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Abstract. This paper explored the potential of a global climate model for sub-seasonal forecasting of precipitation and 2-m air 

temperature. The categorical forecast skill of ten precipitation and temperature indices was investigated using the 28-years’ 10 

sub-seasonal hindcasts from the Climate Forecast System version 2 (CFSv2) over the contiguous United States (CONUS). The 

forecast skill for mean precipitation and temperature as well as for the frequency and duration of extremes was highly 

dependent on the forecasting indices, regions, seasons, and leads. Forecasts for 7- and 14-day temperature indices showed skill 

even at weeks 3 and 4, and generally were more skillful than precipitation indices. Overall, temperature indices showed higher 

skill than precipitation indices over the entire CONUS region at sub-seasonal scale. While the forecast skill related to mean 15 

precipitations was low in summer over the CONUS, the number of rainy days, number of consecutive rainy days, and number 

of consecutive dry days showed considerable high skill for the west coastal region.  The presence of active Madden-Julian 

Oscillation (MJO) events improved CFSv2 weekly mean precipitation forecast skill over most parts of CONUS, but it did not 

necessarily improve the weekly mean temperature forecasts. The 30-day forecasts of precipitation and temperature indices 

calculated from the downscaled monthly CFSv2 forecasts were less skillful than those calculated directly from CFSv2 daily 20 

forecasts, suggesting the usefulness of CFSv2 for sub-seasonal hydrological forecasting. 

1. Introduction 

Sub-seasonal (or intra-seasonal) timescale forecasts are typically between medium-range weather forecasts (1 or 2 weeks) and 

seasonal climate predictions (1 to 12 months). The medium-range weather forecast is strongly influenced by atmospheric initial 

conditions (Vitart et al. 2008), while the seasonal climate forecast depends on slowly-evolving components of the climate 25 

system (e.g. sea surface temperature and soil moisture) (Troccoli 2010). However, since the sub-seasonal timescale is usually 

too long to be favoured by the atmospheric initial conditions (Vitart 2004) and too short to be strongly influenced by the 

variability of the ocean, making skillful sub-seasonal forecasts is particularly difficult and thus far has less progress than the 

medium-range weather forecasts and seasonal climate forecasts.  
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Since many extreme events (e.g., flash drought, heat wave, and cold wave) and their corresponding management decisions fall 

into sub-seasonal timescales, accurate sub-seasonal forecast information will be central to the development of climate services 

and therefore has great socio-economic value (Vitart et al. 2012). In fact, sub-seasonal forecast information can be useful for 

developing strategies for proactive natural disaster mitigation (Brunet et al. 2010; Vitart et al. 2012). Previous studies have 

evaluated the potential of sub-seasonal to seasonal forecasts for heat wave forecasting (e.g. Hudson et al. 2011a; White et al. 5 

2014), hydrological forecasting (e.g. Orth and Seneviratne 2013; Yuan et al. 2014), water resources management (e.g. 

Sankarasubramanian et al. 2009), hydropower production management (e.g. Garcia-Morales and Dubus, 2007), and crop yield 

prediction (e.g. Hansen et al. 2006; Zinyengere et al. 2011). Due to the improvement of numerical models, prediction 

techniques, and computing resources, there is an increasing focus on sub-seasonal forecasts (e.g. Toth et al. 2007; Vitart et al. 

2008; Brunet et al. 2010; Hudson et al. 2011b; Hudson et al. 2013; Robertson et al. 2014).  10 

Precipitation and 2-m temperature (hereafter temperature) are considered as two of the most important climate variables that 

significantly influence irrigation scheduling, urban water supply, cooling water related to thermal power generation, 

hydropower operations, etc. Many important sub-seasonal events including heat waves, cold waves, dry spells, and wet spells 

are directly derived from the frequency, duration, and intensity of rainfall or hot (cold) temperature. While several studies have 

been conducted to forecast the duration of high temperature days (i.e. heat waves) (e.g. Hudson et al. 2011a; Luo and Zhang 15 

2012; White et al. 2014), there has been, thus far, no complete investigation of sub-seasonal forecasting capabilities for the 

other temperature and precipitation indices that are directly associated with important events and decision-making. In this 

study, we aim to evaluate the skill of sub-seasonal forecasting for those precipitation and temperature indices including mean, 

frequency, duration and intensity of precipitation and temperature at sub-seasonal timescale, such as the number of dry/wet 

days, number of cold/hot days, etc. 20 

Coupled Atmosphere–Ocean General Circulation Models (GCMs) are used to make forecasts at multiple timescales, from 

medium-range weather forecasting, seasonal climate predictions, and long-term climate projections. The reason that GCMs 

can be used as operational models at these time scales is due to the predictability from different sources, such as initial 

conditions from the atmosphere, inertial dynamics from soil moisture and sea surface temperature, etc. While the GCMs have 

