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Abstract: Hydrological model parameters play an important role in the ability of model prediction. In
a stationary context, parameters of hydrological models are treated as constants; however, model
parameters may vary with time under climate change and human activities. The technique of ensemble
Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter
monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic
experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and
different types of parameter variations, including trend, abrupt change, and periodicity. Various levels of
observation uncertainty are designed to examine the performance of the EnKF. The results show that the
EnKF can successfully capture the temporal variations of the model parameters. The application to the
Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent
increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is
explained by land use and land cover changes due to soil and water conservation measures. Whereas,
the application to the Tongtianhe basin shows that the estimated SC has no significant variation during
the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The
evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The
proposed method provides an effective tool for quantifying the temporal variations of the model

parameters, thereby improving the accuracy and reliability of model simulations and forecasts.

Keywords: model parameter identification, temporal variation of parameter, catchment characteristics,

ensemble Kalman filter
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1 Introduction

Hydrological model parameters are critically important for accurate simulation of runoff. Parameters of
conceptual hydrological models can be considered as a simplified representation of the physical
characteristics in hydrologic processes. Therefore, parameter values are closely related to the catchment
conditions, such as climate change, afforestation and urbanization (Peel et al., 2011). In hydrological
modeling, parameters are usually assumed to be stationary, i.e., the calibrated parameters are constants
during the calibration period, and have extrapolative ability outside the range of the observations used
for parameter estimation (Merz et al., 2011). The estimated parameters usually depend on the calibration
period since the calibration period may contain different climatic conditions and hydrological regimes
compared to the simulation period (Merz et al., 2011; Zhang et al., 2011; Coron et al., 2012; Seiller et
al., 2012; Westra et al., 2014; Patil and Stieglitz, 2015). The model parameters may change responding
to the variations in climatic conditions and catchment properties. For example, land use and land cover
changes contribute to temporal changes of model parameters (Andréassian et al., 2003; Brown et al.,

2005; Merz et al., 2011). Therefore, it is no longer appropriate to treat parameters as time-invariant.

The time-variant hydrological model parameters has been reported in a few recent publications (Merz et
al., 2011; Brigode et al., 2013; Jeremiah et al., 2014; Thirel et al., 2014; Westra et al., 2014; Patil and
Stieglitz, 2015). For example, Ye et al. (1997) and Paik et al. (2005) mentioned the seasonal variations

of hydrological model parameters. Merz et al. (2011) analyzed the temporal changes of model

3
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parameters, which were calibrated respectively by using six consecutive 5-year periods between 1976
and 2006 for 273 catchments in Austria. Recently, Westra et al. (2014) proposed a strategy to cope with
nonstationarity of hydrological model parameters, which were represented as a function of a
time-varying covariate set before using an optimization algorithm for calibration. Previous studies
provided two main methods to estimate the time-variant model parameters: (1) Available historical
record is divided into consecutive subsets, and parameters are calibrated separately for each subset
using an optimization algorithm (Merz et al., 2011; Thirel et al., 2015); (2) A functional form of the
selected time-variant model parameters is constructed and, the parameters for the function are estimated
using an optimization algorithm based on the entire historical record (Jeremiah et al., 2014; Westra et al.,

2014).

The data assimilation (DA) actually provides another method to identify the potential temporal
variations of model parameters by updating them in real-time when observations are available (Liu and
Gupta, 2007; Xie and Zhang, 2013). The DA method has been widely applied in hydrology for soil
moisture estimation (Han et al., 2012; Kumar et al., 2012) and flood forecasting (Liu et al., 2013; Abaza
et al., 2014). It has also been successfully used to estimate model parameters (Moradkhani et al., 2005;
Kurtz et al., 2012; Montzka et al., 2013; Panzeri et al., 2013; Vrugt et al., 2013; Xie and Zhang, 2013;
Shi et al., 2014; Xie et al, 2014). For example, Vrugt et al. (2013) proposed two Particle-DREAM

methods, i.e., Particle-DREAM for time-variant parameters and time-invariant parameters, to track the
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evolving target distribution of HyMOD parameters, while both the results were approximately similar
and statistically coherent since only three years of data were used. Xie and Zhang (2013) used a
partitioned forecast-update scheme based on the EnKF to retrieve optimal parameters in a distributed
hydrological model. Although the DA method has been used to estimate model parameters, these
studies are focused on the estimation of constant parameters. Little attention has been paid to the

identification of time-variant model parameters by using the DA method.

