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Response to the Editor: 

Thank you for your time in editing our manuscript and for your insightful suggestions. We have 

responded to the reviews point by point in the document attached. The revised manuscript with 

tracked marks is also attached behind the responses to the editor. We have submitted the revised 

manuscript as requested. 

1. The paper’s treatment of the significance of the results is still less rigorous than I feel is 

appropriate for the forecasting topic. For instance, even statements such as (p5 l1) “The HSS above 

0 indicates that the forecasts have skill” (positive, negative?) are simplistic. The skill estimate is 

certainly much stronger (ie significant) if the HSS has been calculated from a sample of 1000 obs-

forecast pairs, compared to a sample of 10. I recommend adding to the discussion of the skill score 

a small general discussion regarding uncertainty (due to sampling error) in the Heidke skill score 

estimates, but related to the samples sizes used in this paper – ie, 28. It should be fairly 

straightforward to calculate a confidence interval given this sample size, which can then be 

referenced in the results discussion (Figures 3-10 excluding 5). For instance, given sampling 

uncertainty with N=28 the HSS is significantly (positively, p<0.05 or p<0.10) skillful when it is 

greater than X (where X is greater than zero). 

RESPONSE: Thanks for pointing this out. We used a bootstrapping technique to estimate the 

confidence interval of the HSS, and the average of the HSS over the United States as the test 

statistic. We have added the following statement to the methodology section of the revised 

manuscript: “Since the number of forecast-observation pairs is 28 for each point, the HSS 

estimation has considerable uncertainty given this relatively small sampling size. To quantify this 

uncertainty, a bootstrapping technique (Wilks 2011; Hamilton et al. 2012) was applied to resample 

28 samples (3000 times with replacement) from the 28-year reforecast averaged over the CONUS. 

Then a number of 3000 HSS was calculated for constructing a distribution; with the confidence 

interval and significance level of the HSS estimated from this distribution. With this treatment of 

the HSS estimation uncertainty, we can determine that the HSS is significantly skillful when it is 

greater than a given significance level.” We have calculated confidence intervals for different 

indices using this method and referenced that in the result discussion: “It is worth noting that 

given the sample size (N=28) used for calculating the HSS, the confidence interval of the HSS for 

each index is relatively wide. Based on the bootstrapping technique described earlier, the HSS 

was found to be significantly skillful (significantly above 0 at the 0.05 level) when it was greater 

than the number between 20 and 24, depending on the indices.” 

For the difference between two HSS, the CI may be more difficult to calculate analytically thus 

the use of the bootstrap is a convenient empirical approach. Yet the authors use of the bootstrap 

on the sample of 6 mixed scores (3 months + 3 leads) is at least inadequate if not completely 

incorrect. One strategy would be to generate 1000 trials of two 28-member nonskilled samples 

(perhaps by shuffling the obs-forecast pairs in time) and calculate score difference thresholds that 

are exceeded with a desired probability, purely by chance. Another is to bootstrap similarly on the 

actual 28-member samples to assess the effect of their sample uncertainty on the difference in their 

scores. Because the HSS is a widely-used metric in weather/climate forecasting, and it is likely a 

common challenge to assess whether one forecast is better than another, I expect examples can be 
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found in the literature. It is still a striking feature of figures 12-13 that adjacent pixels with different 

signals (eg -15, +10) or signals of zero are all found significant, when the underlying climate maps 

(NLDAS and CFSv2) are much smoother. Despite an earlier request for analysis and discussion 

on this point, this issue remains unexplained. 

RESPONSE: Thanks for your comments and suggestions. We used a bootstrap technique for 

significance tests for the difference between the HSS during active MJO and the whole period. We 

resampled 28 samples (3000 times with replacement) from the 28-year reforecast averaged over 

the CONUS. All the 28 samples were used to calculate the HSS during the whole period. The subset 

of the 28 samples under active MJO events was used to calculate the conditional HSS.  The 

difference between the HSS during the MJO and the all period was then calculated. Since the 

resampling was conducted 3000 times, a number of 3000 HSS differences was obtained for 

constructing a distribution and used to estimate the confidence interval and significance level of 

the HSS. Similar to Peng et al. (2013), the significance level estimated based on the average over 

the CONUS was applied to test the local significance for each grid point over the region. The 

results have been updated in Figures 12 and 13 and relevant texts in the revised manuscript.  

Finally, the use of the significance calculations in the figures can be improved. Rather than show 

the significance maps separately (eg in Figure 11), which makes it very difficult to match a pixel’s 

significance and value, the example of skill masking at CPC could be followed – eg, 

http://www.cpc.ncep.noaa.gov/products/CFSv2/htmls/usPrece1SeaMask.html) 

RESPONSE: Thanks for your suggestions. We have used mask to improve the use of the 

significance calculations in the Figures 12 and 13.  

Before this paper can be accepted it will require a more rigorous and thoughtful treatment of 

uncertainties in the skill score estimates, referencing appropriate literature and clearly describing 

the approaches used to assign significance. 

RESPONSE: Thanks for your comments. We have addressed those issues in the revised manuscript. 

Please refer to the responses to the comments above.  

2. In general, I feel the authors have adequately addressed the reviewers’ comments, but I ask that 

the authors go back through the first round of comments to reconsider and upgrade any perfunctory 

and limited responses such as the one highlighted below. 

Reviewer: Page 2, line 23-25: Please explain how GCM outputs can be used for daily or short-

term forecasts seeing as they are uncorrelated to current meteorological conditions. 

RESPONSE: Thanks for pointing this out. This is an overstatement. We have changed the sentence 

to “Coupled Atmosphere-Ocean General Circulation Models (GCMs) are used to make forecasts 

at multiple timescales.” 

There are a number of interesting reasons why GCM outputs can and are being used for daily and 

short-term forecasts when they are initialized for weather and climate prediction, yet these are not 

discussed in the response or, more appropriately, the paper (as background, perhaps). 

http://www.cpc.ncep.noaa.gov/products/CFSv2/htmls/usPrece1SeaMask.html
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The reviewer may be confused by the use of GCMs in free-running climate projection mode (where 

there is no correlation) rather than in operational forecasting mode, and here it would have been 

appropriate to make the distinction and to describe briefly the sources of GCM predictability at 

short-to-medium ranges (eg the initializations, inertial dynamics at different scales and in different 

components, etc.). 

