Response to the Editor:

Thank you for your time in editing our manuscript and for your insightful suggestions. We have
responded to the reviews point by point in the document attached. The revised manuscript with
tracked marks is also attached behind the responses to the editor. We have submitted the revised
manuscript as requested.

1. The paper’s treatment of the significance of the results is still less rigorous than I feel is
appropriate for the forecasting topic. For instance, even statements such as (p5 11) “The HSS above
0 indicates that the forecasts have skill” (positive, negative?) are simplistic. The skill estimate is
certainly much stronger (ie significant) if the HSS has been calculated from a sample of 1000 obs-
forecast pairs, compared to a sample of 10. | recommend adding to the discussion of the skill score
a small general discussion regarding uncertainty (due to sampling error) in the Heidke skill score
estimates, but related to the samples sizes used in this paper — ie, 28. It should be fairly
straightforward to calculate a confidence interval given this sample size, which can then be
referenced in the results discussion (Figures 3-10 excluding 5). For instance, given sampling
uncertainty with N=28 the HSS is significantly (positively, p<0.05 or p<0.10) skillful when it is
greater than X (where X is greater than zero).

RESPONSE: Thanks for pointing this out. We used a bootstrapping technique to estimate the
confidence interval of the HSS, and the average of the HSS over the United States as the test
statistic. We have added the following statement to the methodology section of the revised
manuscript: “Since the number of forecast-observation pairs is 28 for each point, the HSS
estimation has considerable uncertainty given this relatively small sampling size. To quantify this
uncertainty, a bootstrapping technique (Wilks 2011; Hamilton et al. 2012) was applied to resample
28 samples (3000 times with replacement) from the 28-year reforecast averaged over the CONUS.
Then a number of 3000 HSS was calculated for constructing a distribution; with the confidence
interval and significance level of the HSS estimated from this distribution. With this treatment of
the HSS estimation uncertainty, we can determine that the HSS is significantly skillful when it is
greater than a given significance level.” We have calculated confidence intervals for different
indices using this method and referenced that in the result discussion: “It is worth noting that
given the sample size (N=28) used for calculating the HSS, the confidence interval of the HSS for
each index is relatively wide. Based on the bootstrapping technique described earlier, the HSS
was found to be significantly skillful (significantly above 0 at the 0.05 level) when it was greater
than the number between 20 and 24, depending on the indices.”

For the difference between two HSS, the Cl may be more difficult to calculate analytically thus
the use of the bootstrap is a convenient empirical approach. Yet the authors use of the bootstrap
on the sample of 6 mixed scores (3 months + 3 leads) is at least inadequate if not completely
incorrect. One strategy would be to generate 1000 trials of two 28-member nonskilled samples
(perhaps by shuffling the obs-forecast pairs in time) and calculate score difference thresholds that
are exceeded with a desired probability, purely by chance. Another is to bootstrap similarly on the
actual 28-member samples to assess the effect of their sample uncertainty on the difference in their
scores. Because the HSS is a widely-used metric in weather/climate forecasting, and it is likely a
common challenge to assess whether one forecast is better than another, I expect examples can be



found in the literature. It is still a striking feature of figures 12-13 that adjacent pixels with different
signals (eg -15, +10) or signals of zero are all found significant, when the underlying climate maps
(NLDAS and CFSv2) are much smoother. Despite an earlier request for analysis and discussion
on this point, this issue remains unexplained.

RESPONSE: Thanks for your comments and suggestions. We used a bootstrap technique for
significance tests for the difference between the HSS during active MJO and the whole period. We
resampled 28 samples (3000 times with replacement) from the 28-year reforecast averaged over
the CONUS. All the 28 samples were used to calculate the HSS during the whole period. The subset
of the 28 samples under active MJO events was used to calculate the conditional HSS. The
difference between the HSS during the MJO and the all period was then calculated. Since the
resampling was conducted 3000 times, a number of 3000 HSS differences was obtained for
constructing a distribution and used to estimate the confidence interval and significance level of
the HSS. Similar to Peng et al. (2013), the significance level estimated based on the average over
the CONUS was applied to test the local significance for each grid point over the region. The
results have been updated in Figures 12 and 13 and relevant texts in the revised manuscript.

Finally, the use of the significance calculations in the figures can be improved. Rather than show
the significance maps separately (eg in Figure 11), which makes it very difficult to match a pixel’s
significance and value, the example of skill masking at CPC could be followed — eg,
http://www.cpc.ncep.noaa.gov/products/CESv2/htmls/usPrecelSeaMask.html)

RESPONSE: Thanks for your suggestions. We have used mask to improve the use of the
significance calculations in the Figures 12 and 13.

Before this paper can be accepted it will require a more rigorous and thoughtful treatment of
uncertainties in the skill score estimates, referencing appropriate literature and clearly describing
the approaches used to assign significance.

RESPONSE: Thanks for your comments. We have addressed those issues in the revised manuscript.
Please refer to the responses to the comments above.

2. In general, | feel the authors have adequately addressed the reviewers’ comments, but I ask that
the authors go back through the first round of comments to reconsider and upgrade any perfunctory
and limited responses such as the one highlighted below.

Reviewer: Page 2, line 23-25: Please explain how GCM outputs can be used for daily or short-
term forecasts seeing as they are uncorrelated to current meteorological conditions.

RESPONSE: Thanks for pointing this out. This is an overstatement. We have changed the sentence
to “Coupled Atmosphere-Ocean General Circulation Models (GCMs) are used to make forecasts
at multiple timescales.”

There are a number of interesting reasons why GCM outputs can and are being used for daily and
short-term forecasts when they are initialized for weather and climate prediction, yet these are not
discussed in the response or, more appropriately, the paper (as background, perhaps).


http://www.cpc.ncep.noaa.gov/products/CFSv2/htmls/usPrece1SeaMask.html

The reviewer may be confused by the use of GCMs in free-running climate projection mode (where
there is no correlation) rather than in operational forecasting mode, and here it would have been
appropriate to make the distinction and to describe briefly the sources of GCM predictability at
short-to-medium ranges (eg the initializations, inertial dynamics at different scales and in different
components, etc.).