The aim of this study is to assess the capability of the EnKF to identify the temporal variations of the
model parameters for a monthly water balance model. Thus, a synthetic experiment, including four
scenarios with different parameter variations and one scenario with time-invariant parameters, is
designed for parameter estimation at different uncertainty levels. Furthermore, two case studies are
implemented to estimate the model parameter series and to interpret the parameter variations in
response to the changes in catchment characteristics, i.e., land use and land cover. The remainder of this
paper is organized as follows. Section 2 presents a brief review of the monthly water balance model and
the EnKF method. Following the methodology, Section 3 describes the synthetic experiment and the
application to two case studies. Results and discussion are presented in Section 4, followed by

conclusions in Section 5.
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2 Methodology

2.1 Monthly water balance model

The two-parameter monthly water balance model (TWBM), developed by Xiong and Guo (1999), has
been widely applied for monthly runoff simulation and forecast (Guo et al., 2002; Guo et al., 2005;
Xiong and Guo, 2012; Li et al., 2013; Zhang et al., 2013; Xiong et al., 2014). The inputs of the model
include monthly areal precipitation and potential evapotranspiration. The actual monthly
evapotranspiration is calculated as follows:

E, =CxEP, xtanh(P /EP), )
where E, represents the actual monthly evapotranspiration; EP and P are the monthly potential

evapotranspiration and precipitation, respectively; C is the first model parameter; and i is the time

step.

The monthly runoff is dependent on the soil water content and is calculated by the following equation:
Q, :Sixtanh(Si/SC), (2)

where Q.

is the monthly runoff; and S, is the soil water content. As the second model parameter,
SC represents the water storage capacity of the catchment in millimeter. The available water for
runoff at the ith month is computed by S, | + P, —E,. Then, the monthly runoff is calculated as:

Q =(S,, +P —E)xtanh[(S_ +P-E)/SC], 3)
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Finally, the soil water content at the end of each time step is updated based on the water conservation

law:

Si:Si—l"'Pi_Ei_in 4)

2.2 Ensemble Kalman filter

As a sequential data assimilation technique, EnKF is essentially the Monte Carlo implementation of
the Kalman filter, producing an ensemble of state simulations for updating the state variables and their
covariance matrices (Evensen 1994; Burgers et al., 1998; Moradkhani et al., 2005; Shi et al., 2014). It
is applicable to a variety of nonlinear problems (Evensen, 2003; Weerts and El Serafy, 2006) and has
been widely applied to hydrological models (Abaza et al., 2014; DeChant and Moradkhani, 2014;
Delijani et al., 2014; Samuel et al., 2014; Tamura et al., 2014; Xue and Zhang, 2014; Deng et al.,
2015). Furthermore, the EnKF has been successfully used in time-invariant parameter estimations for
hydrological models (Moradkhani et al., 2005; Wang et al., 2009; Xie and Zhang, 2010; Xie and

Zhang, 2013).

