

1 **Identification of hydrological model parameters variation using**
2 **ensemble Kalman filter**

3

4 Chao Deng^{1,2}, Pan Liu^{1,2,*}, Shenglian Guo^{1,2}, Zejun Li^{1,2}, Dingbao Wang³

5

6 ¹State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University,
7 Wuhan, China

8 ²Hubei Provincial Collaborative Innovation Center for Water Resources Security, Wuhan, China

9 ³Department of Civil, Environmental & Construction Engineering, University of Central Florida,
10 Orlando, USA

11

12 *Corresponding author: P. Liu, State Key Laboratory of Water Resources and Hydropower
13 Engineering Science, Wuhan University, Wuhan 430072, China

14 Email: liupan@whu.edu.cn

15 Tel: +86-27-68775788; Fax: +86-27-68773568

16

17

18

19

20 **Abstract:** Hydrological model parameters play an important role in the ability of model prediction. In
21 a stationary context, parameters of hydrological models are treated as constants; however, model
22 parameters may vary with time under climate change and human activities. The technique of ensemble
23 Kalman filter (EnKF) is proposed to identify the temporal variation of parameters for a two-parameter
24 monthly water balance model (TWBM) by assimilating the runoff observations. Through a synthetic
25 experiment, the proposed method is evaluated with time-invariant (i.e., constant) parameters and
26 different types of parameter variations, including trend, abrupt change, and periodicity. Various levels of
27 observation uncertainty are designed to examine the performance of the EnKF. The results show that the
28 EnKF can successfully capture the temporal variations of the model parameters. The application to the
29 Wudinghe basin shows that the water storage capacity (SC) of the TWBM model has an apparent
30 increasing trend during the period from 1958 to 2000. The identified temporal variation of SC is
31 explained by land use and land cover changes due to soil and water conservation measures. Whereas,
32 the application to the Tongtianhe basin shows that the estimated SC has no significant variation during
33 the simulation period of 1982-2013, corresponding to the relatively stationary catchment properties. The
34 evapotranspiration parameter (C) has temporal variations while no obvious change patterns exist. The
35 proposed method provides an effective tool for quantifying the temporal variations of the model
36 parameters, thereby improving the accuracy and reliability of model simulations and forecasts.

37

38 **Keywords:** model parameter identification, temporal variation of parameter, catchment characteristics,
39 ensemble Kalman filter

40 **1 Introduction**

41 Hydrological model parameters are critically important for accurate simulation of runoff. Parameters of
42 conceptual hydrological models can be considered as a simplified representation of the physical
43 characteristics in hydrologic processes. Therefore, parameter values are closely related to the catchment
44 conditions, such as climate change, afforestation and urbanization (Peel et al., 2011). In hydrological
45 modeling, parameters are usually assumed to be stationary, i.e., the calibrated parameters are constants
46 during the calibration period, and have extrapolative ability outside the range of the observations used
47 for parameter estimation (Merz et al., 2011). The estimated parameters usually depend on the calibration
48 period since the calibration period may contain different climatic conditions and hydrological regimes
49 compared to the simulation period (Merz et al., 2011; Zhang et al., 2011; Coron et al., 2012; Seiller et
50 al., 2012; Westra et al., 2014; Patil and Stieglitz, 2015). The model parameters may change responding
51 to the variations in climatic conditions and catchment properties. For example, land use and land cover
52 changes contribute to temporal changes of model parameters (Andréassian et al., 2003; Brown et al.,
53 2005; Merz et al., 2011). Therefore, it is no longer appropriate to treat parameters as time-invariant.

