The result of Model VI with BPST method shownshoweded that the highest percentage is the mild erosion 3 

(4345.57%), followed by the slight (2120.37%), moderate (2019.97%) and high erosion (108.10%). The severe 4 

and extreme erosion were 35.95% and 0.34%, respectively (Fig. 67). When it came to the land use (Fig. 78), the 5 

largest percentage for the farmland dry land & irrigated land was the high erosion, which occupied 2623.62% of 6 

the total dry land & irrigated landfarmland. The severe and extreme erosion for the dry land & irrigated land 7 

farmland were 1118.3% and 10.39%, of the total farmland, respectively. The largest percentage for the Most 8 

forest land and grassland washad the mild erosion (, being 75.41% and 4241.57%, respectively). The percentage 9 

Each oof the mild, slight and moderate erosion degree s for the shrub land occupied about 30%, respectively of 10 

the total shrub land.  11 

 12 

3.3 Soil loss rates for different land uses 13 

Fig. 8 9 shownshoweded soil loss rates for the four main different land uses generated from fourive models. 14 

Similar to the estimation of soil erosion intensity levels, there were slight differences among four models. the 15 

first group mainly underestimated the soil loss rates for the farmland and bare land and overestimated those for 16 

the forest, grassland and construction land. The standard deviations of the farmland and bare land for the second 17 

group were much higher than those for the first group, which suggested the variation of soil loss rates for 18 

farmland and bare land pixels for the second group were greater than for the first group. The soil loss rates for 19 

four main land uses (dry land & irrigated landfarmland, forest, shrub land and grassland) by Model VI was were 20 

reported in Table 23. 21 

3.4 3 Spatial distribution of soil erosion intensity 22 

All five four models simulated predicted generally similar spatial patterns of soil erosion intensity, with the mild, 23 

moderate and high erosion mainly occurring in the farmlands and grassland in the northern Loess Plateau region 24 

and severe and extreme soil erosion mainly occurringed in the farmlands in the southern Qingba mountainous 25 

area. (Fig. 9 10 (a)-(de)). Three models assisted with the land use (Model III, IV and V) showed more 26 

reasonable details (Fig. 9). Fig. 9(e) showed that severe and extreme soil erosion mainly occurred in the 27 

farmlands in the southern Qingba mountainous area. Fig 9(f) demonstrated the difference between Model V and 28 
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Model I, which suggested Model I overestimated the erosion intensity levels for most forests and grasslands, 1 

whereas it underestimated the intensity of farmlands. The estimation from Model VI shownshoweded that 2 

annual soil loss from Shaanxi province was about 207198.37 Mt, 49.28% of which came from dry and irrigated 3 

landfarmlands and 35.20% from grasslands (Table 43). The soil loss rate in Yan’an and Yulin in the northern 4 

part was 165.43 and 131.49 t ha-1 y-1 and ranked the highest among ten prefecture cities. MoreAbout half than 5 

half ofof the soil loss for the entire province was from these two districts (Table 43). Ankang and Hanzhong in 6 

the southern part also had a severe soil loss rate and contributed nearlyabout one quarter of soil loss for the 7 

entire province. The soil loss rate in Tongchuan in the middle part was 10.2 t ha-1 y-1, ranking the fourth severest, 8 

whereas the total soil loss amount was 3.9 Mt, ranking last, due to its smallest area. 9 

4 Discussion 10 

4.1 The uncertainty of the assessment 11 

The uncertainty of the regional soil loss assessment method combininged the survey sample and geostatistics 12 

mainly came from the estimation of erosion factors in the PSU, the density of survey sampling and interpolation 13 

methods. Previous studies have shown that the resolution of topography data source largely affected the 14 

calculated slope steepness, length and soil loss. For example, Thomas et al. (2015) shownshoweded that the 15 

range of LS factor values derived from four sources of DEM (20 m DEM generated from 1:50,000 topographic 16 

maps, 30- m DEM from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), 90- m 17 

