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Abstract: Hydrological model parameters play an important role in the ability of model prediction. In 20 

a stationary context, parameters of hydrological models are treated as constants; however, model 21 

parameters may vary with time under climate change and human activities. The technique of ensemble 22 

Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter 23 

monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic 24 

experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and 25 

different types of parameter variations, including trend, abrupt change, and periodicity. Various levels of 26 

observation uncertainty are designed to examine the performance of the EnKF. The results show that the 27 

EnKF can successfully capture the temporal variations of the model parameters. The application to the 28 

Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent 29 

increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is 30 

explained by land use and land cover changes due to soil and water conservation measures. Whereas, 31 

the application to the Tongtianhe basin shows that the estimated SC has no significant variation during 32 

the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The 33 

evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The 34 

proposed method provides an effective tool for quantifying the temporal variations of the model 35 

parameters, thereby improving the accuracy and reliability of model simulations and forecasts. 36 

 37 
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1 Introduction 40 

Hydrological model parameters are critically important for accurate simulation of runoff. Parameters of 41 

conceptual hydrological models can be considered as a simplified representation of the physical 42 

characteristics in hydrologic processes. Therefore, parameter values are closely related to the catchment 43 

conditions, such as climate change, afforestation and urbanization (Peel et al., 2011). In hydrological 44 

modeling, parameters are usually assumed to be stationary, i.e., the calibrated parameters are constants 45 

during the calibration period, and have extrapolative ability outside the range of the observations used 46 

for parameter estimation (Merz et al., 2011). The estimated parameters usually depend on the calibration 47 

period since the calibration period may contain different climatic conditions and hydrological regimes 48 

compared to the simulation period (Merz et al., 2011; Zhang et al., 2011; Coron et al., 2012; Seiller et 49 

al., 2012; Westra et al., 2014; Patil and Stieglitz, 2015). The model parameters may change responding 50 

to the variations in climatic conditions and catchment properties. For example, land use and land cover 51 

changes contribute to temporal changes of model parameters (Andréassian et al., 2003; Brown et al., 52 

2005; Merz et al., 2011). Therefore, it is no longer appropriate to treat parameters as time-invariant. 53 

 54 

The time-variant hydrological model parameters has been reported in a few recent publications (Merz et 55 

al., 2011; Brigode et al., 2013; Jeremiah et al., 2014; Thirel et al., 2014; Westra et al., 2014; Patil and 56 

Stieglitz, 2015). For example, Ye et al. (1997) and Paik et al. (2005) mentioned the seasonal variations 57 

of hydrological model parameters. Merz et al. (2011) analyzed the temporal changes of model 58 
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parameters, which were calibrated respectively by using six consecutive 5-year periods between 1976 59 

and 2006 for 273 catchments in Austria. Recently, Westra et al. (2014) proposed a strategy to cope with 60 

nonstationarity of hydrological model parameters, which were represented as a function of a 61 

time-varying covariate set before using an optimization algorithm for calibration. Previous studies 62 

provided two main methods to estimate the time-variant model parameters: (1) Available historical 63 

record is divided into consecutive subsets, and parameters are calibrated separately for each subset 64 

using an optimization algorithm (Merz et al., 2011; Thirel et al., 2015); (2) A functional form of the 65 

selected time-variant model parameters is constructed and, the parameters for the function are estimated 66 

using an optimization algorithm based on the entire historical record (Jeremiah et al., 2014; Westra et al., 67 

2014). 68 

 69 

The data assimilation (DA) actually provides another method to identify the potential temporal 70 

variations of model parameters by updating them in real-time when observations are available (Liu and 71 

Gupta, 2007; Xie and Zhang, 2013). The DA method has been widely applied in hydrology for soil 72 

moisture estimation (Han et al., 2012; Kumar et al., 2012) and flood forecasting (Liu et al., 2013; Abaza 73 

et al., 2014). It has also been successfully used to estimate model parameters (Moradkhani et al., 2005; 74 

Kurtz et al., 2012; Montzka et al., 2013; Panzeri et al., 2013; Vrugt et al., 2013; Xie and Zhang, 2013; 75 