In this paper, the EnKF is applied to simultaneously estimate state variables and parameters (Table 1)
in the TWBM model. The augmented state vector includes both states and model parameters (Wang et
al., 2009), i.e., Z= (49, X)T , where @ includes the evapotranspiration parameter C and the catchment

water storage capacity SC, and X is the soil water content S. The model forecast is conducted for
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each ensemble member as follows:

K k
G | _ % + 5 ,where 5 ~ N(0,U,),& ~ N (0,G,). (5)
Xik+|\i f (XiTi’eilil\i’uiH) gik

where Qil‘i is the kth ensemble member forecast of model parameters at time i+1; @ is the kth

k
i+l]i

updated ensemble member of model parameters at time i; X . is the kth ensemble member forecast

of model state at time i+1; x*

is the kth updated ensemble member of model state at time i; f is

the forecasting model operator, i.e. the TWBM model; u., , is the forcing data for the hydrological

i+l
model, including precipitation and potential evapotranspiration; & and 5° are the independent
white noise for the forecasting model, following a Gaussian distribution with zero mean and specified

covariance G, and U,, respectively. Note that the parameters in Eq. (5) are propagated by adding

random disturbances to the parameter member between time steps (Wang et al., 2009).

The observation ensemble member can be written as:

yik+1 = h<xik+1\i"9il:1\i ) + gikﬂa §Ik+1 ~N (09Wi+1)7 (6)
where ¢, is the kth ensemble member of the model simulated runoff at time i+1; h is the
observation operator which represents the relationship between the observation and the state variables;
£X . is the noise term which follows a Gaussian distribution with zero mean and specified covariance

i+1

W.

i+1°

Based on the available state and observation equations, the model parameters and state are updated

8
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according to the following equation:

:Z_k

Z{ i K ( yi —h (ZiTi ))’ )

i+1fi+1
where Z is the augmented state vector that includes both state and parameters; Yy{, is the kth

observation ensemble member generated by adding the observation error £°, to the observed runoff:

Yik+1 =Yt ik+v (®)

K.,, is the Kalman gain matrix that represents the weight between the forecasts and observations. It

i+1

can be calculated as (Evensen 1994; Evensen and van Leeuwen, 1996; Evensen 2003; Moradkhani et

al., 2005):

-1
Kia = izil\i( iy+yl\i +Wi+1) ’ )
where 2>¥ . is the cross covariance of the forecasted state and parameters; 2. is the error

i+l[i i+l|i

covariance of the forecasted output. The error covariance matrix is calculated based on the forecasted

ensemble members:

1 T

zm\i :mzm\i i+1fi° (10)

where ZM“:(Z1 Z ez —T ) and Z

i+ T Sl i+ Sl i+l

is the ensemble mean of the forecasted members,

and N is the ensemble size.

Since the parameters are limited within a range, the constrained EnKF (Wang et al., 2009) is used in this
study. The ensemble size, uncertainties in input and output have significant impacts on the assimilation

performance of the EnKF, and they are specified following the previous studies (Moradkhani et al.,
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2005; Wang et al., 2009; Xie and Zhang, 2010; Nie et al., 2011; Lii et al., 2013; Samuel et al., 2014).
The ensemble size is set to 1000 for the synthetic experiment and the two case studies. In the present
study, the uncertainties, including state variable and parameter errors (¢ and o in Eq. (5), respectively),
and runoff observation error (£ in Eq. (6)), are assumed to follow a Gaussian distribution with zero
mean and specified covariance. Note that the model parameter errors should vary relying on the
hydrological model used and the study basin (Clark et al., 2008). Larger standard deviation can generate
greater perturbations to model parameters, and it can improve the coverage of updated parameters but
also may cause fluctuations in the estimates. In this study, the parameter errors are determined
empirically, i.e., the standard deviation of C is set to 0.01 for all the cases, while that of SC is set to
5.0, 1.0 and 0.5 in the synthetic experiment, Wudinghe basin and Tongtianhe basin, respectively. The
standard deviations of both model state and observation errors are assumed to be proportional to the
magnitude of true values (Wang et al., 2009; Lii et al., 2013). The proportional factors of model state are
set to 0.05 for all the cases. Different proportional factors of runoff observation and precipitation (Table
3) are evaluated to examine the capability of the EnKF in the synthetic experiment; whereas, the
proportional factors of runoff observation are set to 0.1 and zero precipitation errors are assumed in the

two case studies.

