
Comments are highlighted in blue and responses are provided directly after each 

comment. 

 

The paper presents a climate impact assessment for two climate warming scenarios focusing in 
water availability in West Africa and in particular for a small scale West African catchment, 
where no studies are available about this topic so far. The authors have put a lot of work in 
dealing and examining state-of-the-art climate models and their uncertainties for the region and 
have carried out various analyses which are well presented in the figures. The analysis includes 
good approaches for the examination of specific hydro-climatic indicators (incl. water-energy 
budget) and their uncertainties as well as the application of a hydrological model.  The paper is 
well written, in particular the introduction and discussion, and the methodology is well 
presented.  The figures and tables are accurate and support the understanding of the results. 
Thanks. 
 
However, the paper includes some inconsistencies, in particular concerning the interpretation of 
the results, and further shortcomings in scientific and structural aspects, which need to be 
revised. Therefore, the paper should be subjected to major revision. 
My major request is that the authors should especially revise these major points: 
Our replies to the specific comments are provided below. 
 
1. The first point is related to scaling issues which makes the paper difficult to understand when 
reading it for the first time. In the article actually includes two evaluations on different scales: 
one evaluation of available climate models on large scale (Climate data: 250x200km = 50.000 
km2) and one hydrological analysis for the small Dano river catchment (200 km2). A box of 20 
climate model grid cells were correctly used for the analysis to capture the spatial climate 
variability of the climate models, as stated in the Discussion (p.  12, L. 367) and examined for a 
larger region. In a second step, the small Danu catchment was examined using a hydrological 
model and climate model data of one grid cell as meteorological driver.  These two analyses are 
partly mixed up in the presentation and interpretation of the results and need to be structured 
and distinguished in a better way. 
2. The authors carried out a bias correction for the climate models for the region. Here it is 
described in the methods:  p.  4, L.111:  "Although the national observation network includes 
several rainfall gauges and synoptic stations, solely the data of the Dano station were used as it 
is located in the study area." So,  is it true that for bias correction of the climate model data (20 
nodes of climate models -> 50,000km2) only the data from one meteorological station was 
used?   If yes, the measured basis data for bias correction may be representative for the small 
Dano catchment, but lead to incorrect bias correction transfer functions if applied for 
the whole region. 
As this comment and the previous one focus on the scale issue we address them together. 
We do agree with Referee2 that it may seem that the evaluations (climate and hydrological 
changes) are done at two different scales. Nonetheless, the focus is only the Dano catchment, 
i.e. the 200km2; and both climate and hydrological changes as presented in the study apply only 
to the Dano catchment.  
Only considering climate variables of the nearest RCM grid point to the Dano catchment would 
be meaningless since the nominal resolution of RCMs does not corresponds to the effective 
resolution (Villani et al. 2015; Grasso, 2000). Therefore, we had to consider a larger RCM 
domain to represent the simulated climate within Dano the catchment (a 20 nodes domain was 
applied). We used the Dano weather station as reference station for bias correction and, indeed, 
we did expect the measured basis data to be representative of the Dano catchment only. 



For the hydrological simulations, although the hydrological modeling domain (the Dano 
catchment) is about 200 km2, the entire 20 nodes domain was applied as climate forcing data. 
This has been further specified in the revised manuscript (L129-130). Considering climate inputs 
of such a large climate domain for the hydrological simulation model necessarily implies some 
issues when interpolation approaches are applied (this is discussed in the response to the 
comment2 of Referee1). To overcome these issues (overestimation of rainy days, decreasing of 
rainfall intensities, drizzle effect etc.) we adopted the “one node at a time approach” and the 20 
nodes were used. 
 
3. The hydrological model applied in the study has been calibrated using only three years of 
daily discharge data and validated for just one year in a previous study (Yira et al. 2016). In this 

study the model has then been used to project runoff changes under changing climate 
conditions until 2050. I suppose that this very short calibration and validation period was chosen 
due to missing measuring data in the catchment. Generally, in data scare regions a weighing is 
necessary between scientific accuracy and best scientific information available for the region 
under given conditions.  Nevertheless, it may be questioned if the model’s ability is adequately 
validated to project long-term runoff pattern in particular under changing climatic conditions in a 
monsoon region. Of course the major source of uncertainty in hydrological impact assessments 
is coming from the climate models, which are in West Africa related to very high un-certainties 
already.  As for many African regions, the examination of available climate models in this study 
reveals very high uncertainties in the projections and no clear patters in the directions of the 
change. This may sound harsh but my point is that, as the input data as well a calibration and 
validation data for the hydrological model are quite low, the additional value of using the 
hydrological model to examine impacts on water resources instead of just analyzing the climatic 
water balance and water-energy budget out of climate model data for the region is not clearly 
highlighted in the paper. Further- more, this point of additionally increasing uncertainties in the 
hydrological analysis is not discussed in the paper.  
Referee2 is right in stating that a weighing is necessary between scientific accuracy and best 
scientific information available for the region, as well as the lack of long term discharge data. 
However the comment contains other points that we would like to address. 
-The hydrological model was indeed calibrated/validated for a relatively short period and this 
necessarily introduces an element of uncertainty that has to be taken into account. 
Nevertheless, the issue related to the calibration/validation period was not ignored in Yira et al. 
2016. In the absence of long term observation discharge for the catchment, as rightly pointed 
out by Referee2, the reliability of the model parameters in time could not be assessed in a 
classical way. Therefore, a soft validation approach was adopted. The approach consisted in 
determining, based on the Standardized Precipitation Index, whether the calibration/validation 
years represented normal years in the catchment (considering the historical period of 1990 to 
2014). This evaluation showed that both calibration and validation periods are normal and 
reflect the annual rainfall pattern in the catchment for the period 1990–2014 (Fig.1_ 
supplementary materials in Yira et al. 2016 shows this evaluation). Therefore, the model 
parameters for the catchment are expected to be reliable for a long period.  
-Analyzing climatic water balance and water energy budget solely falls short in the assessment 
of CC impact on water resources in the catchment if not supported by good discharge 
information. As shown throughout the discussion, information about ETp and Precipitation do 
not suffice to explain the hydrological behavior of the catchment. It was shown that the annual 
ETp is not correlated to the annual discharge (ETp>> Eta + Discharge). Although discharge is 
controlled by precipitation, not only the amount is important but also the annual distribution 
(pattern). Inferring the hydrological behavior of the catchment based on ETp and Precipitation is 
therefore rendered inapplicable if the temporal distributions of both variables are not thoroughly 



combined with the ecosystem within the catchment, and this is made possible by the application 
of the hydrological simulation model. 
 
4. The paper includes considerable inconsistencies in particular concerning the interpretation of 
the results which need to be revised. 
In the conclusions the authors correctly conclude:  p.   14,  L. 438ff:  "(..)   the lack of agreement 
among the models with regard to the projected precipitation change signal creates a 
considerable uncertainty about how the catchment discharge will evolve by 2050s.  As 
discharge in the catchment is strongly determined by precipitation, no clear trend in future 
development of water resources can be concluded due to the high variability of the different 
climate models and scenarios.  Therefore, potential increase and decrease of future discharge 
have to be considered in climate change adaptation strategies in the region." And further in the 
Discussion:  p.  10, L. 315:  "(..)  individual model errors of opposite sign cancel each other out 
(..).  (..)  the climate models ensemble means should not be considered as an expected 
outcome." 
As correctly concluded, the results, in particular for RCM 8.5, are too uncertain to give any 
direction for future hydrological development and, hence, the mean values over the climate 
models cannot be used to give a direction of future changes. These statements are not 
consistently kept over the article, including the Abstract. 
As example: Discussion: P. 13, L. 413ff: "The climate models ensemble means projects a 
precipitation increase about 1.5% under RCP8.5 with a resulting discharge decrease of 2%. 
This indicates that the catchment ecosystem is able to optimize the use of water and energy 
available in the environment (...)." Abstract: p.1, L. 24f: "The RCMs-GCMs ensemble average 
suggests a +7% increase in annual discharge under RCP4.5 and a -2% decrease under 
RCP8.5. (..) Therefore, potential increase and decrease of future discharge has to be 
considered in climate adaptation strategies in the catchment." 
Hence, also the Abstract of the article should be revised according to the uncertainty of the 
results and the conclusions as given in the Conclusion section. 
Thanks for pointed out these somewhat misleading/unclear formulations. We changed the 
manuscript accordingly. We rewrote the referred sentences, and the focus is now made on the 
divergence of projected signals between RCMs instead of their average. See L23-26, L433-435 
of the revised manuscript. 
 