54

55 The time-variant hydrological model parameters has been reported in a few recent publications (Merz et
56 al., 2011; Brigode et al., 2013; Jeremiah et al., 2014; Thirel et al., 2014; Westra et al., 2014; Patil and
57 Stieglitz, 2015). For example, Ye et al. (1997) and Paik et al. (2005) mentioned the seasonal variations
58 of hydrological model parameters. Merz et al. (2011) analyzed the temporal changes of model

59 parameters, which were calibrated respectively by using six consecutive 5-year periods between 1976
60 and 2006 for 273 catchments in Austria. Recently, Westra et al. (2014) proposed a strategy to cope with
61 nonstationarity of hydrological model parameters, which were represented as a function of a
62 time-varying covariate set before using an optimization algorithm for calibration. Previous studies
63 provided two main methods to estimate the time-variant model parameters: (1) Available historical
64 record is divided into consecutive subsets, and parameters are calibrated separately for each subset
65 using an optimization algorithm (Merz et al., 2011; Thirel et al., 2015); (2) A functional form of the
66 selected time-variant model parameters is constructed and, the parameters for the function are estimated
67 using an optimization algorithm based on the entire historical record (Jeremiah et al., 2014; Westra et al.,
68 2014).

69

70 The data assimilation (DA) actually provides another method to identify the potential temporal
71 variations of model parameters by updating them in real-time when observations are available (Liu and
72 Gupta, 2007; Xie and Zhang, 2013). The DA method has been widely applied in hydrology for soil
73 moisture estimation (Han et al., 2012; Kumar et al., 2012) and flood forecasting (Liu et al., 2013; Abaza
74 et al., 2014). It has also been successfully used to estimate model parameters (Moradkhani et al., 2005;
75 Kurtz et al., 2012; Montzka et al., 2013; Panzeri et al., 2013; Vrugt et al., 2013; Xie and Zhang, 2013;
76 Shi et al., 2014; Xie et al., 2014). For example, Vrugt et al. (2013) proposed two Particle-DREAM
77 methods, i.e., Particle-DREAM for time-variant parameters and time-invariant parameters, to track the

78 evolving target distribution of HyMOD parameters, while both the results were approximately similar
79 and statistically coherent since only three years of data were used. Xie and Zhang (2013) used a
80 partitioned forecast-update scheme based on the EnKF to retrieve optimal parameters in a distributed
81 hydrological model. Although the DA method has been used to estimate model parameters, these
82 studies are focused on the estimation of constant parameters. Little attention has been paid to the
83 identification of time-variant model parameters by using the DA method.

84

85 The aim of this study is to assess the capability of the EnKF to identify the temporal variations of the
86 model parameters for a monthly water balance model. Thus, a synthetic experiment, including four
87 scenarios with different parameter variations and one scenario with time-invariant parameters, is
88 designed for parameter estimation at different uncertainty levels. Furthermore, two case studies are
89 implemented to estimate the model parameter series and to interpret the parameter variations in
90 response to the changes in catchment characteristics, i.e., land use and land cover. The remainder of this
91 paper is organized as follows. Section 2 presents a brief review of the monthly water balance model and
92 the EnKF method. Following the methodology, Section 3 describes the synthetic experiment and the
93 application to two case studies. Results and discussion are presented in Section 4, followed by
94 conclusions in Section 5.

95

96 **2 Methodology**

97 **2.1 Monthly water balance model**

98 The two-parameter monthly water balance model (TWBM), developed by Xiong and Guo (1999), has
99 been widely applied for monthly runoff simulation and forecast (Guo et al., 2002; Guo et al., 2005;
100 Xiong and Guo, 2012; Li et al., 2013; Zhang et al., 2013; Xiong et al., 2014). The inputs of the model
101 include monthly areal precipitation and potential evapotranspiration. The actual monthly
102 evapotranspiration is calculated as follows:

103
$$E_i = C \times EP_i \times \tanh(P_i / EP_i), \quad (1)$$

104 where E_i represents the actual monthly evapotranspiration; EP_i and P_i are the monthly potential
105 evapotranspiration and precipitation, respectively; C is the first model parameter; and i is the time
106 step.