demonstrated advanced configurations and realistic representations of the climate systems, the use of GCMs’ predictions is 25 

still restricted by their coarse resolution and inherent systematic biases. To overcome these limitations, the GCMs’ predictions 

at seasonal timescales are usually downscaled and bias corrected before being used in hydrological applications (e.g. Wood et 

al., 2002; Luo and Wood, 2008; Yuan et al., 2013; Tian et al., 2014). The Climate Forecast System version 2 (CFSv2) is a 

recently developed GCM by the National Centers for Environmental Prediction (NCEP) (Saha et al. 2014). The CFSv2 model 

has run retrospectively to produce forecasts (hereafter reforecasts or hindcasts) every 5 days from 1982 to 2009. Despite the 30 

availability of those CFSv2 daily hindcasts, temporal downscaling of the seasonal predictions is still routinely done from 

monthly to daily without using the daily forecast information (e.g. Yuan et al. 2013), with the assumption that the accuracy of 
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daily information is limited at seasonal time scale. At the sub-seasonal timescale, the usefulness of these daily or sub-daily 

precipitation or temperature forecasts compared to the monthly disaggregated forecasts has not been assessed. The CFSv2 has 

fully coupled atmospheric, oceanic, and land components of the climate systems and demonstrated better performance for 

seasonal climate predictions when compared to other seasonal forecast models (Yuan et al. 2011). Since sub-seasonal 

precipitation or temperature forecasts are influenced jointly by the conditions of atmosphere, land and ocean, CFSv2 has great 5 

potential to make skillful precipitation or temperature forecasts at sub-seasonal timescales.  

Besides GCMs, teleconnections between large-scale climate patterns and local weather events have also been used to develop 

sub-seasonal precipitation or temperature forecasts. Recent examples include sub-seasonal winter temperature forecasts in 

North America using Madden-Julian Oscillation (MJO) or El Niño Southern Oscillation (ENSO) conditions (Yao et al., 2011; 

Rodney et al., 2013; Johnson et al., 2013). In addition, Jones et al. (2011) found that the deterministic forecast skill of the 10 

CFSv1 for extreme precipitation in the contiguous United States (CONUS) during winter is higher when the MJO is active. 

With the updated version of CFS, the CFSv2 hindcasts allow re-examining this issue by assessing the influence of MJO or 

ENSO on the probabilistic temperature and precipitation forecast skill over the CONUS.  

This study will conduct a comprehensive evaluation of the precipitation and temperature hindcasts at sub-seasonal timescales. 

Specifically, the aims of this study are to 1) assess the CFSv2 predictions for precipitation and temperature  indices at different 15 

locations and seasons within the first 30 days, 2) compare weekly and fortnight forecasting skill of the CFSv2 at different lead 

times, and 3) evaluate the effects of MJO and ENSO on the CFSv2 sub-seasonal forecast skill. The assessment includes mean 

values of sub-seasonal predictions as well as related temperature and precipitation indices at different forecast leads and scales. 

The downscaled CFSv2 monthly forecasts are compared with the native CFSv2 daily sub-seasonal forecasts. Furthermore, the 

influence of MJO or ENSO conditions on the CFSv2 categorical temperature and precipitation forecast skill is also assessed.  20 

 

2. Data and Methodology 

CFSv2 had the state-of-the-art data assimilation and forecast model components of the climate system and became operational 

at NCEP since March 2011 (Saha et al. 2014). There were three different types of hindcasts (or reforecasts): 6-hourly time 

series from 9-month runs, 45-day runs, and season runs (Table 1). Figure 1 gives an example of the three hindcast 25 

configurations. CFSv2 hindcast data had a T126 spatial resolution (roughly 100 km) and included several near surface variables 

at a 6-hourly temporal resolution. The one season and 45-day reforecasts were initialized every day so that relatively new 

initial conditions could be incorporated into a large ensemble size for making a potentially more skillful forecast. Nevertheless, 

we chose to use the 9-month reforecast. This is because the 9-month reforecast covered much longer period (1982-2009) than 

one season and 45-day reforecasts (1999-2010), which ensures a larger sample size for a more robust evaluation, especially 30 

for the evaluation of skill conditioned on MJO and/or ENSO.  
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[Insert Table 1 here] 

[Insert Figure 1 here] 

The daily precipitation total was aggregated from the 6-hourly precipitation data; the daily mean temperature was obtained by 

averaging daily maximum and minimum temperature, which were extracted from the 6-hourly maximum and minimum 

temperature. The ensemble members for each month were constructed in the same way as the monthly hindcasts from CFSv2. 5 

For each year, the daily hindcast had 28 members in November and 24 members in other months with initial conditions at the 

0, 6, 12, and 18 UTC (Coordinated Universal Time) every 5 days. For example, the 24 ensemble members for January were 

initialized from the four cycles for each of December 12th, 17th, 22nd, and 27th and January 1st and 6th.  