DEM from shuttle radar topography mapping mission (SRTM) aand 250 m DEM from global multi-resolution 18 

terrain elevation data (GMTED)) were considerably different, which suggested the grid resolutions of factor 19 

layers are critical and are determined by the data resolution used to derive the factor. Wang et al. (2016) 20 

compared data sources including topographic maps at 1:2000, 1:10,000, and 1:50,000 scales, and 30-m DEM 21 

from ASTER V1 dataset and reported slope steepness generated from the 30-m ASTER dataset was 64 % lower 22 

than the reference value generated from the 1:2000 topography map (2-m grid) for a mountainous watershed. 23 

The slope length was increased by 265% and soil loss decreased by 47% compared with the reference values. A 24 

study conducted by our research group indicated L and S factor and the soil loss prediction based on the DEM 25 

grid size less than or equal to 10 m were close to those of 2-m DEM (Fu et al., 2015), therefore, topography 26 

maps with a scale of 1:10000 were collected in this study to derive LS-factor for the PSU. Note that R and K 27 

factors for PSUs were clipped from the map of the entire country, which may include some errors comparing 28 
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with those from at-site rainfall observation and soil field sampling for each PSU, which requires further 1 

research.  2 

The density of sample units in our survey depends on the level of uncertainty and the budget of the survey. We 3 

tested sample density of 4% in four experimental counties in different regions over China and found a density of 4 

1% was acceptable given the current financial condition. Since our data are a little sparse in some areas, we 5 

employed the roughness penalties to regularize the spline fit; see the energy functional defined in equation (7). 6 

When the sampling is sparse in a certain area, the direct BPST method may not be effective since the results 7 

may have high variability due to the small sample size. The penalized BPST is more suitable for this type of 8 

data because it can help toto the penalty regularizes the fit (Lai and Wang, 2013).    9 

Cross-validation in section 3.1 evaluated the uncertainty in the interpolation. The results consolidated the 10 

conclusion on the importance of topography factors and the DEM resolution used to calculate topography 11 

factors from previous research. It shownclarified showedS factor is the most important assistedauxiliary factor 12 

in terms of the covariate in the interpolation of soil loss and K factor and L factor ranked the second most 13 

important, when topography factors were generated from 1:10000 map. Inclusion of Ttopography factors from 14 

30-m or coarser resolution of DEM data worsen the estimation.when they were used as the covaria   15 

 16 

4.2 Comparison with the other assessments  17 

The Ministry of Water Resources of the People's Republic of China (MWR) has organized four nationwide soil 18 

erosion investigations. The first three (in mid-1980s, 1999 and 2000) were mainly based on field survey, visual 19 

interpretation by experts and factorial scoring method (Wang et al., 2016). The third investigation used 30-m m 20 

resolution of Landsat TM images and 1:50000 topography map. Six soil erosion intensities were classified 21 

mainly based on the slope for the arable land and a combination of slope and vegetation coverage for the 22 

non-arable land. The limitations for the first three investigations include the limited resolution of satellite 23 

images and topography maps, limited soil erosion factors considered (rainfall erosivity factor, soil erodibility 24 

factor, and practice factor were not considered), incapability of generating the soil erosion rate, and incapability 25 

of assessing the benefit from the soil and water conservation practices. The spatial pattern of soil erosion in 26 

Shaanxi province in this study is similar to the result of the third national investigation. Since the expert factorial 27 

scoring method did no't generate the erosion rate for each land use, we compared the percentage of soil erosion 28 

area for ten prefecture cities in Shaanxi province betweenwith the third and the fourth investigations. Both 29 

http://www.baidu.com/link?url=pjSHa6cJd7bxkY_VbeggWIC2OPpJCY_l9wn-QKyqhFV5U1d_isc66YqKMkwNig75npxyw59UI65lOzvHhROTn7oMh_BdJMCTGe40yuWISR_
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investigations indicated Yan’an, Yulin in the northen part,  and Tongchuan in the middlenorthern part and 1 

Ankang in the southern part had the most serious soil erosion. The difference is that Hanzhong was 2 

underestimated and Shangluo was overestimated in the third investigation, compared with the fourth 3 

investigation.  4 

Guo et al. (2015) analyzed 2823 plot-year runoff and soil loss data from runoff plots across five water erosion 5 

regions in China and compared the results with previous research aroundcross the world. The results 6 

conveyshownshoweded that there were no significant differences for the soil loss rates of forest, shrub land and 7 

grassland worldwide, whereas the soil loss rates of farmland with conventional tillage in northwest and 8 

southwest China were much higher than those in most other countries. Shaanxi province is located in the 9 

