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Abstract. The Budyko functions relate the evaporation ratio E/P (E is evaporation and P precipitation) to the aridity index  

= Ep/P (Ep is potential evaporation) and are valid on long timescales under steady state conditions. A new physically based 

formulation (noted ML) is proposed to extend the Budyko framework under non-steady state conditions taking into account 

the change in soil water storage S. The variation in storage amount S is taken as negative when withdrawn from the area 10 

at stake and used for evaporation and positive otherwise, when removed from the precipitation and stored in the area. The 

ML formulation introduces a dimensionless parameter HE = -S/Ep and can be applied with any Budyko function. It 

represents a generic framework, easy-to-use at various time steps (year, season or month), the only data required being Ep, P 

and ΔS. For the particular case where the Fu-Zhang equation is used, the ML formulation with S  0 is similar to the 

analytical solution of Greve et al. (2016) in the standard Budyko space (Ep/P, E/P), a simple relationship existing between 15 

their respective parameters. The ML formulation is extended to the space [(Ep/(P-S), E/(P-S)] and compared to the 

formulations of Chen et al. (2013) and Du et al. (2016). The ML (or Greve et al.) feasible domain has similar upper limit to 

that of Chen et al. and Du et al., but its lower boundary is different. Moreover, the domain of variation of Ep/(P-S) differs: 

for S  0 it is bounded by an upper limit 1/HE in the ML formulation, while it is only bounded by a lower limit in Chen et 

al.’s and Du et al.’s formulations. The ML formulation can also be conducted using the dimensionless parameter HP = -ΔS/P 20 

instead of HE, which yields another form of the equations.  

1 Introduction 

The Budyko framework has become a simple tool widely used within the hydrological community to estimate the 

evaporation ratio E/P at catchment scale (E is evaporation and P precipitation) as a function of the aridity index  = Ep/P 

(Ep is potential evaporation) through simple mathematical formulations E/P = B1() and with long-term averages of the 25 

variables. Most of the formulations were empirically obtained (e.g. Oldekop, 1911; Turc, 1954; Tixeront, 1964; Budyko, 

1974; Choudhury, 1999; Zhang et al., 2001; Zhou et al., 2015), but some of them were analytically derived from simple 

physical assumptions (Table 1): (i) the one derived by Mezentsev (1955) and then by Yang et al. (2008), which has the same 

form as the one initially proposed by Turc (1954) (noted hereafter Turc-Mezentsev); (ii) the one derived by Fu (1981) and 
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reworked by Zhang et al. (2004) (noted hereafter Fu-Zhang). These two last formulations involve a shape parameter 

(respectively λ and ω), which varies with catchment characteristics and vegetation dynamics (Donohue et al., 2007; Yang et 

al., 2009;  Li et al., 2013; Carmona et al., 2014). When its value increases, actual evaporation gets closer to its maximum 

rate.  

The Budyko framework was initially limited to steady-state conditions on long timescales, under the assumption of 5 

negligible change in soil water storage and groundwater. Hydrological processes leading to changes in water storage are not 

represented and the catchment is considered as closed without any anthropogenic intervention: precipitation is the only input 

and evaporation and runoff Q the only outputs (P = E + Q). Recently, the Budyko framework has been downscaled to the 

year (Istanbulluoglu et al., 2012; Wang, 2012; Carmona et al., 2014; Du et al., 2016), the season (Gentine et al., 2012; Chen 

et al., 2013; Greve et al., 2016), and the month (Zhang et al., 2008; Du et al., 2016). However, the soil water storage 10 

variation ΔS cannot be considered as negligible when dealing with these finer timescales or for unclosed basins (e.g. 

interbasin water transfer, withdrawing groundwater, irrigation; Jaramillo and Destouni, 2015). In these cases, the catchment 

is considered to be under non-steady state conditions (Fig. 1) and the basin water balance should be written: P = E + Q + 

ΔS. Table 2 shows some recent formulations of the Budyko framework extended to take into account the change in 

catchment water storage ΔS. Chen et al. (2013) (used in Fang et al., 2016) and Du et al. (2016) proposed empirical 15 

modifications of the Turc-Mezentsev and Fu-Zhang equations respectively, precipitation P being replaced by the available 

water supply defined as (P - ΔS), Du et al. (2016) including the inter-basin water transfer into S. Greve et al. (2016) 

analytically modified the Fu-Zhang equation in the standard Budyko space (Ep/P, E/P) introducing an additional parameter, 

whereas Wang and Zhou (2016) proposed in the same Budyko space a formulation issued from the hydrological ABCD 

model (Alley, 1984), but with two additional parameters.  20 

The extension of the Budyko framework to non-steady state conditions being a real challenge, this paper aims to propose 

a new formulation inferred from a clear physical rationale and compared to other non-steady formulations previously 

derived. The paper is organized as follows. First, we present the new formulation under non-steady state conditions: its upper 

and lower limits, its generic equations under restricted evaporation in the Budyko space (Ep/P, E/P) and in the space [Ep/(P-

ΔS), E/(P-ΔS)]. Second, we compare the new formulation to the analytical solution of Greve et al (2016) in the standard 25 

Budyko space and to the formulations of Chen et al. (2013) and Du et al. (2016) in the space [Ep/(P-ΔS), E/(P-ΔS)]. 

2 New generic formulation under non-steady state conditions 

2.1 Upper and lower limits of the Budyko framework 

In the Budyko framework each catchment is characterized by the three hydrologic variables P, E and Ep which are 

represented in a 2D space using dimensionless variables equal to the ratio between two of these variables and the third one. 30 

In the rest of the paper, following Andréassian et al. (2016), the space defined by ( = Ep/P, E/P) is called “Budyko space” 
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and the one defined by (-1 = P/Ep, E/Ep) “Turc space”. For steady state conditions (ΔS = 0) it should be recall that any 

Budyko function B1 defined in the Budyko space (Ep/P, E/P) generates an equivalent function B2 in the Turc space expressed 

as: 

ா

ா
ൌ ଵሻିߔଶሺܤ ൌ

భሺఃሻ

ః
	,           (1) 

and that any Budyko function verifies the following conditions under steady state conditions: i) E = 0 if P = 0; ii) E  P if P 5 

	Ep (water limit); iii) E  Ep if P 	Ep (energy limit); iv) E → Ep if P → ∞.  