The forecast validation dataset was obtained from the North American Land Data Assimilation System version 2 (NLDAS-2; 

Xia et al., 2012). The forcing dataset of the NLDAS-2 merged a large observation-based and reanalysis data and was widely 10 

used to drive land surface models over the CONUS. It had 0.125o (approximately 12 km) spatial resolution and hourly temporal 

resolution. The NLDAS-2 hourly precipitation (temperature) data were aggregated (averaged) into daily data.  

Besides using CFSv2 daily hindcasts at its native spatial resolution (hereafter CFSv2 daily), the CFSv2 monthly hindcasts 

were also downscaled using the Bayesian merging (BM) method for hydrological applications (Luo et al., 2007). By comparing 

those two forecasts, it will help us understand the usefulness of the CFSv2 daily precipitation or temperature forecasts for 15 

hydrological applications compared to the monthly disaggregated forecasts. The BM method both spatially and temporally 

downscaled the CFSv2 monthly hindcasts from its native spatial resolution into daily hindcasts at a 0.125o spatial resolution 

for hydrological applications. The BM method updated an observational climatology based on the hindcast skill using Bayesian 

theory and generated 20 daily ensemble members for each month using historical-analog criterion and random selection. For 

a more detailed description of the BM method, please see Luo et al. (2007) and Luo and Wood (2008).  20 

Ensemble forecasts of precipitation and temperature indices at sub-seasonal timescale were calculated by using daily forecasts 

directly from the CFSv2 and the BM downscaled CFSv2 monthly forecasts. Table 2 shows the forecast lead time for different 

periods and methods. For daily forecasts directly from CFSv2, all precipitation and temperature indices were calculated at 7-, 

14-, and 30-day forecast timescales in the first month. For daily forecasts from the BM downscaled CFSv2 monthly data, the 

precipitation and temperature indices were only calculated at 30-day forecast timescales in the first month, since these forecasts 25 

were temporally disaggregated from monthly forecasts. It would be useful to look at the performance of the CFSv2 daily 

forecast in comparison with the daily data disaggregated from the monthly forecast.  

[Insert Table 2 here] 

Table 3 shows the precipitation and temperature indices calculated in this study. Following Zhang (2011), a wet (dry) day was 

defined as days with precipitation above (below) 1 mm during the n-day period. The wet (dry) spell was defined as number of 30 
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consecutive wet (dry) days. Taking a 14-day forecast for WetSpell as an example (as is shown in Table 2), the first forecast 

lead was the number of consecutive rainy days from day 1 to day 14 forecasts. As a way of defining heat (cold) wave (e.g. 

Spinoni et al. 2015), the threshold for high (low) temperature day was defined when the temperature was above (below) 90th 

(10th) percentile of climatological distribution of temperature during the n-day period for different months.  

[Insert Table 3 here] 5 

To validate the forecasts, the observed precipitation and temperature indices were calculated using the NLDAS-2 daily 

precipitation and temperature data. The NLDAS-2 daily precipitation and temperature data were upscaled using bin averaging 

in order to match CFSv2 spatial resolution. The percentiles of defining high (low) temperature were obtained separately from 

distributions of forecasts and observations. All ensemble forecasts including raw and BM downscaled CFSv2 forecasts were 

verified against the NLDAS-2. Take CFSv2 raw forecasts for January as an example; there are 24 ensemble members for all 10 

30-day, 14-day, and 7-day forecasts. The 24 member ensemble forecasts were considered as being initialized on the first day 

of the month regardless of which day the individual member of the forecasts was initialized (e.g., 1 Jan-30 Jan, 1 Jan-14 Jan, 

and 1 Jan-7 Jan). All ensemble forecasts were converted into categorical forecasts in terciles with all observations converted 

into dichotomous values of 1 or 0. The terciles were defined separately based on the individual distributions of the observations 

and the forecasts (x), with x<1/3rd percentile for lower tercile, 1/3rd≤x≤2/3rd percentile for middle tercile, and x>2/3rd 15 

percentile for upper tercile.  

The categorical forecasts were evaluated using the Heidke Skill Score (HSS), a common performance metric used by the 

Climate Prediction Center (CPC) (e.g. Johnson et al. 2013; Wilks 2011). The HSS assesses the proportion of correctly 

forecasted categories. The categorical forecast was assigned to three forecast categories (upper, middle, or lower tercile) based 

on the highest of the three forecast probabilities. The tercile category probabilities were obtained by counting the ensemble 20 

members in each of the three categories and then by dividing by the ensemble size. The HSS is expressed as: 
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The number of correctly forecasted categories is denoted as H. The random forecast, E, is the expected number of categories 

forecast correctly just by chance. In this study, since there are three forecast categories, E is defined as one-third of the total 

number of forecasts, T. The HSS ranges from -50 (no correct forecasts) to 100 (perfect forecasts), with a value of 0 representing 25 

the same skill as randomly generated forecast or climatological forecast. The HSS above 0 indicates that the forecasts have 

skill. The HSS was calculated for each method (CFSv2 daily and BM), variable, index, grid point, month, and forecast time. 