107

108 The monthly runoff is dependent on the soil water content and is calculated by the following equation:

109
$$Q_i = S_i \times \tanh(S_i / SC), \quad (2)$$

110 where Q_i is the monthly runoff; and S_i is the soil water content. As the second model parameter,
111 SC represents the water storage capacity of the catchment in millimeter. The available water for
112 runoff at the i th month is computed by $S_{i-1} + P_i - E_i$. Then, the monthly runoff is calculated as:

113
$$Q_i = (S_{i-1} + P_i - E_i) \times \tanh[(S_{i-1} + P_i - E_i) / SC], \quad (3)$$

114

115 Finally, the soil water content at the end of each time step is updated based on the water conservation
116 law:

117
$$S_i = S_{i-1} + P_i - E_i - Q_i, \quad (4)$$

118

119 **2.2 Ensemble Kalman filter**

120 As a sequential data assimilation technique, EnKF is essentially the Monte Carlo implementation of
121 the Kalman filter, producing an ensemble of state simulations for updating the state variables and their
122 covariance matrices (Evensen 1994; Burgers et al., 1998; Moradkhani et al., 2005; Shi et al., 2014). It
123 is applicable to a variety of nonlinear problems (Evensen, 2003; Weerts and El Serafy, 2006) and has
124 been widely applied to hydrological models (Abaza et al., 2014; DeChant and Moradkhani, 2014;
125 Delijani et al., 2014; Samuel et al., 2014; Tamura et al., 2014; Xue and Zhang, 2014; Deng et al.,
126 2015). Furthermore, the EnKF has been successfully used in time-invariant parameter estimations for
127 hydrological models (Moradkhani et al., 2005; Wang et al., 2009; Xie and Zhang, 2010; Xie and
128 Zhang, 2013).

129

130 In this paper, the EnKF is applied to simultaneously estimate state variables and parameters (**Table 1**)
131 in the TWBM model. The augmented state vector includes both states and model parameters (Wang et
132 al., 2009), i.e., $Z = (\theta, x)^T$, where θ includes the evapotranspiration parameter C and the catchment
133 water storage capacity SC , and x is the soil water content S . The model forecast is conducted for

134 each ensemble member as follows:

$$135 \quad \begin{pmatrix} \theta_{i+1|i}^k \\ x_{i+1|i}^k \end{pmatrix} = \begin{pmatrix} \theta_{i|i}^k \\ f(x_{i|i}^k, \theta_{i+1|i}^k, u_{i+1}) \end{pmatrix} + \begin{pmatrix} \delta_i^k \\ \varepsilon_i^k \end{pmatrix}, \text{ where } \delta_i^k \sim N(0, U_i), \varepsilon_i^k \sim N(0, G_i). \quad (5)$$

136 where $\theta_{i+1|i}^k$ is the k th ensemble member forecast of model parameters at time $i+1$; $\theta_{i|i}^k$ is the k th
137 updated ensemble member of model parameters at time i ; $x_{i+1|i}^k$ is the k th ensemble member forecast
138 of model state at time $i+1$; $x_{i|i}^k$ is the k th updated ensemble member of model state at time i ; f is
139 the forecasting model operator, i.e. the TWBM model; u_{i+1} is the forcing data for the hydrological
140 model, including precipitation and potential evapotranspiration; ε_i^k and δ_i^k are the independent
141 white noise for the forecasting model, following a Gaussian distribution with zero mean and specified
142 covariance G_i and U_i , respectively. Note that the parameters in Eq. (5) are propagated by adding
143 random disturbances to the parameter member between time steps (Wang et al., 2009).

144 The observation ensemble member can be written as:

$$145 \quad y_{i+1}^k = h(x_{i+1|i}^k, \theta_{i+1|i}^k) + \xi_{i+1}^k, \quad \xi_{i+1}^k \sim N(0, W_{i+1}), \quad (6)$$

146 where y_{i+1}^k is the k th ensemble member of the model simulated runoff at time $i+1$; h is the
147 observation operator which represents the relationship between the observation and the state variables;
148 ξ_{i+1}^k is the noise term which follows a Gaussian distribution with zero mean and specified covariance
149 W_{i+1} .