RESPONSE: Thanks for your comments. We again went through the reviewers’ comments and
found that the explanation for the use of GCMs outputs is not sufficient. We have added the
following to clarify this in the revised manuscript:

“Coupled Atmosphere—Ocean General Circulation Models (GCMs) are used to make forecasts at
multiple timescales, from medium-range weather forecasting, seasonal climate predictions, and
long-term climate projections. The reason GCMs can be used as operational models at these time
scales is due to the predictability from different sources, such as initial conditions from the
atmosphere, inertial dynamics from soil moisture and sea surface temperature, etc. ”

3. The writing still requires a careful proof-reading by an accomplished technical English language
writer.

RESPONSE: Thanks for your comments. We have conducted a careful proof-reading to improve
the writing of this manuscript.
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Abstract. This paper explored the potential of a global seasenal-climate forecast-models for sub-seasonal forecasting of
precipitation and 2-m air temperature. The probabilistic—categorical sub-seasenal-forecast skill of ten precipitation and
temperature indices was investigated using the 28-years’ sub-seasonal hindcasts ef-thefrom the Climate Forecast System
version 2 (CFSv2) over the contiguous United States (CONUS). The forecast skill for mean precipitation and temperature as

well as for the frequency and duration of extremes was hlghly dependent on the target forecastmg indices, regions, seasons,
and leads-and-methods. tndi izt

foreeast-leads—Forecasts for 7- and 14-day temperature indices showed skill even at weeks 3 and 4, and generally were more

skillful than precipitation indices. Overall, temperature indices showed higher skill than precipitation indices over the entire
CONUS region_at sub-seasonal scale. While the forecast skill related to mean precipitations tacices-were-was low in summer
over the CONUS, the number of rainy days, number of consecutive rainy days and number of consecutive dry days showed

considerable high skill for the west coastal region.

disaggregated-CFSv2-monthlyforecasts—While Tthe presence of active Madden-Julian Oscillation (MJO) events improved
CFSv2 weekly mean precipitation forecast skill over most partsmajer-areas of CONUS, but it MJIO-andfer-El-Nifie-Seuthern

Oseillation-did not necessarily improve the weekly mean temperature forecasts. The 30-day forecasts of precipitation and

temperature indices calculated from the downscaled monthly CFSv2 forecasts were less skillful than those calculated directly

from CFSv2 daily forecasts, suggesting the usefulness of CFSv2 for sub-seasonal hydrological forecasting.

1. Introduction

Sub-seasonal (or intra-seasonal) timescale forecasts are typically between medium-range weather forecasts (1 or 2 weeks) and

seasonal climate predictions (1 to 12 months). The medium-range weather forecast is strongly influenced by atmospheric initial

[ Formatted: Superscript
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conditions (Vitart et al. 2008), while the seasonal climate forecast depends on slowly-evolving components of the climate
system (e.g. sea surface temperature and soil moisture) (Troccoli 2010). However, since the sub-seasonal timescale is usually
too long to be favoured by the atmospheric initial conditions (Vitart 2004) and too short to be strongly influenced by the
variability of the ocean, making skillful sub-seasonal forecasts is particularly difficult and thus far hasve received-mueh-less

attentionless progress than the medium-range weather forecasts and seasonal climate forecasts.

Since many extreme events (e.g., flash drought, heat wave, and cold wave) and their corresponding management decisions fall
into sub-seasonal timescales, accurate sub-seasonal forecast information will be central to the development of climate services
and therefore haspremise great socio-economic value (Vitart et al. 2012). In fact, sub-seasonal forecast information can be
usefuld for developing strategies for proactive natural disaster mitigation,-which-may-be-needed-during-those-extreme-events
(Brunet et al. 2010; Vitart et al. 2012). Previous studies have evaluated the potential of sub-seasonal to seasonal forecasts for
heat wave forecasting (e.g. Hudson et al. 2011a; White et al. 2014), hydrological forecasting (e.g. Orth and Seneviratne 2013;
Yuan et al. 2014), water resources management (e.g. Sankarasubramanian et al. 2009), hydropower production management
(e.g. Garcia-Morales and Dubus, 2007), and crop yield prediction (e.g. Hansen et al. 2006; Zinyengere et al. 2011). -Due to
the improvement of numerical models, prediction techniques, and computing resources, there is an increasing focus on sub-
seasonal forecasts (e.g. Toth et al. 2007; Vitart et al. 2008; Brunet et al. 2010; Hudson et al. 2011b; Hudson et al. 2013;
Robertson et al. 2014).

Precipitation and 2-m temperature (hereafter temperature) are considered te-beas two of the most important climate variables
that significantly influence irrigation scheduling, urban water supply, cooling water related to thermal power generation,
hydropower operations, etc. Many important sub-seasonal events including heat waves, cold waves, dry spells, and wet spells

are directly derived from the frequency, duration, and intensity of rainfall or hot (cold) temperatures. Hewever,-mest-ef-the

While several studies have been conducted to forecast the duration of high temperature days (i.e. heat waves) (e.g. Hudson et
al. 2011a; Luo and Zhang 2012; White et al. 2014), there has been, thus far, no complete investigation of sub-seasonal
forecasting capabilities for the other temperature and precipitation indices that are directly associated with important events
and decision-making-atsub-seasonattimeseales. In this study, we aim to evaluate the skill of sub-seasonal forecasting for those
precipitation and temperature derivatives-er-indices_including -that-are-asseciated-with-these-impertant-events-and-decision-
making-at-sub-seasenal-timeseale——the-mean, frequency, duration; and intensity of precipitation and temperature at sub-

seasonal timescale, such as the number of dry/wet days, number of cold/hot days, etc.