First, we present the upper and lower limits under steady state conditions, when all the water consumed by evaporation 

comes from the precipitation, the change in water storage ΔS being nil (E = P – Q). Figure 2a represents the variation of 

maximum and minimum actual evapotranspiration, respectively Ex and En, as a function of precipitation P with 

dimensionless variables in the Turc space. The upper solid line represents the dimensionless maximum evaporation rate 10 

Ex/Ep: it follows the precipitation up to P/Ep = 1 (the water limit is presented in bold blue on all graphs) and then is limited 

by potential evaporation Ex/Ep = 1 (the energy limit is in bold green). The lower solid line (in bold black) represents the 

dimensionless minimum evaporation rate En/Ep which follows the x-axis: En/Ep = 0. The feasible domain between the upper 

and the lower limits is shown in grey. In the Budyko space we have the following relationships: i) when evaporation is 

maximum, for Ep/P 	 1, Ex/P = Ep/P and for Ep/P  1, Ex/P = 1; ii) when evaporation is minimum: En/P = 0. The 15 

corresponding Budyko non-dimensional graph is shown in Fig. 2b and represents the upper and lower limits of the feasible 

domain of E/P = B1(Ep/P).  

Under non-steady state conditions, either a given amount of water ΔS stored in the area at stake participates to the 

evaporation process (for instance, groundwater depletion for irrigation), or a given amount of the precipitation ΔS is stored in 

the area (soil water, ground water, reservoirs) following the water balance (E = P - ΔS - Q). As shown in Fig. 1, the storage 20 

amount ΔS is taken as negative (ΔS  0) when withdrawn from the area and used for evaporation; it is taken as positive (ΔS 

 0) when removed from the precipitation and stored in the area. When ΔS is negative, |ΔS| should be lower than Ep because 

if |ΔS| 	 Ep, evaporation would be systematically equal to Ep; and when ΔS is positive, it should be necessarily lower than P. 

Consequently: –Ep  ΔS 	 P. The variable ΔS is used in a dimensionless form, either as HE = -ΔS/Ep or HP = -ΔS/P, which 

are positive when additional water is available for evapotranspiration and negative when water is withdrawn from 25 

precipitation. In the following, all the calculations are made with HE (–Φ-1 HE	 	 1), but a similar reasoning is conducted 

using HP (-1  HP	 	 Φ) in Appendix A. Taking into account ΔS makes the upper and lower limits of the feasible domain 

different.  

In the Turc space, the case where evaporation is at its maximum value is visualized as the upper limit in Figs. 2c and 2e 

(all the available water is used for evaporation). For both cases ΔS  0 (Fig. 2c) or ΔS  0 (Fig. 2e), we have: Ex = P - ΔS if 30 

P - ΔS 	EP and Ex = EP if P - ΔS 	EP. Written with dimensionless variables, these equations transform into: 

݂݅		


ா
 1 

∆ௌ

ா
		݄݊݁ݐ		

ாೣ
ா
ൌ



ா
െ

∆ௌ

ா
ൌ ଵିߔ   ா ,         (2)ܪ
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݂݅	


ா
 1 

∆ௌ

ா
		݄݊݁ݐ		

ாೣ
ா
ൌ 1 .           (3) 

For the minimal value of evapotranspiration En, we have to distinguish two cases depending if ΔS  0 (Fig. 2c) or ΔS  0 

(Fig. 2e). 

if ΔS  0 then   
ா
ா
ൌ

ି∆ௌ

ா
	ൌ     ா ,          (4a)ܪ

if ΔS  0 then 	
ா
ா
ൌ 0 .             (4b)    5 

Translating the above equations into the Budyko space (Figs. 2d, f) yields for the upper limits: 

݂݅		
ா

 	

ா
ாା∆ௌ

		݄݊݁ݐ		
ாೣ

ൌ 1 െ

∆ௌ


ൌ 1  ாܪ

ா

ൌ 1   ாΦ ,                       (5)ܪ

݂݅		
ா

 	

ா
ாା∆ௌ

	݄݊݁ݐ		
ாೣ

ൌ

ா

ൌ  (6)                                     .	ߔ

Eq. (5) has two limits: when HE = 0, Ex/P = 1, and when ΔS → -Ep corresponding to HE = 1, Ex/P → (1+Φ). For the lower 

limits in the Budyko space we have: 10 

if ΔS		0  then   
ா

ൌ

ି∆ௌ


ൌ ாܪ

ா

ൌ  (7a)         , ߔாܪ

if ΔS		0  then 		
ா

ൌ 0 .           (7b) 

Note that under steady-state conditions, the upper and lower limits are similar in both Turc and Budyko spaces, while this is 

not the case under non-steady state conditions. It is also interesting to note that for the negative values of HE the domain of 

variation of  is bounded [0, -1/HE] and the possible space of the Budyko functions is limited to a triangle (Fig. 2f).  15 

 

2.2 General equations with restricted evaporation 

We examine now the case where the evaporation rate is lower than its maximum possible rate. Under non-steady state 

conditions (ΔS 	 0 in Fig. 2c or ΔS	 	 0	 in Fig. 2e), Eq. (1) should be transformed to take into account the impact of water 

storage on the evaporation process. We search a mathematical formulation which transforms the upper and lower limits for 20 

the steady state conditions (Fig. 2a) into the corresponding ones for the non-steady state conditions (Fig. 2c if ΔS	 	 0 and 

Fig. 2e if ΔS	 	 0ሻ. The mathematical transformation is searched under the following form E/Ep = α B2(γ which 

combines a x-axis translation (γ), a y-axis translation () and an homothetic transformation ()his mathematical form is 

suggested by the way the physical domain of Turc’s space is transformed when passing from steady-state conditions to non-

steady sate conditions (Figs. 2a, c, e). Note that the reasoning can be conducted either in the Turc or the Budyko space, but 25 

the upper and lower limits and the transformation from steady to non-steady state conditions are easier to grasp in the Turc 

space than in the Budyko space. We distinguish the two cases corresponding to ΔS		0 and ΔS		0. 
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2.2.1 Case ΔS		0 