RESPONSE: Thanks for your comments. We again went through the reviewers’ comments and 

found that the explanation for the use of GCMs outputs is not sufficient. We have added the 

following to clarify this in the revised manuscript: 

“Coupled Atmosphere–Ocean General Circulation Models (GCMs) are used to make forecasts at 

multiple timescales, from medium-range weather forecasting, seasonal climate predictions, and 

long-term climate projections. The reason GCMs can be used as operational models at these time 

scales is due to the predictability from different sources, such as initial conditions from the 

atmosphere, inertial dynamics from soil moisture and sea surface temperature, etc.” 

3. The writing still requires a careful proof-reading by an accomplished technical English language 

writer. 

RESPONSE: Thanks for your comments. We have conducted a careful proof-reading to improve 

the writing of this manuscript.  
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Abstract. This paper explored the potential of a global seasonal climate forecast models for sub-seasonal forecasting of 

precipitation and 2-m air temperature. The probabilistic categorical sub-seasonal forecast skill of ten precipitation and 10 

temperature indices was investigated using the 28-years’ sub-seasonal hindcasts of thefrom the Climate Forecast System 

version 2 (CFSv2) over the contiguous United States (CONUS). The forecast skill for mean precipitation and temperature as 

well as for the frequency and duration of extremes was highly dependent on the target forecasting indices, regions, seasons, 

and leads, and methods. Indices characterizing mean precipitation and temperature as well as measuring frequency or duration 

of precipitation and temperature extremes for 7-, 14-, and 30-day forecasts were skillful depending on seasons, regions, and 15 

forecast leads. Forecasts for 7- and 14-day temperature indices showed skill even at weeks 3 and 4, and generally were more 

skillful than precipitation indices. Overall, temperature indices showed higher skill than precipitation indices over the entire 

CONUS region at sub-seasonal scale. While the forecast skill related to mean precipitations indices were was low in summer 

over the CONUS, the number of rainy days, number of consecutive rainy days, and number of consecutive dry days showed 

considerable high skill for the west coastal region. The 30-day forecasts of precipitation and temperature indices calculated 20 

from the downscaled monthly CFSv2 forecasts were less skillful than those calculated from the daily CFSv2 forecasts, 

suggesting the potential usefulness of the CFSv2 daily forecasts for hydrological applications relative to the temporally 

disaggregated CFSv2 monthly forecasts. While Tthe presence of active Madden-Julian Oscillation (MJO) events improved 

CFSv2 weekly mean precipitation forecast skill over most partsmajor areas of CONUS, but it MJO and/or El Niño Southern 

Oscillation did not necessarily improve the weekly mean temperature forecasts. The 30-day forecasts of precipitation and 25 

temperature indices calculated from the downscaled monthly CFSv2 forecasts were less skillful than those calculated directly 

from CFSv2 daily forecasts, suggesting the usefulness of CFSv2 for sub-seasonal hydrological forecasting. 

1. Introduction 

Sub-seasonal (or intra-seasonal) timescale forecasts are typically between medium-range weather forecasts (1 or 2 weeks) and 

seasonal climate predictions (1 to 12 months). The medium-range weather forecast is strongly influenced by atmospheric initial 30 
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conditions (Vitart et al. 2008), while the seasonal climate forecast depends on slowly-evolving components of the climate 

system (e.g. sea surface temperature and soil moisture) (Troccoli 2010). However, since the sub-seasonal timescale is usually 

too long to be favoured by the atmospheric initial conditions (Vitart 2004) and too short to be strongly influenced by the 

variability of the ocean, making skillful sub-seasonal forecasts is particularly difficult and thus far hasve received much less 

attentionless progress than the medium-range weather forecasts and seasonal climate forecasts.  5 

Since many extreme events (e.g., flash drought, heat wave, and cold wave) and their corresponding management decisions fall 

into sub-seasonal timescales, accurate sub-seasonal forecast information will be central to the development of climate services 

and therefore haspromise great socio-economic value (Vitart et al. 2012). In fact, sub-seasonal forecast information can be 

usefuld for developing strategies for proactive natural disaster mitigation, which may be needed during those extreme events 

(Brunet et al. 2010; Vitart et al. 2012). Previous studies have evaluated the potential of sub-seasonal to seasonal forecasts for 10 

heat wave forecasting (e.g. Hudson et al. 2011a; White et al. 2014), hydrological forecasting (e.g. Orth and Seneviratne 2013; 

Yuan et al. 2014), water resources management (e.g. Sankarasubramanian et al. 2009), hydropower production management 

(e.g. Garcia-Morales and Dubus, 2007), and crop yield prediction (e.g. Hansen et al. 2006; Zinyengere et al. 2011).  Due to 

the improvement of numerical models, prediction techniques, and computing resources, there is an increasing focus on sub-

seasonal forecasts (e.g. Toth et al. 2007; Vitart et al. 2008; Brunet et al. 2010; Hudson et al. 2011b; Hudson et al. 2013; 15 

Robertson et al. 2014).  

Precipitation and 2-m temperature (hereafter temperature) are considered to beas two of the most important climate variables 

that significantly influence irrigation scheduling, urban water supply, cooling water related to thermal power generation, 

hydropower operations, etc. Many important sub-seasonal events including heat waves, cold waves, dry spells, and wet spells 

are directly derived from the frequency, duration, and intensity of rainfall or hot (cold) temperatures. However, most of the 20 

studies for precipitation and temperature forecasts only focused on their mean or accumulated totals (e.g. Roundy et al. 2015). 

While several studies have been conducted to forecast the duration of high temperature days (i.e. heat waves) (e.g. Hudson et 

al. 2011a; Luo and Zhang 2012; White et al. 2014), there has been, thus far, no complete investigation of sub-seasonal 

forecasting capabilities for the other temperature and precipitation indices that are directly associated with important events 

and decision-making at sub-seasonal timescales. In this study, we aim to evaluate the skill of sub-seasonal forecasting for those 25 

precipitation and temperature derivatives or indices including  that are associated with those important events and decision-

making at sub-seasonal timescale -- the mean, frequency, duration, and intensity of precipitation and temperature at sub-

seasonal timescale, such as the number of dry/wet days, number of cold/hot days, etc. 