Coupled Atmosphere—Ocean General Circulation Models -(GEMGCMs) are used to make forecasts at multiple timescales,

from medium-range weather forecasting, seasonal climate predictions.— and long-term climate projections. While-GCMs-are
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and-seasonal-climate-forecasting—The reason that GCMs can be used as operational models at these time scales is due to the

predictability from different sources, such as initial conditions from the atmosphere, inertial dynamics from soil moisture and

sea surface temperature, etc. While the GEMGCMs have demonstrated advanced configurations and realistic representations

of the climate systems, the use of GEMGCMs’ predictions is still restricted by their coarse resolution and inherent systematic
biases. To overcome these limitations, the GEMGCM s’ predictions at seasonal timescales are usually downscaled and bias
corrected before being used in hydrological applications (e.g. Wood et al., 2002; Luo and Wood, 2008; Yuan et al., 2013; Tian
etal., 2014). The Climate Forecast System version 2 (CFSv2) is a recently developed GEMGCM by the National Centers for
Environmental Prediction (NCEP) (Saha et al. 2014). The CFSv2 model has run retrospectively to produce forecasts (hereafter
reforecasts or hindcasts) every menth-5 days from 1982 to 2009. Despite the availability of those CFSv2 daily hindcasts-,
temporal downscaling of the seasonal predictions is still routinely done from monthly to daily without using-ary-ef the daily
forecast information (e.g. Yuan et al. 2013), with the assumption that the accuracy of daily information is limited at seasonal
time scale. At the sub-seasonal timescale, the usefulness of these daily or sub-daily precipitation or temperature forecasts
compared to the monthly disaggregated forecasts has not been assessed. The CFSv2 has fully coupled atmospheric, oceanic,
and land components of the climate systems and demonstrated high-better performance for seasonal climate predictions when
compared to other seasonal forecast models (Yuan et al. 2011). Since sub-seasonal precipitation or temperature forecasts are
influenced jointly by the conditions of atmosphere, land; and ocean, the-CFSv2 has great potential to make skillful precipitation
or temperature forecasts at sub-seasonal timescales.

Besides GEMGCMs, teleconnections between large-scale climate patterns and local weather events have also been used to
develop sub-seasonal precipitation or temperature forecasts. Recent examples included sub-seasonal winter temperature
forecasts in North America using Madden-Julian Oscillation (MJO) or El Nifio Southern Oscillation (ENSO) conditions (Yao
et al., 2011; Rodney et al., 2013; Johnson et al., 2013). In addition, Jones et al. (2011) found that the deterministic forecast
skill of the CFSv1 for extreme precipitation in the contiguous United States (CONUS) during winter is higher when the MJO
is active. With the updated version of CFS, the CFSv2 hindcasts allow re-examining this issue by assessing the influence of

MJO or ENSO on the probabilistic temperature and precipitation forecast skill over the CONUS.

This study will conduct a comprehensive evaluation of the precipitation and temperature hindcasts at sub-seasonal timescales.
Specifically, the aims of this study are to 1) assess the CFSv2 predictions for precipitation and temperature indices at different
locations and seasons within the first 30 days, 2) compare weekly and fortnight forecasting skill of the CFSv2 at different lead
times, and 3) evaluate the effects of MJO and ENSO on the CFSv2 sub-seasonal forecast skill. The assessment includes mean
values of sub-seasonal predictions as well as related temperature and precipitation indices at different forecast leads and scales.
The downscaled CFSv2 monthly forecasts are compared with the native CFSv2 daily sub-seasonal forecasts. Furthermore, the
influence of MJO or ENSO conditions on the CFSv2 prebabilisticcategorical temperature and precipitation forecast skill is

also assessed.
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2. Data and Methodology

Fhe-CFSv2 hads the mest-updatedstate-of-the-art data assimilation and forecast model components of the climate system and
became operational at NCEP since March 2011 (Saha et al. 2014). There SFSw2-has-archivedwere three different types of
hindcasts (or reforecasts): 6-hourly time series from 9-month runs, 45-day runs, and season runs— (Table 1)-shows-these
forecasts-with-different-configurations. Figure 1 gives an example of the three hindcast configurations. Fhe-CFSv2 hindcast
data hads a T126 spatial resolution (roughly 100 km) and includeds several near surface variables at a 6-hourly temporal
resolution. The one season and 45-day reforecasts -wereare initialized every -day so that relatively new initial conditions
couldan be incorporated into a large ensemble size for making a potentially more skillful forecast-everthis-sherterforecast
period. Nevertheless, we chose to use the 9-month reforecast. This is because the 9-month reforecast covered much longer
period (1982-2009) than one season and 45-day reforecasts (1999-2010), which ensures a larger sample size for a more robust
evaluation, especially for the evaluation of skill conditioned on MJO and/or ENSO-that-require-long-hincastsfor-to-provide

sufficient sample sizes .

[Insert Table 1 here]
[Insert Figure 1 here]

The daily precipitation total was aggregated from the 6-hourly precipitation data; the daily mean temperature was obtained by

averaging daily maximum and minimum temperature, which were extracted from the 6-hourly maximum and minimum

temperature. The ensemble members for each month were constructed in the same way as the monthly hindcasts from CFSv2
producing-monthhy-means-hindeasts. For each year, the daily hindcast had 28 members in November and 24 members in other
months with initial conditions at the 0, 6, 12, and 18 UTC (Coordinated Universal Time) every 5 days. For example, the 24
ensemble members for January wereare initialized from the four cycles for each of December 12t 170 22" and 27" and
January 1% and 6"

The forecast validation dataset was obtainedis from the North American Land Data Assimilation System version 2 (NLDAS-
2; Xia et al., 2012). The forcing dataset of the NLDAS-2 mergeds a large observation-based and reanalysis data and wasis
routinely-widely used to drive land surface models over the CONUS. It hads 0.125° (approximately 12 km) spatial resolution
and hourly temporal resolution. The NLDAS-2 hourly precipitation (temperature) data were aggregated (averaged) into daily
data.