Northwest region. Soil loss rates for the farmland, forest, shrub land and grassland based on the plot data for the 10 

NW region in Guo et al. (2015) were extracted and presented in Table 2 3 for comparison. Soil loss rate for the 11 

farmland based on the plot data varied greatly with the management and conservation practices and the result in 12 

this study was within the range (Table 23). The soil loss rate for the shrub land is similar with that reported in 13 

Guo et al. (2015). The soil loss rate for the forest in this study was 3.510 t ha-1 y-1 with a standard deviation of 14 

2.778 t ha-1 y-1 , which is much higher than 0.10 t ha-1 y-1 reported in Guo et al. (2015, Table 23). Our analysis 15 

provesshownshoweded that it came from the estimation of PSUs and was not introduced by the spatial 16 

interpolation process. Possible reasons include: (1) the different definitions of forest and grassland; (2), 17 

concentrated storms with intense rainfall; (3), the unique topography in Loess plateau and (4) the sparse 18 

vegetation cover due to intensive human activities (Zheng and Wang, 2014). The minimum canopy density 19 

(crown cover) threshold for the forest across the world vary from 10-30% (Lambrechts et al., 2009) and a 20 

threshold of 10% was used in this study, which suggests on average a lower cover coverage and higher B factor. 21 

Annual average precipitation varies between 328-1280 mm in Shaanxi, with 64% concentrating in June through 22 

September. Most rainfall comes from heavy storms of short duration, which suggests the erosivity density 23 

(rainfall erosivity per unit rainfall amount) is high. The Ffield survey result on the PSUs in this study 24 

discoveredshownshoweded that the slope degree is steeper and slope length is longer for the forest than the 25 

forest plots in Guo et al. (2015). The forest plots in Guo et al. (2015) were with an averaged slope degree of 25.9° 26 

and slope length of 21.1 m, whereas 74.0% of forest lands were with a slope degree greater than 25° and 97.2% 27 

of them with a slope length longer than 20 m. The runoff and sediment discharge information for two 28 

watersheds (Fig. 1, Table 54) showndepictedshoweded that the soil loss rate for the forest in study area has large 29 

variability ranging from 1.3 to 19.0 t ha-1 y-1 (Wang and Fan, 2002). Our estimation is within the range. The soil 30 



22 
 

loss rate for the grassland in this study was 7.270 t ha-1 y-1, which was smaller than 11.57 t ha-1 y-1 reported in 1 

Guo et al. (2015). The reason may be due to the lower slope degree for the grassland in Shaanxi province. The 2 

mean value of the slope degree for grassland plots was 30.7° in Guo et al. (2015), whereas 68.6% of the grass 3 

lands were with a slope degree smaller than 30° from the survey in this study.  4 

Raster multiplication is a popular model-based approach due to its lower cost, simpler procedures and easier 5 

explanation of resulting map. If the resolution of input data for the entire region is enough to derive all the 6 

erosion factors, raster multiplication approach is the best choice. However, there are several concerns about 7 

raster multiplication approach for two reasons: (1) The information for the support practices factor (P) in the 8 

USLE was not easy to collect given the common image resolution and was not included in some assessments 9 

(Lu et al., 2001; Rao et al., 2015), in which the resulting maps don’t reflect the condition of soil loss but the risk 10 

of soil loss. Without the information of P factor, it is also impossible to assess the benefit from the soil and water 11 

conservation practices (Liu et al., 2013). (2) The accuracy of soil erosion estimation for each cell is of concern if 12 

the resolution of database used to derive the erosion factors is limited. For example, The LS-factor in the new 13 

assessment of soil loss by water erosion in Europe (Panagos et al., 2015b) was calculated using the 25-m DEM, 14 

which may result in some errors for the entire region due to the limited resolution of DEM data for each cell 15 

(Wang et al., 2016). In this study, the information we can get at this stage for the entire region is land use, 16 

rainfall erosivity (R) and soil erodibility (K). The other factors were not available or without enough resolution. 17 