The lower limit of B2() (i.e., 0) and its two upper limits (1 and ) in Fig. 2a transform respectively into HE, 1, and HE + 

 in Fig. 2c. Using the mathematical transformation described above, we obtain respectively the following three equations: 

α .0HEα and α (γHE + The resolution of these three equations yields: α = 1 - HE,  = HE 

and  = HE/(1-HE). Consequently Eq. (1) should be transformed into: 5 

ா

ா
ൌ ሺ1 െ ଶܤாሻܪ ቀ

ఃషభ

ଵିுಶ
ቁ   ா .           (8)ܪ

By introducing Eq. (1) into Eq. (8), we obtain the formulation in the Budyko space (Fig. 2d): 

ா


ൌ ሺ1 െ ଶܤߔாሻܪ ቀ

ఃషభ

ଵିுಶ
ቁ  ߔாܪ ൌ ଵሾሺ1ܤ െ ሿߔாሻܪ   (9)                    .  ߔாܪ

The derivative of Eq. (9) is 

ௗቀ
ಶ
ುቁ

ௗః
ൌ ሺ1 െ ாሻܪ

ௗభሾሺଵିுಶሻఃሿ

ௗః
  ா .           (10) 10ܪ

Given that  
ௗభሾሺଵିுಶሻఃሿ

ௗః
ൌ 1 for  = 0 and  

ௗభሾሺଵିுಶሻఃሿ

ௗః
ൌ 0 when  → ∞, the derivative 

ௗቀ
ಶ
ುቁ

ௗః
 (i.e. the slope of the curve) is 

equal to 1 for  = 0, and when  → ∞, the derivative tends to HE.  

 

2.2.2 Case ΔS		0 

The lower limit of B2() and its two upper limits in Fig. 2a transform respectively into 0, 1, and HE +  in Fig. 2e. We 15 

obtain respectively the following three equations: α .0 0α and α (γHE +The resolution gives: 

α = 1,  = 0 and  = HE. Consequently Eq. (1) should be transformed into: 

ா

ா
ൌ ଵିߔଶሺܤ   ாሻ .            (11)ܪ

By introducing Eq. (1) into Eq. (11), we obtain the formulation in the Budyko space (Fig. 2f): 

ா


ൌ ଵିߔଶሺܤߔ  ாሻܪ ൌ ሺ1  ଵܤሻߔாܪ ቀ

ః

ଵାுಶః
ቁ  .                   (12) 20 

The derivative of Eq. (12) is: 

ௗቀ
ಶ
ುቁ

ௗః
ൌ ଵܤாܪ ቀ

ః

ଵାுಶః
ቁ  ሺ1  ሻߔாܪ

ௗభ൬


భశಹಶ
൰൨

ௗః
 .          (13) 

Given that ܤଵ ቀ
ః

ଵାுಶః
ቁ ൌ 0 and 

ௗభ൬


భశಹಶ
൰൨

ௗః
ൌ 1 for  = 0, the derivative 

ௗቀ
ಶ
ುቁ

ௗః
 is equal to 1 for  = 0. When  → -1/HE, 

ଵܤ ቀ
ః

ଵାுಶః
ቁ ൌ 1 and  

ௗభ൬


భశಹಶ
൰൨

ௗః
ൌ 0, the derivative 

ௗቀ
ಶ
ುቁ

ௗః
 tends to HE.  

In the following these new generic formulae (Eqs (8) and (9) for ΔS	 	 0	 and Eqs (11) and (12) for ΔS	 	 0) are called ML 25 

formulation (ML standing for Moussa-Lhomme). 
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2.2.3 Application 

Any Budyko equation B1() from Table 1 can be used in Eqs.(9) and (12) as detailed in Table S1 in the “Supplementary 

material”. It is worth noting that both Turc-Mezentsev and Fu-Zhang functions, which are obtained from the resolution of a 

Pfaffian differential equation, have the following remarkable simple property: F(1/x) = F(x)/x. This means that the same 5 

mathematical expression is valid for B1 and B2: B1 = B2. Both Turc-Mezentsev and Fu-Zhang functions have similar shapes, 

and a simple linear relationship was established by Yang et al. (2008) between their parameters (see Table 1): ω = λ + 0.72. 

The ML formulation is used hereafter with the Fu-Zhang function (Table 1) for comparison with the analytical solution of 

Greve et al. (2016) based upon the same function. Replacing B1 by Fu-Zhang’s equation, in Eq. (9) for ΔS	 	 0	 and in Eq. 

(12) for ΔS		0, gives: 10 

if ΔS		0	 then   
ா


ൌ 1  ߔ െ ሾ1  ሺ1 െ ఠሿߔாሻఠܪ

భ
ഘ ,         (14a) 

if ΔS		0  then 		
ா


ൌ 1  ሺ1  ߔாሻܪ െ ሾሺ1  ሻఠߔாܪ  ఠሿߔ

భ
ഘ .       (14b) 

For  = 0, and in both cases ΔS	 	 0 and ΔS	 	 0, we have E/P = 0. However the upper limits of differ: for ΔS	 	 0, when 

 → ∞, E/P → ∞, while for ΔS	 	 0 the maximum value of is -1/HE and corresponds to E/P = 0. Figure 3 shows some 

examples of the shape of the ML formulation (Eqs. 14a, b) for  = 1.5 and different values of HE. Note that for the particular 15 

and unlikely case when HE → -∞, upper and lower limits are reduced to the point (Ep/P = 0, E/P = 0). For HE = 0 we obtain 

the curves corresponding to steady-state conditions, while for HE = 1, upper and lower limits are superimposed, and the 

domain is restricted to the 1:1 line. We can easily verify that all functions in Table S1 of the “Supplementary material” give 

similar results. 