 
5. In the Discussion the authors state:  p.12, 362ff:  " In the view of the general good simulation 
of historical discharge for the climate models ensemble, it is worth noting that running the 
hydrological model with simulated climate data of one node (..)  has reasonably bridged the 
discrepancy between RCMs-GCMs data resolution and hydrological modeling domain.  
Therefore, the approach can be considered as eligible for climate change impact assessment 
for small scale catchments." 
If I understood the methodology correctly,  there were no hydrological measurement data  
available  for  the  historical  period,  so  the  runoff,  which  was  simulated  with  the input data 
from one weather station, was compared to the runoff simulated with one node of the bias-
corrected historical runs of the GCMs-RCMs.  As the bias correction for the climate models was 
carried out using this weather station data, the hydrological input data certainly turn out to be 
very similar as they have been adjusted by the bias correction (by definition!). Hence, this 
"proof" seems to me redundant and not convincing. 
It has to be pointed out that; the “one node at a time” method is referred to be an approach for 
CC impact assessment for small catchments in which interpolation methods create issues 
related to the representation of climate variables (particularly precipitation). This section was 
modified in the manuscript (see L380-388). In regions with higher data availability, historical 



RCM-based discharges should necessarily be compared to historical observed discharge, which 
could not be done in the current study. 
 
6. Concerning the conclusions for the additional value of bias correction when analyzing the 
relative changes between the future and reference period which was one of the main objectives 
of the study: p. 3, L. 87: "[this study] has the following objectives: (…)(v) investigate the effect 
and necessity of bias correction on the detected signal." 
In the Introduction the authors cite p.  2, L. 59 "unless the precipitation from climate models are 
bias corrected, results from hydrological simulations are unrealistic": This statement  has  been  
shown  not  to  be  necessary  true  if  the  relative  changes  of  the climate signal are used as 
examined by e.g.  Hagemann et al.  2011 and Muerth et al.  2013, which are cited in p.5, L. 163. 
As one main objective of the study, the pro and cons of bias correction should be discussed 
more extensively in the introduction and/or discussion. 
To evaluate the impact of bias correction, the hydrological model was additionally run with non 
bias corrected future climate of one single climate model which was randomly selected among 
the 6 RCMs-GCMs (p. 5, L. 163). As this analysis is mentioned as one main objective of this 
study, I suggest carrying out this analysis for the other 5 climate models to get more reliable 
results on this topic.  Otherwise the conclusions should at least be toned down (e.g. "This result 
supports further studies, which have shown") and this topic should not be headed as main 
objective of this study. [Conclusions p.14, 
L. 432: "This result indicates that it is safe to perform bias correction; it also points out the "non-
necessity" of performing bias correction in order to detect future discharge change signal in the 
catchment."] 
We do agree with Referee2 regarding several aspects addressed in this comment. The 
manuscript was revised accordingly: 
- the bias correction is no more headed as main objective and we rewrote the conclusion on this 
topic as suggested (please see L94-95). 
- "unless the precipitation from climate models are bias corrected, results from hydrological 
simulations are unrealistic": This statement was toned down as suggested. The findings of 
Hagemann et al. 2011 and Muerth et al. 2013 did show that if the relative changes of the climate 
signal are used, hydrological impact assessment with not corrected data can still yield valid 
results. This comment was incorporated in the manuscript at L61 and L457-458. 
 
Minor comments: 
p. 3, L. 84 - please correct "echohydrologocal" 
Done (See L89) 
 
p.  4,  L. 123f:  "(..)  data resolution (0.44,  about 50 * 50 km2) and the hydrological modeling 
domain (about 18 * 11 km2)" Please correct "km2" to "km". 
Done (See L131-132) 
 
p.  9, L. 268:  "The intra-annual change in discharge appears strongly determined by the 
precipitation change signal (Fig. 8)." Fig. 8 shows monthly discharge changes but not the 
reason for these changes. Reasons for these changes in discharge could also be e.g. higher 
evaporative demand due to higher temperatures. 
This was corrected to “The intra-annual change in discharge (Fig. 8) appears strongly 
determined by the precipitation change signal (Fig. 6)”. (Please see L277-278). 
 
p. 10, L. 289: please correct "Eco-hydrologic" 
Done (Please see L300) 
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Abstract. This study evaluates climate change impacts on water resources using an ensemble of six Regional 

Climate Models (RCMs)-Global Climate Models (GCMs) in the Dano catchment (Burkina Faso). The applied 

climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment 

(CORDEX-Africa) project. 

After evaluation of the historical runs of the climate models ensemble, a statistical bias correction (Empirical 15 

Quantile Mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the 

ensemble of RCMs-GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to 

simulate water balance components. 

The mean hydrological and climate variables for two periods (1971-2000 and 2021-2050) were compared to assess 

the potential impact of climate change on water resources up to the middle of the twenty-first century under two 20 

greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results 

indicate: (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCMs-GCMs 

ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021-2050; (iii) 

the applied bias correction method only affected the magnitude of climate change signal (iiiiv) individual climate 

models results lead to opposite discharge change signals; (iv) the results for the RCMs-GCMs ensemble are too 25 

uncertain to give any clear direction for future hydrological developmentthe RCMs-GCMs ensemble average 

suggests a +7 % increase in annual discharge under RCP4.5 and a -2 % decrease under RCP8.5; (v) the applied bias 

correction method only affected the magnitude of climate change signal. Therefore, potential increase and decrease 

of future discharge has to be considered in climate change adaptation strategies in the catchment. The results further 

underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate 30 

change on water resources in the catchment and on the other hand the high uncertainty associated with climate 

projections for the West African region. A water-energy budget An ecohydrological analysis provides further insight 

into the behavior of the catchment. 
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1. Introduction 35 

Development of adaptation strategies to deal with potential impacts of climate change on hydrological systems is a 

considerable challenge for water resources management (Muerth et al., 2013; Piani et al., 2010). Besides being 

highly exposed to climate change, the West African region presents a low adaptive capacity (IPCC, 2014). 

Projections for the late 21st century suggest severe consequences of climate change on water resources for the 

region. This includes an increased risk of water stress and flood (Sylla et al., 2015; Oyerinde et al., 2014), and 40 

significant change in river discharge regimes (Aich et al., 2014; Ardoin-Bardin et al., 2009; Mbaye et al., 2015). 

Rising temperatures, commonly acknowledged by regional climate models (RCMs) and global climate models 

(GCMs), are expected to intensify the hydrological cycle due to an increased water holding capacity of the 

atmosphere, leading to an increased amount of renewable fresh water resources (Piani et al., 2010). Another 

consequence of temperature increase ascertained by Piani et al. (2010) for some regions, is the decrease in 45 

precipitation associated with the intensification of the seasonal cycle and the frequency of extreme events. These 

opposite trends imply that high uncertainties are associated with predicted rising temperatures’ impact on the 

hydrological cycle for some regions (Salack et al., 2015). 

Confidence in RCMs and GCMs over West Africa relies on their ability to simulate the West African monsoon 

(WAM) precipitation (Klein et al., 2015). However, simulating the WAM remains challenging for both RCMs and 50 

GCMs (Cook, 2008; Druyan et al., 2009; Paeth et al., 2011; Ruti et al., 2011), as each RCM and GCM produces a 

version of the WAM, but with some distortion of structure and/or timing. Some GCMs (e.g. CSIRO, GISS_ER , 

ECHAM5, CCSM) do not generate the WAM at all (Cook and Vizy, 2006). Part of this divergence is related to: (i) 

imperfect characterization of tropical precipitation systems; (ii) uncertain future greenhouse gas forcing; (iii) 

scarcity of observations over West Africa; and (iv) natural climate variability (Cook and Vizy, 2006; Foley, 55 

2010).The hydrological climate change signal is therefore unclear for the region. Several authors (Kasei, 2009; 

Paeth et al., 2011; Salack et al., 2015) observed diverging precipitation signals among models. Moreover, several 

models fail to accurately reproduce the historical rainfall onset, maxima, pattern, and amount of the region (Nikulin 

et al., 2012; Ardoin-Bardin et al., 2009). 