Since the number of forecast-observation pairs was 28 for each point, the HSS estimation had considerable uncertainty given 

this relatively small sampling size. To quantify this uncertainty, a bootstrapping technique (Wilks 2011; Hamilton et al. 2012) 

was applied to resample 28 samples (3000 times with replacement) from the 28-year reforecasts averaged over the CONUS. 30 

Then a number of 3000 HSS was calculated for constructing a distribution, with the confidence interval and significance level 
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of the HSS estimated from this distribution. With this treatment of the HSS estimation uncertainty, we can determine that the 

HSS is significantly skillful when it is greater than a given significance level. 

Since seasonal precipitation and temperature could be more predictable at larger scales (e.g. Luo and Wood 2006; Roundy et 

al. 2015), it is worthwhile to also look at the sub-seasonal predictive skill over a larger spatial domain. Therefore, each forecast 

was averaged over each of the nine National Centers for Environmental Information (NCEI, formerly known as National 5 

Climatic Data Center) climate regions as well as over the entire CONUS (Figure 2). The HSS of the average forecasts over 

each of those regions were evaluated subsequently.  

[insert Figure 2 here] 

The skill assessment of Pmean and Tmean was conducted not only for all forecasts but also for forecasts during active MJO, 

ENSO, or combination of the two.  MJO is the dominant mode of the sub-seasonal variability in the tropical atmosphere. The 10 

MJO index used in this study was from the Australian Bureau of Meteorology 

(http://cawcr.gov.au/staff/mwheeler/maproom/RMM/) for the period of 1982 to 2009. This index was defined by two leading 

principal components (PCs) from an empirical orthogonal function analysis of the combined near-equatorially averaged 850-

hPa zonal wind, 200-hPa zonal wind, and satellite-observed outgoing longwave radiation data (Wheeler and Hendon 2004). 

The pair of these two leading PC time series at a daily time step, called the Real-time Multivariate MJO series 1 (RMM1) and 15 

2 (RMM2), defined eight MJO phases and an MJO amplitude. There were a few different ways to define active MJO events. 

The simplest criterion was to define MJO as RMM amplitude exceeded a certain threshold (e.g. Johnson et al. 2014), which 

did not consider minimum duration and eastward propagation of MJO. This study adopted a more rigorous definition of MJO: 

MJO days and events were identified using a pentad-averaged version of the Wheeler and Hendon RMM index subject to three 

major requirements as indicated by L’Heureux and Higgins (2008). Similar definition was also widely adopted by other 20 

researchers such as Jones (2009) and Jones and Carvalho (2011). In this work, ENSO was defined using the same criteria as 

CPC (http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). ENSO periods were based on 

a threshold of +/- 0.5 oC for the Oceanic Niño Index (3 month running means of SST anomalies in the Niño 3.4 region). Warm 

or cold ENSO periods were identified when the threshold was met for a minimum of 5 consecutive overlapping seasons. 

3. Results 25 

3.1 The 30-day forecast skill 

Figure 3 shows the average HSS for 30-day forecasts of precipitation indices calculated from the CFSv2 daily at different 

locations over December-January-February (DJF) and June-July-August (JJA). In DJF, the average skill of WetSpell over the 

CONUS was 34 (with a confidence interval 34±22), which was much higher than the skill of the other indices; it showed high 

skill over most areas of CONUS including the midwest and eastern parts. Pmean, RainDay, and DrySpell were skillful in the 30 

southeast and the southwest but also revealed skill in the other regions. RainWet showed minor skill over the entire region. 



7 

 

The skill in JJA showed different spatial patterns with DJF. While Pmean and RainWet showed modest forecast skill in JJA 

over the CONUS, RainDay, WetSpell and DrySpell all showed high skill in the west coastal regions with the WetSpell showing 

some skill in the midwest and northeast. The forecast skill for precipitation indices for MAM was between DJF and JJA, but 

the skill for SON was slightly lower than JJA (Figure 4).  