It is not difficult to conduct raster layer multiplication technically, however, we think the multiplication of R and 18 

K factors (assuming L=1, S=1, B=1, E=1, T=1) reflects the potential of soil erosion, which is different from the 19 

soil erosion estimated in this study. Therefore, we did not compare our method with raster layer multiplication 20 

method. Our recommended approach uses all the factor information that are available in the entire region (land 21 

use, rainfall, soils), and uses spatial interpolation to impute other factor information which are only available at 22 

the sampled PSU (slope degree, slope length, practice and management, aggregated as Q) to the entire region. 23 

The rationale behind this approach is to exploit the spatial dependence among these factors to come up with 24 

better regional estimates. Since the reality in many countries is that we cannot have all factors measured in all 25 

areas in the foreseeable future, or the resolution of data for deriving the factors is limited, we believe our 26 

approach provides a viable alternative which is of practical importance.  27 

 28 

4.3 The implication of the assessmentPractical iImplications 29 

Remarkable spatial heterogeneity of soil erosion intensity was observed in the Shaanxi province. The Loess 30 
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Plateau region is one of the most severe soil erosion regions in the world due to seasonally concentrated and 1 

high intensity rainfall, high erodibility of loess soil, highly dissected landscape, and long-term intensive human 2 

activities (Zheng and Wang, 2014). Most of the sediment load in the Yellow River is originated and transported 3 

from the Loess Plateau. Recently, the sediment load of the Yellow River declined to about 0.3 billion tons per 4 

year from 1.6 billion tons per year in the 1970s, which benefited fromthanks to the soil and water conservation 5 

practices taken in the Loess Plateau region (He, 2016). However, more efforts on controlling human accelerated 6 

soil erosion in the farmlands and grasslands are still needed. Soil erosion in southern Qingba mountainous 7 

region is also very serious, which may be due to the intensive rainfall, farming in the steep slopes and 8 

deforestation (Xi et al., 1997). According to the survey in Shaanxi province, 11.1% of the farmlands with a 9 

slope degree ranging 15-25° and 6.3% of them greater than 25° were without any conservation practices. 10 

Mountainous areas with a slope steeper than 25° need to be sealed off for afforestation (grass) without the 11 

disturbance of the human and livestock. For those farmlands with a slope degree lower than 25°, terracing and 12 

tillage practices are suggested which can greatly reduce the soil loss rate (Guo et al., 2015, Table 23).   13 

The survey result determinedshownshoweded that there were 26.5% of grasslands with a slope degree of 15-25° 14 

and 57.6% of them steeper than 25° without any conservation practices. Enclosure and grazing prohibition are 15 

suggested on the grasslands with steep slope and low vegetation coverage.   16 

Note that CSLE, as well as other USLE-based models only, simulate sheet and rill erosion, andso erosion from 17 

gullies is not taken into consideration in this study. Erosion from gullies is also very serious in the Loess Plateau 18 

area, and there were more than 140,000 gullies with length longer than 500 m in Shaanxi province (Liu, 2013).  19 

5 Conclusions 20 

 21 

Thise regional soil erosion assessment focused on the extent, intensity, and distribution of soil erosion on a 22 

regional scale and it provides valuable information for stakeholders to take proper conservation measures in 23 

erosion areas.  Shaanxi province is one of the most severe soil erosion regions in China. A field survey in 3116 24 

PSUs in the Shaanxi province and its surrounding areas were conducted, and the soil loss rates for each land use 25 

in the PSU were estimated from an empirical model (CSLE). SevenFive spatial interpolation models based on 26 

BPST method were compared whichin generateing regional soil erosion assessment from the PSUs. Following 27 

are our conclusions:  28 
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(1) Slope steepness factor derived from 1:10000 topography map is the best single covariate.,The MSE of the soil 1 

loss estimator using model with land use and S factor is reducing about 20% less of the MSE for the interpolation 2 

of soil loss by comparing the model assisted by the land use and S factor with than those using the model assisted 3 

by the land use alone. Soil erodibility and slope length information reduced about 10% of the MSE. Rainfall 4 

erosivity contribution toed trace information with the decrease of MSE isdecreasing less than 1%. 5 