Coupled Atmosphere–Ocean General Circulation Models  (GCMGCMs) are used to make forecasts at multiple timescales, 

from medium-range weather forecasting, seasonal climate predictions,.  and long-term climate projections. While GCMs are 30 

known for producing long-term climate projections to understand and predict climate change at centurial timescale, they have 

also been running in operational forecasting mode by major weather and climate centers to make relatively short-term weather 
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and seasonal climate forecasting. The reason that GCMs can be used as operational models at these time scales is due to the 

predictability from different sources, such as initial conditions from the atmosphere, inertial dynamics from soil moisture and 

sea surface temperature, etc. While the GCMGCMs have demonstrated advanced configurations and realistic representations 

of the climate systems, the use of GCMGCMs’ predictions is still restricted by their coarse resolution and inherent systematic 

biases. To overcome these limitations, the GCMGCMs’ predictions at seasonal timescales are usually downscaled and bias 5 

corrected before being used in hydrological applications (e.g. Wood et al., 2002; Luo and Wood, 2008; Yuan et al., 2013; Tian 

et al., 2014). The Climate Forecast System version 2 (CFSv2) is a recently developed GCMGCM by the National Centers for 

Environmental Prediction (NCEP) (Saha et al. 2014). The CFSv2 model has run retrospectively to produce forecasts (hereafter 

reforecasts or hindcasts) every month 5 days from 1982 to 2009. Despite the availability of those CFSv2 daily hindcasts , 

temporal downscaling of the seasonal predictions is still routinely done from monthly to daily without using any of the daily 10 

forecast information (e.g. Yuan et al. 2013), with the assumption that the accuracy of daily information is limited at seasonal 

time scale. At the sub-seasonal timescale, the usefulness of these daily or sub-daily precipitation or temperature forecasts 

compared to the monthly disaggregated forecasts has not been assessed. The CFSv2 has fully coupled atmospheric, oceanic, 

and land components of the climate systems and demonstrated high better performance for seasonal climate predictions when 

compared to other seasonal forecast models (Yuan et al. 2011). Since sub-seasonal precipitation or temperature forecasts are 15 

influenced jointly by the conditions of atmosphere, land, and ocean, the CFSv2 has great potential to make skillful precipitation 

or temperature forecasts at sub-seasonal timescales.  

Besides GCMGCMs, teleconnections between large-scale climate patterns and local weather events have also been used to 

develop sub-seasonal precipitation or temperature forecasts. Recent examples included sub-seasonal winter temperature 

forecasts in North America using Madden-Julian Oscillation (MJO) or El Niño Southern Oscillation (ENSO) conditions (Yao 20 

et al., 2011; Rodney et al., 2013; Johnson et al., 2013). In addition, Jones et al. (2011) found that the deterministic forecast 

skill of the CFSv1 for extreme precipitation in the contiguous United States (CONUS) during winter is higher when the MJO 

is active. With the updated version of CFS, the CFSv2 hindcasts allow re-examining this issue by assessing the influence of 

MJO or ENSO on the probabilistic temperature and precipitation forecast skill over the CONUS.  

This study will conduct a comprehensive evaluation of the precipitation and temperature hindcasts at sub-seasonal timescales. 25 

Specifically, the aims of this study are to 1) assess the CFSv2 predictions for precipitation and temperature  indices at different 

locations and seasons within the first 30 days, 2) compare weekly and fortnight forecasting skill of the CFSv2 at different lead 

times, and 3) evaluate the effects of MJO and ENSO on the CFSv2 sub-seasonal forecast skill. The assessment includes mean 

values of sub-seasonal predictions as well as related temperature and precipitation indices at different forecast leads and scales. 

The downscaled CFSv2 monthly forecasts are compared with the native CFSv2 daily sub-seasonal forecasts. Furthermore, the 30 

influence of MJO or ENSO conditions on the CFSv2 probabilisticcategorical temperature and precipitation forecast skill is 

also assessed.  
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2. Data and Methodology 

The CFSv2 hads the most updatedstate-of-the-art data assimilation and forecast model components of the climate system and 

became operational at NCEP since March 2011 (Saha et al. 2014). There CFSv2 has archivedwere three different types of 

hindcasts (or reforecasts): 6-hourly time series from 9-month runs, 45-day runs, and season runs.  (Table 1) shows those 5 

forecasts with different configurations. Figure 1 gives an example of the three hindcast configurations. The CFSv2 hindcast 

data hads a T126 spatial resolution (roughly 100 km) and includeds several near surface variables at a 6-hourly temporal 

resolution. The one season and 45-day reforecasts  wereare initialized every  day so that relatively new initial conditions 

couldan be incorporated into a large ensemble size for making a potentially more skillful forecast over this shorter forecast 

period. Nevertheless, we chose to use the 9-month reforecast. This is because the 9-month reforecast covered much longer 10 

period (1982-2009) than one season and 45-day reforecasts (1999-2010), which ensures a larger sample size for a more robust 

evaluation, especially for the evaluation of skill conditioned on MJO and/or ENSO that require long hincasts for to provide 

sufficient sample sizes f.  

[Insert Table 1 here] 

[Insert Figure 1 here] 15 

The daily precipitation total was aggregated from the 6-hourly precipitation data; the daily mean temperature was obtained by 

averaging daily maximum and minimum temperature, which were extracted from the 6-hourly maximum and minimum 

temperature. The ensemble members for each month were constructed in the same way as the monthly hindcasts from CFSv2 

producing monthly means hindcasts. For each year, the daily hindcast had 28 members in November and 24 members in other 

months with initial conditions at the 0, 6, 12, and 18 UTC (Coordinated Universal Time) every 5 days. For example, the 24 20 

ensemble members for January wereare initialized from the four cycles for each of December 12th, 17th, 22nd, and 27th and 

January 1st and 6th.  

The forecast validation dataset was obtainedis from the North American Land Data Assimilation System version 2 (NLDAS-

2; Xia et al., 2012). The forcing dataset of the NLDAS-2 mergeds a large observation-based and reanalysis data and wasis 

routinely widely used to drive land surface models over the CONUS. It hads 0.125o (approximately 12 km) spatial resolution 25 

and hourly temporal resolution. The NLDAS-2 hourly precipitation (temperature) data were aggregated (averaged) into daily 

data.  