Besides using CFSv2 daily hindcasts at its native spatial resolution (hereafter CFSv2 daily), the CFSv2 monthly hindcasts
were also downscaled using the Bayesian merging (BM) method for hydrological applications (Luo et al., 2007). By comparing
those two forecasts, it will help us understand the usefulness of the CFSv2 daily precipitation or temperature forecasts for
hydrological applications compared to the monthly disaggregated forecasts. The BM method both spatially and temporally

4
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downscaled the CFSv2 monthly hindcasts from its native spatial resolution into daily hindcasts at a 0.125° spatial resolution
for hydrological applications. The BM method updated an observational climatology based on the hindcast skill using Bayesian
theory and generated 20 daily ensemble members for each month using historical-analog criterion and random selection. For
a more detailed description of the BM method, please see Luo et al. (2007) and Luo and Wood (2008).

Ensemble forecasts of precipitation and temperature indices at sub-seasonal timescale were calculated by using daily forecasts
directly from the CFSv2 daihy-and the BM downscaled CFSv2_monthly forecasts. Table 2 shows the forecast lead time for
different periods and methods. For daily forecasts directly from the-CFSv2-daily, all precipitation and temperature indices

were calculated at 7-, 14-, and 30-day forecast timescales in the first month-%. For daily forecasts from the BM downscaled

CFSv2_monthly data, the precipitation and temperature indices were only calculated at 30-day forecast timescales in the first
month-4, since these forecasts were temporally disaggregated from monthly forecasts. -ard-lit would be useful to look at the

performance of the CFSv2 daily forecast in comparison with the daily ferecast-data disaggregated from the monthly forecast.
[Insert Table 2 here]

Table 3 shows the precipitation and temperature indices calculated in this study. Following Zhang (2011), a wet (dry) day
wasis defined as days with precipitation above (below) 1 mm during the n-day period. The wet (dry) spell wasis defined as
number of consecutive wet (dry) days. Taking a 14-day forecast for WetSpell as an example (as is shown in Table 2), the first
forecast lead ene-wasis the number of consecutive rainy days from day 1 to day 14 forecasts. As a way of defining heat (cold)
wave (e.g. Spinoni et al. 2015), the threshold for high (low) temperature day wasis defined when the temperature wasis above
(below) 90™ (10") percentile of climatological distribution of temperature during the n-day period for different months.

[Insert Table 3 here]

To validate the forecasts, the observed precipitation and temperature indices were alse-calculated using the NLDAS-2 daily
precipitation and temperature data. The NLDAS-2 daily precipitation and temperature data were alse-upscaled using bin
averaging in order to validate-thematch CFSv2 fereeastsspatial resolution. The percentiles of defining high (low) temperature

were obtained separately from distributions of forecasts and observations. All ensemble forecasts including raw and BM

downscaled CFSv2 forecasts were verified against the NLDAS-2. WhHe-the- CFSv2-dathy-forecasts-were-evaluated-at-30-day,

7
4-day nd dav-time e he BM-down ed-C Y oreca were-onhvevaluated-a O-dav-time e since-thev-were

disaggregated-from-menthly-forecasts—Take native-CFSv2 raw forecasts for January as an example; there are 24 ensemble
members for all 30-day, 14-day, and 7-day forecasts. The 24 member ensemble forecasts were considered as being initialized
on the first day of the month regardless of which day the individual member of the forecasts was initialized-Those 24-member
ensemble forecasts-were-veritied-for-the commen-peried-ef- (e.0., 1 Jan-30 Jan, 1 Jan-14 Jan, and 1 Jan-7 Jan);-respectively.

All ensemble forecasts were converted into prebabilisticcategorical forecasts in terciles with all observations converted into
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dichotomous values of 1 or 0. The terciles were defined separately based on the individual distributions of the observations
and the forecasts (x), with x<1/3rd percentile for lower tercile, 1/3rd<x<2/3rd percentile for middle tercile, and x>2/3rd
percentile for upper tercile.

The probabilisticcategorical forecasts were evaluated using the Heidke Skill Score (HSS), a common performance metric used
by the Climate Prediction Center (CPC) (e.g. Johnson et al. 2013; Wilks 2011). The HSS assesses the proportion of correctly
forecasted categories. The prebabilisticcategorical forecast wasis assigned to three forecast categories (upper, middle, or lower
tercile) based on the highest of the three forecast probabilities. The tercile category probabilities were obtained by counting

the ensemble members in each of the three categories and then by dividinged by the ensemble size. The HSS is expressed as:

HSS:(HiE)xlOO (€] -«

(T-E)

The number of correctly forecasted categories is denoted as H. The random forecast, E, is the expected number of categories

forecast correctly just by chance. In this study, since there are three forecast categories, E is defined as one-third of the total
number of forecasts, T. The HSS ranges from -50 (no correct forecasts) to 100 (perfect forecasts), with a value of 0 representing
the same skill as randomly generated forecast; which-in-this-ease-is-theor climatological forecast. The HSS above 0 indicates
that the forecasts have skill. The HSS was assessed-calculated for each method (CFSv2 daily and BM), variable, index, grid

point, month, and forecast time. Since the number of forecast-observation pairs iswas 28 for each point, the HSS estimation

hads considerable uncertainty given this relatively small sampling size. To quantify this uncertainty, a bootstrapping technique

(Wilks 2011; Hamilton et al. 2012) was applied to resample 28 samples (3000 times with replacement) from the 28-year
reforecasts averaged over the CONUS. Then a number of 3000 HSS was calculated for constructing a distribution, with the

confidence interval and significance level-¢} of the HSS estimated from this distribution. With this treatment of the HSS

estimation uncertainty, we can determine that the HSS s significantly skillful when it is greater than a given significance

levelXx.

Since seasonal precipitation and temperature could be more predictable at larger scales (e.g. Luo and Wood 2006; Roundy et

al. 2015), it is worthwhile to also look at the sub-seasonal predictive skillabiity of-sub-seasenal-ferecasts-averaged-over a

larger spatial domain. Therefore, each forecast was averaged over each of the nine National Centers for Environmental

Information (NCEI, formerly known as National Climatic Data Center) climate regions as well as over the entire CONUS
(Figure 2). The HSS of the average forecasts over each of those regions were evaluated subsequently.