(2)  Model VII with the land use and R, K, L, S as the auxiliary information has, with the model efficiency of 6 

0.75, and it is superior to any model with land use and single or twowice erosion factors as the covariates (Model 7 

I-VI), which haswith the model efficiency varying from 0.55 to 0.64.  8 

(3) The LS-factor derived from 30-m DEM or 90-m DEM deteriorated the estimationis not useful when they were 9 

used as the covariates together with the land use, R and K, with the MSEs increaseding about two times compared 10 

withthan those for the model assisted by the land use alone.   11 

(4) Four models assisted by land use (Model I), land use and R factor (Model II), land use and K factor (Model III), 12 

land use, R and K factor (Model VI) simulatprovided similar estimates for proportions in each soil erosion 13 

intensity levels, soil loss rates for different land uses and spatial distribution of soil erosion intensity.   14 

Land use is the key auxiliary information and R and K factors provide some useful information for the spatial 15 

geostatistical models in regional soil erosion assessment.  16 

(5) Our results show thatThere is 546.35% of total land in Shaanxi province withhad annual soil loss rate no less 17 

than greater than 5 t ha-1 y-1, and total annual soil loss amount is about 198207.37 Mt in Shaanxi province. Most 18 

soil loss originated from the farmlands and grass lands in Yan’an and Yulin districts in the northern Loess 19 

Plateau region, and Ankang and Hanzhong districts in the southern Qingba mountainous region. Special 20 

attention should be given to the 0.11 million km2 of lands with soil loss rate equal to or greater than 5 t ha-1 y-1, 21 

especially 0.03 million km2 of farmlands with severe and extreme erosion (greater than 20 t ha-1 y-1).  22 

(6) A new model-based regional soil erosion assessment method was proposed, which is valuable when input 23 

data used to derive soil erosion factors is not available for the entire region, or the resolution is not adequate. 24 

When the resolution of input datasets was not adequate to derive reliable erosion factor layers and the budget is 25 

limited, our suggestion is sampling a certain amount of small watersheds as primary sampling units and putting 26 

the limited money into these sampling units to ensure the accuracy of soil erosion estimation in these units. 27 

Limited money could be used to collect high resolution data such as satellite images and topography maps and 28 

conduct field researchsurvey to collect information such as conservation practices for these small watersheds. 29 

Then we can use the best available raster layers for land use, R, and K factor for the entire region, construct 30 
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spatial models to exploit the spatial dependence among the other factors, and combine them to come up 1 

withgenerate better regional estimates. The information collected in the survey and the generated soil erosion 2 

degree map (such as Fig. 109ed) can help policy-makers to take suitable erosion control measures in the 3 

severely affected areas. Moreover, climate and management scenarios could be developed based on the database 4 

collected in the survey process to help policy-makers in decision making for managing soil erosion risks.  5 
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Tables 1 

Table 1. Mean squared errors of soil loss (A) using bivariate penalized spline over triangulation (BPST) per land use 2 

  3 
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Model 

Land use and sample size 

Overall Padd

y 

Dry land & 

irrigated 

land 

Orchard 

& 

garden 

Forest  
Shrub 

land  

Grass

land 

Construction 

land 
Bare land 

82 1048 436 1288 574 684 323 32 4467 

LU 0.1  513.5  181.5  25.6  46.6  19.8  1.4  4623.1  187.8  

LU+R 0.0  518.5  181.4  25.5  46.7  19.5  1.4  4283.3  186.5  

LU+K 0.1  461.7  175.8  24.3  38.7  17.2  1.4  3854.5  167.8  

LU+L 0.0  458.7  164.3  24.5  40.2  15.6  1.3  4381.3  169.8  

LU+S 0.1  424.3  148.2  24.5  41.1  15.2  1.1  3033.0  150.5  

LU+R+K 0.1  464.0  175.9  24.1  37.8  16.6  1.4  3495.1  165.5  

LU+R+K+L+S 

(1:10000 map) [1] 
0.0  331.7  140.8  24.1  28.5  10.3  0.9  143.1  104.8  

LU+R+K+L+S 

(30-m DEM) [2] 
0.2  1155.8  309.1  94.2  510.3  331.6  1.3  12319.3  533.2  

LU+R+K+L+S 

(90-m DEM) [3] 
0.1  1309.4  239.5  81.0  317.1  227.0  1.5  15341.0  539.4  

[1] L factor and S factor were derived from 1:10000 topography maps for the PSUs. 1 