150

151 Based on the available state and observation equations, the model parameters and state are updated

152 according to the following equation:

153 $Z_{i+1|i+1}^k = Z_{i+1|i}^k + K_{i+1} \left(y_{i+1}^k - h(Z_{i+1|i}^k) \right), \quad (7)$

154 where Z is the augmented state vector that includes both state and parameters; y_{i+1}^k is the k th
155 observation ensemble member generated by adding the observation error ξ_{i+1}^k to the observed runoff:

156 $y_{i+1}^k = y_{i+1} + \xi_{i+1}^k, \quad (8)$

157 K_{i+1} is the Kalman gain matrix that represents the weight between the forecasts and observations. It
158 can be calculated as (Evensen 1994; Evensen and van Leeuwen, 1996; Evensen 2003; Moradkhani et
159 al., 2005):

160 $K_{i+1} = \Sigma_{i+1|i}^{zy} \left(\Sigma_{i+1|i}^{yy} + W_{i+1} \right)^{-1}, \quad (9)$

161 where $\Sigma_{i+1|i}^{zy}$ is the cross covariance of the forecasted state and parameters; $\Sigma_{i+1|i}^{yy}$ is the error
162 covariance of the forecasted output. The error covariance matrix is calculated based on the forecasted
163 ensemble members:

164 $\Sigma_{i+1|i} = \frac{1}{N-1} Z_{i+1|i} Z_{i+1|i}^T, \quad (10)$

165 where $Z_{i+1|i} = (z_{i+1|i}^1 - \bar{z}_{i+1|i}, \dots, z_{i+1|i}^N - \bar{z}_{i+1|i})$ and $\bar{z}_{i+1|i}$ is the ensemble mean of the forecasted members,
166 and N is the ensemble size.

167

168 Since the parameters are limited within a range, the constrained EnKF (Wang et al., 2009) is used in this
169 study. The ensemble size, uncertainties in input and output have significant impacts on the assimilation
170 performance of the EnKF, and they are specified following the previous studies (Moradkhani et al.,

171 2005; Wang et al., 2009; Xie and Zhang, 2010; Nie et al., 2011; Lü et al., 2013; Samuel et al., 2014).
172 The ensemble size is set to 1000 for the synthetic experiment and the two case studies. In the present
173 study, the uncertainties, including state variable and parameter errors (ε and δ in Eq. (5), respectively),
174 and runoff observation error (ξ in Eq. (6)), are assumed to follow a Gaussian distribution with zero
175 mean and specified covariance. Note that the model parameter errors should vary relying on the
176 hydrological model used and the study basin (Clark et al., 2008). Larger standard deviation can generate
177 greater perturbations to model parameters, and it can improve the coverage of updated parameters but
178 also may cause fluctuations in the estimates. In this study, the parameter errors are determined
179 empirically, i.e., the standard deviation of C is set to 0.01 for all the cases, while that of SC is set to
180 5.0, 1.0 and 0.5 in the synthetic experiment, Wudinghe basin and Tongtianhe basin, respectively. The
181 standard deviations of both model state and observation errors are assumed to be proportional to the
182 magnitude of true values (Wang et al., 2009; Lü et al., 2013). The proportional factors of model state are
183 set to 0.05 for all the cases. Different proportional factors of runoff observation and precipitation (**Table**
184 **3**) are evaluated to examine the capability of the EnKF in the synthetic experiment; whereas, the
185 proportional factors of runoff observation are set to 0.1 and zero precipitation errors are assumed in the
186 two case studies.

187

188 **2.3 Evaluation index**

189 Two evaluation criteria, including the Nash-Sutcliffe efficiency (*NSE*) (Nash and Sutcliffe, 1970) and

190 the volume error (VE) are used to evaluate the runoff assimilation results for the synthetic experiment
191 and the application to real catchments (Deng et al., 2015; Li et al., 2015).