Besides using CFSv2 daily hindcasts at its native spatial resolution (hereafter CFSv2 daily), the CFSv2 monthly hindcasts 

were also downscaled using the Bayesian merging (BM) method for hydrological applications (Luo et al., 2007). By comparing 

those two forecasts, it will help us understand the usefulness of the CFSv2 daily precipitation or temperature forecasts for 30 

hydrological applications compared to the monthly disaggregated forecasts. The BM method both spatially and temporally 
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downscaled the CFSv2 monthly hindcasts from its native spatial resolution into daily hindcasts at a 0.125o spatial resolution 

for hydrological applications. The BM method updated an observational climatology based on the hindcast skill using Bayesian 

theory and generated 20 daily ensemble members for each month using historical-analog criterion and random selection. For 

a more detailed description of the BM method, please see Luo et al. (2007) and Luo and Wood (2008).  

Ensemble forecasts of precipitation and temperature indices at sub-seasonal timescale were calculated by using daily forecasts 5 

directly from the CFSv2 daily and the BM downscaled CFSv2 monthly forecasts. Table 2 shows the forecast lead time for 

different periods and methods. For daily forecasts directly from the CFSv2 daily, all precipitation and temperature indices 

were calculated at 7-, 14-, and 30-day forecast timescales in the first month 1. For daily forecasts from the BM downscaled 

CFSv2 monthly data, the precipitation and temperature indices were only calculated at 30-day forecast timescales in the first 

month 1, since these forecasts were temporally disaggregated from monthly forecasts.  and Iit would be useful to look at the 10 

performance of the CFSv2 daily forecast in comparison with the daily forecast data disaggregated from the monthly forecast.  

[Insert Table 2 here] 

Table 3 shows the precipitation and temperature indices calculated in this study. Following Zhang (2011), a wet (dry) day 

wasis defined as days with precipitation above (below) 1 mm during the n-day period. The wet (dry) spell wasis defined as 

number of consecutive wet (dry) days. Taking a 14-day forecast for WetSpell as an example (as is shown in Table 2), the first 15 

forecast lead one wasis the number of consecutive rainy days from day 1 to day 14 forecasts. As a way of defining heat (cold) 

wave (e.g. Spinoni et al. 2015), the threshold for high (low) temperature day wasis defined when the temperature wasis above 

(below) 90th (10th) percentile of climatological distribution of temperature during the n-day period for different months.  

[Insert Table 3 here] 

To validate the forecasts, the observed precipitation and temperature indices were also calculated using the NLDAS-2 daily 20 

precipitation and temperature data. The NLDAS-2 daily precipitation and temperature data were also upscaled using bin 

averaging in order to validate thematch CFSv2 forecastsspatial resolution. The percentiles of defining high (low) temperature 

were obtained separately from distributions of forecasts and observations. All ensemble forecasts including raw and BM 

downscaled CFSv2 forecasts were verified against the NLDAS-2. While the CFSv2 daily forecasts were evaluated at 30-day, 

14-day, and 7-day time scales, the BM downscaled CFSv2 forecasts were only evaluated at 30-day time scale since they were 25 

disaggregated from monthly forecasts. Take native CFSv2 raw forecasts for January as an example; there are 24 ensemble 

members for all 30-day, 14-day, and 7-day forecasts. The 24 member ensemble forecasts were considered as being initialized 

on the first day of the month regardless of which day the individual member of the forecasts was initialized. Those 24 member 

ensemble forecasts were verified for the common period of  (e.g., 1 Jan-30 Jan, 1 Jan-14 Jan, and 1 Jan-7 Jan), respectively. 

All ensemble forecasts were converted into probabilisticcategorical forecasts in terciles with all observations converted into 30 
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dichotomous values of 1 or 0. The terciles were defined separately based on the individual distributions of the observations 

and the forecasts (x), with x<1/3rd percentile for lower tercile, 1/3rd≤x≤2/3rd percentile for middle tercile, and x>2/3rd 

percentile for upper tercile.  

The probabilisticcategorical forecasts were evaluated using the Heidke Skill Score (HSS), a common performance metric used 

by the Climate Prediction Center (CPC) (e.g. Johnson et al. 2013; Wilks 2011). The HSS assesses the proportion of correctly 5 

forecasted categories. The probabilisticcategorical forecast wasis assigned to three forecast categories (upper, middle, or lower 

tercile) based on the highest of the three forecast probabilities. The tercile category probabilities were obtained by counting 

the ensemble members in each of the three categories and then by dividinged by the ensemble size. The HSS is expressed as: 

 

 
100

H E
HSS

T E


 


                                                               (1) 

The number of correctly forecasted categories is denoted as H. The random forecast, E, is the expected number of categories 10 

forecast correctly just by chance. In this study, since there are three forecast categories, E is defined as one-third of the total 

number of forecasts, T. The HSS ranges from -50 (no correct forecasts) to 100 (perfect forecasts), with a value of 0 representing 

the same skill as randomly generated forecast, which in this case is theor climatological forecast. The HSS above 0 indicates 

that the forecasts have skill. The HSS was assessed calculated for each method (CFSv2 daily and BM), variable, index, grid 

point, month, and forecast time. Since the number of forecast-observation pairs iswas 28 for each point, the HSS estimation 15 

hads considerable uncertainty given this relatively small sampling size. To quantify this uncertainty, a bootstrapping technique 

(Wilks 2011; Hamilton et al. 2012) was applied to resample 28 samples (3000 times with replacement) from the 28-year 

reforecasts averaged over the CONUS. Then a number of 3000 HSS was calculated for constructing a distribution, with the 

confidence interval and significance level (X) of the HSS estimated from this distribution. With this treatment of the HSS 

estimation uncertainty, we can determine that the HSS is significantly skillful when it is greater than a given significance 20 

levelX. 

Since seasonal precipitation and temperature could be more predictable at larger scales (e.g. Luo and Wood 2006; Roundy et 

al. 2015), it is worthwhile to also look at the sub-seasonal predictive skillability of sub-seasonal forecasts averaged over a 

larger spatial domain. Therefore, each forecast was averaged over each of the nine National Centers for Environmental 

Information (NCEI, formerly known as National Climatic Data Center) climate regions as well as over the entire CONUS 25 

(Figure 2). The HSS of the average forecasts over each of those regions were evaluated subsequently.  