Despite significant advances, outputs of GCMs and RCMs are still characterized by biases that challenge their direct 60 

use in climate change impact assessment (Ehret et al., 2012). Indeed, unless the precipitation from climate models 

are bias corrected, results from hydrological simulations are often reported to be unrealistic and may lead to 

incorrect impact assessments (Johnson and Sharma, 2015; Teutschbein and Seibert, 2012; Ahmed et al., 2013). 

However, correction of climate model based simulation results does not ensure physical consistency (Muerth et al., 

2013) and may affect the signal of climate change for specific regions as reported by  Hagemann et al. (2011). 65 

Consequently, simulated hydrological variables using bias corrected data need to be explored in climate change 

impact assessment. 
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There is essential consensus on the necessity of performing multi (climate)-model assessments to estimate the 

response of the West African climate to global change (Sylla et al., 2015). Accordingly, several studies (e.g. Chen et 

al., 2013; Zhang et al., 2011) emphasize the importance of using multiple climate models to account for uncertainty 70 

when assessing climate change impacts on water resources. Taking advantage of the results of the COordinated 

Regional climate Downscaling Experiment (CORDEX-Africa) project, this study evaluates potential climate change 

impacts on water resources using an ensemble of six RCMs-GCMs in the Dano catchment in Burkina Faso. The 

catchment experiences seasonally limited water availability, and like other catchments of the region, it has 

experienced the severe droughts of the 1970s (Kasei et al., 2009) which resulted in a decline of water flow in many 75 

West African catchments. 

A few studies have already investigated the impacts of projected climate change on water resources in West Africa 

(see Roudier et al. 2014 for a review). Most Many of these studies have used an approach based on hydrological 

models driven by a single RCM or GCM data set (e.g. Mbaye et al., 2015; Cornelissen et al., 2013; Bossa et al., 

2014; Bossa et al., 2012). Therefore, uncertainty related to the choice of the climate model was not explicitly 80 

evaluated. However, a limitedother number of studies have used multi-climate model data sets (Kasei, 2009; 

Ruelland et al., 2012, Aich et al. 2016); most of these studies have resulted in a diverging projected hydrological 

change signal. Climate model outputs have often been bias corrected to fit the historical climate variables and then 

used as input for hydrological models but few have investigated the necessity of performing such corrections in 

detecting the signal of future climate change impacts on water resources. 85 

The current study aims to investigate the future climate change impacts on the hydrology of the Dano catchment in 

Burkina Faso, thus contributing to the management of water resources in the region. Besides the small scale of the 

catchment that implies addressing scale issues, the novelty of the study includes the use of an ensemble of climate 

simulations and an echohydrologicala water-energy budget analysis. Specifically, it has the following objectives: (i) 

evaluate the historical runs of six RCMs-GCMs at the catchment scale; (ii) analyze the climate change signal for the 90 

future period of 2021-2050 compared to the reference period of 1971-2000; (iii) evaluate the ability of the climate 

models to reproduce the historical discharge, (iii) assess the impacts of climate change on the hydrology of the 

catchment by the middle of the 21
st
 century; (iv) perform an ecohydrological analysis of the catchment under climate 

change. evaluate the uncertainty related to the projected hydrological change signal; and (v) investigate the effect 

and necessity of bias correction on the detected signal. 95 

2. Materials and methods 

2.1. Study area 

The study was carried out in Dano catchment covering a total area of 195 km
2
 in the Ioba province of Southwestern 

Burkina Faso (Fig. 1). The catchment is one of the study areas of the WASCAL project (West African Science 
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Service Center on Climate Change and Adapted Land Use, www.wascal.org); whose main target is to increase 100 

resilience of human and environmental systems to climate change.  

The major land uses in the catchment include shifting cultivation which accounts for one third of the catchment area; 

natural vegetation albeit converted into agricultural and fallow lands form  part of Sudanian region characterized by 

wooded, scrubby savannah and abundant annual grasses. Sorghum (Sorghum bicolor), millet (Pennisetum glaucum), 

cotton (Gossypium hirsutum), maize (Zea mays), cowpeas (Vigna unguiculata) and groundnut (Arachidis hypogaea) 105 

are the major crops cultivated in the catchment. 

The catchment is characterized by a flat landscape with a mean slope of 2.9 % and mean altitude of 295 m above sea 

level. According to Schmengler (2011), mean annual temperature of 28.6 
0
C was recorded while mean annual 

rainfall ranged from 800 mm – 1200 m for the period of 1951- 2005. The catchment receives monsoonal rains with a 

dry season occurring in the months of November to April while the wet season being experienced in the months of 110 

July to September. This kind of rainfall pattern limits water availability especially in the dry season hence 

communities in the catchment are vulnerable to water scarcity since they heavily rely on surface water. 

Plinthosol characterized by a plinthite subsurface layer in the upper first meter of the soil profile accounts for 73.1 

% of the soil types in the catchment, other soil types found within the catchment include gleysol, cambisol, lixisol, 

leptosol and stagnosol (WRB, 2006). 115 

2.2. Climate data 

Observed mean daily temperature and daily precipitation used in the study were collected from the national 

meteorological service of Burkina Faso (DGM). The dataset covers the reference period of 1971-2000. Although the 

national observation network includes several rainfall gauges and synoptic stations, solely the data of the Dano 

station were used as it is located in the study area. 120 

An ensemble of six RCM-GCM datasets is exploited in the study (Table 1). The RCM-GCM simulations were 

performed in the framework of the CORDEX-Africa project. The datasets were produced by three RCM groups 

(CCLM: Climate Limited-area Modelling Community, Germany; RACMO22: Royal Netherlands Meteorological 

Institute, Netherlands; HIRHAM5: Alfred Wegener Institute, Germany) using the boundary conditions of four 

GCMs (CNRM-CM5, EC-EARTH, ESM-LR, NorESM-M). Each dataset consists of historical runs and projections 125 

based on the emission scenarios RCP4.5 and RCP8.5 (Moss et al., 2010). The retrieved data (precipitation and 

temperature) range form 1971-2000 for the historical runs and 2021-2050 for the RCPs. An extent of 20 nodes of the 

African CORDEX domain, surrounding the catchment, was delineated to simulate the catchment’s climate and 

consider climate variability in the catchment region (Fig. 1 B). The climate variables (historical and projected) of the 

extent of 20 nodes were used as inputs for the hydrological simulation model.  130 

Due to the discrepancy between the RCM-GCM data resolution (0.44°, about 50 * 50 km
2
) and the hydrological 

modeling domain (about 18 * 11 km
2
) the data of each node were separately used as climate input for the 

hydrological simulation model. Therefore, for each period (historical and projected scenarios) 20 simulations 

http://www.wascal.org/
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corresponding to the 20 nodes are performed per RCM-GCM. Monthly water balance for each RCM-GCM is then 

calculated as arithmetic mean.  135 

2.3. Bias correction of precipitation data 

The RCMs-GCMs ensemble was evaluated to get an estimate of the historical simulated variables for the catchment 

by comparing RCMs-GCMs based simulations of historical climate variables to the observations provided by the 

National Meteorological Service (DGM). As presented in section 3.1, whereas temperature simulated by the models 

ensemble enveloped the observed temperature with moderate deviation, precipitation simulated by individual RCM-140 

GCM exhibited biases such as overestimation of annual precipitation as well as misrepresentation of the timing of 

the rainy season. A precipitation bias correction was therefore applied to the six RCMs-GCMs following the non-

parametric quantile mapping using the empirical quantiles method (Gudmundsson et al.; 2012).  For each member, a 

transfer function was derived using observed and modeled precipitation for the period of 1971-2000; afterwards the 

transfer function was applied to the projected climate scenarios (period 2021-2050). 145 

2.4. Hydrological modeling 

Observed and RCMs-GCMs based (historical runs and projections) data were used as climate input for version 

9.05.04 of the Water flow and balance Simulation Model (WaSiM) (Schulla, 2014). WaSiM is a deterministic and 

spatially distributed model, which uses mainly physically based approaches to describe hydrological processes. The 

model configuration as applied in this study is shown in Table 2. Schulla (2014) gives more details of the model 150 

structure and processes in the Model Description Manual. 