192

$$NSE = 1 - \frac{\sum_{i=1}^n (Q_{sim,i} - Q_{obs,i})^2}{\sum_{i=1}^n (Q_{obs,i} - \bar{Q}_{obs})^2} \quad (11)$$

193

$$VE = \frac{\sum_{i=1}^n Q_{sim,i} - \sum_{i=1}^n Q_{obs,i}}{\sum_{i=1}^n Q_{obs,i}} \quad (12)$$

194 where $Q_{sim,i}$ and $Q_{obs,i}$ are the simulated and observed runoff for the i th month; \bar{Q}_{obs} is the mean
195 values of the observed runoff; and n is the total number of data points. The NSE ranges from $-\infty$ to
196 1 and has been widely used to assess the goodness-of-fit for hydrological modeling. A NSE value of 1
197 means that a perfect match of simulated runoff to the observations, while a value of 0 indicates that
198 the model simulations are equivalent to the mean value of the runoff observations; and negative NSE
199 values indicate that the mean observed runoff is better than the model simulations. The VE is a
200 measure of bias between the simulated and observed runoff. For example, VE with the value of 0
201 denotes no bias, and a negative value means an underestimation of the total runoff volume.

202

203 The assimilated parameter results are evaluated using the following criteria, including the Pearson
204 correlation coefficient (R), the root mean square error ($RMSE$) and mean absolute relative error
205 ($MARE$):

206
$$R = \frac{\sum_{i=1}^n (\theta_{sim,i} - \bar{\theta}_{sim})(\theta_{obs,i} - \bar{\theta}_{obs})}{\sqrt{\sum_{i=1}^n (\theta_{sim,i} - \bar{\theta}_{sim})^2 (\theta_{obs,i} - \bar{\theta}_{obs})^2}}, \quad (13)$$

207
$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^n (\theta_{sim,i} - \theta_{obs,i})^2}, \quad (14)$$

208
$$MARE = \frac{1}{n} \sum_{i=1}^n \frac{|\theta_{sim,i} - \theta_{obs,i}|}{\theta_{obs,i}}, \quad (15)$$

209 where $\theta_{sim,i}$ and $\theta_{obs,i}$ are the assimilated and true model parameters for the i th month; $\bar{\theta}_{sim}$ and
 210 $\bar{\theta}_{obs}$ are the mean of the assimilated and true model parameters, respectively for the i th month; n is
 211 the total number of data points.

212

213 **3 Data and study area**

214 **3.1 Synthetic experiment**

215 A synthetic experiment is designed to evaluate the capability of the assimilation procedure to identify
 216 the temporal variation of model parameters. Five scenarios of different parameter variations are
 217 developed, as shown in **Table 2**. The model parameters in the first four scenarios are time-variant, and
 218 those in the last scenario are constant. Parameter C , the evapotranspiration parameter, is considered to
 219 be sinusoidal reflecting potential seasonal variations in hydrological model parameters (Paik et al., 2005;
 220 Ye et al., 1997). An increasing trend is also considered to account for the potential annual or long-term
 221 variability. The change of parameter SC is considered to be gradual and abrupt, since the catchment
 222 water storage capacity can be affected by land use and land cover changes, such as afforestation and

223 dam construction. The parameters in Scenario 5 are treated as constants like the conventional
224 hydrological modeling. Observations for precipitation and potential evapotranspiration are generated by
225 adding a Gaussian disturbance to the corresponding data from a real catchment, and runoff is then
226 produced using the TWBM model. The data set used in this experiment is of 672-month length. The
227 first 24-month period is set for model warm-up to reduce the impact of the initial soil moisture
228 conditions. The steps toward identifying temporal variation of model parameters are as follows:

229 (1) Time series of model parameters are synthetically generated, including the time-variant parameters
230 and the constant parameters. Model parameter sets are produced using a sinusoidal function and/or a
231 linear trend function within the specified ranges shown in **Table 1**. The runoff observations for each
232 scenario are computed from the TWBM model taking monthly potential evapotranspiration and
233 precipitation, and the parameters as inputs.

234 (2) The initial ensembles of model parameters and state variables are generated using uniform
235 distributions within the specified ranges in **Table 1**. The ensemble size and the total number of
236 assimilation time steps are specified.

237 (3) After the initialization of parameters and state variables, the hydrological model parameters and
238 states are updated by assimilating the runoff observations obtained in Step (1). The additive errors for
239 generating the ensemble members of model parameters, state variables and runoff observations are
240 obtained from Gaussian distributions with zero mean and specified variance.