2.3 Evaluation index

Two evaluation criteria, including the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and
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the volume error (VE) are used to evaluate the runoff assimilation results for the synthetic experiment

and the application to real catchments (Deng et al., 2015; Li et al., 2015).

n 2
NSE =1-— zinl(QSim’i Q_obs,i )2 (1 1)
ZH (Qobs,i B Qobs )
VE = Zi:] QSim,ri _Zi:1 Qobs,i (12)
Zi:l Qobs,i
where Qg,; and Q; are the simulated and observed runoff for the i th month; éobs is the mean

values of the observed runoff; and n is the total number of data points. The NSE ranges from - to
1 and has been widely used to assess the goodness-of-fit for hydrological modeling. A NSE value of 1
means that a perfect match of simulated runoff to the observations, while a value of 0 indicates that
the model simulations are equivalent to the mean value of the runoff observations; and negative NSE
values indicate that the mean observed runoff is better than the model simulations. The VE is a
measure of bias between the simulated and observed runoff. For example, VE with the value of 0

denotes no bias, and a negative value means an underestimation of the total runoff volume.

The assimilated parameter results are evaluated using the following criteria, including the Pearson

correlation coefficient (R), the root mean square error (RMSE) and mean absolute relative error

(MARE):
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Zi”:l (esim,i ~ Ysim )(eobs,i - éobs )

R=— < Do [ o) (13)
\/ i1 (esim,i - Hsim ) (eobs,i - eobs )
1 n 2
RMSE = \/ﬁzi_l(egmi ~ O ) - (14)
1 n esim i eobs i
MARE=—) ’ —, 15
n ZI:I eobs,i ( )
where 6 . and 6, . are the assimilated and true model parameters for the ith month; 0, and
gobs are the mean of the assimilated and true model parameters, respectively for the ith month; n is

the total number of data points.

3 Data and study area

3.1 Synthetic experiment

A synthetic experiment is designed to evaluate the capability of the assimilation procedure to identify
the temporal variation of model parameters. Five scenarios of different parameter variations are
developed, as shown in Table 2. The model parameters in the first four scenarios are time-variant, and
those in the last scenario are constant. Parameter C, the evapotranspiration parameter, is considered to
be sinusoidal reflecting potential seasonal variations in hydrological model parameters (Paik et al., 2005;
Ye et al., 1997). An increasing trend is also considered to account for the potential annual or long-term
variability. The change of parameter SC is considered to be gradual and abrupt, since the catchment

water storage capacity can be affected by land use and land cover changes, such as afforestation and

12



223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

dam construction. The parameters in Scenario 5 are treated as constants like the conventional
hydrological modeling. Observations for precipitation and potential evapotranspiration are generated by
adding a Gaussian disturbance to the corresponding data from a real catchment, and runoff is then
produced using the TWBM model. The data set used in this experiment is of 672-month length. The
first 24-month period is set for model warm-up to reduce the impact of the initial soil moisture
conditions. The steps toward identifying temporal variation of model parameters are as follows:

(1) Time series of model parameters are synthetically generated, including the time-variant parameters
and the constant parameters. Model parameter sets are produced using a sinusoidal function and/or a
linear trend function within the specified ranges shown in Table 1. The runoff observations for each
scenario are computed from the TWBM model taking monthly potential evapotranspiration and
precipitation, and the parameters as inputs.

(2) The initial ensembles of model parameters and state variables are generated using uniform
distributions within the specified ranges in Table 1. The ensemble size and the total number of
assimilation time steps are specified.