Shi et al., 2014; Xie et al, 2014). For example, Vrugt et al. (2013) proposed two Particle-DREAM 76 

methods, i.e., Particle-DREAM for time-variant parameters and time-invariant parameters, to track the 77 
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evolving target distribution of HyMOD parameters, while both the results were approximately similar 78 

and statistically coherent since only three years of data were used. Xie and Zhang (2013) used a 79 

partitioned forecast-update scheme based on the EnKF to retrieve optimal parameters in a distributed 80 

hydrological model. Although the DA method has been used to estimate model parameters, these 81 

studies are focused on the estimation of constant parameters. Little attention has been paid to the 82 

identification of time-variant model parameters by using the DA method. 83 

 84 

The aim of this study is to assess the capability of the EnKF to identify the temporal variations of the 85 

model parameters for a monthly water balance model. Thus, a synthetic experiment, including four 86 

scenarios with different parameter variations and one scenario with time-invariant parameters, is 87 

designed for parameter estimation at different uncertainty levels. Furthermore, two case studies are 88 

implemented to estimate the model parameter series and to interpret the parameter variations in 89 

response to the changes in catchment characteristics, i.e., land use and land cover. The remainder of this 90 

paper is organized as follows. Section 2 presents a brief review of the monthly water balance model and 91 

the EnKF method. Following the methodology, Section 3 describes the synthetic experiment and the 92 

application to two case studies. Results and discussion are presented in Section 4, followed by 93 

conclusions in Section 5. 94 

 95 
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2 Methodology 96 

2.1 Monthly water balance model 97 

The two-parameter monthly water balance model (TWBM), developed by Xiong and Guo (1999), has 98 

been widely applied for monthly runoff simulation and forecast (Guo et al., 2002; Guo et al., 2005; 99 

Xiong and Guo, 2012; Li et al., 2013; Zhang et al., 2013; Xiong et al., 2014). The inputs of the model 100 

include monthly areal precipitation and potential evapotranspiration. The actual monthly 101 

evapotranspiration is calculated as follows: 102 

 tanh / ,i i i iE C EP P EP          (1) 103 

where iE  represents the actual monthly evapotranspiration; iEP  and iP  are the monthly potential 104 

evapotranspiration and precipitation, respectively; C  is the first model parameter; and i  is the time 105 

step. 106 

 107 

The monthly runoff is dependent on the soil water content and is calculated by the following equation: 108 

 tanh / ,i i iQ S S SC         (2) 109 

where iQ  is the monthly runoff; and iS  is the soil water content. As the second model parameter, 110 

SC  represents the water storage capacity of the catchment in millimeter. The available water for 111 

runoff at the i th month is computed by 1i i iS P E   . Then, the monthly runoff is calculated as: 112 

   1 1tanh / ,i i i i i i iQ S P E S P E SC               (3) 113 

 114 
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Finally, the soil water content at the end of each time step is updated based on the water conservation 115 

law: 116 

1 ,i i i i iS S P E Q           (4) 117 

 118 

2.2 Ensemble Kalman filter 119 

As a sequential data assimilation technique, EnKF is essentially the Monte Carlo implementation of 120 

the Kalman filter, producing an ensemble of state simulations for updating the state variables and their 121 

covariance matrices (Evensen 1994; Burgers et al., 1998; Moradkhani et al., 2005; Shi et al., 2014). It 122 

is applicable to a variety of nonlinear problems (Evensen, 2003; Weerts and El Serafy, 2006) and has 123 

been widely applied to hydrological models (Abaza et al., 2014; DeChant and Moradkhani, 2014; 124 

Delijani et al., 2014; Samuel et al., 2014; Tamura et al., 2014; Xue and Zhang, 2014; Deng et al., 125 

2015). Furthermore, the EnKF has been successfully used in time-invariant parameter estimations for 126 

hydrological models (Moradkhani et al., 2005; Wang et al., 2009; Xie and Zhang, 2010; Xie and 127 

Zhang, 2013). 128 

 129 

In this paper, the EnKF is applied to simultaneously estimate state variables and parameters (Table 1) 130 

in the TWBM model. The augmented state vector includes both states and model parameters (Wang et 131 

al., 2009), i.e.,  ,
T

Z x , where   includes the evapotranspiration parameter C and the catchment 132 

water storage capacity SC, and x  is the soil water content S. The model forecast is conducted for 133 
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each ensemble member as follows: 134 

     1

1 11

, where ~ 0, , ~ 0, .
, ,

kk k
i ii i i k k

i i i ik kk k
ii i ii i i i

N U N G
x f x u

 
 





 