241

242 To evaluate the effect of errors on identifying parameter variation, different levels of observation
243 uncertainty are considered in the synthetic experiment, as detailed in **Table 3**. The uncertainties from
244 the observed precipitation and runoff are characterized by adding Gaussian noises where the standard
245 deviations are assumed to be proportional to the magnitude of the true values, and the corresponding
246 proportional factors are denoted as γ_p and γ_q . The proportional factors are set to account for the
247 practical measurement error (Wang et al., 2009; Xie and Zhang, 2010).

248

249 **3.2 Study area**

250 **3.2.1 Case 1: Wudinghe basin**

251 The method is applied to the Wudinghe basin (**Fig. 1**), which is a sub-basin of the Yellow River basin
252 and located in the southern fringe of Maowusu Desert and the northern part of the Loess Plateau in
253 China with a semiarid climate. It has a drainage area of approximately 30,261 km² and a total length of
254 491 km. The Wudinghe basin has an average slope of 0.2%, and its elevation ranges from 600 to 1800
255 m above the sea level. The Baijiachuan gauge station, which is the most downstream station of the
256 Wudinghe basin, drains 98% of the total basin area. The mean annual precipitation over the basin is
257 401 mm, of which 72.5% occurs in the rainy season from June to September (**Fig. 2**). The mean
258 annual potential evapotranspiration is 1077 mm, and the mean annual runoff is about 39 mm with a
259 runoff coefficient of 0.1.

260 The soil erosion is severe in the Wudinghe basin owing to the highly erodible loess and sparse
261 vegetation. Since the 1960s, the soil and water conservation measures have been undertaken. Lots of
262 engineering measures including tree and grass plantation, check dam and reservoir construction, and
263 land terracing were effectively implemented during several decades. The land use changes caused by
264 the soil and water conservation measures had a significant effect on increasing water storage capacity
265 (Xu, 2011).

266

267 **3.2.2 Case 2: Tongtianhe basin**

268 The Tongtianhe basin (**Fig. 3**) is located in southwestern Qinghai Province in China with a continental
269 climate. It belongs to the source area of Yangtze River basin with a drainage area of about 140,000 km²
270 and a total main stream length of 1206 km. The elevation of the Tongtianhe basin approximately ranges
271 from 3500 to 6500 m above the sea level. Zhimenda is the basin outlet. The mean annual precipitation
272 over the basin is 440 mm, of which 76.9% occurs in the period from June to September (**Fig. 4**). The
273 mean annual potential evapotranspiration is 796 mm, and the mean annual runoff is about 99 mm with a
274 runoff coefficient of 0.23. The Tongtianhe basin is rarely affected by human activities owing to the
275 water source protection guidelines conducted by the government. The Tongtianhe basin is used for
276 comparison on model parameter identification.

277

278 **3.2.3 Data**

279 The data sets used in this study include monthly precipitation, potential evapotranspiration and runoff in
280 Wudinghe basin (from 1956 to 2000) and Tongtianhe basin (from 1980 to 2013). The potential
281 evapotranspiration is estimated using the Penman-Monteith equation (Allen et al., 1998) based on the
282 meteorological data from the China Meteorological Data Sharing Service System (<http://cdc.nmic.cn>).
283 To reduce the impact of the initial conditions, a 2-year data set, i.e., from 1956 to 1957 for Wudinghe
284 basin and from 1980 to 1981 for Tongtianhe basin, is reserved as the warm-up period.