A previous study confirmed the suitability of WaSiM to model the hydrology of the Dano catchment. Details of the 

model setup and parameterization are available in that study (Yira et al., 2016). Briefly summarized, the model was 

calibrated and validated using discharge, soil moisture and groundwater depth for the period of 2011-2014. Daily 

time steps and a regular raster-cell size of 90 m were used. Minimum values of 0.7 for Pearson product-moment-155 

correlation-coefficient, Nash Sutcliffe Efficiency (Nash and Sutcliffe, 1970) and Kling-Gupta Efficiency (Gupta et 

al., 2009; Kling et al., 2012) were achieved during the calibration and validation using observed discharge. Soil 

moisture and groundwater dynamics were also well simulated by the model (R
2 

>0.6). Therefore, no further model 

calibration was done in the current study. 

No hydrologic observations (discharge, soil moisture and groundwater level) are available for the reference period 160 

(1971-2000) in the catchment. The expected climate change for an RCM-GCM is therefore expressed as the relative 

difference between simulated hydrological variables under reference period (1971-2000) and future period (2021-

2050). 

Nevertheless, discharge simulated with RCM-GCM historical runs (bias corrected and not bias corrected) were 

compared to the discharge obtained with observed historical climate data. RCM-GCM based simulations able to 165 

reproduce the runoff regime of the past were used for climate change impact assessment. These comparison runs 
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(performed with CCLM-ESM) showed that bias correction was necessary for RCMs-GCMs based simulations to 

reproduce the historical discharge regime. Hydrological variables simulated under historical (1971-2000) and 

projected (2021-2050) climate conditions were therefore compared with bias corrected RCMs-GCMs data. To 

integrate the potential effect of bias correction on climate change signal as raised by different authors (e.g. Muerth et 170 

al., 2013; Ehret et al., 2012; Hagemann et al., 2011), the hydrological model was also run with not bias corrected 

future climate for CCLM-ESM (which was randomly selected among the 6 RCMs-GCMs). 

2.5. Ecohydrologic analysis 

A concept of water-energy budget (Tomer and Schilling, 2009; Milne et al., 2002) was applied to estimate the 

effectiveness of water and energy use by the catchment as it undergoes climate change. While experiencing climate 175 

change, a trend towards the optimization of total unused water-Pex (1) and energy-Eex (2) existing in the environment 

is usually observed. Plotting Pex against Eex allows for determining the ecohydrologic status of the catchment. The 

climate change signal can therefore be detected by the shift of this status. The direction of the shift indicates whether 

the catchment experienced water stress or increased humidity. The approach was used to test its validity in analyzing 

the interplay between temperature increase and precipitation change as projected by the RCMs-GCMs ensemble. 180 

 

𝑃𝑒𝑥 = (𝑃 − 𝐸𝑇𝑎) 𝑃⁄  

 

(1) 

𝐸𝑒𝑥 = (𝐸𝑇𝑝 − 𝐸𝑇𝑎) 𝐸𝑇𝑝⁄  (2) 

 

Where P is precipitation, ETa and ETp refer to actual and potential evapotranspiration respectively. 

2.6. Assessment criteria 

A set of evaluation measures was used to analyze the RCMs-GCMs historical runs, to assess model performance and 

to estimate the effects of different climate scenarios on hydrological variables:  185 

(i) P-Factor, measures the percentage of observed climate data covered by the RCMs-GCMs ensemble 

historical runs; 

(ii) the R-factor, indicates for an observation series, how wide the range between minimum RCM-GCM 

and maximum RCM-GCM for precipitation and temperature is, compared to the observation:  

𝑅 − 𝑓𝑎𝑐𝑡𝑜𝑟 (𝑉𝑎𝑟) =  
1

𝑛𝜎𝑉𝑎𝑟𝑜𝑏𝑠

 ∑(𝑉𝑎𝑟𝑆𝑖𝑚𝑎𝑥
− 𝑉𝑎𝑟𝑆𝑖𝑚𝑖𝑛

)

𝑛

𝑙=1

   
 (3) 

 

Where Var is the climate variable (e.g. precipitation), n refers to the observations data points;  𝜎 is the standard 190 

deviation, obs refers to observation, and 𝑆𝑖𝑚𝑎𝑥 and 𝑆𝑖𝑚𝑖𝑛 are respectively the maximum and minimum values of the 

RCMs-GCMs ensemble. 
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(iii) the normalized root-mean-square deviation (NRMSD), expresses the deviation of each RCM-GCM 

based precipitation and temperature from the observations; 195 

 

(iv) the Pearson product-moment-correlation-coefficient (R
2
), the Nash Sutcliffe Efficiency (NSE) (Nash 

and Sutcliffe, 1970) and the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009; Kling et al., 2012) 

assess the RCM-GCM based discharge simulations ability to reproduce discharge computed using 

observed climate data; 200 

 

(v) change signal (∆) in climate and hydrological variables (precipitation, temperature and discharge) 

expresses the difference between projected and historical values (4); and 

∆𝑉𝑎𝑟 =
(𝑉𝑎𝑟𝑃𝑟𝑜𝑗 − 𝑉𝑎𝑟𝑅𝑒𝑓) × 100

𝑉𝑎𝑟𝑅𝑒𝑓

 
(4) 

 

 

Where 𝑉𝑎𝑟 is the evaluated variable (e.g. discharge), Proj = the projected period (2021-2050 under RCP4.5 and 205 

RCP8.5) and Ref = Reference or historical period (1971-2000). 

(vi) the Wilcoxon (1945) rank-sum test was used to compare discharge change signal with bias corrected 

and not bias corrected precipitation data (for CCLM-ESM) following Muerth et al. (2013). The test 

evaluated the null hypothesis: “discharge change signal under bias corrected CCLM-ESM data equals 

discharge change signal under not bias corrected CCLM-ESM data”. The rejection of the test at 5 % 210 

implies that future discharge change under bias correction and no bias correction are significantly 

different. If the test is not rejected, both discharge change under bias correction and change under not 

bias correction yield the same result, and thus bias correction do not alter the climate change signal on 

projected discharge. 

3. Results 215 

3.1. Historical runs analysis 

The comparison between RCM-GCM historical runs and observations for temperature and precipitation is done for 

the reference period of 1971-2000 for average monthly values. The correlation coefficient is plotted against the 

NRMSD (Fig. 2) for a cross-comparison between RCMs-GCMs in order to assess the relative ability of each RCM-

GCM to represent historical climate conditions in the catchment. The correlation coefficient for the RCM-GCM 220 

ensemble is in general higher than 0.7 for both precipitation and temperature. The highest coefficients (0.96) are 

scored by CCLM-ESM for temperature and HIRAM-NorESM for precipitation. The RCMs-GCMs ensemble mean 

outscores five members of the RCMs-GCMs ensemble with regard to temperature and precipitation (Fig. 2). 
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The RCMs-GCMs ensemble shows a clear deviation from observed precipitation compared to temperature (Fig. 2). 

HIRAM-EARTH and CCLM-EARTH present the lowest deviation for temperature and precipitation respectively. 225 

The RCMs-GCMs ensemble mean outscores four out of six RCMs-GCMs for temperature and precipitation with 

regards to the deviation from observed data. 

Fig. 3 (A and B) shows a trend towards an overestimation of annual precipitation throughout the reference period for 

the RCMs-GCMs ensemble when precipitation data are not bias corrected (UC). Although the RCMs-GCMs 

ensemble presents a large dispersion (R-factor = 4.3) only 50 % (P-factor = 0.5) of observed precipitation is covered 230 

by the RCMs-GCMs ensemble. After bias correction (BC), the RCMs-GCMs ensemble agrees in general with the 

observed precipitation (P-factor = 0.8), moreover the dispersion of climate models based precipitation decreases (R-

factor = 3.2). 

The mean annual precipitation pattern is in general well captured by all RCMs-GCMs (Fig. 3 C and DFig. 4). 

However, the climate models ensemble, when not bias corrected, covers only 50 % of monthly precipitation despite 235 

a large dispersion (Fig. 3 CFig. 4 UC). After bias correction, the agreement between RCMs-GCMs based 

precipitation and observation is considerably improved (Fig. 3 DFig. 4 BC); and the uncertainty band of the climate 

model is considerably reduced (R-factor = 0.1). However, a slight positive bias is still presented by the climate 

models ensemble.  