[insert Figure 3 here] 5 

[insert Figure 4 here] 

Spatial patterns in HSS were very different among the indices, particularly in July. We calculated the standard deviation (STD) 

for observed precipitation indices in July to further examine the interannual variability of those indices at each grid point over 

the space. To compare relative temporal variability in space, the STD was normalized spatially to a range of 0 to 1 using a 

feature scaling method: 10 
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where STD is the standard deviation of time series for each grid point, min(STD) and max(STD) are the minimum and 

maximum STD over all grid points respectively, and STD’ is the normalized STD. Figure 5 shows the normalized standard 

deviation of 30-day precipitation indices in January and July over 28-year period from 1982 to 2009 over the CONUS. By 

comparing interannual variability (Figure 5) with the forecast skill over the space (Figure 3), we found that regions showing 15 

lower interannual variability usually have higher skill than the regions with higher interannual variability. Particularly in JJA, 

for Pmean, the western CONUS showed relatively lower interannual variability and higher skill than the eastern CONUS; for 

RainDay, the western coastal areas showed much lower variability and higher skill than the other regions; for RainWet, all 

regions showed relatively equal variability and skills; for WetSpell,  the southeastern CONUS showed higher interannual 

variability and lower skill than the other regions of the CONUS; for DrySpell, California and eastern CONUS showed relatively 20 

lower interannual variability and higher skill than the other areas.  

[insert Figure 5 here] 

Figure 6 shows the average HSS for 30-day forecasts of temperature indices calculated from the CFSv2 daily at different 

locations over DJF and JJA. Overall, the temperature indices showed reasonably higher skill than the precipitation indices in 

both DJF and JJA. For DJF, Tmean showed moderate high skill in the Great Lakes area and eastern US; HighDay, LowDay, 25 

CosHighD, and CosLowD were skillful over most areas of CONUS and the skill was particularly high for LowDay and 

CosLowD in the center or north of the midwest region. The forecast skill of temperature indices in DJF showed different 

spatial patterns with JJA. Tmean and LowDay showed high skill over the west inland area. CosLowD was skillful over major 

area of the CONUS, particularly in the northeast. HighDay and CosHighD showed notable high skill around south of the 
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central area. The forecast skill for temperature indices was between DJF and JJA for MAM but slightly lower than JJA for 

SON (Figure 7). It is worth noting that given the sample size (N=28) used for calculating the HSS, the confidence interval of 

the HSS for each index is relatively wide. Based on the bootstrapping approach described earlier, the HSS was found to be 

significantly skillful (significantly above 0 at the 0.05 level) when it was greater than the number between 20 and 24, depending 

on the indices. 5 

[insert Figure 6 here] 

[insert Figure 7 here] 

Figure 8 shows the average HSS for 30-day forecasts of precipitation and temperature indices calculated from the CFSv2 daily 

or the BM downscaled CFSv2 over 12 months for CONUS and its consistent NCEI climate regions. The precipitation and 

temperature indices calculated from CFSv2 daily showed higher skill than BM for all regions. On average, the skill from the 10 

CFSv2 daily is approximately 20% higher than the skill from the BM, suggesting that the CFSv2 month-1 daily forecasts are 

potentially more useful than the temporally downscaled monthly forecasts for hydrological applications.  

[insert Figure 8 here]   

3.2 Weekly and fortnight forecast skill at different lead times 

Figure 9 (Figure 10) shows the average HSS of 14- and 7-day precipitation (temperature) indices forecasts from the CFSv2 15 

daily over 12 months for the CONUS and its consistent NCEI climate regions. In general, the skill scores for precipitation 

indices were reasonably higher in the first two weeks than the second two weeks at both 14- and 7-day time scales since the 

first two weeks were within the range of weather forecast and were strongly influenced by the atmospheric initial conditions. 

While there were differences among regions, the skill scores for indices measuring frequency or duration of precipitation (i.e. 

RainDay, WetSpell, and DrySpell) or temperature extremes (i.e. HighDay, LowDay, CosHighD, and CosLowD) were equally 20 

skillful as those measuring mean precipitation or temperature during the first two weeks. Temperature indices showed notably 

higher skill than any precipitation index, particularly in weeks 3 and 4. It was worth noting that the skill was higher for the 14-

day forecast at the first lead than for 7-day forecast in weeks 1 and 2 taken individually. The improved forecast skill indicated 

that the temporal noise in predictions can be reduced through averaging, as noted by Roundy et al. (2015).  

[insert Figure 9 here]   25 

[insert Figure 10 here]   

3.3 Effects of MJO and ENSO 
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Figure 11 shows skill differences between Pmean or Tmean weeks 2-4 forecasts during active events (ENSO, MJO, or 

MJO+ENSO) and the forecasts during the whole period for the CONUS and its consistent NCEI climate regions. The Pmean 

and Tmean forecasts were calculated from the CFSv2 daily hindcasts. In general, weeks 3 and 4 forecasts performed better 

during anomalous ENSO or MJO states for Pmean but not for Tmean.   