(3) After the initialization of parameters and state variables, the hydrological model parameters and
states are updated by assimilating the runoff observations obtained in Step (1). The additive errors for
generating the ensemble members of model parameters, state variables and runoff observations are

obtained from Gaussian distributions with zero mean and specified variance.
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To evaluate the effect of errors on identifying parameter variation, different levels of observation
uncertainty are considered in the synthetic experiment, as detailed in Table 3. The uncertainties from
the observed precipitation and runoff are characterized by adding Gaussian noises where the standard
deviations are assumed to be proportional to the magnitude of the true values, and the corresponding

proportional factors are denoted as y, and y,. The proportional factors are set to account for the

practical measurement error (Wang et al., 2009; Xie and Zhang, 2010).

3.2 Study area
3.2.1 Case 1: Wudinghe basin

The method is applied to the Wudinghe basin (Fig. 1), which is a sub-basin of the Yellow River basin
and located in the southern fringe of Maowusu Desert and the northern part of the Loess Plateau in
China with a semiarid climate. It has a drainage area of approximately 30,261 km? and a total length of
491 km. The Wudinghe basin has an average slope of 0.2%, and its elevation ranges from 600 to 1800
m above the sea level. The Baijiachuan gauge station, which is the most downstream station of the
Wudinghe basin, drains 98% of the total basin area. The mean annual precipitation over the basin is
401 mm, of which 72.5% occurs in the rainy season from June to September (Fig. 2). The mean
annual potential evapotranspiration is 1077 mm, and the mean annual runoff is about 39 mm with a

runoff coefficient of 0.1.
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The soil erosion is severe in the Wudinghe basin owing to the highly erodible loess and sparse
vegetation. Since the 1960s, the soil and water conservation measures have been undertaken. Lots of
engineering measures including tree and grass plantation, check dam and reservoir construction, and
land terracing were effectively implemented during several decades. The land use changes caused by
the soil and water conservation measures had a significant effect on increasing water storage capacity

(Xu, 2011).

3.2.2 Case 2: Tongtianhe basin

The Tongtianhe basin (Fig. 3) is located in southwestern Qinghai Province in China with a continental
climate. It belongs to the source area of Yangtze River basin with a drainage area of about 140,000 km?
and a total main stream length of 1206 km. The elevation of the Tongtianhe basin approximately ranges
from 3500 to 6500 m above the sea level. Zhimenda is the basin outlet. The mean annual precipitation
over the basin is 440 mm, of which 76.9% occurs in the period from June to September (Fig. 4). The
mean annual potential evapotranspiration is 796 mm, and the mean annual runoff is about 99 mm with a
runoff coefficient of 0.23. The Tongtianhe basin is rarely affected by human activities owing to the
water source protection guidelines conducted by the government. The Tongtianhe basin is used for

comparison on model parameter identification.
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3.2.3 Data

The data sets used in this study include monthly precipitation, potential evapotranspiration and runoff in
Wudinghe basin (from 1956 to 2000) and Tongtianhe basin (from 1980 to 2013). The potential
evapotranspiration is estimated using the Penman-Monteith equation (Allen et al., 1998) based on the
meteorological data from the China Meteorological Data Sharing Service System (http://cdc.nmic.cn).
To reduce the impact of the initial conditions, a 2-year data set, i.e., from 1956 to 1957 for Wudinghe

basin and from 1980 to 1981 for Tongtianhe basin, is reserved as the warm-up period.

4 Results and discussion

4.1 Synthetic experiment

The comparisons of the estimated and true model parameters under different scenarios are presented
in Fig. 3, Fig. 4 and Fig. 5. Tables 4 and S show the evaluation statistics for the parameters and runoff
estimations. The assimilated parameter values are obtained from the ensemble mean at each time step.
The estimation of parameters C and SC have the similar trends as the true parameter series. The
temporal variations of the estimated C agree well with the true series, although it has biases on the
peaks of the periodic changes. For SC, the temporal estimates can capture the different changes in
Table 2, especially for the abrupt change where the estimated values respond immediately. Different

uncertainty levels are considered to examine the capability of the EnKF method. The results in Fig. 3
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show that the estimated C has more accurate peaks with smaller RMSE and higher R values under the
high level uncertainty (Table 4); whereas, the SC estimates in Fig. 4 have some fluctuations when the
uncertainty level increases. This is due to the reason that the estimated values vary with increasing
uncertainty level in the assimilation process. In the synthetic experiment, the true C is assumed to be

periodic with higher degree of variation, while the true SC series have less variation.