[insert Figure 2 here] 

The skill assessment of Pmean and Tmean was conducted not only for all forecasts but also for forecasts during active MJO, 

ENSO, or combination of the two.  MJO is the dominant mode of the sub-seasonal variability in the tropical atmosphere. The 

MJO index used in this study was from the Australian Bureau of Meteorology 30 
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(http://cawcr.gov.au/staff/mwheeler/maproom/RMM/) for the period of 1982 to 2009. This index wasis defined by the two 

leading principal components (PCs) from an empirical orthogonal function analysis of the combined near-equatorially 

averaged 850-hPa zonal wind, 200-hPa zonal wind, and satellite-observed outgoing longwave radiation data (Wheeler and 

Hendon 2004). The pair of these two leading PC time series at a daily time step, called the Real-time Multivariate MJO series 

1 (RMM1) and 2 (RMM2), defined eight MJO phases and an MJO amplitude. There wereare a few different ways to define 5 

active MJO events. While tThe simplest criterion was to define MJO as RMM amplitude exceededs a certain threshold (e.g. 

Johnson et al. 2014), whichthis criteria did not consider minimum duration and eastward propagation of MJO. This study 

adopted a more rigorous definition of MJO: MJO days and events wereare identified using a pentad-averaged version of the 

Wheeler and Hendon RMM index subject to three major requirements as indicated by L’Heureux and Higgins (2008). Similar 

definition was also widely adopted by other researchers such as Jones (2009) and Jones and Carvalho (2011). In this work, 10 

ENSO was defined using the same criteria as CPC 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). ENSO periods wereare based on a 

threshold of +/- 0.5 oC for the Oceanic Niño Index (3 month running means of SST anomalies in the Niño 3.4 region). Warm 

or cold ENSO periods of below and above normal SSTs wereare identified when the threshold wasis met for a minimum of 5 

consecutive overlapping seasons. 15 

3. Results 

3.1 The 30-day forecast skill 

Figure 3 shows the average HSS for 30-day forecasts of precipitation indices calculated from the CFSv2 daily at different 

locations over December-January-February (DJF) and June-July-August (JJA). In DJF, the average skill of WetSpell over the 

CONUS wasis 34 (with a confidence interval 34±22), which wasis much higher than the skill of the other indices; it showed 20 

high skill over major most areas of the CONUS including the midwest and eastern partsUS. The Pmean, RainDay, and DrySpell 

were skillful in the southeast and the southwest but also revealed skill in the other regions. RainWet showed minor skill over 

the entire region. The skill in JJA showed different spatial patterns with DJF. While the Pmean and RainWet showed modest 

forecast skill in JJA over the CONUS, the RainDay, WetSpell, and DrySpell all showed high skill in the west coastal regions 

with the WetSpell showing some skill in the midwest and northeast. For the other seasons, on average, tThe forecast skill for 25 

precipitation indices for MAM is was between DJF and JJA for MAM, but the skill for SON was slightly lower than JJA for 

SON (Figure 4).  

[insert Figure 3 here] 

[insert Figure 4 here] 

Spatial patterns in HSS wereare very different among the indices, particularly in July. We calculated the standard deviation 30 

(STD) for observed precipitation indices in July to further examine the interannual variability of those indices at each grid 
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point over the space. To compare relative temporal variability in space, the STD was normalized spatially to a range of 0 to 1 

using a feature scaling method: 

 

   
'

min

max min

STD STD
STD

STD STD





,

                                (2) 

wWhere STD is the standard deviation of time series for each grid point, min(STD) and max(STD) areis the minimum and 

maximum STD over all grid points respectively, max(STD) is the maximum STD over all grid points, and STD’ is the 5 

normalized STD. Figure 5 shows the normalized standard deviation of 30-day precipitation indices in January and July over 

28-year period from 1982 to 2009 over the CONUS. By comparing interannual variability (Figure 5) with the forecast skill 

over the space (Figure 3), we found that regions showing lower interannual variability usually have higher skill than the regions 

with higher interannual variability. Particularly in JulyJJA, for Pmean, the western CONUS showed relatively lower 

interannual variability and higher skill than the eastern CONUS; for RainDay, the western coastal areas showed much lower 10 

variability and higher skill than the other regions; for RainWet, all regions showed relatively equal variability and skills; for 

WetSpell,  the southeastern CONUS showed higher interannual variability and lower skill than the other regions of the 

CONUS; for DrySpell, California and eastern CONUS showed relatively lower interannual variability and higher skill than 

the other areas.  

[insert Figure 5 here] 15 

Figure 6 shows the average HSS for 30-day forecasts of temperature indices calculated from the CFSv2 daily at different 

locations over DJF and JJA. Overall, the temperature indices showed reasonably higher skill than the precipitation indices in 

both DJF and JJA. For DJF, Tmean showed moderate high skill in the Great Lakes area and eastern US; the HighDay, LowDay, 

CosHighD, and CosLowD were skillful over most areas of CONUS and the skill was particularly high for LowDay and 

CosLowD in the center or north of the midwest region. The forecast skill of temperature indices in DJF showed different 20 

spatial patterns with JJA. Tmean and LowDay showed high skill over the west inland area. CosLowD wasis skillful over major 

area of the CONUS, particularly in the northeast. HighDay and CosHighD showed notable high skill around south of the 

central area. For the other seasons, on average, tThe forecast skill for temperature indices wasis between DJF and JJA for 

MAM but slightly lower than JJA for SON (Figure 7). It is worth noting that given the sample size (N=28) used for calculating 

the HSS, the confidence interval of the HSS for each index is relatively wide. Based on the bootstrapping approach described 25 

earlier, the HSS was found to be significantly skillful (significantly above 0 at the 0.05 level) when it was greater than the 

number between 20 and 24, depending on the indices. 