[insert Figure 11 here]   5 

For precipitation, the forecast skill was inconsistent for the anomalous ENSO, MJO, or combined ENSO and MJO phases 

relative to the whole period. There was a notable increase in skill when the forecasts were conditioned on active MJO for 

almost all regions, indicating the positive influence of MJO on the CFSv2 sub-seasonal precipitation forecasts. It is worthwhile 

to note that forecasts conditioned on combined MJO and ENSO, and forecasts conditioned on MJO, showed similar level of 

positive skill with a few differences, which may due to the modulation effects of ENSO on MJO.  For temperature, while the 10 

MJO, ENSO, or combined MJO and ENSO mostly showed positive effects on the skill for week 2 forecast, those influences 

became negative in most of the regions beyond week 2. We further examined differences between Pmean or Tmean average 

skill over weeks 2-4 for forecasts during active MJO phase and the whole period at different locations and seasons (Figures 12 

and 13). We used a bootstrap technique for significance tests for the difference between the HSS during active MJO phase and 

the whole period. We resampled 28 samples (3000 times with replacement) from the 28-year reforecast averaged over the 15 

CONUS. All the 28 samples were used to calculate the HSS during the whole period. The subset of the 28 samples under 

active MJO events was used to calculate the conditional HSS. The difference between the HSS during the MJO and the whole 

period was then calculated. Since the resampling was conducted 3000 times, a number of 3000 HSS differences was obtained 

for constructing a distribution and used to estimate the confidence interval and significance level of the HSS. Similar to Peng 

et al. (2013), the significance level estimated based on the average over the CONUS was applied to test the local significance 20 

for each grid point over the region. The results were shown in Figures 12 and 13.  

 

[insert Figure 12 here]   

[insert Figure 13 here]   

In general, most skill was significantly different at different locations; MJO had strongly positive effects on CFSv2 sub-25 

seasonal Pmean forecast skill over the CONUS; the effects on Tmean forecast skill was relatively weak and inconsistent among 

different regions. For precipitation, the influenced areas were greater during DJF and MAM than during JJA and SON, with 

the NE and NW regions being consistently influenced by MJO during four seasons. Aggregated over CONUS, we further 

conducted statistical tests to compare whether precipitation forecast skill during active MJO, ENSO, or combined MJO and 

ENSO phases were greater than those during the whole period for DJF, MAM, JJA, and SON. We tested whether differences 30 

in mean HSS over the CONUS (averaged over 1024 grid points) were statistically significant at a 5% level. The student’s t-

test showed the forecast skill during active MJO or combined MJO and ENSO phases was significantly greater than those 
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during the whole period (p<0.05) for DJF, MAM, JJA, and SON; the forecast skill during active ENSO phases was significantly 

greater than those during the whole period for MAM. It is also worthwhile to note that the combined effects of MJO and ENSO 

were stronger than their individual effects, suggesting a potential benefit of using combined information of MJO and ENSO 

for sub-seasonal forecasts. Table 4 shows that there were much fewer ENSO events than MJO events during January 1982 to 

December 2009. The number of ENSO events could be limited enough to skew the skill score conditioned on ENSO.  5 

[insert Table 4 here] 

4. Discussion 

The CFSv2 sub-seasonal forecast skill was highly dependent on forecasting indices, regions, seasons, leads, and methods. The 

sub-seasonal forecasts for indices characterizing mean precipitation and temperature as well as frequency or duration of 

precipitation and temperature extremes showed skill in the first two weeks but no skill or modest skill for the second two 10 

weeks, since the first two weeks were within the range of medium-range weather forecasts. This finding is important given the 

sub-seasonal forecasting information is valuable to many decision makers. In particular, sub-seasonal forecasts for frequency 

or duration of precipitation and temperature extremes can be directly tailored to different application needs. For example, 

having the information of RainDay, WetSpell and DrySpell weeks in advance will help farmers make decisions for irrigation 

scheduling to save water costs and improve crop yields. Short-term planning of urban water supply could also benefit from 15 

sub-seasonal forecasting information, since those indices describing frequency or duration of precipitation and temperature 

extremes are known to be directly related the urban water demand forecasting (e.g. Donkor et al. 2012). As some temperature 

indices such as CosHighD and CosLowD were used to characterize heat/cold waves, forecasting information of these indices 

would also be useful for developing strategies for proactive disaster mitigations (e.g. frost damage to crops).  

The spatially and temporally downscaled CFSv2 monthly data using BM method was compared with the CFSv2 daily data for 20 

sub-seasonal forecasts at its raw resolution. Since the 30-day precipitation and temperature indices calculated from CFSv2 

daily hindcasts have higher skill than the BM, the comparison of these two methods implies that daily forecasts from the 

CFSv2 are potentially more useful than those disaggregated from the monthly forecasts for application studies such as sub-

seasonal hydrological forecasting.  

This study demonstrated that the CFSv2 sub-seasonal forecast skill varies with space and time. These results identify seasons 25 

and regions where there is the potential for skillful sub-seasonal predictions for certain precipitation and temperature indices. 

For example, water managers in California trying to predict WetSpell and DrySpell have confidence to use the forecasts from 

CFSv2 during summer seasons, while a decision maker in the southeast may benefit little by using such information.  