                  
         (5) 135 

where 1
k
i i   is the kth ensemble member forecast of model parameters at time 1i  ; k

i i  is the kth 136 

updated ensemble member of model parameters at time i ; 1
k
i ix   is the kth ensemble member forecast 137 

of model state at time 1i  ; k
i ix  is the kth updated ensemble member of model state at time i ; f  is 138 

the forecasting model operator, i.e. the TWBM model; 1iu   is the forcing data for the hydrological 139 

model, including precipitation and potential evapotranspiration; k
i  and k

i  are the independent 140 

white noise for the forecasting model, following a Gaussian distribution with zero mean and specified 141 

covariance iG  and iU , respectively. Note that the parameters in Eq. (5) are propagated by adding 142 

random disturbances to the parameter member between time steps (Wang et al., 2009).  143 

The observation ensemble member can be written as: 144 

   1 1 1 11 1, , ~ 0, ,k k k k k
i i i ii i i iy h x N W              (6) 145 

where 1
k
iy   is the kth ensemble member of the model simulated runoff at time 1i  ; h  is the 146 

observation operator which represents the relationship between the observation and the state variables; 147 

1
k
i   is the noise term which follows a Gaussian distribution with zero mean and specified covariance 148 

1iW  . 149 

 150 

Based on the available state and observation equations, the model parameters and state are updated 151 
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according to the following equation: 152 

  1 11 1 1 ,k k k k
i ii i i i i iZ =Z K y h Z               (7) 153 

where Z  is the augmented state vector that includes both state and parameters; 1
k
iy   is the kth 154 

observation ensemble member generated by adding the observation error 1
k
i   to the observed runoff: 155 

1 1 1,k k
i i iy y              (8) 156 

1iK   is the Kalman gain matrix that represents the weight between the forecasts and observations. It 157 

can be calculated as (Evensen 1994; Evensen and van Leeuwen, 1996; Evensen 2003; Moradkhani et 158 

al., 2005): 159 

  1

1 11 1 ,zy yy
i ii i i iK W



             (9)160 

where 1
zy
i i  is the cross covariance of the forecasted state and parameters; 1

yy
i i  is the error 161 

covariance of the forecasted output. The error covariance matrix is calculated based on the forecasted 162 

ensemble members: 163 

1 1 1

1
,

1
T

i i i i i i= Z Z
N  


         (10) 164 

where  1
1 1 1 1 1, , zN

i i i i i i i i i iZ = z z z       and 1i iz   is the ensemble mean of the forecasted members, 165 

and N  is the ensemble size. 166 

 167 

Since the parameters are limited within a range, the constrained EnKF (Wang et al., 2009) is used in this 168 

study. The ensemble size, uncertainties in input and output have significant impacts on the assimilation 169 

performance of the EnKF, and they are specified following the previous studies (Moradkhani et al., 170 
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2005; Wang et al., 2009; Xie and Zhang, 2010; Nie et al., 2011; Lü et al., 2013; Samuel et al., 2014). 171 

The ensemble size is set to 1000 for the synthetic experiment and the two case studies. In the present 172 

study, the uncertainties, including state variable and parameter errors (  and  in Eq. (5), respectively), 173 

and runoff observation error (  in Eq. (6)), are assumed to follow a Gaussian distribution with zero 174 

mean and specified covariance. Note that the model parameter errors should vary relying on the 175 

hydrological model used and the study basin (Clark et al., 2008). Larger standard deviation can generate 176 

greater perturbations to model parameters, and it can improve the coverage of updated parameters but 177 

also may cause fluctuations in the estimates. In this study, the parameter errors are determined 178 

empirically, i.e., the standard deviation of C  is set to 0.01 for all the cases, while that of SC  is set to 179 

5.0, 1.0 and 0.5 in the synthetic experiment, Wudinghe basin and Tongtianhe basin, respectively. The 180 

standard deviations of both model state and observation errors are assumed to be proportional to the 181 

magnitude of true values (Wang et al., 2009; Lü et al., 2013). The proportional factors of model state are 182 

set to 0.05 for all the cases. Different proportional factors of runoff observation and precipitation (Table 183 

3) are evaluated to examine the capability of the EnKF in the synthetic experiment; whereas, the 184 

proportional factors of runoff observation are set to 0.1 and zero precipitation errors are assumed in the 185 

two case studies.  186 

 187 

2.3 Evaluation index 188 

Two evaluation criteria, including the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and 189 
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the volume error (VE) are used to evaluate the runoff assimilation results for the synthetic experiment 190 

and the application to real catchments (Deng et al., 2015; Li et al., 2015).  191 