 20 

2.3. The ML formulation in the space [Ep/(P-ΔS), E/(P-ΔS)] 

As mentioned in the introduction, some authors (Chen et al., 2013; Du et al., 2016) have dealt with the non-steady conditions 

by modifying the Budyko reference space and replacing the precipitation P by P-ΔS. Hereafter we develop the ML 

formulations in this new space. The upper limits of the ML formulation can be obtained by transforming Eqs. (5) and (6). 

We get respectively:   25 

݂݅		
ா

ି∆ௌ
 												݄݊݁ݐ									1

ாೣ
ି∆ௌ

ൌ 1 ,                                                                                                                           (15) 

݂݅		
ா

ି∆ௌ
൏ 												݄݊݁ݐ									1

ாೣ
ି∆ௌ

ൌ
ா

ି∆ௌ
 .          (16) 

The lower limits are obtained from Eqs. (7a, b): 

if ΔS		0		then  
ா

ି∆ௌ
ൌ

ି∆ௌ

ି∆ௌ
ൌ ாܪ

ா
ି∆ௌ

 ,          (17a) 
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if ΔS		0  then		
ா

ି∆ௌ
ൌ 0 .           (17b) 

In the new space, we put: 

ᇱߔ ൌ
ா

ି∆ௌ
ൌ

ః

ଵାுಶః
    or     ߔ ൌ

ఃᇲ

ଵିுಶఃᇲ
 .          (18) 

Consequently the relationship between E/(P-ΔS), ’ and E/P is given by 

ா

ି∆ௌ
ൌ

ா





ି∆ௌ
ൌ

ଵ

ଵାுಶః

ா


ൌ ሺ1 െ ᇱሻߔாܪ ா


 .          (19) 5 

Inserting Eqs. (9) and (12) into Eq. (19) and expressing Φ as a function of Φ’ (Eq. 18) lead to the ML formulation in the new 

space: 

if ΔS		0  then 
ா

ି∆ௌ
ൌ

ଵ

ଵାுಶః
ሼܤଵሾሺ1 െ ሿߔாሻܪ  ሽߔாܪ ൌ ሺ1 െ ଵܤᇱሻߔாܪ ቂ

ሺଵିுಶሻఃᇲ

ଵିுಶఃᇲ
ቃ   ᇱ ,    (20a)ߔாܪ

if ΔS		0  then 
ா

ି∆ௌ
ൌ

ଵ

ଵାுಶః
ሺ1  ଵܤሻߔாܪ ቀ

ః

ଵାுಶః
ቁ ൌ  ᇱሻ .      (20b)ߔଵሺܤ

Note that for ΔS	 	 0, E/(P-ΔS) = B1(’) is independent of HE and is identical to the steady state condition HE = 0. This is 10 

explained by the fact that, the stored water ΔS being initially subtracted to the precipitation P, it does not participate in the 

evaporation process and consequently has no impact on the ratio E/(P-ΔS).  For ΔS	 	 0, and for  = 0, i.e. P → ∞, we have 

’ = 0, B1 = 0 and E/(P-ΔS) = 0. When → ∞ which corresponds to P → 0, we have ’ = 1/HE, B1 =1, and E/(P-ΔS) → 1.  

Any Budyko formulation B1 in Table 1 can be used with Eqs. (20a, b), as shown in Table S2 of the “Supplementary 

material”. When the Fu-Zhang equation is used, Eqs. (20a, b) become: 15 

if ΔS		0  then 
ா

ି∆ௌ
ൌ 1  ሺ1 െ ᇱߔாሻܪ െ ሾሺ1 െ ᇱሻఠߔாܪ  ሺ1 െ  ᇱሻఠሿଵ/ఠ ,     (21a)ߔாሻఠሺܪ

if ΔS		0  then  
ா

ି∆ௌ
ൌ 1  ᇱߔ െ ൫1  ൯	ᇱఠߔ

భ
ഘ .        (21b) 

Figure 4 shows the ML formulation (Eqs. 21a, b) in the space [Ep/(P-ΔS), E/(P-ΔS)] for  = 1.5 and different values of HE. 

For HE = 0 we retrieve the original Fu-Zhang equation and when  = 1, we can easily verify that Eqs. (21a, b) are equal to 

the lower limit of the domain E/(P-ΔS) = HEEp/(P-ΔS) when ΔS		0, and E/(P-ΔS) = 0 when ΔS		0.  20 

 

2.4. The ML formulation using the dimensionless parameter HP 

A mathematical development, similar to the one of Sections 2.1, 2.2 and 2.3, is conducted in Appendix A using the 

dimensionless parameter HP = -S/P = HE (instead of HE = -ΔS/EP) and yields another form of the ML formulation. 

Equivalent mathematical representations are obtained for ΔS	 	 0 and ΔS	 	 0 in the different spaces explored in Sections 2.1, 25 

2.2 and 2.3. In the “Supplementary material”, Figs. S1, S2 and S3 obtained with the parameter HP correspond respectively to 

Figs. 2, 3 and 4 obtained with HE. Similarly, Tables S3 and S4 (obtained with HP) correspond to Tables S1 and S2 (obtained 

with HE): they give the ML formulation applied to the different Budyko curves of Table 1 in the standard Budyko space 

(Ep/P, E/P) and in the space [Ep/(P-ΔS), E/(P-ΔS)]. Significant differences appear concerning the mathematical equations 
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and the shape of the feasible domain defined by its upper and lower limits. This is due to the fact that using HE or HP 

corresponds to different sets of data and different functional representations. When storage water contributes to enhance 

evaporation (ΔS  0), HE should be preferred to HP because ΔS is bounded by potential evaporation EP and represents a 

given percentage of EP (0  HE  1). Conversely, when precipitation water contributes to increase soil water storage (ΔS  

0), ΔS is bounded by P and represents a percentage of precipitation P. Consequently, HP should be preferred (-1  HP	 	 0). 5 

In order to keep the parameter in the range [0, 1], H’P  = -HP could be used.  