[insert Figure 6 here] 

[insert Figure 7 here] 
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 Figure 8 shows the average HSS for 30-day forecasts of precipitation and temperature indices calculated from the CFSv2 

daily or the BM downscaled CFSv2 over 12 months for CONUS and its consistent NCEI climate regions. The precipitation 

and temperature indices calculated from CFSv2 daily showed higher skill than BM for all regions. On average, the skill from 

the CFSv2 daily is approximately  20% higher than the skill from the BM, suggesting that the CFSv2 month-1 daily forecasts 

are potentially more useful than the temporally downscaled monthly forecasts for hydrological applications.  5 

[insert Figure 8 here]   

3.2 Weekly and fortnight forecast skill at different lead times 

Figure 9 (Figure 10) shows the average HSS of 14- and 7-day precipitation (temperature) indices forecasts from the CFSv2 

daily over 12 months for the CONUS and its consistent NCEI climate regions. In general, the skill scores for precipitation 

indices  wereare reasonably higher in the first two weeks than the second two weeks at both 14- and 7-day time scales, since 10 

the first two weeks wereare within the range of weather forecast and wereare strongly influenced by the atmospheric initial 

conditions. While there wereare differences among regions, the skill scores for indices measuring frequency or duration of 

precipitation (i.e. RainDay, WetSpell, and DrySpell) or temperature extremes (i.e. HighDay, LowDay, CosHighD, and 

CosLowD) were equally skillful as those measuring mean precipitation or temperature during the first two weeks. Temperature 

indices showed notably higher skill than any precipitation index, particularly in weeks 3 and 4. It wasis worth noting that the 15 

skill wasis higher for the 14-day forecast at the first lead than for 7-day forecast in weeks 1 and 2 taken individually. The 

improved forecast skill indicateds that the temporal noise in predictions can be reduced through averaging, as noted by Roundy 

et al. (2015).  

[insert Figure 9 here]   

[insert Figure 10 here]   20 

3.3 Effects of MJO and ENSO 

Figure 11 shows skill differences between Pmean or Tmean weeks 2-4 forecasts during active events (ENSO, MJO, or 

combined active ENSO and MJO (MJO+ENSO) and the forecasts during the wholeall periods for the CONUS and its 

consistent NCEI climate regions. The Pmean and Tmean forecasts wereare calculated from the CFSv2 daily hindcasts. In 

general, weeks 3 and 4 Pmean forecasts performed better during active anomalous ENSO or MJO states for Pmean but not for 25 

, while Tmean forecasts do not perform better.   

[insert Figure 11 here]   
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For precipitation, the forecast skill wasis inconsistent for the active anomalous ENSO, MJO, or combined ENSO and MJO 

phases relative to all the whole periods. There was a notable increase in skill when the forecasts were conditioned on active 

MJO for almost all regions, indicating the positive influence of MJO on the CFSv2 sub-seasonal precipitation forecasts. It is 

worthwhile to note that forecasts conditioned on combined MJO and ENSO, and forecasts conditioned on MJO, showed similar 

level of positive skill with a few differences, which may due to the modulation effects of ENSO on MJO.  For temperature, 5 

while the MJO, ENSO, or combined MJO and ENSO mostly showed positive effects on the CFSv2 sub-seasonal temperature 

forecast skill for week 2 forecast, those influences became negative in most of the regions beyond week 2. We further examined 

differences between Pmean or Tmean average skill over weeks 2-4 for forecasts during active MJO phase and for forecasts 

during all the whole period at different locations over the CONUS for DJF, MAM, JJA, and SONand seasons (Figures 12 and 

13). Since HSS evaluated forecast performance over a certain period, there is only one HSS for each month, location, and lead 10 

time. For this reason, the HSS sample size is only 6 for each season and location (3 months + 3 lead times). Therefore, we used 

a bootstrap method to test whether those differences are significantly (p<0.05) for each location. To do the bootstrap, we 

resampled 30 times from the sample of the HSS differences for each location and season, and conduct a t-test on each sample. 

We used a bootstrap technique for significance tests for the difference between the HSS during active MJO phase and the HSS 

during the wholeall period. We resampled 28 samples (3000 times with replacement) from the 28-year reforecast averaged 15 

over the CONUS. All the 28 samples were used to calculate the HSS during the wholeall period. The subset of the 28 samples 

under active MJO events was used to calculate the conditional HSS during the MJO.  The difference between the HSS during 

the MJO and the HSS during allwhole period was then calculated. Since the resampling was conducted 3000 times, a number 

of 3000 HSS differences was obtained for constructing a distribution and used to estimate the confidence interval and 

significance level (X) of the HSS. Similar to Peng et al. (2013), the significance level estimated based on the average over the 20 

CONUS was applied to test the local significance for each grid point over the region. The results wereare shown in Figures 12 

and 13.  

 

[insert Figure 12 here]   

[insert Figure 13 here]   25 

In general, most of the skill wasis significantly different at different locations; MJO hads strongly positive effects on CFSv2 

sub-seasonal Pmean forecast skill over the CONUS; the effects on Tmean forecast skill wasis relatively weak and inconsistent 

among different regions. For precipitation, the influenced areas wereare greater during DJF and MAM than during JJA and 

SON, with the NE and NW regions being consistently influenced by MJO during four seasons. Aggregated over the spatial 

domainCONUS, we further conducted statistical tests to compare whether precipitation forecast skills during active MJO, 30 

ENSO, or combined MJO and ENSO phases wereare greater than those during the wholeall period over the CONUS for DJF, 

MAM, JJA, and SON. We tested whether differences in mean HSS over the CONUS (averaged over 1024 grid points) wereare 

statistically significant at a 5% level. The student’s t-test showed the forecast skills during active MJO or combined MJO and 
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ENSO phases wasere significantly greater than those during the wholeall period (p<0.05) over the CONUS for DJF, MAM, 

JJA, and SON; the forecast skills during active ENSO phases wasere significantly greater than those during all the whole 

period over the CONUS for MAM. It is also worthwhile to note that the combined effects of MJO and ENSO wereare stronger 

than their individual effects of either MJO or ENSO, suggesting a potential benefit of using combined information of MJO 

and ENSO information for sub-seasonal forecasts. Table 4 shows that there wereare much fewer ENSO events than MJO 5 

events during January 1982 to December 2009. The number of ENSO events could be limited enough to skew the skill score 

conditioned on ENSO.  