 
 

2

, ,1
2

,1

1

n

sim i obs ii

n

obs i obsi

Q Q
NSE

Q Q






 






         (11) 192 

, ,1 1

,1

n n

sim i obs ii i
n

obs ii

Q Q
VE

Q
 




  


         (12) 193 

where ,sim iQ  and ,obs iQ  are the simulated and observed runoff for the i th month; obsQ  is the mean 194 

values of the observed runoff; and n  is the total number of data points. The NSE ranges from -  to 195 

1 and has been widely used to assess the goodness-of-fit for hydrological modeling. A NSE value of 1 196 

means that a perfect match of simulated runoff to the observations, while a value of 0 indicates that 197 

the model simulations are equivalent to the mean value of the runoff observations; and negative NSE 198 

values indicate that the mean observed runoff is better than the model simulations. The VE is a 199 

measure of bias between the simulated and observed runoff. For example, VE with the value of 0 200 

denotes no bias, and a negative value means an underestimation of the total runoff volume. 201 

 202 

The assimilated parameter results are evaluated using the following criteria, including the Pearson 203 

correlation coefficient (R), the root mean square error (RMSE) and mean absolute relative error 204 

(MARE): 205 
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  
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        (13) 206 

 2

, ,1

1
,

n

sim i obs ii
RMSE

n
 


           (14) 207 

, ,

1
,

1
,

n sim i obs i

i
obs i

MARE
n

 



           (15) 208 

where ,sim i  and ,obs i  are the assimilated and true model parameters for the i th month; sim  and 209 

obs  are the mean of the assimilated and true model parameters, respectively for the i th month; n  is 210 

the total number of data points. 211 

 212 

3 Data and study area 213 

3.1 Synthetic experiment 214 

A synthetic experiment is designed to evaluate the capability of the assimilation procedure to identify 215 

the temporal variation of model parameters. Five scenarios of different parameter variations are 216 

developed, as shown in Table 2. The model parameters in the first four scenarios are time-variant, and 217 

those in the last scenario are constant. Parameter C, the evapotranspiration parameter, is considered to 218 

be sinusoidal reflecting potential seasonal variations in hydrological model parameters (Paik et al., 2005; 219 

Ye et al., 1997). An increasing trend is also considered to account for the potential annual or long-term 220 

variability. The change of parameter SC is considered to be gradual and abrupt, since the catchment 221 

water storage capacity can be affected by land use and land cover changes, such as afforestation and 222 
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dam construction. The parameters in Scenario 5 are treated as constants like the conventional 223 

hydrological modeling. Observations for precipitation and potential evapotranspiration are generated by 224 

adding a Gaussian disturbance to the corresponding data from a real catchment, and runoff is then 225 

produced using the TWBM model. The data set used in this experiment is of 672-month length. The 226 

first 24-month period is set for model warm-up to reduce the impact of the initial soil moisture 227 

conditions. The steps toward identifying temporal variation of model parameters are as follows:  228 

(1) Time series of model parameters are synthetically generated, including the time-variant parameters 229 

and the constant parameters. Model parameter sets are produced using a sinusoidal function and/or a 230 

linear trend function within the specified ranges shown in Table 1. The runoff observations for each 231 

scenario are computed from the TWBM model taking monthly potential evapotranspiration and 232 

precipitation, and the parameters as inputs. 233 

(2) The initial ensembles of model parameters and state variables are generated using uniform 234 

distributions within the specified ranges in Table 1. The ensemble size and the total number of 235 

assimilation time steps are specified. 236 

(3) After the initialization of parameters and state variables, the hydrological model parameters and 237 

states are updated by assimilating the runoff observations obtained in Step (1). The additive errors for 238 

generating the ensemble members of model parameters, state variables and runoff observations are 239 

obtained from Gaussian distributions with zero mean and specified variance. 240 

 241 
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To evaluate the effect of errors on identifying parameter variation, different levels of observation 242 

uncertainty are considered in the synthetic experiment, as detailed in Table 3. The uncertainties from 243 

the observed precipitation and runoff are characterized by adding Gaussian noises where the standard 244 

deviations are assumed to be proportional to the magnitude of the true values, and the corresponding 245 

proportional factors are denoted as P  and Q . The proportional factors are set to account for the 246 

practical measurement error (Wang et al., 2009; Xie and Zhang, 2010). 247 

 248 

3.2 Study area 249 

3.2.1 Case 1: Wudinghe basin 250 

The method is applied to the Wudinghe basin (Fig. 1), which is a sub-basin of the Yellow River basin 251 

and located in the southern fringe of Maowusu Desert and the northern part of the Loess Plateau in 252 