It should be noted that there are time lags between the assimilated and true C. The observation at the
current time step is used to adjust the state variables and parameters in EnKF, and the updates of
parameters depend on the Kalman gain for parameters. A runoff observation at the current time is
determined by states at the current and previous time steps (Pauwels and Lannoy, 2006). The Kalman
gain is dependent on the relative value of observation error to model error. The updated states are
closer to the observation with a higher Kalman gain (Tamura et al., 2014). The synthetic C series were
assumed to be periodic where lots of peak values exist; while the variation of SC series is less. The
time lag between assimilated and true values exists especially when peak values occur (Clark et al.,

2008; Samuel et al., 2014).

The results for the scenario of constant parameters are shown in Fig. 5, demonstrating that the
estimated parameters can approach their true values after the initial 24 assimilation steps. The grey

areas represent the 95% prediction uncertainty intervals, which reduce quickly and approach a stable
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spread. The performance of the estimated parameters is correlated with the uncertainty level. Higher
precipitation and runoff observation errors correspond to greater RMSE values (Table 4) of estimated
parameters and uncertainty ranges. The performance of runoff estimations for various parameter
changes under different levels of uncertainty is shown in Table 5, suggesting that the EnKF perfectly
matches the observations with NSEs higher than 0.95 and absolute VEs smaller than 0.02. The EnKF
can successfully capture the temporal variations of the true parameters, although the uncertainty levels
of the observations can affect its performance to a certain degree. The above results demonstrate that
the EnKF is able to identify the temporal variation of the model parameters by updating the state

variables and parameters based on the runoft observations.

4.2 Case studies

Fig. 6 shows the double mass curve between monthly runoff and precipitation for the Wudinghe and
Tongtianhe basins, respectively. The top panel shows the linear relationship between cumulative runoft
and precipitation pre- and post-1972 in the Wudinghe basin, which is similar to the result presented by
Xu (2011) and Li et al. (2014). The results show two straight lines with different slopes for the
relationships between precipitation and runoff, indicating that an abrupt change occurred in 1972,
namely, the runoff generation had been changed from this year due to the soil and water conservation
measures. On the other hand, the bottom panel demonstrates that a single linear relationship fits all the

data for the Tongtianhe basin, suggesting a stable precipitation-runoff relationship during the 1982-2013
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period.

The estimated parameters and the associated 95% prediction uncertainty intervals are shown in Fig. 7.
The time series of estimated SC shows an apparent increasing trend, with two different trends for pre-
and post-turning point in Fig. 6(a). The temporal variation of the water storage capacity is correlated
with the changes of land use and land cover. Both the trends in Fig. 7(c) show an increase of SC,
because the implementation of the large-scale engineering measures significantly improved the water
holding capacity of the Wudinghe basin, especially for the reservoir and check dam construction. The
trend slopes of the two periods, one is from 1956 to 1971, the other is from 1972 to 2000, are different
because the degree of implementing engineering measures varied during the period of 1958-2000.
Moreover, the increase of the water holding capacity slowed down during the 1980s due to the
sedimentation in reservoirs and check dams after periods of operation (Wang and Fan, 2003). Fig. 8(a)
shows the long-term time series of precipitation and potential evaporation in Wudinghe basin. The result
shows that the runoff decreases significantly while precipitation changes slightly and potential
evaporation has no trend, indicating that the actual evaporation increases significantly due to impacts of
human activities, i.e., the soil and water conservation measures. Fig. 8(b) presents the runoff reduction
caused by all the soil and water conservation measures, i.e., land terracing, tree and grass plantation,
check dam and reservoir construction. The runoff reduction positively relates to the water holding

capacity, namely the SC value. The slope for the period of 1958-1971 is higher than that for the period