3 Comparing the new formulation with other formulae from the literature 

 

3.1 In the standard Budyko space (Ep/P, E/P) 

When evapotranspiration exceeds precipitation (corresponding herein to the case ΔS	 	 0), Greve et al. (2016) analytically 10 

developed a Budyko type equation where the water storage is taken into account through a parameter y0 (0 ⩽ y0 ⩽	 1) 

introduced into the Fu-Zhang formulation (Table 2). This equation writes (Greve et al., 2016; Eq. 9): 

ா


ൌ 1  ߔ െ ሾ1  ሺ1 െ ሿଵߔሻିଵݕ ൗ 	 .          (22) 

They used the shape parameter κ to avoid confusion with the traditional ω of Fu-Zhang equation. Despite different physical 

and mathematical backgrounds Eqs. (14a) and (22) are exactly identical and a simple relationship between HE
 and y0 can be 15 

easily obtained. Equating Eqs. (14a) and (22) with ω = κ yields: 

ாܪ ൌ 1 െ ሺ1 െ ሻݕ
ഘషభ
ഘ    .           (23) 

The relationship between y0 and HE
 is independent from . It is shown in Fig. 5 for different values of . For a given value 

of , we have HE < y0. For  = 1, we have HE = 0, and when  → ∞ we have HE = y0.  

The derivative of Eq. (22) gives: 20 

ௗቀ
ಶ
ುቁ

ௗః
ൌ 1 െ ሺ1 െ ିଵሾ1ߔሻିଵݕ  ሺ1 െ ሿߔሻିଵݕ

భషഉ
ഉ  .        (24) 

For  = 0 the derivative is equal to 1, and when  → ∞, the derivative tends to a value noted m by Greve et al. (2016; Eq. 

12): 

݉ ൌ 1 െ ሺ1 െ ሻݕ
ഉషభ
ഉ  .            (25) 

The value of the derivative (slope of the curve) is the same in both ML and Greve et al.’s formulations: for  = 0 the 25 

derivative is equal to 1, and when  → ∞ we have m = HE (assuming ω = κ). Greve et al. (2016; Sect. 4) show that y0 is the 

maximum value of m reached when  → ∞. Hence, substituting in Eq. (22) y0 by its value inferred from Eq. (23) yields an 

equation identical to that obtained from the ML formulation (Eq. 14a). 
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Figure 6 compares the ML formulation Eq. (14a) with Greve et al.’s analytical solution Eq. (22) for  =  = 2 and 

different values of y0 (0, 0.2, 0.4, 0.6, 0.8 and 1). The corresponding values of HE (respectively 0, 0.106, 0.225, 0.367, 0.553 

and 1) are calculated using Eq. (23). The new ML formulation with , and only for ΔS	 	 0, gives exactly the same 

curves as those obtained by Greve et al. (2016). Both formulations are identical and have the same upper and lower limits. 

Greve et al. (2016), however, did not mention the lower limit and limited the reasoning to positive values of y0. Moreover, 5 

the case ΔS		0 is not considered by Greve et al. (2016). 

 

3.2 In the space [Ep/(P-ΔS), E/(P-ΔS)] 

The formulations proposed by Chen et al. (2013) and Du et al. (2016) in the space [Ep/(P-ΔS), (E/(P-ΔS)] are essentially 

empirical. Chen et al. (2013) function (Table 2) is derived from the Turc-Mezentsev equation and written as: 10 

ா

ି∆ௌ
ൌ 1  ቀ

ா
ି∆ௌ

െ ௧ቁߔ
ିఒ
	൨
ష
భ
ഊ
  .           (26) 

An additional parameter t is empirically introduced in order “to characterize the possible non-zero lower bound of the 

seasonal aridity index”; this parameter causes a shift of the curve E/(P-ΔS) along the horizontal axis such as for Ep/(P-ΔS) = 

t we have E/(P-ΔS) = 0. The derivative of Eq. (26) when Ep/(P-ΔS) → ∞ is equal to 0. Similarly, Du et al. (2016) function 

(Table 2) is an empirical modification of Fu-Zhang equation (Fu, 1981; Zhang et al., 2004) written as: 15 

ா

ି∆ௌ
ൌ 1 

ா
ି∆ௌ

െ ቂ1  ቀ
ா

ି∆ௌ
ቁ
ఠ
 ቃߤ

భ
ഘ

  .          (27) 

A supplementary parameter, noted here  (> -1), is added to modify the lower bound of the aridity index EP/(P-ΔS). The 

parameter  plays a similar role as t in Eq. (26). For  = 0, Eq. (27) takes the original form of Fu-Zhang equation, (P-ΔS) 

replacing P. When  becomes positive, the lower end of the curve E/(P-ΔS) shifts to the right. The function E/(P-ΔS) in Eq. 

(27) is equal to zero for the particular value of Ep/(P-ΔS) = d such as  20 

ሺ1  ௗሻఠߔ ൌ 1  ሺߔௗሻఠ   (28)           . ߤ

Greve et al.’s formulation can be also written in the space [Ep/(P-ΔS), E/(P-ΔS)]. Inserting Eq. (22) into Eq. (20a) and 

expressing Φ as a function of Φ’ (Eq. 18) leads to: 
ா

ି∆ௌ
ൌ 1  ሺ1 െ ᇱߔாሻܪ െ ሾሺ1 െ ᇱሻߔாܪ  ሺ1 െ ᇱሻሿଵߔሻିଵሺݕ ൗ  .       (29) 

It can be mathematically shown that expressing (1 - y0) in Eq. (29) as a function of HE by inverting Eq. (23) (assuming  25 

=leads to the exact ML formulation of Eq. (21a). It is a direct consequence of the similarity of both formulations. 

Therefore, similar curves to those shown in Fig. 4 for the ML formulation with HE 	 0 are obtained with Greve et al.’s 

formulation. 

 For ΔS	 	 0	 (corresponding to HE 	 0; Fig. 4), the three formulations (Chen et al.’s, Du et al.’s and ML) have similar 

upper and lower limits. For ΔS	 	 0,	 Fig. 7 shows an example of the curves obtained with Du et al.’s equation ( = 1.5) and 30 
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Chen et al.’s equation with λ = 0.78 (such as λ = ω - 0.72 from Yang et al. (2008)) and with t = d = 0.5 (corresponding to 

 = 0.484 from Eq. (28)). Both Chen et al.’s and Du et al.’s formulations are compared to the ML formulation using Fu-

Zhang Eq. (14a) with HE = +0.25. The ML and Greve et al.’s formulations are exactly identical if κ =  = 1.5 and y0 = 

0.578 calculated from Eq. (23) for HE = +0.25. The four formulations have similar upper limits but the lower limits are 

different. Both Chen et al.’s and Du et al.’s formulations have the x-axis as lower limit and E/(P-ΔS) tends to 1 when Φ’ = 5 

Ep/(P-ΔS) → ∞, while in the ML formulation with ΔS	 	 0	 ሺFig.	 2aሻ	 the feasible domain is a triangle, the domain of variation 

of Φ’ being limited by 0 and 1/HE.  