China with a semiarid climate. It has a drainage area of approximately 30,261 km2 and a total length of 253 

491 km. The Wudinghe basin has an average slope of 0.2%, and its elevation ranges from 600 to 1800 254 

m above the sea level. The Baijiachuan gauge station, which is the most downstream station of the 255 

Wudinghe basin, drains 98% of the total basin area. The mean annual precipitation over the basin is 256 

401 mm, of which 72.5% occurs in the rainy season from June to September (Fig. 2). The mean 257 

annual potential evapotranspiration is 1077 mm, and the mean annual runoff is about 39 mm with a 258 

runoff coefficient of 0.1. 259 
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The soil erosion is severe in the Wudinghe basin owing to the highly erodible loess and sparse 260 

vegetation. Since the 1960s, the soil and water conservation measures have been undertaken. Lots of 261 

engineering measures including tree and grass plantation, check dam and reservoir construction, and 262 

land terracing were effectively implemented during several decades. The land use changes caused by 263 

the soil and water conservation measures had a significant effect on increasing water storage capacity 264 

(Xu, 2011). 265 

 266 

3.2.2 Case 2: Tongtianhe basin 267 

The Tongtianhe basin (Fig. 3) is located in southwestern Qinghai Province in China with a continental 268 

climate. It belongs to the source area of Yangtze River basin with a drainage area of about 140,000 km2 269 

and a total main stream length of 1206 km. The elevation of the Tongtianhe basin approximately ranges 270 

from 3500 to 6500 m above the sea level. Zhimenda is the basin outlet. The mean annual precipitation 271 

over the basin is 440 mm, of which 76.9% occurs in the period from June to September (Fig. 4). The 272 

mean annual potential evapotranspiration is 796 mm, and the mean annual runoff is about 99 mm with a 273 

runoff coefficient of 0.23. The Tongtianhe basin is rarely affected by human activities owing to the 274 

water source protection guidelines conducted by the government. The Tongtianhe basin is used for 275 

comparison on model parameter identification. 276 

 277 
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3.2.3 Data 278 

The data sets used in this study include monthly precipitation, potential evapotranspiration and runoff in 279 

Wudinghe basin (from 1956 to 2000) and Tongtianhe basin (from 1980 to 2013). The potential 280 

evapotranspiration is estimated using the Penman-Monteith equation (Allen et al., 1998) based on the 281 

meteorological data from the China Meteorological Data Sharing Service System (http://cdc.nmic.cn). 282 

To reduce the impact of the initial conditions, a 2-year data set, i.e., from 1956 to 1957 for Wudinghe 283 

basin and from 1980 to 1981 for Tongtianhe basin, is reserved as the warm-up period. 284 

 285 

4 Results and discussion  286 

4.1 Synthetic experiment 287 

The comparisons of the estimated and true model parameters under different scenarios are presented 288 

in Fig. 3, Fig. 4 and Fig. 5. Tables 4 and 5 show the evaluation statistics for the parameters and runoff 289 

estimations. The assimilated parameter values are obtained from the ensemble mean at each time step. 290 

The estimation of parameters C  and SC  have the similar trends as the true parameter series. The 291 

temporal variations of the estimated C agree well with the true series, although it has biases on the 292 

peaks of the periodic changes. For SC, the temporal estimates can capture the different changes in 293 

Table 2, especially for the abrupt change where the estimated values respond immediately. Different 294 

uncertainty levels are considered to examine the capability of the EnKF method. The results in Fig. 3 295 
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show that the estimated C has more accurate peaks with smaller RMSE and higher R values under the 296 

high level uncertainty (Table 4); whereas, the SC estimates in Fig. 4 have some fluctuations when the 297 

uncertainty level increases. This is due to the reason that the estimated values vary with increasing 298 

uncertainty level in the assimilation process. In the synthetic experiment, the true C is assumed to be 299 

periodic with higher degree of variation, while the true SC series have less variation.  300 