19



353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

of 1972-1996, suggesting that the SC in the former period has higher increasing trend. On the other
hand, results of Tongtianhe basin show that the estimated SC has no detectable trend with a small R
value. Moreover, the ranges and standard deviation of the estimated SC values are much smaller than
those in the Wudinghe basin (Fig. 7), suggesting that the estimated SC has no obvious temporal

variations.

For parameter C, the results show that the estimates have no significant temporal patterns because the
trend line slopes are almost zero and the standard deviations are relatively small for the two basins (Fig.
7(a) and (b)). However, it can be treated as time-variant parameter since temporal variations exist in the
estimated C series. The temporal variations of the estimated C are related to the variation of monthly
actual evaporation, which is affected by multiple climatic factors, such as air temperature, soil moisture
and solar irradiance (Su et al.,, 2015). The grey regions represent the 95% prediction uncertainty
intervals obtained from the parameter ensembles. The stable and narrow uncertainty bounds shown in
Fig. 7 indicate that the EnKF can provide superior performance of parameter estimation. The runoff
simulations for both the two basins have good match with the runoff observations. Specifically, the NSE
and VE for the Wudinghe basin are 0.93 and 0.07 respectively. While the corresponding index values

are 0.99 and 0.04 for the Tongtianhe basin.

In summary, the above results demonstrate that the EnKF can identify the temporal variation of model
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parameters well by updating both state variables and parameters based on the runoff observations. The
trends of parameter SC can be explained by the changes of catchment characteristics (i.e., land use
and land cover) in the Wudinghe basin. However, the estimated SC for the Tongtianhe basin is
approximately stable with small standard deviation because the basin is located in a water protection
zone and has no significant changes on water storage capacity caused by human activities. The
parameter C has temporal variations and can be treated as a time-variant parameter for both basins,
although the estimates have no obvious temporal patterns. Therefore, the EnKF is capable of identifying

the temporal variations of model parameters.

5 Conclusions

This study proposes an ensemble Kalman filter (EnKF) to identify the temporal variation of model
parameters of the two-parameter monthly water balance model (TWBM) by assimilating runoff
observations. A synthetic experiment, which contains four scenarios with different changes of model
parameters and one scenario with constant parameters, is designed to examine the capability of the
proposed approach. Furthermore, three different levels of observation uncertainty are taken to assess the
performance of the EnKF. The main conclusions are: For the time-variant parameters, the EnKF
provides superior performance even though slight time lags exist for parameters with periodic variations.
The true values of the constant parameters can be approached quickly after 24 time steps of assimilation

process. The temporal variations of the parameters can be successfully captured even under a high level
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of observation uncertainties, which would have an influence on the performance of the EnKF.

The EnKF method is applied to the Wudinghe basin in China, aiming to detect the temporal variations
of the model parameters and to provide an explanation for the parameter variation from the perspective
of the catchment characteristic changes. Meanwhile, a comparison is implemented to investigate the
variation of model parameters in the Tongtianhe basin, which is barely affected by human activities. The
parameter of water storage capacity (SC) for the monthly water balance model shows a significant
increasing trend for the period of 1958-2000 in the Wudinghe basin. The soil and water conservation
measures, including land terracing, tree and grass plantation, check dam and reservoir construction,
have been implemented during 1958 to 2000, resulting in the increase of the water holding capacity of
the basin, which explains the increasing trends of SC. Moreover, the magnitudes of the engineering
measures in different time periods play an important role in the degree of increasing trend for SC. In the
Tongtianhe basin, the parameter SC has no significant trend for the period of 1982-2013, which is
consistent with the relatively stationary catchment characteristics. The evapotranspiration parameter (C)

has temporal variations and can be treated as time-variant parameter, but no obvious trends exist.