Fig. 4 shows that the RCMs-GCMs ensemble fully captures the annual temperature pattern (P-factor= 100 %). 240 

However, a gap of up to -4 °C between some climate models and observations is noted. This translates into an R-

factor reaching 8.2. On average, RACMO-EARTH shows an underestimation of temperatures throughout the year, 

whereas HIRAM-NorESM indicates an opposite trend. 

3.2. Climate change signal 

The RCMs-GCMs ensemble exhibits a mixed annual precipitation change signal between reference period (1971-245 

2000) and future period (2021-2050) (Table 3). CCLM-CNRM, RAMCO-EARTH and HIRHAM-NorESM project a 

precipitation increase of about 2.5 to 21 % whereas CCLM-ESM and CCLM-EARTH indicate a decrease of 3 to 11 

%. Bias correction has a minor impact on these signals, as the magnitude of projected precipitation increase ranges 

from 1 to 18 % and the decrease is around 5-13 % after bias correction. 

A much more complex intra-annual precipitation change signal is projected by the climate models ensemble (Fig. 5). 250 

CCLM-CNRM and HIRHAM-NorESM, which projected an increased annual precipitation, are characterized by an 

increased rainfall from May to June followed by a decreased rainfall in August. RAMCO-EARTH shows an 

increased rainfall throughout the season except in July. The decrease in annual precipitation projected by CCLM-

ESM and CCLM-EARTH is consistent throughout the entire season. The climate model ensemble consistently 

projects mean monthly temperature increase of about 0.1 to 2.3 °C under RCP4.5 and 0.6 to 2.5 °C under RCP8.5 255 

leading to an increase of potential evapotranspiration for the climate models ensemble. 
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3.3. Historical discharge 

RCMs-GCMs ensemble based discharges are compared to discharge simulated using observed climate data to 

evaluate the climate models ability to reproduce the historical discharge regime over the reference period (Fig. 6). 

Accordingly, performances (R
2
, NSE and KGE) achieved by the climate models are presented in Table 4. Fig. 6 (a) 260 

shows good agreement between (bias corrected) climate models based discharge and observation based discharge, 

with a trend towards discharge overestimation for some climate models (RACMO-EARTH, CCLM-EARTH and 

HIRAM-EARTH). All climate models show good statistical quality measures after bias correction. Bias correction 

impact on simulated historical discharge is shown in Fig. 6 (b) for CCLM-ESM. As an example, simulated discharge 

for CCLM-ESM with not bias corrected data leads to a misrepresentation of the discharge regime, as peak flow is 265 

shifted from August to September and discharge is highly overestimated. Moreover, poor quality measures are 

achieved by CCLM-ESM with not bias corrected data (Table 4). 

3.4. Discharge change 

Projected change in annual discharge for the period of 2021-2050 compared to the reference period is presented in 

Table 5. Alike for precipitation, a mixed annual discharge change signal is projected by the climate model ensemble. 270 

It projects: (i) more than 15 % decrease in annual discharge, which is a consequence of relative decrease in 

precipitation and a consistent increase in potential evapotranspiration for CCLM-ESM, CCLM-EARTH and 

HIRHAM-EARTH (RCP8.5); (ii) about 5 % decreased in annual discharge for the RCMs-GCMs ensemble mean 

under RCP8.5 which is the consequence of a slight increase in precipitation counterbalanced by a high increase in 

potential evapotranspiration; (iii) low to very high (3 to 50 %) increase in total discharge due to increased 275 

precipitation not counterbalanced by the evapotranspiration for CCLM-CNRM, RAMCO-EARTH, HIRHAM-

NorESM, HIRHAM-EARTH (RCP4.5) and the RCMs ensemble mean (RCP4.5). The intra-annual change in 

discharge (Fig. 7) appears strongly determined by the precipitation change signal (Fig. 5)The intra-annual change in 

discharge appears strongly determined by the precipitation change signal (Fig. 8). The divergence between climate 

models is reflected through a large amount of uncertainty associated with the projected annual discharge (Fig. 8). 280 

Under RCP4.5, the discharge change signal for CCLM-ESM is more pronounced with bias corrected precipitation 

data compared to not bias corrected. Indeed, the projected annual discharge equals -12 % and -5 % with and without 

bias correction respectively (Table 5). Under RCP8.5, bias correction impact is relatively low. The Wilcoxon (1945) 

rank-sum, testing the significance of the difference between bias corrected and not bias corrected discharge change 

signal, indicates that the two signals are not different at p-level equals 0.05. A p-value of the Wilcoxon rank-sum test 285 

equals 0.51 and 0.7 is required under RCP4.5 and RCP8.5 respectively to reject the null hypothesis (H0: discharge 

change with bias corrected CCLM-ESM data = discharge change with not bias corrected CCLM-ESM data). Hence, 

the bias correction impact on discharge change signal alteration can be considered negligible. 

The sensitivity of the catchment discharge to precipitation and temperature change is tested by plotting, for each 

member of the climate models ensemble, predicted precipitation and temperature change against predicted discharge 290 

change. The result shows that change in total discharge cannot be strongly related to change in potential 
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evapotranspiration (Fig. 9 a). However, a high sensitivity of river discharge to precipitation change (Fig. 9 b) is 

observed. Under scenario RCP4.5, an increase of +5 % in precipitation leads to an increase of discharge of about 

+12.5 %, whereas a decreased precipitation of the same order leads to a decrease of discharge of -13 %. The same 

simulations under RCP8.5 yield in a +8.3 % discharge increase and a -14.7 % discharge decrease. Interestingly, 295 

under RCP8.5 and assuming comparable precipitation between reference and future periods, a discharge decrease of 

about -3.2 % should be expected (Fig. 9 b).  

3.5. Ecohydrologic status 

The Eco-hydrologic status of the catchment for the reference period and future scenarios RCP4.5 and RCP8.5 is 

shown in Fig. 10 to illustrate the use of energy and water by the catchment while undergoing temperature increase 300 

and precipitation change. Moving left to right along “Excess water-Pex” axis indicates that the environmental 

conditions in the catchment lead to an increase in discharge (CCLM-CNRM, RAMCO-EARTH and HIRHAM-

NorESM). Reduction of discharge is experienced when moving the other way round (CCLM-ESM and CCLM-

EARTH). 

Moving upwards along “Excess evaporative demand-Eex” implies drier environmental conditions due to an increase 305 

in evaporative demand and soil water deficit. Except for HIRAM-EARTH, all the climate models project drier 

conditions (increase in Excess evaporative demand) under RCP4.5 as a result of an increased temperature not 

compensated by the amount and/or timing of precipitation. Increased evaporative demand, with marginally 

aggravated drier conditions, is shown by CCLM-ESM, HIRAM-NorESM, CCLM-EARTH and RCMs-GCMs 

ensemble mean under RCP8.5. 310 

The ecohydrologic status of the catchment, irrespective of climate model and emission scenario, projects a shift for 

the period of 2021-2050 compared to the reference period. Therefore, differences in climate conditions between the 

two periods influence the hydrology (discharge, evapotranspiration, precipitation) of the catchment. 

4. Discussion 

4.1. Historical runs analysis 315 

All GCMs and RCMs applied in this study have proved in previous works to fairly reproduce the climatology of 

West Africa (Cook and Vizy, 2006; Dosio et al., 2015; Gbobaniyi et al., 2014; Paeth et al., 2011). The RCMs-GCMs 

ensemble reasonably captures the annual cycle of temperatures, and following several authors (e.g. Buontempo et 

al., 2014; Waongo et al., 2015) no bias correction was performed for this climate variable. The systematic positive 

bias and large deviation from observed precipitation exhibited by the climate models ensemble in this study is also 320 

reported by several authors (Nikulin et al., 2012; Paeth et al., 2011) for the southern Sahel Zone. This deviation 

motivated the bias correction of precipitation. After correction, the positive bias is significantly reduced for all 

individual climate models and the improvement is clearly visible.  
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In general, the RCMs-GCMs ensemble mean outperforms individual climate models for both temperature and 

precipitation. This is due to the fact that individual model errors of opposite sign cancel each other out (Nikulin et 325 

al., 2012; Paeth et al., 2011). However, the climate models ensemble mean should not be considered as an expected 

outcome (Nikulin et al., 2012). Rather considering a large ensemble of climate models should be seen as necessary 

to properly perform future climate impact studies in the catchment (Gbobaniyi et al., 2014) and to assess the range 

of potential future hydrological status required for adaptation and management strategies. 