 301 

It should be noted that there are time lags between the assimilated and true C. The observation at the 302 

current time step is used to adjust the state variables and parameters in EnKF, and the updates of 303 

parameters depend on the Kalman gain for parameters. A runoff observation at the current time is 304 

determined by states at the current and previous time steps (Pauwels and Lannoy, 2006). The Kalman 305 

gain is dependent on the relative value of observation error to model error. The updated states are 306 

closer to the observation with a higher Kalman gain (Tamura et al., 2014). The synthetic C series were 307 

assumed to be periodic where lots of peak values exist; while the variation of SC series is less. The 308 

time lag between assimilated and true values exists especially when peak values occur (Clark et al., 309 

2008; Samuel et al., 2014). 310 

 311 

The results for the scenario of constant parameters are shown in Fig. 5, demonstrating that the 312 

estimated parameters can approach their true values after the initial 24 assimilation steps. The grey 313 

areas represent the 95% prediction uncertainty intervals, which reduce quickly and approach a stable 314 



 

18 

spread. The performance of the estimated parameters is correlated with the uncertainty level. Higher 315 

precipitation and runoff observation errors correspond to greater RMSE values (Table 4) of estimated 316 

parameters and uncertainty ranges. The performance of runoff estimations for various parameter 317 

changes under different levels of uncertainty is shown in Table 5, suggesting that the EnKF perfectly 318 

matches the observations with NSEs higher than 0.95 and absolute VEs smaller than 0.02. The EnKF 319 

can successfully capture the temporal variations of the true parameters, although the uncertainty levels 320 

of the observations can affect its performance to a certain degree. The above results demonstrate that 321 

the EnKF is able to identify the temporal variation of the model parameters by updating the state 322 

variables and parameters based on the runoff observations.  323 

 324 

4.2 Case studies 325 

Fig. 6 shows the double mass curve between monthly runoff and precipitation for the Wudinghe and 326 

Tongtianhe basins, respectively. The top panel shows the linear relationship between cumulative runoff 327 

and precipitation pre- and post-1972 in the Wudinghe basin, which is similar to the result presented by 328 

Xu (2011) and Li et al. (2014). The results show two straight lines with different slopes for the 329 

relationships between precipitation and runoff, indicating that an abrupt change occurred in 1972, 330 

namely, the runoff generation had been changed from this year due to the soil and water conservation 331 

measures. On the other hand, the bottom panel demonstrates that a single linear relationship fits all the 332 

data for the Tongtianhe basin, suggesting a stable precipitation-runoff relationship during the 1982-2013 333 
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period. 334 

 335 

The estimated parameters and the associated 95% prediction uncertainty intervals are shown in Fig. 7. 336 

The time series of estimated SC shows an apparent increasing trend, with two different trends for pre- 337 

and post-turning point in Fig. 6(a). The temporal variation of the water storage capacity is correlated 338 

with the changes of land use and land cover. Both the trends in Fig. 7(c) show an increase of SC, 339 

because the implementation of the large-scale engineering measures significantly improved the water 340 

holding capacity of the Wudinghe basin, especially for the reservoir and check dam construction. The 341 

trend slopes of the two periods, one is from 1956 to 1971, the other is from 1972 to 2000, are different 342 

because the degree of implementing engineering measures varied during the period of 1958-2000. 343 

Moreover, the increase of the water holding capacity slowed down during the 1980s due to the 344 

sedimentation in reservoirs and check dams after periods of operation (Wang and Fan, 2003). Fig. 8(a) 345 

shows the long-term time series of precipitation and potential evaporation in Wudinghe basin. The result 346 

shows that the runoff decreases significantly while precipitation changes slightly and potential 347 

evaporation has no trend, indicating that the actual evaporation increases significantly due to impacts of 348 

human activities, i.e., the soil and water conservation measures. Fig. 8(b) presents the runoff reduction 349 

caused by all the soil and water conservation measures, i.e., land terracing, tree and grass plantation, 350 

check dam and reservoir construction. The runoff reduction positively relates to the water holding 351 

capacity, namely the SC value. The slope for the period of 1958-1971 is higher than that for the period 352 



 

20 

of 1972-1996, suggesting that the SC in the former period has higher increasing trend. On the other 353 

hand, results of Tongtianhe basin show that the estimated SC  has no detectable trend with a small R  354 

value. Moreover, the ranges and standard deviation of the estimated SC  values are much smaller than 355 

those in the Wudinghe basin (Fig. 7), suggesting that the estimated SC has no obvious temporal 356 

variations.  357 

 358 

For parameter C, the results show that the estimates have no significant temporal patterns because the 359 

trend line slopes are almost zero and the standard deviations are relatively small for the two basins (Fig. 360 