[2] L factor and S factor were derived from 30-m SRTM DEM data for the PSUs. 2 

[3] L factor and S factor were derived from 90-m SRTM DEM data for the PSUs. 3 

 4 

Table 2. Model efficiency coefficient (ME) for seven models using bivariate penalized spline over triangulation (BPST) 5 

per land use 6 

Model 

Land use and sample size 

Over

all Paddy 

Dry land & 

irrigated 

land 

Orchard 

& 

garden 

Forest  
Shrub 

land  

Grass

land 

Constructio

n land 

Bare 

land 

82 1048 436 1288 574 684 323 32 4467 

LU -0.68  0.34  0.23  0.20  0.60  0.52  0.06  0.18  0.55  

LU+R 0.05  0.34  0.23  0.20  0.60  0.53  0.08  0.24  0.55  

LU+K -1.98  0.41  0.26  0.24  0.67  0.59  0.08  0.32  0.60  

LU+L 0.15  0.41  0.31  0.23  0.65  0.62  0.16  0.22  0.59  

LU+S -0.08  0.46  0.37  0.23  0.65  0.63  0.26  0.46  0.64  

LU+R+K -0.65  0.41  0.26  0.24  0.68  0.60  0.10  0.38  0.60  

LU+R+K+L+S 0.82  0.58  0.40  0.25  0.76  0.75  0.43  0.97  0.75  

 7 
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 1 

Table 23. Soil loss rates (t ha-1y-1) for the farmland, forest, shrub land and grassland by Model VI in this study and in 2 

Northwest region of China from Guo et al. (2015).  3 

 
Land use  Mean Standard deviation 

This study Dry land & irrigated landFarmland  2119.7700 2017.0694 

 
Forest  33.5150 22.7778 

 
Shrub land 1010.000 77.5151 

 
Grassland 7.2720 5.203 

Guo et al. (2015) Farmland (Conventional) 49.38 57.61 

 
Farmland (Ridge tillage) 19.27 13.35 

 
Farmland (Terracing) 0.12 0.28 

 
Forest 0.10 0.12 

 
Shrub land 8.06  7.47  

 
Grassland 11.57  12.72  

  4 
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Table 34. Annual soil loss amount, mean rate and main sources by Model VI for ten prefecture cities in Shaanxi 1 

province. 2 

Prefecture 

city 
Area (104 ha) 

Amount 

(106 t y-1) 

Mean Rrate 

(t ha-1 y-1) 

Source (%) 