285

286 **4 Results and discussion**

287 **4.1 Synthetic experiment**

288 The comparisons of the estimated and true model parameters under different scenarios are presented
289 in **Fig. 3**, **Fig. 4** and **Fig. 5**. **Tables 4** and **5** show the evaluation statistics for the parameters and runoff
290 estimations. The assimilated parameter values are obtained from the ensemble mean at each time step.
291 The estimation of parameters C and SC have the similar trends as the true parameter series. The
292 temporal variations of the estimated C agree well with the true series, although it has biases on the
293 peaks of the periodic changes. For SC , the temporal estimates can capture the different changes in
294 **Table 2**, especially for the abrupt change where the estimated values respond immediately. Different
295 uncertainty levels are considered to examine the capability of the EnKF method. The results in **Fig. 3**

296 show that the estimated C has more accurate peaks with smaller $RMSE$ and higher R values under the
297 high level uncertainty (**Table 4**); whereas, the SC estimates in **Fig. 4** have some fluctuations when the
298 uncertainty level increases. This is due to the reason that the estimated values vary with increasing
299 uncertainty level in the assimilation process. In the synthetic experiment, the true C is assumed to be
300 periodic with higher degree of variation, while the true SC series have less variation.

301

302 It should be noted that there are time lags between the assimilated and true C . The observation at the
303 current time step is used to adjust the state variables and parameters in EnKF, and the updates of
304 parameters depend on the Kalman gain for parameters. A runoff observation at the current time is
305 determined by states at the current and previous time steps (Pauwels and Lannoy, 2006). The Kalman
306 gain is dependent on the relative value of observation error to model error. The updated states are
307 closer to the observation with a higher Kalman gain (Tamura et al., 2014). The synthetic C series were
308 assumed to be periodic where lots of peak values exist; while the variation of SC series is less. The
309 time lag between assimilated and true values exists especially when peak values occur (Clark et al.,
310 2008; Samuel et al., 2014).

311

312 The results for the scenario of constant parameters are shown in **Fig. 5**, demonstrating that the
313 estimated parameters can approach their true values after the initial 24 assimilation steps. The grey
314 areas represent the 95% prediction uncertainty intervals, which reduce quickly and approach a stable

315 spread. The performance of the estimated parameters is correlated with the uncertainty level. Higher
316 precipitation and runoff observation errors correspond to greater *RMSE* values (**Table 4**) of estimated
317 parameters and uncertainty ranges. The performance of runoff estimations for various parameter
318 changes under different levels of uncertainty is shown in **Table 5**, suggesting that the EnKF perfectly
319 matches the observations with NSEs higher than 0.95 and absolute VEs smaller than 0.02. The EnKF
320 can successfully capture the temporal variations of the true parameters, although the uncertainty levels
321 of the observations can affect its performance to a certain degree. The above results demonstrate that
322 the EnKF is able to identify the temporal variation of the model parameters by updating the state
323 variables and parameters based on the runoff observations.

324

325 **4.2 Case studies**

326 **Fig. 6** shows the double mass curve between monthly runoff and precipitation for the Wudinghe and
327 Tongtianhe basins, respectively. The top panel shows the linear relationship between cumulative runoff
328 and precipitation pre- and post-1972 in the Wudinghe basin, which is similar to the result presented by
329 Xu (2011) and Li et al. (2014). The results show two straight lines with different slopes for the
330 relationships between precipitation and runoff, indicating that an abrupt change occurred in 1972,
331 namely, the runoff generation had been changed from this year due to the soil and water conservation
332 measures. On the other hand, the bottom panel demonstrates that a single linear relationship fits all the
333 data for the Tongtianhe basin, suggesting a stable precipitation-runoff relationship during the 1982-2013

334 period.

335

336 The estimated parameters and the associated 95% prediction uncertainty intervals are shown in **Fig. 7**.

337 The time series of estimated *SC* shows an apparent increasing trend, with two different trends for pre-

338 and post-turning point in **Fig. 6(a)**. The temporal variation of the water storage capacity is correlated

339 with the changes of land use and land cover. Both the trends in **Fig. 7(c)** show an increase of *SC*,

340 because the implementation of the large-scale engineering measures significantly improved the water

341 holding capacity of the Wudinghe basin, especially for the reservoir and check dam construction. The

342 trend slopes of the two periods, one is from 1956 to 1971, the other is from 1972 to 2000, are different

343 because the degree of implementing engineering measures varied during the period of 1958-2000.