[insert Figure 2 here]

The skill assessment of Pmean and Tmean was conducted not only for all forecasts but also for forecasts during active MJO,
ENSO, or combination of the two. MJO is the dominant mode of the sub-seasonal variability in the tropical atmosphere. The

MJO index used in this study  was from the Australian Bureau of Meteorology

6
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(http://cawcr.gov.au/staff/mwheeler/maproom/RMM/) for the period of 1982 to 2009. This index wasis defined by-the two
leading principal components (PCs) from an empirical orthogonal function analysis of the combined near-equatorially
averaged 850-hPa zonal wind, 200-hPa zonal wind, and satellite-observed outgoing longwave radiation data (Wheeler and
Hendon 2004). The pair of these two leading PC time series at a daily time step, called the Real-time Multivariate MJO series
1 (RMM1) and 2 (RMM?2), defined eight MJO phases and an MJO amplitude. There wereare a few different ways to define
active MJO events. \While-tThe simplest criterion was to define MJO as RMM amplitude exceededs a certain threshold (e.g.
Johnson et al. 2014), whichthis-eriteria did not consider minimum duration and eastward propagation of MJO. This study
adopted a more rigorous definition of MJO: MJO days and events wereare identified using a pentad-averaged version of the
Wheeler and Hendon RMM index subject to three major requirements as indicated by L’Heureux and Higgins (2008). Similar
definition was also widely adopted by other researchers such as Jones (2009) and Jones and Carvalho (2011). In this work,
ENSO was defined using the same criteria as CPC
(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). ENSO periods wereare based on a
threshold of +/- 0.5 °C for the Oceanic Nifio Index (3 month running means of SST anomalies in the Nifio 3.4 region). Warm
or cold ENSO periods ef-belew-and-above-nermal-SSTs-wereare identified when the threshold wasis met for a minimum of 5

consecutive overlapping seasons.

3. Results

3.1 The 30-day forecast skill

Figure 3 shows the average HSS for 30-day forecasts of precipitation indices calculated from the CFSv2 daily at different
locations over December-January-February (DJF) and June-July-August (JJA). In DJF, the average skill of WetSpell over the
CONUS wasts 34 (with a confidence interval 34+22), which wasts much higher than the skill of the other indices; it showed

high skill over majer-most areas of the-CONUS including the midwest and eastern partsJS. Fhe-Pmean, RainDay, and DrySpell
were skillful in the southeast and the southwest but also revealed skill in the other regions. RainWet showed minor skill over
the entire region. The skill in JJA showed different spatial patterns with DJF. While the-Pmean and RainWet showed modest
forecast skill in JJA over the CONUS, the-RainDay, WetSpell; and DrySpell all showed high skill in the west coastal regions
with the WetSpell showing some skill in the midwest and northeast. Forthe-other-seasens,-on-average;-tThe forecast skill for
precipitation indices for MAM is-was between DJF and JJA-ferMAM, but the skill for SON was slightly lower than JJA-fer
SON (Figure 4).

[insert Figure 3 here]

[insert Figure 4 here]

Spatial patterns in HSS wereare very different among the indices, particularly in July. We calculated the standard deviation
(STD) for observed precipitation indices in July to further examine the interannual variability of those indices at each grid
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point over the space. To compare relative temporal variability in space, the STD was normalized spatially to a range of 0 to 1

using a feature scaling method:

_ STD—min(_STD) @
max (STD)—min(STD)

1

STD

wWhere STD is the standard deviation of time series for each grid point, min(STD) and max(STD) areis the minimum and
maximum STD over all grid points_respectively, max{STFB}-is-the—rraximum-STB-overall-grid-points—and STD’ is the
normalized STD. Figure 5 shows the normalized standard deviation of 30-day precipitation indices in January and July over
28-year period from 1982 to 2009 over the CONUS. By comparing interannual variability (Figure 5) with the forecast skill
over the space (Figure 3), we found that regions showing lower interannual variability usually have higher skill than the regions
with higher interannual variability. Particularly in JulyJJA, for Pmean, the western CONUS showed relatively lower
interannual variability and higher skill than the eastern CONUS; for RainDay, the western coastal areas showed much lower
variability and higher skill than the other regions; for RainWet, all regions showed relatively equal variability and skills; for
WetSpell, the southeastern CONUS showed higher interannual variability and lower skill than the other regions of the
CONUS; for DrySpell, California and eastern CONUS showed relatively lower interannual variability and higher skill than
the other areas.

[insert Figure 5 here]

Figure 6 shows the average HSS for 30-day forecasts of temperature indices calculated from the CFSv2 daily at different
locations over DJF and JJA. Overall, the temperature indices showed reasonably higher skill than the precipitation indices in
both DJF and JJA. For DJF, Tmean showed moderate high skill in the Great Lakes area and eastern US; the-HighDay, LowDay,
CosHighD, and CosLowD were skillful over most areas of CONUS and the skill was particularly high for LowDay and
CosLowD in the center or north of the midwest region. The forecast skill of temperature indices in DJF showed different
spatial patterns with JJA. Tmean and LowDay showed high skill over the west inland area. CosLowD wasis skillful over major
area of the CONUS, particularly in the northeast. HighDay and CosHighD showed notable high skill around south of the
central area. Forthe-otherseasons—on-average—tThe forecast skill for temperature indices wasis between DJF and JJA for
MAM but slightly lower than JJA for SON (Figure 7). It is worth noting that given the sample size (N=28) used for calculating

the HSS, the confidence interval of the HSS for each index is relatively wide. Based on the bootstrapping approach described

earlier, the HSS was found to be significantly skillful (significantly above 0 at the 0.05 level) when it was greater than the

number between 20 and 24, depending on the indices.

[insert Figure 6 here]

[insert Figure 7 here]
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-Figure 8 shows the average HSS for 30-day forecasts of precipitation and temperature indices calculated from the CFSv2
daily or the BM downscaled CFSv2 over 12 months for CONUS and its consistent NCEI climate regions. The precipitation
and temperature indices calculated from CFSv2 daily showed higher skill than BM for all regions. On average, the skill from
the CFSv2 daily is approximately -20% higher than the skill from the BM, suggesting that the CFSv2 month-1 daily forecasts

are potentially more useful than the temporally downscaled monthly forecasts for hydrological applications.