Dry land and 

irrigated land 

Farmland 

Forest  
Shrub 

land  

Grass 

land 

Xi'an 100.9100.4 6.5 6.3  6.4 6.3  55.0 52.9  
11.2 

11.6  
7.8 7.9  

19.6 

20.6  

Ankang 234.1230.0 27.4 26.6  11.7 11.6  46.7 42.8  
9.4 

10.7  
2.5 2.8  

38.5 

42.7  

Baoji 180.1178.5 14.8 13.2  8.2 7.4  36.4 39.3  
10.8 

15.1  
7.3 7.5  

39.6 

37.9  

Hanzhong 268.1266.7  20.9 21.8  7.8 8.2  45.5 42.5  
11.4 

12.3  
3.2 3.6  

36.5 

40.2  

Shangluo 194.8193.0  5.8 8.5  3.0 4.4  38.3 68.0  
19.4 

13.1  
8.4 5.9  

27.4 

12.9  

Tongchuan 38.838.6  3.9 3.7  10.2 9.6  40.1 37.9  
7.2 

7.8  

23.2 

23.6  

28.2 

28.5  

Weinan 129.8129.5  7.5 6.4  5.7 5.0  59.6 54.4  
3.2 

3.9  
8.8 9.5  

24.6 

26.7  

Xianyang 102.8101.0  5.6 5.2  5.5 5.2  46.3 44.4  
3.1 

8.2  
3.5 8.9  

14.2 

35.3  

Yan'an 369.1364.9  60.5 55.9  16.4 15.3  45.7 54.5  
4.8 

3.1  

12.0 

12.1  

37.0 

30.0  

Yulin 422.7427.7  56.5 50.9  13.4 11.9  56.3 51.4  
2.2 

2.6  
3.6 3.7  

36.4 

40.4  

Overall 2041.42030.4  
207.3 

198.7  
10.2 9.8  49.2 49.8  

6.7 

6.8  
7.1 7.1  

35.2 

35.0  

  3 
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Table 4 5. Soil erosion rate for the forest and sediment discharge for two watersheds 1 

 
Area 

(104 ha) 

Runoff 

(109 m3 y-1) 

Sediment 

discharge  

(106 t y-1) 

Soil loss 

rate  

(t ha-1 y-1) 

Percent of 

forest  

(%) 

Soil loss rate 

for forest  

(t ha-1 y-1) 

JingheaJing

hed 
454.2 1.837 246.7 54.3 6.5 19.0 

LuohebLuo

hee 
284.3 0.906 82.6 29.1 38.4 1.3~2.1 

d. Based on the observation at Zhangjiashan hydrological station from 1950 through 1989. 2 
e. Based on the observation of at Zhuanghe hydrological station from 1959 through 1989. 3 
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 1 

Figures 2 

  3 

Figure 1: Location of Shaanxi province. Luohe and Jinghe watersheds were referred in the Table 4 5 and discussion 4 

part.  5 
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 1 

 2 

Figure 2: Schematic of sampling strategy for the fourth census on soil erosion in China 3 
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 1 

 2 

Figure 3: An example of a PSU with five plots and three categories of land uses (Farmland, Forest and Residential 3 

area). 4 

  5 

1. Residential area 

2. Forest 3. Farmland 

5. Farmland 

4. Forest 
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 1 

Figure 4: Distribution of PSUs (solid dots) used in this study. The red line is the boundary of the Shaanxi province, blue 2 

line is the convex hull of the boundary and green line is the 30 km buffer of the convex hull. 3 

 4 

 5 
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 2 

 3 

 4 



40 
 

1 

 2 

Figure 5 Spatial distributions of land use (a), rainfall erosivity (b), soil erodibility (c) and topography (d) 3 

for Shaanxi province.  4 
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 1 

Figure 6 Scatterplot of estimated and observed soil loss based on Model VII for (a) dry and irrigated land; 2 

(b) forest; (c) shrub land; and (d) grassland.   3 
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 1 

Figure 67: Proportion of soil erosion intensity levels for four sevenfive models. including Model I, II, III and VI. 2 

 3 

  4 



43 
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 2 

Figure 78: Proportion of soil erosion intensity levels for different land use for foursevenfive models including Model I, 3 

II, III and VI.. 4 
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  1 

Figure 8: Boxplot Error bar plot of soil loss rates for five models for different land uses: (a) Farmland; (b) Forest; (c) 2 

Shrub land; (d) Grassland; (e) Construction land; (f) Bare land. The star symbols stand for the mean values and the 3 

error bars stand for standard deviations. 4 
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 1 

Figure 89: Boxplot Error bar plot of soil loss rates for fourfive models for different land uses: (a) dry land & irrigated 2 

land Farmland; (b) Fforest; (c) Sshrub land; (d) Ggrassland; (e) Construction land; (f) Bare land. The star symbols 3 

stand for the mean values and the error bars stand for standard deviations. 4 
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 2 

(a) Model I (b) Model II 
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(c) Model III (d) Model 

IVI 
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 1 

Figure 910: Distribution of soil erosion intensity levels for fourive models: (a) Model I; (b) Model II; (c) Model III; (d) 2 

Model IVI; (e) Model V; (f) Difference between Model V and I.  3 

 4 

The levels of less than 5, 5-10, 10-20, 20-40, 40-80, greater than 80 t ha-1 y-1 were defined as the levels 1-6, respectively 5 

and the difference was the deviation of levels for Model V from Model I.  6 

 7 
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(f) Difference between 
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