7(a) and (b)). However, it can be treated as time-variant parameter since temporal variations exist in the 361 

estimated C series. The temporal variations of the estimated C are related to the variation of monthly 362 

actual evaporation, which is affected by multiple climatic factors, such as air temperature, soil moisture 363 

and solar irradiance (Su et al., 2015). The grey regions represent the 95% prediction uncertainty 364 

intervals obtained from the parameter ensembles. The stable and narrow uncertainty bounds shown in 365 

Fig. 7 indicate that the EnKF can provide superior performance of parameter estimation. The runoff 366 

simulations for both the two basins have good match with the runoff observations. Specifically, the NSE 367 

and VE for the Wudinghe basin are 0.93 and 0.07 respectively. While the corresponding index values 368 

are 0.99 and 0.04 for the Tongtianhe basin. 369 

 370 

In summary, the above results demonstrate that the EnKF can identify the temporal variation of model 371 
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parameters well by updating both state variables and parameters based on the runoff observations. The 372 

trends of parameter SC  can be explained by the changes of catchment characteristics (i.e., land use 373 

and land cover) in the Wudinghe basin. However, the estimated SC  for the Tongtianhe basin is 374 

approximately stable with small standard deviation because the basin is located in a water protection 375 

zone and has no significant changes on water storage capacity caused by human activities. The 376 

parameter C has temporal variations and can be treated as a time-variant parameter for both basins, 377 

although the estimates have no obvious temporal patterns. Therefore, the EnKF is capable of identifying 378 

the temporal variations of model parameters. 379 

 380 

5 Conclusions 381 

This study proposes an ensemble Kalman filter (EnKF) to identify the temporal variation of model 382 

parameters of the two-parameter monthly water balance model (TWBM) by assimilating runoff 383 

observations. A synthetic experiment, which contains four scenarios with different changes of model 384 

parameters and one scenario with constant parameters, is designed to examine the capability of the 385 

proposed approach. Furthermore, three different levels of observation uncertainty are taken to assess the 386 

performance of the EnKF. The main conclusions are: For the time-variant parameters, the EnKF 387 

provides superior performance even though slight time lags exist for parameters with periodic variations. 388 

The true values of the constant parameters can be approached quickly after 24 time steps of assimilation 389 

process. The temporal variations of the parameters can be successfully captured even under a high level 390 
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of observation uncertainties, which would have an influence on the performance of the EnKF. 391 

 392 

The EnKF method is applied to the Wudinghe basin in China, aiming to detect the temporal variations 393 

of the model parameters and to provide an explanation for the parameter variation from the perspective 394 

of the catchment characteristic changes. Meanwhile, a comparison is implemented to investigate the 395 

variation of model parameters in the Tongtianhe basin, which is barely affected by human activities. The 396 

parameter of water storage capacity ( SC ) for the monthly water balance model shows a significant 397 

increasing trend for the period of 1958-2000 in the Wudinghe basin. The soil and water conservation 398 

measures, including land terracing, tree and grass plantation, check dam and reservoir construction, 399 

have been implemented during 1958 to 2000, resulting in the increase of the water holding capacity of 400 

the basin, which explains the increasing trends of SC . Moreover, the magnitudes of the engineering 401 

measures in different time periods play an important role in the degree of increasing trend for SC. In the 402 

Tongtianhe basin, the parameter SC  has no significant trend for the period of 1982-2013, which is 403 

consistent with the relatively stationary catchment characteristics. The evapotranspiration parameter (C) 404 

has temporal variations and can be treated as time-variant parameter, but no obvious trends exist. 405 

 406 

The method proposed in this paper provides an effective tool for the time-variant model parameter 407 

identification. Future work will be focused on the influence of the correlations between/among model 408 

parameters and performance comparison of multiple data assimilation methods. 409 
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 598 

Tables 599 

Table 1. States and parameters of the two-parameter monthly water balance model. 600 

Parameters and state variables Description Ranges and unit 

Parameter C Evapotranspiration parameter 0.2-2.0 (-) 

SC Catchment water storage capacity 100-4000 (mm) 

State variable S Soil water content mm 
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 601 

Table 2. Different variations of model parameters in the synthetic experiment. 602 