 

3.3 Discussion 

All four formulations, ML, Greve et al. (2016), Chen et al. (2013) and Du et al. (2016), have two parameters each, one for 10 

the shape of the curve and another for its shift due to non-steady conditions:  and HE for the ML formulation (with the Fu-

Zhang function), and y0 for Greve et al. (2016), λ and t for Chen et al. (2013),  and  for Du et al. (2016). If HE = y0 = 

t =  = 0, the four formulations are identical. For ΔS	 	 0, the ML formulation with Fu-Zhang equation (Eq. 14a) is 

identical to the one of Greve et al. (2016) in the Budyko space and also in the [Ep/(P-ΔS), E/(P-ΔS)] space, provided the 

shape parameters are assumed to be identical (ω = κ) (a simple relationship is established between HE and the corresponding 15 

parameter y0). Despite similar upper limits, the ML and Greve et al. formulations behave very differently from those of  

Chen et al. and Du et al. in the space [Ep/(P-ΔS), E/(P-ΔS)]. The ML formulation is different for ΔS	 	 0 and ΔS	 	 0, while 

those of Chen et al.’s and Du et al.’s do not distinguish the two cases ΔS	 	 0 and ΔS	 	 0. All the formulations have the same 

upper limits, but the domain of variation of ’ differs: respectively [0, 1/HE] when ΔS	 	 0	 and	 [, ∞] when	 ΔS	 	 0	 for the 

ML formulation, [t, ∞] for Chen et al. and [d, ∞] for Du et al. The lower end of the curve E/(P-ΔS) corresponds 20 

respectively to (0, 0), (t, 0) and (d, 0) and the upper end to (1/HE, 1) when ΔS	 	 0	 and	 (∞, 1) when	 ΔS	 	 0	 for the ML 

formulation, (∞, 1) for the other two. Moreover, the ML formulation for ΔS	 	 0	 is reduced to a simple relationship E/(P-ΔS) 

= B1(’) and is independent of HE.  

It is worth noting that for ΔS	 	 0  the limits of Chen et al. (2013) and Du et al. (2016) functions are not completely sound 

from a strict physical standpoint: for very high precipitation, when P >> Ep, Φ and Φ’ should logically tend to zero and not 25 

to t and d; similarly, when P → 0, i.e., Φ → ∞, it is physically logical that Φ’→ Ep/(-ΔS)=1/HE, as predicted by our Eq. 

(20a). This tends to prove that the ML formulation, corroborated by Greve et al. (2016) formulation, is physically more 

correct. Additionally, at simple glimpse, we note that the ML curves could be easily adjusted to the set of experimental 

points shown in Chen et al. (2013; Figs. 2 and 9) and in Du et al. (2016; Figs. 8 and 9). 
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4 Conclusion 

The ML formulations constitute a general mathematical framework which allows any standard Budyko function developed 

at catchment scale under steady-state conditions (Table 1) to be extended to non-steady conditions (Table S1 in the 

“Supplementary material”). They take into account the change in catchment water storage ΔS through a dimensionless 

parameter HE = -ΔS/Ep and the formulation differs according to the sign of ΔS (Eqs (8) and (9) for ΔS	 	 0 and Eqs (11) and 5 

(12) for ΔS	 	 0). Applications can be conducted at various time steps (yearly, seasonal or monthly) both in the Turc space 

(P/Ep, E/Ep) and in the standard Budyko space (Ep/P, E/P), the only data required to obtain E being Ep, P and ΔS.  

The new formulations are inferred from an evaluation of the feasible domain of evaporation in the Turc space, adjusted 

for the case where additional (ΔS	 	 0) or restricted (ΔS	 	 0) water is available for evaporation, and then transformed in the 

Budyko space. For ΔS = 0, the ML formulations return the original equations under steady state conditions, with similar 10 

upper and lower limits in both spaces. Under non-steady state conditions, however, the upper and lower limits of the feasible 

domain differ when using either the Turc or the Budyko space. The ML formulations can be extended to the [Ep/(P-ΔS), 

E/(P-ΔS)] space (Eqs. 20a, b, Fig. 4). They can also be conducted using the dimensionless parameter HP = -ΔS/P instead of 

HE, which yields another form of the equations (Appendix A and “Supplementary material”). It is shown that the ML 

formulation with S  0 is identical to the analytical solution of Greve et al. (2016) in the standard Budyko space, a simple 15 

relationship existing between their respective parameters. On the other hand, the new formulation differs from those of Chen 

et al. (2013) and Du et al. (2016) in the space [Ep/(P- ΔS), E/(P- ΔS)]. 

 

5 List of symbols 

B1( ) relationship between E/P and  in the Budyko space (Ep/P, E/P) such as E/P = B1( ) [-]. 20 

B2(--1) relationship between E/Ep and  -1 = P/Ep in the Turc space (P/Ep, E/Ep) such as E/Ep = B2(P/Ep) [-]. 

E actual evaporation [LT-1]. 

En  lower limit of the feasible domain of evaporation [LT-1]. 

Ep  potential evaporation [LT-1]. 

Ex  upper limit of the feasible domain of evaporation [LT-1]. 25 

HE = -ΔS/Ep (-P/Ep  HE		1) [-]. 

HP = -ΔS/P (-1 		HP		Ep /P) [-]. 

m slope of the equation of Greve et al. (2016) when   → ∞ [-]. 

ML new formulation Eqs (8) and (9) for ΔS		0	and Eqs (11) and (12) for ΔS		0 (stands for Moussa-Lhomme) 

P precipitation [LT-1]. 30 

Q runoff [LT-1]. 