The method proposed in this paper provides an effective tool for the time-variant model parameter
identification. Future work will be focused on the influence of the correlations between/among model

parameters and performance comparison of multiple data assimilation methods.
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Tables

Table 1. States and parameters of the two-parameter monthly water balance model.

Parameters and state variables Description Ranges and unit
Parameter C Evapotranspiration parameter 0.2-2.0 (-)

SC Catchment water storage capacity 100-4000 (mm)
State variable S Soil water content mm
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601

602 Table 2. Different variations of model parameters in the synthetic experiment.
Scenario Description
Scenario 1 C has a periodic variation, and SC has an increasing trend
Scenario 2 C has a periodic variation, and SC has an abrupt change
Scenario 3 C has a periodic variation with an increasing trend, and SC has an increasing trend
Scenario 4 C has a periodic variation with an increasing trend, and SC has an abrupt change
Scenario 5 Both C and SC are constant
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603

604 Table 3. Proportional factors of the standard deviations for precipitation (yp) and runoff (yq) uncertainties.
Type Low level Medium level High level
Yp 0 0.05 0.10
YQ 0.05 0.10 0.20
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605

606 Table 4. Performance statistics for various changes of (a) parameter C and (b) SC estimations under different levels
607 of uncertainty in the synthetic experiment.
Scenario Low level Medium level High level
RMSE MARE R RMSE MARE R RMSE MARE R
(a) Parameter C
Scenario 1 0.15 0.21 0.55 0.16 0.18 0.68 0.18 0.11 0.89
Scenario 2 0.16 0.19 0.63 0.17 0.16 0.75 0.18 0.09 0.91
Scenario 3 0.12 0.13 0.64 0.13 0.11 0.72 0.14 0.07 0.91
Scenario 4  0.13 0.12 0.70 0.13 0.10 0.77 0.14 0.06 0.93
Scenario5 0 -- -- 0 -- -- 0 -- --
(b) Parameter SC
Scenario 1 182.87  0.03 0.99 187.76  0.05 0.94 25335  0.83 0.83
Scenario 2 158.30  0.04 0.96 167.47  0.07 0.91 189.59  0.80 0.80
Scenario 3 180.20  0.03 0.99 183.06  0.04 0.97 215.04 0.88 0.88
Scenario4 15642  0.03 0.97 158.50  0.05 0.93 170.90  0.86 0.86
Scenario 5 1.54 - - 3.67 -- -- 20.54 - -
608

32



609

610 Table 5. Performance of runoff estimations for various parameter changes under different levels of uncertainty in the

611 synthetic experiment.
Scenario Low level Medium level High level
NSE VE NSE VE NSE VE

Scenario 1 0.999 -0.0003 0.988 -0.0046 0.967 -0.0230
Scenario 2 0.999 0.0001 0.990 -0.0028 0.967 -0.0141
Scenario 3 0.999 -0.0011 0.990 -0.0013 0.974 -0.0264
Scenario4  0.999 -0.0009 0.992 0.0002 0.959 -0.0147
Scenario 5 0.999 -0.0022 0.992 -0.0077 0.961 -0.0187
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Figure. 7. Estimated parameter values of C and SC for (1) Wudinghe basin within the period of 1958-2000, and (2)
Tongtianhe basin within the period of 1982-2013. The grey areas represent the 95% prediction uncertainty intervals.
Note that the MSE denotes the standard deviation of the estimated parameter values.
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Figure 8. (a) Yearly precipitation, potential evaporation and runoff in Wudinghe basin during the period of
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1958-2000; (b) Runoff reduction in Wudinghe basin caused by all the soil and water conservation measures, i.e., land

terracing, tree and grass plantation, check dam and reservoir construction for the period of 1958- 1996. Note that the

data is from Wang and Fan (2003) and is only available from 1956 to 1996.
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