[insert Figure 8 here]

3.2 Weekly and fortnight forecast skill at different lead times

Figure 9 (Figure 10) shows the average HSS of 14- and 7-day precipitation (temperature) indices forecasts from the CFSv2
daily over 12 months for the CONUS and its consistent NCEI climate regions. In general, the skill scores for precipitation
indices -wereare reasonably higher in the first two weeks than the second two weeks at both 14- and 7-day time scales; since
the first two weeks wereare within the range of weather forecast and wereare strongly influenced by the atmospheric initial
conditions. While there wereare differences among regions, the skill scores for indices measuring frequency or duration of
precipitation (i.e. RainDay, WetSpell, and DrySpell) or temperature extremes (i.e. HighDay, LowDay, CosHighD, and
CosLowD) were equally skillful as those measuring mean precipitation or temperature during the first two weeks. Temperature
indices showed notably higher skill than any precipitation index, particularly in weeks 3 and 4. It wasis worth noting that the
skill wasts higher for the 14-day forecast at the first lead than for 7-day forecast in weeks 1 and 2 taken individually. The
improved forecast skill indicateds that the temporal noise in predictions can be reduced through averaging, as noted by Roundy
etal. (2015).

[insert Figure 9 here]

[insert Figure 10 here]
3.3 Effects of MJO and ENSO

Figure 11 shows skill differences between Pmean or Tmean weeks 2-4 forecasts during active events (ENSO, MJO, or
combined-active ENSO-and-MIO-{MJO+ENSO) and the forecasts during the wholeall periods for the CONUS and its
consistent NCEI climate regions. The Pmean and Tmean forecasts wereare calculated from the CFSv2 daily_hindcasts. In
general, weeks 3 and 4 Prean-forecasts performed better during active-anomalous ENSO or MJO states for Pmean but not for

~while-Tmean-forecasts-do-not-perform-better,

[insert Figure 11 here]
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For precipitation, the forecast skill wasis inconsistent for the aetive-anomalous ENSO, MJO, or combined ENSO and MJO

phases relative to al-the whole periods. There was a notable increase in skill when the forecasts were conditioned on active
MJO for almost all regions, indicating the positive influence of MJO on the CFSv2 sub-seasonal precipitation forecasts. It is
worthwhile to note that forecasts conditioned on combined MJO and ENSO, and forecasts conditioned on MJO, showed similar
level of positive skill with a few differences, which may due to the modulation effects of ENSO on MJO. For temperature,
while the MJO, ENSO, or combined MJO and ENSO mostly showed positive effects on the €FSv2-sub-seasenal-temperature
foreeastskill for week 2 forecast, those influences became negative in most of the regions beyond week 2. We further examined
differences between Pmean or Tmean average skill over weeks 2-4 for forecasts during active MJO phase and fer-ferecasts
during-al-the whole period at different locations ever-the- CONUS-for BIF-MAM, JIAand-SONand seasons (Figures 12 and

13). SinceHSS-evaluated fore serformance-over-acertainperiod-there isonlv-one H or-each-month-location—and-le

We used a bootstrap technique for significance tests for the difference between the HSS during active MJO phase and the-HSS

during-the wholeaH period. We resampled 28 samples (3000 times with replacement) from the 28-year reforecast averaged

over the CONUS. All the 28 samples were used to calculate the HSS during the wholeaH period. The subset of the 28 samples
under active MJO events was used to calculate the conditional HSS-during-the MJdO. -The difference between the HSS during
the MJO and the HSS-during-allwhole period was then calculated. Since the resampling was conducted 3000 times, a number

of 3000 HSS differences was obtained for constructing a distribution and used to estimate the confidence interval and

significance level £&-of the HSS. Similar to Peng et al. (2013), the significance level estimated based on the average over the

CONUS was applied to test the local significance for each grid point over the region. The results wereare shown in Figures 12
and 13.

[insert Figure 12 here]
[insert Figure 13 here]

In general, most-ef-the skill wasis significantly different at different locations; MJO hads strongly positive effects on CFSv2
sub-seasonal Pmean forecast skill over the CONUS; the effects on Tmean forecast skill wasis relatively weak and inconsistent
among different regions. For precipitation, the influenced areas wereare greater during DJF and MAM than during JJA and
SON, with the NE and NW regions being consistently influenced by MJO during four seasons. Aggregated over the-spatiat
domainCONUS, we further conducted statistical tests to compare whether precipitation forecast skills during active MJO,
ENSO, or combined MJO and ENSO phases wereare greater than those during the wholeaH period everthe-CONUS-for DJF,
MAM, JJA, and SON. We tested whether differences in mean HSS over the CONUS (averaged over 1024 grid points) wereare
statistically significant at a 5% level. The student’s t-test showed the forecast skills during active MJO or combined MJO and

10
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ENSO phases wasere significantly greater than those during the wholeaH period (p<0.05) ever-the- CONUS-for DJF, MAM,
JJA, and SON; the forecast skills during active ENSO phases wasere significantly greater than those during aH-the whole
period ever-the-CONUS-for MAM. It is also worthwhile to note that the combined effects of MJO and ENSO wereare stronger
than their individual effects-ef-either MJIO-or-ENSO, suggesting a potential benefit of using combined information of MJO
and ENSO-information for sub-seasonal forecasts. Table 4 shows that there wereare much fewer ENSO events than MJO
events during January 1982 to December 2009. The number of ENSO events could be limited enough to skew the skill score
conditioned on ENSO.