12 
 

y0 parameter in the Greve et al. (2016) equation accounting for non-steady state conditions (0 ⩽	y0 ⩽	1) [-]. 

 shape parameter in the Greve et al. (2016) equation corresponding to in the Fu-Zhang equation [-]. 

ΔS water storage variation [LT-1]. 

 shape parameter in the Turc-Mezentsev equation ( > 0) [-]. 

 parameter in the Du et al. (2013) equation [-]. 5 

 aridity index (= Ep/P) [-]. 

d  aridity index threshold in the Du et al. (2016) equation corresponding to E/(P-ΔS) = 0 [-]. 

t aridity index threshold in the Chen et al. (2013) equation [-]. 

' = Ep /(P-ΔS)  [-]. 

 shape parameter of the Fu-Zhang equation ( > 1) [-]. 10 

 

Appendix A: Scaling ΔS by P instead of Ep 

The Appendix A presents the set of equations when scaling the change in soil water storage ΔS by precipitation P instead of 

potential evaporation Ep, i.e., using HP = -S/P = HE(-1  HP		Φ) instead of HE = -S/Ep  (–Φ
-1  HE		1).  

 15 

A.1 Upper and lower limits of the Budyko framework 

In the Turc space, the upper limits of evapotranspiration Ex/Ep are obtained from Eqs (2 and 3): 

݂݅	


ா
 1 

∆ௌ

ா
						݄݊݁ݐ										

ாೣ
ா
ൌ



ா
െ

∆ௌ

ா
ൌ ሺ1   ଵ,        (A1)ିߔሻܪ

݂݅	


ா
 1 

∆ௌ

ா
						݄݊݁ݐ										

ாೣ
ா
ൌ 1 ,          (A2) 

and the lower limits of evapotranspiration En/Ep from Eqs (4a, b): 20 

if S		0  then   
ா
ா
ൌ െ

∆ௌ

ா
	ൌ     ଵ,          (A3a)ିߔܪ

if S		0  then 	
ா
ா
ൌ 0 .             (A3b)    

The translation in the Budyko space yields for the upper limits: 

݂݅		
ா

 	

ா
ாା∆ௌ

						݄݊݁ݐ												
ாೣ

ൌ 1 െ

∆ௌ


ൌ 1 	ܪ ,                  (A4) 

݂݅		
ா

 	

ா
ாା∆ௌ

								݄݊݁ݐ											
ாೣ

ൌ

ா

ൌ  25 (A5)                                    ,	ߔ

and for the lower limits: 

if S		0  then   
ா

ൌ െ

∆ௌ


ൌ ாܪ

ா

ൌ ߔாܪ ൌ   ,        (A6a)ܪ

if S		0  then 		
ா

ൌ 0 .           (A6b) 
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In the “Supplementary material”, Fig. S1 shows the upper and lower limits of the feasible domain of evaporation in the Turc 

and Budyko spaces, drawn with the parameter HP = -S/P. Figure S1 corresponds to Fig. 2 obtained with HE = -S/Ep .  

A.2 General equations with restricted evaporation 

We distinguish two cases: S		0 and S		0. Substituting HE by HP/ in Eqs (8, 9, 11 and 12) we obtain: 

If S		0 5 

ா

ா
ൌ ሺ1 െ ଶܤଵሻିߔܪ ቀ

ఃషభ

ଵିுುఃషభ
ቁ   ଵ ,          (A7)ିߔܪ

ா


ൌ ߔଵሺܤ െ ሻܪ    .                        (A8)ܪ

If S		0 

ா

ா
ൌ ଶሾሺ1ܤ   ଵሿ ,            (A9)ିߔሻܪ

ா


ൌ ሺ1  ଵܤሻܪ ቀ

ః

ଵାுು
ቁ  .                      (A10) 10 

Replacing B1 by Fu-Zhang’s equation, in Eq. (A8) for S		0	and in Eq. (A10) for S		0, gives: 

if S		0  then   
ா


ൌ 1  ߔ െ ሾ1  ሺߔ െ ሻఠሿܪ

భ
ഘ ,         (A11a) 

if S		0  then  
ா


ൌ 1  ߔ ܪ െ ሾሺ1  ሻఠܪ  ఠሿߔ

భ
ഘ .        (A11b) 

In the “Supplementary material”, Fig. S2 shows an example of the ML formulation (Eqs. A11a, b) in the space (Ep/P, E/P) 

obtained with the parameter HP = -S/P. It corresponds to Fig. 3 obtained with HE = -S/Ep. Table S3 gives the ML 15 

formulation applied to the different Budyko curves of Table 1 with the parameter HP (Eqs. A8 and A10ሻ.	 It	 corresponds	 to	

Table	S1	obtained with HE. 

A.3 The ML formulation in the space [Ep/(P-S), E/(P-S)] 

Eqs (15, 16, 17a and b) yield for the upper limits: 

݂݅		
ா

ି∆ௌ
 												݄݊݁ݐ									1

ாೣ
ି∆ௌ

ൌ 1 ,                                                                                                                           (A12) 20 

݂݅		
ா

ି∆ௌ
 												݄݊݁ݐ									1

ாೣ
ି∆ௌ

ൌ
ா

ି∆ௌ
 ,          (A13) 

and for the lower limits: 

if S		0    then   
ா

ି∆ௌ
ൌ

ି௱ௌ

ି∆ௌ
ൌ ாܪ

ா
ି∆ௌ

ൌ
ுು

ுುାଵ
 ,         (A14a) 

if S		0  then 		
ா

ି∆ௌ
ൌ 0 .           (A14b) 

In the new space [Ep/(P-S), E/(P-S)], we put: 25 



14 
 

ᇱߔ ൌ
ா

ି∆ௌ
ൌ

ః

ଵାுು
    or     ߔ ൌ ሺ1   ᇱ .         (A15)ߔሻܪ

Consequently the relationship between E/(P-ΔS) and E/P is given by: 

  
ா

ି∆ௌ
ൌ

ா





ି∆ௌ
ൌ

ଵ

ଵାு

ா


 .            (A16) 