4.2. Climate change signal 330 

Compared to the period of 1971-2000, a clear temperature increase signal is projected for 2021-2050 by the six 

members of the RCMs-GCMs ensemble in the catchment. This feature is common to all multi-model ensemble 

studies performed in the region (IPCC, 2014). It is further in line with the historical temperature change observed in 

the region as reported by Waongo (2015) who used the same observation data set applied in the current study. He 

reported an average +0.31°C/decade and +0.17°C/decade increase for the minimum and maximum temperature 335 

respectively for the region considering the period of 1960-2010. However, the climate models ensemble does not 

agree on the projected precipitation change signal as wetter (RAMCO-EARTH), drier (CCLM-ESM and CCLM-

EARTH) as well as mixed (CCLM-CNRM, HIRHAM-NorESM and HIRAM-EARTH) trends are shown by the 

individual model. It is worth noting that the Dano catchment is located in a region where the “Coupled Model 

Intercomparison Project Phase 5 (CMIP5)” models showed divergent precipitation change for the mid-21
st
 century 340 

(IPCC, 2014).  

The precipitation change projected by CCLM-CNRM and HIRHAM-NorESM, wetter conditions associated with 

drought during specific months,  is consistent with the change reported by Patricola and Cook (2009) for the West 

African region. They highlighted an increase in precipitation in general, but also noted drier June and July months. 

A similar result is achieved by Kunstmann et al. (2008) in the Volta Basin, albeit with a decrease in precipitation at 345 

the beginning of rainy season in April. 

Precipitation change projected by CCLM-ESM and CCLM-EARTH is consistent with the decrease in June-July-

August season noted by Buontempo et al. (2014). A reduction in precipitation during the rainy season is also 

achieved with RegCM3, driven by ECHAM5  in the Niger River Basin (Oguntunde and Abiodun, 2012). Up to 20.3 

% reduction of precipitation in some months is projected, but an increased precipitation during the dry season is also 350 

expected. 

A critical analysis of CCLM (by Dosio et al., 2015) showed that the model is significantly influenced by the driving 

GCM (including EC-Earth, ESM-LR, and CNRM-CM). Such an analysis was not found for RACMO and HIRAM. 

Overestimation of precipitation is a common feature to the RCMs-GCMs ensemble applied in this study, which 

could suggest that the RCMs inherit the bias from the GCM (Dosio et al., 2015). Consistently with  Paeth et al. 355 

(2011), the relation between RCM trend and driving GCM cannot be observed in the current study as CCLM-

EARTH and RACMO-EARTH clearly show opposite trends although both are driven by EC-EARTH. Differences 
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in projected trends are also highlighted by individual RCMs driven by different GCMs (e.g. CCLM-EARTH and 

CCLM-CNRM). 

4.3. Historical discharge 360 

Compared to the observation based simulation, not bias corrected RCMs-GCMs based discharge is characterized by 

an overestimation of annual discharge. This misrepresentation results from the positive precipitation bias presented 

by the climate models ensemble. The bias correction significantly improves the ability of all members of the climate 

models ensemble to reproduce the historical discharge regime. By comparing simulated discharge for CCLM-ESM 

with bias corrected and not bias corrected precipitation data, it clearly appears that the bias correction methodology 365 

is effective with regards to both discharge regime and total discharge. However, a trend towards discharge 

overestimation was noticed after bias correction of precipitation. This could be related to:  

(i) the relative long period used for the bias correction (1971-2000). As noticed by Piani et al. (2010), 

fragmenting the correction period to decade and deriving several transfer functions can improve the 

bias correction result and further contribute to capture the decadal rainfall change that characterizes the 370 

West African climate; and  

(ii) the fact that temperature was not bias corrected. This led to ETp values that vary from one RCM-GCM 

to another since ETp after Hamon is computed based on temperature values only (Table 2). As a result, 

a relatively large range of potential evapotranspiration is observed for the climate models as an 

ensemble (Table 6). 375 

In view of the general good simulation of historical discharge for the climate models ensemble, it is worth 

noting that running the hydrological model with simulated climate data of one node at a time (section 2.2) has 

reasonably bridged the discrepancy between RCMs-GCMs data resolution and hydrological modeling domain 

(see fig. 1 of supplementary materials for the hydrological spread of the 20 nodes approach and fig.2 of 

supplementary materials for the difference in precipitation between the 20 nodes approach and the standard 3x3 380 

nodes average approach). Therefore, the approach can be considered as eligible for climate change impact 

assessment for small scale catchments in which interpolation methods create issues related to the representation 

of climate variables (particularly precipitation). However, besides regional climate specificities, its reliability 

might depend on the extent of the RCM-domain used to simulate a given catchment climate, which in the case 

of this study was set at 0.44°*4 over 0.44°*5 in order to account for climate spatial variability. In data available 385 

regions, historical RCM-based discharges should necessarily be compared to historical observed discharge, 

which could not be done in the current study. 

4.4. Discharge change 

A mixed annual discharge change signal is projected by the climate models ensemble for the period of 2021-2050. 

These trends agree with several studies in the region (Table 7), although all were carried out at the mesoscale and 390 

macroscale: 
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 Negative trend (CCLM-ESM and CCLM-EARTH). A discharge decrease of 30 to 46 % is reported by 

Ruelland et al. (2012) using MadCM3 and MPI-M in the Bani catchment. A similar trend, resulting from a 

combination of temperature increase and precipitation decrease was reached by Mbaye et al. (2015) using 

the climate model REMO in the Upper Senegal Basin; as did Cornelissen et al. (2013) and Bossa et al. 395 

(2014) in the Térou and the Ouémé catchment respectively. 

 Positive trend (CCLM-CNRM, RAMCO-EARTH and HIRHAM-NorESM). An increase of 38 % in annual 

discharge in the region is reported by Ardoin-Bardin et al. (2009) for the Sassandra catchment (South of the 

Dano catchment) using climate projections of HadCM3-A2. This results from a 11 % increase in 

precipitation not counterbalanced by the 4.5 % increase of potential evapotranspiration. 400 

 Mixed trend (HIRHAM-EARTH and RCMs-GCMs ensemble). A mixed discharge change signal for the 

future period is the common signal projected by multi-climate models studies performed in the West 

African region. In the Niger basin, Aich et al. (2014) simulated change in annual discharge ranging from an 

increase of up to 50 % to a decrease of up to 50 % using an ensemble of five climate models. Similar 

signals are reported by Kasei (2009) who applied two climate models (MM5 and REMO) in the Volta 405 

basin. 

This mixed hydrological change signal is the result of high uncertainties associated to the precipitation change 

projected by climate models for the catchment (IPCC, 2014). The Wilcoxon rank-sum test further indicated that bias 

correction did not significantly alter these discharge change signals. Due to the high sensitivity and nonlinear 

response of the catchment discharge to precipitation, any change in precipitation will have a strong impact on the 410 

discharge; the impact will further be pronounced under RCP8.5 compared to RCP4.5. Irrespective of emission 

scenario, change in potential evapotranspiration alone failed to strongly explain change in annual discharge (Fig. 9 

a); this is partly explained by the fact that the environmental system of the catchment is water limited and not energy 

limited. 

The water limited environment of the catchment might also explain the performance of the hydrological model for 415 

the climate models ensemble despite the non-bias correction of temperature data (up to 4°C gaps between observed 

and simulated temperature were noticed for some months, section 3.1). The annual evaporative demand for the 

climate models ensemble, including RACMO-EARTH which underestimated observed temperature for the reference 

period, exceeds (almost doubles) precipitation (Table 6). In such a system, also characterized by extended periods 

with little to no precipitation (November-May) actual evapotranspiration is strongly controlled by precipitation 420 

(Guswa, 2005; Schenk and Jackson, 2002). Therefore, an increase in ETp is not necessarily translated in an increase 

in ETa as limitation in precipitation (soil moisture) dictates water fluxes (Newman et al., 2006) (e.g. CCLM-

EARTH and CCLM-ESM in Table 6). 