Sub-seasonal forecast skill can be further improved by understanding the sources of the skill. This study took a first look at 

the effects of MJO and ENSO on the CFSv2 sub-seasonal forecast skill. It was found that the presence of an active MJO 30 
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improves weeks-2 to -4 categorical forecast of precipitation over most areas of CONUS. This finding corresponds to the study 

of Jones et al. (2011), where improved deterministic CFSv1 forecast skill of extreme precipitation was also found during active 

MJO. We also compared the regions of improved skill based on MJO in this study (Figure 9) with the results from Jones et al. 

(2011). While there were spatial differences, the regions of improved skill associated with MJO commonly occurred for the 

western coast of the CONUS. This result is consistent with current knowledge of the observed influence of the MJO on 5 

precipitation events along the CONUS west coast, which can be found at the NOAA CPC website 

(http://www.cpc.ncep.noaa.gov) under the MJO section. Forecast skill of precipitation and temperature are inherently 

associated with the capacity of CFSv2 in forecasting MJO. The CFSv2 has shown useful MJO prediction skill out to 3 weeks 

(Wang et al. 2014). Improvements of the representation of the MJO in CFSv2 will likely further extend the forecast skill of 

precipitation and temperature. Furthermore, recent studies have developed statistical forecasting models at sub-seasonal 10 

timescale using teleconnections of MJO and ENSO phases and local weather (e.g. Johnson et al. 2013). These statistical models 

could be potentially combined with CFSv2 forecasts to further improve the sub-seasonal forecast skill.  

It is opportune to note some future directions of this work. Forecast skill could be potentially improved by having a larger 

ensemble size. A sensitivity study on ensemble size could be performed to assess whether a larger ensemble improves forecast 

skill. For future work, when one season or 45-day CFSv2 reforecasts (initialized everyday) are available over a longer period, 15 

we would choose to use those datasets instead of 9-month reforecasts (initialized every five days) in order to incorporate a 

large ensemble size for making a potentially more skillful forecast. Another approach to further improve the sub-seasonal 

forecast skill is through multi-model ensembles. The multi-model ensemble forecasts combine multiple seasonal forecast 

models and often have higher skill than individual models, since it has an increased ensemble size and a wider spectrum of 

possible forecasts that takes into account model uncertainty due to differences in model configuration and physics (e.g. 20 

Hagedorn et al. 2005). Here we highlight two important endeavors: the North American Multi-Model Ensemble (NMME-2) 

system (Kirtman et al. 2013) is exploring sub-seasonal forecast in their next phase; the World Meteorological Organization 

(WMO) sub-seasonal to seasonal (S2S) prediction project (http://www.s2sprediction.net/) is archiving hindcast and real-time 

forecasts from a range of model systems. All of those efforts can facilitate sub-seasonal multi-model ensemble prediction and 

model inter-comparison studies. Furthermore, CFSv2 sub-seasonal precipitation and temperature forecasts can be used for 25 

subsequent application studies related to areas such as hydrology and agriculture. For example, flash drought refers to a sudden 

onset of high temperatures and decreases of soil moisture and is a disastrous event at sub-seasonal timescale (e.g. Mo and 

Lettenmaier 2015; Wang et al., 2016). Sub-seasonal forecasting of flash drought will help decision makers develop mitigation 

strategies. The CFSv2 sub-seasonal precipitation and temperature forecasts can be used to drive land surface hydrological 

models to forecast soil moisture and evapotranspiration and consequently improve flash drought forecasts.  30 

5. Conclusion 
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In this study, we have assessed the CFSv2 categorical sub-seasonal forecasts of precipitation and temperature indices over the 

CONUS. The categorical sub-seasonal forecast skill is highly dependent on forecasting indices, regions, seasons, and methods. 

Indices characterizing mean precipitation and temperature as well as measuring frequency or duration of precipitation and 

temperature extremes for 7-, 14-, and 30-day forecasts were skillful depending on seasons and regions. The forecasts for 7- 

and 14-day temperature indices even showed skill at weeks 3 and 4, and generally more skillful than precipitation indices. The 5 

forecasts for 30-day temperature and precipitation indices calculated from the statistically downscaled forecasts mostly showed 

lower skill compared to those calculated directly from the CFSv2 daily forecasts, indicating the potential usefulness of the 

CFSv2 daily forecasts for hydrological applications relative to the temporally disaggregated CFSv2 monthly forecasts. The 

presence of an active MJO improves weeks 2 to 4 categorical forecast of precipitation over most areas of CONUS in the CFSv2 

system. The sub-seasonal forecast skill of precipitation and temperature could be further improved through combining with 10 

teleconnection-based statistical sub-seasonal forecasting models or multi-model ensemble. 
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Figure 1. Three configurations of the CFSv2 hindcast: 9-month run, 1 season run, and 45-day run. UTC stands for Coordinated 

Universal Time. 
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Figure 2. NCEI climate regions (described in Section 2) used as areal averaging domains for raw and BM downscaled CFSv2 

forecasts. Regions are named as follows: Northwest  (NW), West (W), Southwest (SW), West North Central (WNC), South (S), Upper 

Midwest (UMW), Central (C), Southeast (SE), and Northeast (NE). 