Replacing HE by HP/ in Eqs (20a, b) we obtain: 

if S		0  then  
ா

ି∆ௌ
ൌ ቀ

ଵ

ଵାுು
ቁ ሾܤଵሺߔ െ ሻܪ  ሿܪ ൌ

ଵ

ଵାுು
ଵሾሺ1ܤ  ᇱߔሻܪ െ ሿܪ 

ுು
ଵାுು

 ,   (A17a) 5 

if S		0  then  
ா

ି∆ௌ
ൌ ቀ

ଵ

ଵାுು
ቁ ሺ1  ଵܤሻܪ ቀ

ః

ଵାுು
ቁ ൌ  ᇱሻ .       (A17b)ߔଵሺܤ

Using the Fu-Zhang equation for B1 we get: 

if S		0  then  
ா

ି∆ௌ
ൌ 1  ᇱߔ െ

ுು
ଵାுು

െ ቂቀ
ଵ

ଵାுು
ቁ
ఠ
 ቀߔᇱ െ

ுು
ଵାுು

ቁ
ఠ
ቃ
ଵ/ఠ

,      (A18a) 

if S		0  then  
ா

ି∆ௌ
ൌ 1  ᇱߔ െ ൫1  ൯	ᇱఠߔ

భ
ഘ.        (A18b) 

In the “Supplementary material”, Fig. S3 shows an example of the ML formulation (Eqs. A18a, b) in the space [Ep/(P-S), 10 

E/(P-S)] obtained with the parameter HP = -S/P. It corresponds to Fig. 4 obtained with HE = -S/Ep . Table S4 gives the 

ML formulation applied to the different Budyko curves of Table 1 in	 the	 space [Ep/(P-ΔS), E/(P-ΔS)] with the parameter HP 

(Eqs. A17a and A17b).	It	corresponds	to	Table	S2	obtained with HE.	
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Figure 1: Representation of the change in soil water storage S = Se – Sb for the two cases considered in the paper: ΔS	 	 0	 and ΔS 
 0. Sb and Se are respectively the storage at the beginning and the end of the time period. 

 5 

 

 

Figure 2: Upper and lower limits of the feasible domain (in grey) of evaporation in the Turc space (P/Ep, E/Ep) and in the Budyko 
space (Ep/P, E/P) (water limit in blue, energy limit in green and lower limit in black) when using the non-dimensional parameter 10 
HE: (a and b) for steady state conditions; (c, d, e and f) for non-steady state conditions with a storage term S (c and d for ΔS	 	 0	
and e and f for ΔS  0).  
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Figure 3: The ML formulation with the Fu-Zhang relationship Eqs. (14a, b) for and for different values of HE. The bold 
lines indicate the upper and lower limits of the feasible domain of evaporation shown in grey. 
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Figure 4: The ML formulation with the Fu-Zhang Eqs. (21a, b) in the space [Ep/(P-ΔS), E/(P-ΔS)] for and four values of 
HE. For HE	 	 0, all curves have a common upper end at ’ = 1/HE corresponding to E/(P-ΔS) = 1. The bold lines indicate the upper 
and lower limits of the feasible domain shown in grey. For HE  0 the curve is similar to the one under steady state conditions. 
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Figure 5: Relationship (Eq. 23) between the parameter HE of the ML formulation (Eq. 14a) and the parameter y0 of the Greve et 
al. (2016) equation (Eq. 22) for different values of   with ω = κ. 

 

Figure 6: Example showing the similarity of the ML formulation Eq. (14a) and the equation of Greve et al. (2016) Eq. (22) (with  5 
=  = 2) for different values of y0; the corresponding values of HE are calculated using Eq. (23).  
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Figure 7: Example comparing in the space [Ep/(P-ΔS), E/(P-ΔS)] the three formulations: Du et al. (2016) with  = 1.5 and d = ; 
Chen et al. (2013) with  =   - 0.72 = 0.78 and t = d  = ; the ML formulation for ΔS	 	 0	 (Eq. 14a) with  = 1.5 and HE = 0.25 
(identical to Greve et al. (2016) formulation). The feasible domain of the ML formulation is in dark grey superimposed to the 
domains of both Chen et al. and Du et al. in light grey. 5 
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Table 1: Different expressions for the Budyko curves under steady state conditions. 

Reference Equation E/P = B1() 

Budyko (1974) ܧ
ܲ
ൌ ൜ߔtanh ൬

1
ߔ
൰ ሾ1 െ exp	ሺെߔሻሿൠ

ଵ/ଶ

Turc (1954) with λ = 2, Mezentsev (1955), Yang et al. (2008) 

 

ܧ
ܲ
ൌ ൫1ߔ  ൯	ఒߔ

ష
భ
ഊ 

Fu (1981), Zhang et al. (2004) 

 

ܧ
ܲ
ൌ 1  ߔ െ ሺ1  ሻ	ఠߔ

భ
ഘ 

Zhang et al. (2001) ܧ
ܲ
ൌ

1  ߔݓ
1  ߔݓ   ଵିߔ

Zhou et al. (2015) ܧ
ܲ
ൌ ߔ ൬

݇
1  ൰ߔ݇

ଵ/

 

 

 5 

Table 2: Different expressions for the Budyko curves under non-steady state conditions. 

Reference Steady state conditions 

B1() 

Non-steady state conditions 

Greve et al. (2016) Fu-Zhang ܧ
ܲ
ൌ 1 

ܧ
ܲ
െ ቈ1  ሺ1 െ ሻିଵݕ ൬

ܧ
ܲ
൰




ଵ ൗ

 

with  and y0 parameters. 

Chen et al. (2013) Turc-Mezentsev 
E

P‐∆S
ൌ ቈ1 ൬

Ep
P‐∆S

‐Φt൰
‐λ

	
‐1λ

 

with  and t parameters. 

Du et al. (2016) Fu-Zhang ܧ
P‐∆S

ൌ 1 
ܧ
P‐∆S

െ ቈ1  ൬
ܧ
P‐∆S

൰
ఠ

 ߤ

భ
ഘ

 

with  and parameters. 

 

 

 