4.5. Ecohydrologic status 

The Eex-Pex plot (Fig. 10) allows accurately displaying climate change impact on the catchment hydrology, as main 425 

water balance components (precipitation, discharge and evapotranspiration) are presented in an integrated manner. 
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The overall ecohydrologic effect of climate change in the catchment, as shown by the plots, is a trend towards drier 

environmental conditions due to increased evaporative demand-Eex. This denotes an increase in potential 

evapotranspiration higher than the increase in actual evapotranspiration. By contrast, change in the proportion of 

precipitation converted to discharge-Pex appears specific to each climate model, with a marginal trend towards 430 

discharge increase for the models ensemble under RCP4.5 and discharge decrease under RCP8.5. 

All Tthe climate models that projects a precipitation increase of about 1.5 % under RCP8.5 with a resulting in an 

discharge decreaseETa of 2 %increase. This indicates that the catchment ecosystem (defined as the vegetation 

within the catchment and provided by the land use and land cover map of the catchment) is able to optimize the use 

of water and energy available in the environment, thus reducing unused water (Pex) with temperature increase 435 

(Caylor et al., 2009). Such an optimization, although not investigated in this study, may lead plants to change the 

allocation of fixed carbon to various tissues and organs (Collins and Bras, 2007; Milne et al., 2002). The suitability 

of the catchment area for the current plant species could also be affected (McClean et al., 2005) by the projected 

climate change. 

In a previous study (Yira et al., 2016), land use in the catchment was found to be characterized by conversion from 440 

savannah to cropland implying the reduction of the vegetation covered fraction, root depth, leaf area index etc. Such 

a land use and land cover change strongly affects the ecohydrologic status of a catchment. Tomer and Schilling 

(2009) highlighted that removal of perennial vegetation leads to an increase of both Excess Water-Pex and Excess 

evaporative demand-Eex. Combining this land use change to climate change impact would therefore on the one hand 

aggravate water stress for plants in the catchment and on the other hand increase the unused water in the catchment. 445 

5. Conclusion 

An ensemble of six RCMs-GCMs data, all produced in the frame of the CORDEX-Africa project, were used as 

input to a hydrological simulation model to investigate climate change impact on water resources in the Dano 

catchment by the mid-21
st
 century. The ability of the RCMs-GCMs ensemble to simulate historical climate and 

discharge was evaluated prior to future climate change impact assessment. 450 

The six climate models fairly reproduce the observed temperature. By contrast, bias correction was necessary for all 

climate models to accurately reproduce observed precipitation and historical discharge. The applied bias correction 

method further proved not to alter the discharge change signal. However, projected discharge change signal with and 

without bias corrected data were tested very comparable. This result indicates that it is safe to perform bias 

correction; it also points out the “non-necessity” of performing bias correction in order to detect future discharge 455 

change signal in the catchment when relative change in climate variables are used as reported by several authors 

(e.g. Muerth et al., 2013; Hagemann et al., 2011) . 

A temperature increase is consistently projected by the models ensemble. This reinforces the commonly 

acknowledged warming signal for the region. However, the lack of agreement among models with regard to the 
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projected precipitation change signal creates a considerable uncertainty about how the catchment discharge will 460 

evolve by 2050. As discharge in the catchment is strongly determined by precipitation, no clear trend in future 

development of water resources can be concluded due to the high variability of the different climate models and 

scenarios. Therefore, potential increase and decrease of future discharge have to be considered in climate change 

adaptation strategies in the region. 

The ecohydrological concept as applied in this study proved to fully capture climate change impact on the catchment 465 

hydrology as both discharge change signal, precipitation and actual/potential evapotranspiration change signal are 

consistently displayed by the Eex-Pex plot. The approach appears suitable to display the results of climate change 

impact on catchment hydrology; it further brings insights about the catchment environmental conditions, which can 

assist in development of climate change adaptation strategies. 

The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the 470 

impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated 

with climate projections for the West African region. Therefore, assessing future climate change impact on water 

resources for the region needs to be continuously updated with the improvement of climate projections. 
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Fig. 1 Location map: (A) Dano catchment, (B) its location in Burkina Faso and (C) in West Africa. (B)  RCMs domain used in 

the study. The topography and land use and land cover map of the RCMs domain are provided as supplementary materials Fig 3 650 

and 4 respectively. 
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Fig. 2 Statistics of RCM-GCM based precipitation and temperature compared to observations (Obs) for the reference period 

(1971-2000). Climate model data are not bias corrected. Statistics are computed based on average monthly values. 655 
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Fig. 3 Historical mean annual (A & B) and mean monthly (C & D) precipitation. UC refers to not bias correct, BC is bias 

corrected. P-factor equals 50, 80, 50 and 50% for A, B, C and D respectively. R-factor equals 4.3, 3.2, 0.6 and 0.11 for A, B, C 

and D respectively. 
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Fig. 4 Monthly air temperature derived from climate models and observations for the reference period (1971-2000). Data are not 

bias corrected. P-factor= 100% and R-factor= 8.2. 
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Fig. 5 Climate change signal of precipitation, air temperature and evapotranspiration between the reference (1971-2000) and the 665 

future (2021-20150) periods under emission scenarios RCP4.5 and RCP8.5. BC is bias corrected and UC refers to not bias 

corrected. 
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Fig. 6 Historical RCMs-GCMs based discharge simulations and observation based discharge: (a) all RCM rainfall are bias 

corrected, (b) simulated discharge with bias corrected and not bias corrected rainfall data are compared for CCLM-ESM. 670 

  

0

25

50

75

100

125

(a) 

Models Min-Max CCLM-CNRM RAMCO-EARTH
CCLM-ESM HIRHAM-NorESM CCLM-EARTH
HIRHAM-EARTH Models Ens. Mean DGM/Observed

0

25

50

75

100

125

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Month 

(b) 

CCLM-ESM_UC CCLM-ESM_BC DGM/Observed



31 
 

  

C
h
an

g
e 

in
 d

is
ch

ar
g
e 

(m
m

) 

 
 

  

  

  

Month 

Fig. 7 Monthly discharge change between the reference period (1971-2000) and the future period (2021-20150) under emission 

scenarios RCP4.5 and RCP8.5. UC refers to not bias corrected. 
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 675 

Fig. 8 Projected annual discharge for the climate models ensemble. Simulations are performed with bias corrected precipitation 

data. 
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Fig. 9 Change in the annual discharge as a response to potential evapotranspiration (a) and precipitation (b) change under 

emission scenarios RCP4.5 and RCP8.5. Projected precipitation, potential evapotranspiration and discharge changes are 680 

calculated comparing period 1971-2000 to period 2021-2050. 
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Table 1 RCM-GCM products and corresponding label used in the study 

RCM Driving GCM RCM Centre/Institute Label used in the study 

CCLM48 CNRM-CM5 CCLMcom CCLM-CNRM 

CCLM48 EC-EARTH CCLMcom CCLM-EARTH 

CCLM48 ESM-LR CCLMcom CCLM-ESM 

HIRHAM5 NorESM1-M DMI HIRHAM-NorESM 

HIRHAM5 EC-EARTH DMI HIRHAM-EARTH 

RACMO22 EC-EARTH KNMI RAMCO-EARTH 
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Table 2 Selected sub models and algorithms of WaSiM. 

Sub model Algorithm 

Potential evapotranspiration Hamon (based on Federer and Lash, 1983) 

Actual evapotranspiration (ET) Suction depended reduction according to Feddes et al. (1978) 

Interception Leaf area index dependent (bucket approach ) 

Infiltration Based on saturated hydraulic conductivity, soil water content and rainfall (Schulla, 2015) 

Unsaturated soil zone Richard’s equation parameterized based on van Genuchten (1980) parameterization of the 

water retention curve 

Discharge routing Kinematic-wave using Manning-Strickler equation 

  690 
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Table 3 Projected rainfall change between reference (1971-2000) and future (2021-2050) period with bias corrected and not bias 

corrected RCM-GCM based simulations. 