[insert Table 4 here] 

4. Discussion 

The CFSv2 sub-seasonal forecast skill wasis highly dependent on target forecasting indices, regions, seasons, leads, and 10 

methods. The sub-seasonal forecasts for indices characterizing mean precipitation and temperature as well as frequency or 

duration of precipitation and temperature extremes showed skill in the first two weeks but no skill or modest skill for the 

second two weeks, since the first two weeks were within the range of medium-range weather forecasts. This finding is 

important since given the sub-seasonal forecasting information is valuable to many decision makers. In particular, sub-seasonal 

forecasts for frequency or duration of precipitation and temperature extremes can be directly tailored to different application 15 

needs. For example, knowing having the information of RainDay, WetSpell, and DrySpell weeks in advance will help farmers 

make decisions for irrigation scheduling decisions, to save water costs and improve crop yields. Short-term planning of urban 

water supply could also benefit from this sub-seasonal forecasting information, since those indices describing frequency or 

duration of precipitation and temperature extremes are known to be directly related the urban water demand forecasting (e.g. 

Donkor et al. 2012). As some temperature indices such as CosHighD and CosLowD were used to characterize heatot/cold 20 

waves, forecasting information of these indices would also be useful for developing strategies for proactive disaster mitigations 

(e.g. frost damage to crops).  

The spatially and temporally downscaled CFSv2 monthly data using BM method was compared with the CFSv2 daily data for 

sub-seasonal forecasts at native its raw resolutions. For forecasting 30-day precipitation and temperature indices, sSince the 

30-day precipitation and temperature indices calculated from CFSv2 daily hindcasts have mostly higher skill than the BM, the 25 

comparison of these two methods implies that daily forecasts from the CFSv2 are potentially more useful than those 

disaggregated from the monthly forecasts for. Thus, the CFSv2 daily forecast information should be used in application studies 

such asof sub-seasonal hydrological forecastings in contrast to temporal disaggregation of the monthly forecast.  

This study demonstrated that the CFSv2 sub-seasonal forecast skill varies with space and time. These results identify seasons 

and regions where there is the potential for skillful sub-seasonal predictions for certain precipitation and temperature indices. 30 
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For example, water managers in California trying to predict WetSpell and DrySpell have confidence to use the forecasts from 

CFSv2 during summer seasons, while a decision maker in the southeast may benefit little by using such information.  

Sub-seasonal forecast skill can be further improved by understanding the attribution sources of the skill. This study took a first 

look at the effects of MJO and ENSO on the CFSv2 sub-seasonal forecast skill. It was found that the presence of an active 

MJO improves weeks-2 to -4 probabilisticcategorical CFSv2-based forecast performance of precipitation over major most 5 

areas of CONUS. This finding corresponds to the study of Jones et al. (2011), who foundwhere improved deterministic CFSv1 

forecast skill of extreme precipitation was also found during active MJO. We also compared the regions of improved skill 

associated with thebased on MJO in this study (Figure 9) with the results in from Jones et al. (2011). While there were spatial 

differences, the regions of improved skill associated with the MJO commonly occurred for the western coast of the United 

States (US)CONUS. This result is consistent with current knowledge of the observed influence of the MJO on precipitation 10 

events along the CONUS west coast, which can be viewed found at the NOAA CPC website (http://www.cpc.ncep.noaa.gov), 

under the MJO section. Forecast skill of precipitation and temperature are inherently associated with the capacity of CFSv2 in 

forecasting MJO. The CFSv2 has shown useful MJO prediction skill out to 3 weeks (Wang et al. 2014). Improvements of the 

representation of the MJO in CFSv2 will likely further extend the forecast skill of precipitation and temperature. Furthermore, 

related recent studies have developed statistical forecasting models at sub-seasonal timescale using teleconnections of MJO 15 

and ENSO phases and local weather (e.g. Johnson et al. 2013). These statistical models could be potentially combined with 

CFSv2 forecasts to further improve the sub-seasonal forecast skill.  

It is opportune to note some future directions of this work. Forecast skill could be potentially improved by having a larger 

ensemble size. A sensitivity study on ensemble size could be performed to assess whether a larger ensemble improves forecast 

skill. For future work, when one season or 45-day CFSv2 reforecasts (initialized everyday) are available over a longer period, 20 

we would choose to use those datasets instead of 9-month reforecasts (initialized every five days) in order to incorporate a 

large ensemble size for making a potentially more skillful forecast. Another approach to further improve the sub-seasonal 

forecast skill is through multi-model ensembles. The multi-model ensemble forecasts combine multiple seasonal forecast 

models and often have higher skill than any individual models, since it has an increased ensemble size and a wider spectrum 

of possible forecasts that takes into account model uncertainty due to differences in model configuration and physics (e.g. 25 

Hagedorn et al. 2005). Here we highlight two important endeavors: the North American Multi-Model Ensemble (NMME-2) 

system (Kirtman et al. 2013) is exploring sub-seasonal forecast in their next phase; the World Meteorological Organization 

(WMO) sub-seasonal to seasonal (S2S) prediction project (http://www.s2sprediction.net/) is archiving hindcast and real-time 

forecasts from a range of model systems. All of those efforts can facilitate sub-seasonal multi-model ensemble prediction and 

model inter-comparison studies. Furthermore, this study focused on evaluation of the capacities of CFSv2 sub-seasonal 30 

precipitation and temperature forecasts. The CFSv2 sub-seasonal precipitation and temperature forecasts can be used for 

subsequent application studies related to areas such as hydrology and agriculture. For example, flash drought refers to a sudden 
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onset of high temperatures and decreases of soil moisture and is a disastrous event at sub-seasonal timescale (e.g. Mo and 

Lettenmaier 2015; Wang et al., 2016). Sub-seasonal forecasting of flash drought will help decision makers develop mitigation 

strategies. The CFSv2 sub-seasonal precipitation and temperature forecasts can be used to drive land surface hydrological 

models to forecast soil moisture and evapotranspiration and consequently improve flash drought forecasts.  