[insert Table 4 here]

4. Discussion

The CFSv2 sub-seasonal forecast skill wasis highly dependent on target-forecasting indices, regions, seasons, leads, and
methods. The sub-seasonal forecasts for indices characterizing mean precipitation and temperature as well as frequency or
duration of precipitation and temperature extremes showed skill in the first two weeks but no skill or modest skill for the
second two weeks, since the first two weeks were within the range of medium-range weather forecasts. This finding is
important sinee-given the sub-seasonal forecasting information is valuable to many decision makers. In particular, sub-seasonal
forecasts for frequency or duration of precipitation and temperature extremes can be directly tailored to different application
needs. For example, krewing-having the information of RainDay, WetSpell; and DrySpell weeks in advance will help farmers
make decisions for irrigation scheduling-decisiens; to save water costs and improve crop yields. Short-term planning of urban
water supply could also benefit from this-sub-seasonal forecasting information, since those indices describing frequency or
duration of precipitation and temperature extremes are known to be directly related the urban water demand forecasting (e.g.
Donkor et al. 2012). As some temperature indices such as CosHighD and CosLowD were used to characterize heatet/cold
waves, forecasting information of these indices would also be useful for developing strategies for proactive disaster mitigations
(e.g. frost damage to crops).

The spatially and temporally downscaled CFSv2 monthly data using BM method was compared with the CFSv2 daily data for
sub-seasonal forecasts at rative-its raw resolutions. Ferforecasting-30-day-precipitation-and-temperature-indices-sSince the
30-day precipitation and temperature indices calculated from CFSv2 daily hindcasts have mesthy-higher skill than the BM, the
comparison of these two methods implies that daily forecasts from the CFSv2 are potentially more useful than those
disaggregated from the monthly forecasts for—Fhus;-the-CFSv2 daily-forecastinformation-should-be-used-in application studies
such asef sub-seasonal hydrological forecastings-in-contrast-to-temperal-disaggregation-of the-monthhy-forecast.

This study demonstrated that the CFSv2 sub-seasonal forecast skill varies with space and time. These results identify seasons

and regions where there is the potential for skillful sub-seasonal predictions for certain precipitation and temperature indices.
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For example, water managers in California trying to predict WetSpell and DrySpell have confidence to use the forecasts from

CFSv2 during summer seasons, while a decision maker in the southeast may benefit little by using such information.

Sub-seasonal forecast skill can be further improved by understanding the attribution-sources of the skill. This study took a first

look at the effects of MJO and ENSO on the CFSv2 sub-seasonal forecast skill. It was found that the presence of an active
MJO improves weeks-2 to -4 probabilisticcategorical GFSv2-based-forecast performanee-of precipitation over majer-most
areas of CONUS. This finding corresponds to the study of Jones et al. (2011), whe-feundwhere improved deterministic CFSv1
forecast skill of extreme precipitation was also found during active MJO. We also compared the regions of improved skill
associated-with-thebased on MJO in this study (Figure 9) with the results in-from Jones et al. (2011). While there were spatial
differences, the regions of improved skill associated with the-MJO commonly occurred for the western coast of the United
States{UJS)CONUS. This result is consistent with current knowledge of the observed influence of the MJO on precipitation
events along the CONUS west coast, which can be viewed-found at the NOAA CPC website (http://www.cpc.ncep.noaa.gov),
under the MJO section. Forecast skill of precipitation and temperature are inherently associated with the capacity of CFSv2 in
forecasting MJO. The CFSv2 has shown useful MJO prediction skill out to 3 weeks (Wang et al. 2014). Improvements of the
representation of the MJO in CFSv2 will likely further extend the forecast skill of precipitation and temperature. Furthermore,
related-recent studies have developed statistical forecasting models at sub-seasonal timescale using teleconnections of MJO
and ENSO phases and local weather (e.g. Johnson et al. 2013). These statistical models could be potentially combined with
CFSv2 forecasts to further improve the sub-seasonal forecast skill.

It is opportune to note some future directions of this work. Forecast skill could be potentially improved by having a larger
ensemble size. A sensitivity study on ensemble size could be performed to assess whether a larger ensemble improves forecast
skill. For future work, when one season or 45-day CFSv2 reforecasts (initialized everyday) are available over a longer period,
we would choose to use those datasets instead of 9-month reforecasts_(initialized every five days) in order to incorporate a
large ensemble size for making a potentially more skillful forecast. Another approach to further improve the sub-seasonal
forecast skill is through multi-model ensembles. The multi-model ensemble forecasts combine multiple seasonal forecast
models and often have higher skill than ary-individual models, since it has an increased ensemble size and a wider spectrum
of possible forecasts that takes into account model uncertainty due to differences in model configuration and physics (e.g.
Hagedorn et al. 2005). Here we highlight two important endeavors: the North American Multi-Model Ensemble (NMME-2)
system (Kirtman et al. 2013) is exploring sub-seasonal forecast in their next phase; the World Meteorological Organization
(WMO) sub-seasonal to seasonal (S2S) prediction project (http://www.s2sprediction.net/) is archiving hindcast and real-time
forecasts from a range of model systems. All of those efforts can facilitate sub-seasonal multi-model ensemble prediction and
model inter-comparison studies. Furthermore, this-study-focused-on-evaluation-of-the—capacities—of-CFSv2-sub-seasonal
precipitation-and-temperatureforecasts—Fhe-CFSv2 sub-seasonal precipitation and temperature forecasts can be used for

subsequent application studies related to areas such as hydrology and agriculture. For example, flash drought refers to a sudden
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onset of high temperatures and decreases of soil moisture and is a disastrous event at sub-seasonal timescale (e.g. Mo and
Lettenmaier 2015; Wang et al., 2016). Sub-seasonal forecasting of flash drought will help decision makers develop mitigation
strategies. The CFSv2 sub-seasonal precipitation and temperature forecasts can be used to drive land surface hydrological
models to forecast soil moisture and evapotranspiration and consequently improve flash drought forecasts.