18 

 

 

Figure 3. HSS of 30-day (from top to bottom columns) Pmean, WetRain, RainDay, WetSpell and DrySpell from the CFSv2 daily 

hindcasts over DJF (left) and JJA (right). The number in the bottom left is the overall average.  
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Figure 4. Same as in Figure 3, but for MAM and SON.  
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Figure 5. Spatially normalized standard deviations of observed 30-day precipitation indices in January and July over 28-year period 

from 1982 to 2009 
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Figure 6. HSS of 30-day (from top to bottom columns) Tmean, HighDay, LowDay, CosHighD, and CosLowD from (from left to right 

rows) the CFSv2 daily hindcasts during DJF (left) and JJA (right). The number in the bottom left is the average.  
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Figure 7. Same as in Figure 6, but for MAM and SON.  
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Figure 8. HSS of 30-day precipitation and temperature indices calculated from the CFSv2 and BM for CONUS and its consistent 

NCEI climate regions. The red line is the average.  
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Figure 9. Mean HSS of 14- and 7-day (from top to bottom rows) Pmean, WetRain, RainDay, WetSpell, and DrySpell from the CFSv2 

daily hindcasts for CONUS and its consistent NCEI climate regions. 
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Figure 10. Mean HSS of 14- and 7-day (from top to bottom rows) Tmean, HighDay, LowDay, CosHighD, CosLowD from the CFSv2 

daily hindcasts for CONUS and its consistent NCEI climate regions. 
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Figure 11. HSS differences between Pmean (left column) or Tmean (right column) weeks 2-4 forecasts during active ENSO, MJO, 

or combined active ENSO and MJO (MJO+ENSO) phases and those during the whole period for CONUS and its consistent NCEI 

climate regions. Positive values indicate more skillful forecasts during active MJO, ENSO, or ENSO+MJO phases. 
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Figure 12. Differences between HSS of weeks 2-4 Pmean forecasts during active MJO phases and the whole period at different 

locations over the CONUS for DJF, MAM, JJA, and SON. The areas in white indicate the differences are not significant (at the 0.05 

level) .   
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Figure 13. Same as in Figure 12, but for Tmean. 

 

 

 5 

 

 

 

 

 10 

 

 

 

 

 15 

 

 

 

 



29 

 

Table 1. Configurations of the CFSv2 hindcast. UTC stands for Coordinated Universal Time. 

Configurations   9-month runs   one season   45-day runs 

Initiated day  
Every 5 days 

beginning from Jan 1 

of each year 

 Every day  Every day 

Initiated UTC time  0, 6, 12, 18  0  0, 6, 12, 18 

Covered Period   1982-2010   1999-2010   1999-2010 

 

 

 

Table 2. Forecast lead times for different periods and methods. 5 

Period   CFSv2 daily  BM 

   Lead 1 Lead 2 Lead 3 Lead 4  Lead 1 

30-day  Day 1 to Day 30 - - -  Day 1 to Day 30 

14-day  Day 1 to Day 14 Day 15 to Day 28 - -  - 

7-day   Day 1 to Day 7 Day 8 to Day 14 Day 15 to Day 21 Day 22 to Day 28  - 

 

 

 

Table 3. Precipitation and temperature indices used in this study.  

Index  Description Period 

Pmean  mean precipitation 30-day, 14-day, and 7-day 

RainWet  mean precipitation over wet days 30-day, 14-day, and 7-day 

RainDay  number of rainy days 30-day, 14-day, and 7-day 

WetSpell  maximum wet spell length 30-day, 14-day, and 7-day 

DrySpell  maximum dry spell length 30-day, 14-day, and 7-day 
    

Tmean  mean temperature 30-day, 14-day, and 7-day 

HighDay  number of high temperature days 30-day, 14-day, and 7-day 

LowDay  number of low temperature days 30-day, 14-day, and 7-day 

CosHighD  maximum number of consecutive high temperature days 30-day, 14-day, and 7-day 

CosLowD   maximum number of consecutive low temperature days 30-day, 14-day, and 7-day 
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Table 4. Active ENSO, MJO, and ENSO+MJO during January 1982 to December 2009. The red areas indicate active ENSO periods. 

The green areas indicate the periods with active MJO happening. The yellow areas indicate combined active ENSO and MJO events. 

The last three lines show the total number of ENSO, MJO, and ENSO+MJO events for each month.  

 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

No. ENSO 16 15 12 11 11 12 12 13 15 17 17 17

No. MJO 22 22 24 23 24 15 15 15 16 24 23 25

No. ENSO+MJO 12 12 10 7 8 4 6 6 9 13 13 14