Scenario Description 

Scenario 1 C has a periodic variation, and SC has an increasing trend  

Scenario 2 C has a periodic variation, and SC has an abrupt change 

Scenario 3 C has a periodic variation with an increasing trend, and SC has an increasing trend  

Scenario 4 C has a periodic variation with an increasing trend, and SC has an abrupt change 

Scenario 5 Both C and SC are constant 
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 603 

Table 3. Proportional factors of the standard deviations for precipitation (γP) and runoff (γQ) uncertainties. 604 

Type Low level Medium level High level 

γP 0 0.05 0.10 

γQ 0.05 0.10 0.20 
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 605 

Table 4. Performance statistics for various changes of (a) parameter C and (b) SC estimations under different levels 606 

of uncertainty in the synthetic experiment. 607 

Scenario Low level Medium level High level 

RMSE MARE R RMSE MARE R RMSE MARE R 

(a) Parameter C 

Scenario 1 0.15 0.21 0.55 0.16 0.18 0.68 0.18 0.11 0.89 

Scenario 2 0.16 0.19 0.63 0.17 0.16 0.75 0.18 0.09 0.91 

Scenario 3 0.12 0.13 0.64 0.13 0.11 0.72 0.14 0.07 0.91 

Scenario 4 0.13 0.12 0.70 0.13 0.10 0.77 0.14 0.06 0.93 

Scenario 5 0 -- -- 0 -- -- 0 -- -- 

(b) Parameter SC 

Scenario 1 182.87 0.03 0.99 187.76 0.05 0.94 253.35 0.83 0.83 

Scenario 2 158.30 0.04 0.96 167.47 0.07 0.91 189.59 0.80 0.80 

Scenario 3 180.20 0.03 0.99 183.06 0.04 0.97 215.04 0.88 0.88 

Scenario 4 156.42 0.03 0.97 158.50 0.05 0.93 170.90 0.86 0.86 

Scenario 5 1.54 -- -- 3.67 -- -- 20.54 -- -- 

 608 
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 609 

Table 5. Performance of runoff estimations for various parameter changes under different levels of uncertainty in the 610 

synthetic experiment. 611 

Scenario Low level Medium level High level 

NSE VE NSE VE NSE VE 

Scenario 1 0.999 -0.0003 0.988 -0.0046 0.967 -0.0230 

Scenario 2 0.999 0.0001 0.990 -0.0028 0.967 -0.0141 

Scenario 3 0.999 -0.0011 0.990 -0.0013 0.974 -0.0264 

Scenario 4 0.999 -0.0009 0.992 0.0002 0.959 -0.0147 

Scenario 5 0.999 -0.0022 0.992 -0.0077 0.961 -0.0187 
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Figures 612 

 613 
Figure. 1. Location and mean monthly precipitation and runoff from 1956 to 2000 of the Wudinghe basin.614 
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 615 
Figure. 2. Location and mean monthly precipitation and runoff from 1980 to 2013 of the Tongtianhe basin.616 
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 617 

Figure. 3. Comparison between estimated C and its true values for various parameter changes under different 618 

uncertainty levels. The grey areas represent the 95% prediction uncertainty intervals.619 
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 620 

Figure. 4. Comparison between estimated SC and its true values for various parameter changes under different 621 

uncertainty levels. The grey areas represent the 95% prediction uncertainty intervals.622 
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 623 
Figure. 5. Estimations of time-invariant C and SC under different uncertainty levels. The grey areas represent the 624 

95% prediction uncertainty intervals.625 



 

39 

 626 

Figure. 6. Double mass curve between monthly runoff and precipitation for Wudinghe basin within the period of 627 

1958-2000 (top figure) and Tongtianhe basin within the period of 1982-2013 (bottom), respectively.628 
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 629 

Figure. 7. Estimated parameter values of C and SC for (1) Wudinghe basin within the period of 1958-2000, and (2) 630 

Tongtianhe basin within the period of 1982-2013. The grey areas represent the 95% prediction uncertainty intervals. 631 

Note that the MSE denotes the standard deviation of the estimated parameter values.  632 
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 633 

Figure 8. (a) Yearly precipitation, potential evaporation and runoff in Wudinghe basin during the period of 634 

1958-2000; (b) Runoff reduction in Wudinghe basin caused by all the soil and water conservation measures, i.e., land 635 

terracing, tree and grass plantation, check dam and reservoir construction for the period of 1958- 1996. Note that the 636 

data is from Wang and Fan (2003) and is only available from 1956 to 1996. 637 