5. Conclusion 5 

In this study, we have assessed the CFSv2 probabilisticcategorical sub-seasonal forecasts of precipitation and temperature 

indices over the CONUS. The probabilisticcategorical sub-seasonal forecast skill is highly dependent on forecasting indices, 

regions, seasons, and methods. Indices characterizing mean precipitation and temperature as well as measuring frequency or 

duration of precipitation and temperature extremes for 7-, 14-, and 30-day forecasts were skillful depending on seasons and 

regions. The fForecasts for 7- and 14-day temperature indices even showed skill at weeks 3 and 4, and generally more skillful 10 

than precipitation indices. The fForecasts of for 30-day temperature and precipitation indices calculated from the daily forecasts 

BMstatistically downscaled from the monthly forecasts mostly showed lower skill compared to those calculated directly from 

the CFSv2 daily forecasts, indicating the potential usefulness of the CFSv2 daily forecasts for hydrological applications relative 

to the temporally disaggregated CFSv2 monthly forecasts. The presence of an active MJO improves weeks 2 to 4 

probabilisticcategorical forecast performance of precipitation over major most areas of CONUS in the CFSv2 system. The 15 

sub-seasonal forecast skill of precipitation and temperature could be further improved through combining with teleconnection-

based statistical sub-seasonal forecasting models or multi-model ensemble. 
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Figure 1. Three configurations of the CFSv2 hindcast: 9-month run, 1 season run, and 45-day run. UTC stands for Coordinated 

Universal Time. 
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Figure 2. NCEI climate regions (described in Section 2) used as areal averaging domains for raw and BM downscaled CFSv2 

forecasts. Regions are named as follows: Northwest  (NW), West (W), Southwest (SW), West North Central (WNC), South (S), Upper 

Midwest (UMW), Central (C), Southeast (SE), and Northeast (NE). 
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Figure 3. HSS of 30-day (from top to bottom columns) Pmean, WetRain, RainDay, WetSpell, and DrySpell from (from left to right 

rows) the CFSv2 daily hindcasts and BM over DJF (left) and JJA (right). The number in the bottom left is the overall average.  
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Figure 4. Same as in Figure 3, but for MAM and SON.  
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Figure 5. Spatially normalized standard deviations of observed 30-day precipitation indices in January and July over 28-year period 

from 1982 to 2009 
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Figure 6. HSS of 30-day (from top to bottom columns) Tmean, HighDay, LowDay, CosHighD, and CosLowD from (from left to right 

rows) the CFSv2 raw daily hindcasts and BM monthly diaggregated hincasts duringover DJF (left) and JJA (right). The number in 

the bottom left is the overall average.  5 
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Figure 7. Same as in Figure 6, but for MAM and SON.  
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Figure 8. HSS of 30-day precipitation and temperature indices calculated from the CFSv2 and BM for CONUS and its consistent 

NCEI climate regions. The red line is the overall average.  
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Figure 9. Overall mMean HSS of 14- and 7-day (from top to bottom rows) Pmean, WetRain, RainDay, WetSpell, and DrySpell from 

the CFSv2 daily hindcasts for CONUS and its consistent NCEI climate regions. 
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Figure 10. MOverall mean of HSS of 14- and 7-day (from top to bottom rows) Tmean, HighDay, LowDay, CosHighD, CosLowD 

from the CFSv2 daily hindcasts for CONUS and its consistent NCEI climate regions. 
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Figure 11. HSS differences between Pmean (left column) or Tmean (right column) weeks 2-4 forecasts during active ENSO, MJO, 

or combined active ENSO and MJO (MJO+ENSO) phases and thosee forecasts during the wholeall periods for CONUS and its 

consistent NCEI climate regions. Positive values indicate more skillful forecasts for theduring active MJO, ENSO, or ENSO+MJO 

phases. 5 
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Figure 12. The upper panel shows dDifferences between HSS of weeks 2-4 Pmean  average HSS over weeks 2-4 for forecasts during 

active MJO phases and for forecasts during allthe whole period at different locations over the CONUS for DJF, MAM, JJA, and 

SON. The blue pixel in the lower panel shows where the difference is significantareas in white indicate the differences are not 

significant (at the 0.05 level)  (p<0.05).   5 
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Figure 13. Same as in Figure 12, but for Tmean. 
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Table 1. Configurations of the CFSv2 hindcast. UTC stands for Coordinated Universal Time. 

Configurations   9-month runs   one season   45-day runs 

Initiated day  
Every 5 days 

beginning from Jan 1 

of each year 

 Every day  Every day 

Initiated UTC time  0, 6, 12, 18  0  0, 6, 12, 18 

Covered Period   1982-2010   1999-2010   1999-2010 

 

 

 

Table 2. Forecast lead times for different periods and methods. 5 

Period   CFSv2 daily  BM 

   Lead 1 Lead 2 Lead 3 Lead 4  Lead 1 

30-day  Day 1 to Day 30 - - -  Day 1 to Day 30 

14-day  Day 1 to Day 14 Day 15 to Day 28 - -  - 

7-day   Day 1 to Day 7 Day 8 to Day 14 Day 15 to Day 21 Day 22 to Day 28  - 

 

 

 

Table 3. Precipitation and temperature indices calculated used in this study.  

Index  Description Period 

Pmean  mean precipitation 30-day, 14-day, and 7-day 

RainWet  mean precipitation over wet days 30-day, 14-day, and 7-day 

RainDay  number of rainy days 30-day, 14-day, and 7-day 

WetSpell  maximum wet spell length 30-day, 14-day, and 7-day 

DrySpell  maximum dry spell length 30-day, 14-day, and 7-day 
    

Tmean  mean temperature 30-day, 14-day, and 7-day 

HighDay  number of high temperature days 30-day, 14-day, and 7-day 

LowDay  number of low temperature days 30-day, 14-day, and 7-day 

CosHighD  maximum number of consecutive high temperature days 30-day, 14-day, and 7-day 

CosLowD   maximum number of consecutive low temperature days 30-day, 14-day, and 7-day 

 10 
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Table 4. Active ENSO, MJO, and ENSO+MJO during January 1982 to December 2009. The red areas indicate active ENSO periods. 

The green areas indicate the periods with active MJO happening. The yellow areas indicate combined active ENSO and MJO events. 

The last three lines show the total number of ENSO, MJO, and ENSO+MJO events for each month.  

 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

No. ENSO 16 15 12 11 11 12 12 13 15 17 17 17

No. MJO 22 22 24 23 24 15 15 15 16 24 23 25

No. ENSO+MJO 12 12 10 7 8 4 6 6 9 13 13 14
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