5. Conclusion

In this study, we have assessed the CFSv2 probabilisticcategorical sub-seasonal forecasts of precipitation and temperature
indices over the CONUS. The probabilisticcategorical sub-seasonal forecast skill is highly dependent on forecasting indices,
regions, seasons, and methods. Indices characterizing mean precipitation and temperature as well as measuring frequency or
duration of precipitation and temperature extremes for 7-, 14-, and 30-day forecasts were skillful depending on seasons and
regions. The fForecasts for 7- and 14-day temperature indices even showed skill at weeks 3 and 4, and generally more skillful
than precipitation indices. The fForecasts ef-for 30-day temperature and precipitation indices calculated from the daily-forecasts
BMstatistically downscaled from-the-monthly-forecasts mostly showed lower skill compared to those calculated directly from
the CFSv2 daily forecasts, indicating the potential usefulness of the CFSv2 daily forecasts for hydrological applications relative
to the temporally disaggregated CFSv2 monthly forecasts. The presence of an active MJO improves weeks 2 to 4
probabilisticcategorical forecast performance-of precipitation over majer-most areas of CONUS in the CFSv2 system. The
sub-seasonal forecast skill of precipitation and temperature could be further improved through combining with teleconnection-
based statistical sub-seasonal forecasting models or multi-model ensemble.
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Figure 1. Three configurations of the CFSv2 hindcast: 9-month run, 1 season run, and 45-day run. UTC stands for Coordinated
Universal Time.
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Figure 2. NCEI climate regions (described in Section 2) used as areal averaging domains for raw and BM downscaled CFSv2
forecasts. Regions are named as follows: Northwest (NW), West (W), Southwest (SW), West North Central (WNC), South (S), Upper

Midwest (UMW), Central (C), Southeast (SE), and Northeast (NE).
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Figure 3. HSS of 30-day (from top to bottom columns) Pmean, WetRain, RainDay, WetSpell; and DrySpell from {from-left-to-right

rows)-the CFSv2 daily hindcasts and-BM-over DJF (left) and JJA (right). The number in the bottom left is the overall average.

19



Pmean

RainDay

RainWet

WetSpell

DrySpell

Figure 4. Same as in Figure 3, but for MAM and SON.
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Figure 5. Spatially normalized standard deviationg of observed 30-day precipitation indices in January and July over 28-year period

from 1982 to 2009
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Figure 6. HSS of 30-day (from top to bottom columns) Tmean, HighDay, LowDay, CosHighD, and CosLowD from (from left to right

rows) the CFSv2 raw-daily hindcasts i i duringever DJF (left) and JJA (right). The number in

5 the bottom left is the everall-average.
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Figure 7. Same as in Figure 6, but for MAM and SON.
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Figure 10. MOverat-mean 6f-HSS of 14- and 7-day (from top to bottom rows) Tmean, HighDay, LowDay, CosHighD, CosLowD

from the CFSv2 daily hindcasts for CONUS and its consistent NCEI climate regions,
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Figure 11. HSS differences between Pmean (left column) or Tmean (right column) weeks 2-4 forecasts during active ENSO, MJO,
or combined active ENSO and MJO (MJO+ENSO) phases and thosee-forecasts during the wholeaH periods for CONUS and its
consistent NCEI climate regions. Positive values indicate more skillful forecasts fer-theduring active MJO, ENSO, or ENSO+MJO

5 phases.
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Differences between HSS of weeks 2-4 Pmean - forecasts during

Figure 12.

active MJO phases and for-ferecasts-during-atthe whole period at different locations over the CONUS for DJF, MAM, JJA, and

SON. The icantareas in white indicate the differences are not

significant (at the 0.05 level) {(p<6-05).
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Figure 13. Same as in Figure 12, but for Tmean.
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Table 1. Configurations of the CFSv2 hindcast. UTC stands for Coordinated Universal Time.

Configurations 9-month runs one season 45-day runs
Every 5 days
Initiated day beginning from Jan 1 Every day Every day
of each year
Initiated UTC time 0,6,12,18 0 0,6,12,18
Covered Period 1982-2010 1999-2010 1999-2010
Table 2. Forecast lead times for different periods and methods.
Period CFSv2 daily BM
Lead 1 Lead 2 Lead 3 Lead 4 Lead 1
30-day Day 1 to Day 30 - - - Day 1 to Day 30
14-day Day 1to Day 14  Day 15 to Day 28 - - -
7-day Day 1 to Day 7 Day 8 to Day 14 Day 15to Day 21  Day 22 to Day 28 -

Table 3. Precipitation and temperature indices ealeulated-used in this study.

Index Description Period
Pmean mean precipitation 30-day, 14-day, and 7-day
RainWet mean precipitation over wet days 30-day, 14-day, and 7-day
RainDay number of rainy days 30-day, 14-day, and 7-day
WetSpell maximum wet spell length 30-day, 14-day, and 7-day
DrySpell maximum dry spell length 30-day, 14-day, and 7-day
Tmean mean temperature 30-day, 14-day, and 7-day
HighDay number of high temperature days 30-day, 14-day, and 7-day
LowDay number of low temperature days 30-day, 14-day, and 7-day
CosHighD maximum number of consecutive high temperature days ~ 30-day, 14-day, and 7-day
CosLowD maximum number of consecutive low temperature days 30-day, 14-day, and 7-day
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Table 4. Active ENSO, MJO, and ENSO+MJO during January 1982 to December 2009. The red areas indicate active ENSO periods.
The green areas indicate the periods with active MJO happening. The yellow areas indicate combined active ENSO and MJO events.
The last three lines show the total number of ENSO, MJO, and ENSO+MJO events for each month.

Year Jan [Feb|Mar | Apr|May |Jun|Jul | Aug|Sep|Oct|Nov|Dec
1982

1983

1984 --=--

1985 | [ ] ]

1986

L[]

1988 | ]

1989 | L
1990 I
|

1991

1992 | ]

e e
1994 ] [ ]
1995 -l. | ]

1996

|
1997 1L |
o9 | | Il
99 || ]
2000 [ |
2000 | || |
2002 | NN N
2003 | || |
2004 | ]
2o0s | | | | Pl [ ]

2006

]
R

] |

2009

No. ENSO 161512 11| 11 |12 |12 13| 15( 17|17 | 17
No. MJO 2222124 (23| 24 (15|15( 15 (16 [ 24| 23 | 25
No.ENSO+MJO | 1212110 | 7| 8 | 4 | 6| 6 | 9 (13|13 |14
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