 Not bias corrected Bias corrected 

RCM-GCM Historical 

Precipitation 

Precipitation 

change RCP4.5 

Precipitation 

change RCP8.5 

Historical 

precipitation 

Precipitation 

change RCP4.5 

Precipitation 

change RCP8.5 

 (mm) (%) (%) (mm) (%) (%) 

CCLM-CNRM 1150.4 +11.0 +21.2 900.3 +8.6 +18.1 

CCLM-EARTH 1027.5 -11.7 -7.5 917.7 -9.1 -7.5 

CCLM-ESM 1165.2 -3.2 -9.0 911.4 -5.7 -8.1 

HIRHAM-NorESM 1173.3 +2.8 +11.7 911.6 +1.4 +5.3 

HIRHAM-EARTH 1135.0 +12.1 -13.0 933.5 +15.1 -13.5 

RAMCO-EARTH 1292.2 +5.4 +13.2 977.9 +6.2 +16.2 

Models Ens. Mean 1157.3 +3.0 +3.2 925.4 +2.8 +1.8 
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Table 4 Performance of RCMs-GCMs based discharge compared to observation based discharge. Performance is calculated 

using mean monthly discharges for the period 1971-2000. 695 

Climate model R2 NSE KGE 

CCLM-CNRM 0.99 0.92 0.65 

CCLM-EARTH 0.97 0.89 0.59 

CCLM-ESM 0.97 0.92 0.68 

CCLM-ESM_UC* 0.51 -0.51 -0.36 

HIRHAM-NorESM 0.98 0.99 0.92 

HIRHAM-EARTH 0.98 0.97 0.78 

RAMCO-EARTH 0.94 0.78 0.40 

Models Ens. Mean 0.98 0.94 0.69 

* Simulation performed with not bias corrected rainfall data.  
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Table 5 Mean annual discharge change projected by the RCMs-GCMs ensemble for the period 2021-2050 compared to the 

reference period 1971-2000.  

Climate model  Reference discharge Discharge change RCP4.5 Discharge change RCP8.5 

(mm) (%) (%) 

CCLM-CNRM 230.6 +17.4 +40.4 

CCLM-EARTH 240.1 -21.9 -18.9 

CCLM-ESM 226.0 -11.9 -19.5 

CCLM-ESM_UC* 407.1 -4.7 -17.0 

HIRHAM-NorESM 194.9 +3.7 +18.1 

HIRHAM-EARTH 206.6 +52.0 -39.3 

RAMCO-EARTH 271.4 +7.2 +27.1 

Models Ens. Mean 223.3 +7.0 -2.0 

* Simulation performed with not bias corrected rainfall data. 700 
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Table 6 Mean annual water balance components per RCM-GCM for the historical (1971-2000) and projected (2021-2050) periods. Precipitation data are bias corrected. 

 CCLM-CNRM CCLM-EARTH CCLM-ESM HIRAM-NorESM HIRAM-EARTH RACMO-EARTH OBSERVED 

 

Water balance 

components 

H
isto

rical 

R
C

P
4

.5
 

R
C

P
8

.5
 

H
isto

rical 

R
C

P
4

.5
 

R
C

P
8

.5
 

H
isto

rical 

R
C

P
4

.5
 

R
C

P
8

.5
 

H
isto

rical 

R
C

P
4

.5
 

R
C

P
8

.5
 

H
isto

rical 

R
C

P
4

.5
 

R
C

P
8

.5
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.5
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.5
 

H
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rical 

Precipitation (mm/y) 900 978 1063 917 834.2 849 911 859 837 912 924 960 934 1074 807 978 1038 1136 898 

Potential ET  (mm/y) 1992 2110 2145 1918 2112 2132 1979 2170 2208 2216 2349 2372 2053 2251 2253 1703 1853 1863 2070 

Actual ET  (mm/y) 666 704 732 673 644 650 682 663 655 746 753 765 724 741 678 701 737 785 703 

Total discharge  (mm/y) 231 270 324 240 187 195 226 199 182 194 201 229 207 314 126 271 291 345 198 

Surface runoff  (mm/y) 103 141 170.0 111 78 83 100 90 76 80 84 104 88 174 47 135 153 195 92.9 

Interflow  (mm/y) 116 118 142 117 98 101.4 114.4 98.7 95.2 104 76.9 81.1 107 128 69 123 125 135 98.0 

Baseflow  (mm/y) 11.0 11.0 11.1 11.5 10.4 10.4 10.8 9.9 9.9 10.3 9.9 9.5 10.8 10.7 9.6 12.6 12.5 14.2 8.9 
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Table 7 Selected studies of climate impact on water resources in the West African Region 

Study Location/seize GCM/RCM Scenario Reference 

period 

Future 

period 

Precipitation 

change (%) 

Discharge 

change (%) 

Ruelland et al. 

(2012) 

Bani catchment, 

Mali/100 000Km² 

MadCM3 and MPI-M A2 1961-1990 2041-2070 -2 to -10 -30 to -46 

Mbaye et al. (2015) Upper Senegal 

Basin, Senegal-

Mali-

Mauritania/218000 

Km² 

REMO-MPI-ESM-

LR 

RCP4.5 

and 

RCP8.5 

1971-2000 2071-2100 negative trend up to -80 

Aich et al.( 2014) Niger Basin/ 

2156000 Km² 

HadGEM2-ES, IPSL-

5 CM5A-LR, 

MIROC-ESM-

CHEM, 

GFDL-ESM2M, 

NorESM1-M 

RCP8.5 1970-1999 2070-2099 mixed trend -50 to +50 

Ardoin-Bardin et al. 

(2009) 

Sassandra, Ivory 

Coast/ 62173 Km² 

HadCM3-A2 - 1971-1995 2036-2065 11.4 38 

Bossa et al. (2014) Ouémé catchment, 

Benin/ 49256 Km² 

REMO-

ECHAM5/MPI-OM 

A1B 2000-2009 2010-2029 -10 -18 

Cornelissen et al. 

(2013) 

Térou Catchment, 

Benin/2344 km² 

REMO-

ECHAM5/MPI-OM 

B1 2001-2010 2031-2049 -11 -11 

Kasei (2009) Volta 

Basin/400000 km² 

MM5 and REMO B1 1991-2000 

and 1961-

2000 

2030-2039 

and 2001-

2050 

+12 and -6 +40 and -5 
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Supp_Fig. 1 Simulated RCMs-GCMs based discharge using the 20 nodes approach as applied in the study. 

Simulation period is 1971-2000 and precipitation was bias corrected. 
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 Rainy 

days 

Mean intensity 

(mm/d) 

Total rainfall 

(mm) 

20 nodes 92-107 10.4-12.3 981-1292 

3x3 average 139 8.5 1194 

Observation 72 12.19 893 

 

 

    

 Rainy 

days 

Mean intensity 

(mm/d) 

Total rainfall 

(mm) 

20 nodes 151-180 7.0-8.4 1113-1418 

3x3 average 208 6.09 1269 

Observation 72 12.19 893 

    

 

    

 Rainy 

days 

Mean intensity 

(mm/d) 

Total rainfall 

(mm) 

20 nodes 104-116 9.4-11.5 1021-1322 

3x3 average 160 7.1 1150 

Observation 72 12.19 893 

    

 

    

 Rainy 

days 

Mean intensity 

(mm/d) 

Total rainfall 

(mm) 

20 nodes 88-117 9.9-12.3 873-1424 

3x3 average 166 6.9 1152 

Observation 72 12.19 873 

    

 

    

 Rainy 

days 

Mean intensity 

(mm/d) 

Total rainfall 

(mm) 

20 nodes 107-117 8-10.4 857-1171 

3x3 average 160 6.28 1011 

Observation 72 12.19 893 

    

 

    

 Rainy 

days 

Mean intensity 

(mm/d) 

Total rainfall 

(mm) 

20 nodes 110-131 8.4-9.9 933-1301 

3x3 average 178 6.2 1119 

Observation 72 12.19 893 

    

 Month  

Supp_Fig. 2 Comparison between precipitations retrieved from RCMs-GCMs using the 20 nodes approach and the 

standard 3x3 average approach. The comparison period is 1971-2000 and precipitation data is not bias corrected. 
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Supp_Fig. 3 Topography of the RCM domain. Source : SRTM (http://srtm.csi.cgiar.org). 

 

± 

 
 

Supp_Fig. 4 Land use and land cover map of the RCM domain. Source : Landmann et al. 2007  

(http://dx.doi.org/10.1109/IGARSS.2007.4424058.) 
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