344 Moreover, the increase of the water holding capacity slowed down during the 1980s due to the

345 sedimentation in reservoirs and check dams after periods of operation (Wang and Fan, 2003). **Fig. 8(a)**

346 shows the long-term time series of precipitation and potential evaporation in Wudinghe basin. The result

347 shows that the runoff decreases significantly while precipitation changes slightly and potential

348 evaporation has no trend, indicating that the actual evaporation increases significantly due to impacts of

349 human activities, i.e., the soil and water conservation measures. **Fig. 8(b)** presents the runoff reduction

350 caused by all the soil and water conservation measures, i.e., land terracing, tree and grass plantation,

351 check dam and reservoir construction. The runoff reduction positively relates to the water holding

352 capacity, namely the *SC* value. The slope for the period of 1958-1971 is higher than that for the period

353 of 1972-1996, suggesting that the SC in the former period has higher increasing trend. On the other
354 hand, results of Tongtianhe basin show that the estimated SC has no detectable trend with a small R
355 value. Moreover, the ranges and standard deviation of the estimated SC values are much smaller than
356 those in the Wudinghe basin (**Fig. 7**), suggesting that the estimated SC has no obvious temporal
357 variations.

358

359 For parameter C , the results show that the estimates have no significant temporal patterns because the
360 trend line slopes are almost zero and the standard deviations are relatively small for the two basins (**Fig.**
361 **7(a) and (b)**). However, it can be treated as time-variant parameter since temporal variations exist in the
362 estimated C series. The temporal variations of the estimated C are related to the variation of monthly
363 actual evaporation, which is affected by multiple climatic factors, such as air temperature, soil moisture
364 and solar irradiance (Su et al., 2015). The grey regions represent the 95% prediction uncertainty
365 intervals obtained from the parameter ensembles. The stable and narrow uncertainty bounds shown in
366 **Fig. 7** indicate that the EnKF can provide superior performance of parameter estimation. The runoff
367 simulations for both the two basins have good match with the runoff observations. Specifically, the NSE
368 and VE for the Wudinghe basin are 0.93 and 0.07 respectively. While the corresponding index values
369 are 0.99 and 0.04 for the Tongtianhe basin.

370

371 In summary, the above results demonstrate that the EnKF can identify the temporal variation of model

372 parameters well by updating both state variables and parameters based on the runoff observations. The
373 trends of parameter SC can be explained by the changes of catchment characteristics (i.e., land use
374 and land cover) in the Wudinghe basin. However, the estimated SC for the Tongtianhe basin is
375 approximately stable with small standard deviation because the basin is located in a water protection
376 zone and has no significant changes on water storage capacity caused by human activities. The
377 parameter C has temporal variations and can be treated as a time-variant parameter for both basins,
378 although the estimates have no obvious temporal patterns. Therefore, the EnKF is capable of identifying
379 the temporal variations of model parameters.

380

381 **5 Conclusions**

382 This study proposes an ensemble Kalman filter (EnKF) to identify the temporal variation of model
383 parameters of the two-parameter monthly water balance model (TWBM) by assimilating runoff
384 observations. A synthetic experiment, which contains four scenarios with different changes of model
385 parameters and one scenario with constant parameters, is designed to examine the capability of the
386 proposed approach. Furthermore, three different levels of observation uncertainty are taken to assess the
387 performance of the EnKF. The main conclusions are: For the time-variant parameters, the EnKF
388 provides superior performance even though slight time lags exist for parameters with periodic variations.
389 The true values of the constant parameters can be approached quickly after 24 time steps of assimilation
390 process. The temporal variations of the parameters can be successfully captured even under a high level

391 of observation uncertainties, which would have an influence on the performance of the EnKF.

392

393 The EnKF method is applied to the Wudinghe basin in China, aiming to detect the temporal variations
394 of the model parameters and to provide an explanation for the parameter variation from the perspective
395 of the catchment characteristic changes. Meanwhile, a comparison is implemented to investigate the
396 variation of model parameters in the Tongtianhe basin, which is barely affected by human activities. The
397 parameter of water storage capacity (SC) for the monthly water balance model shows a significant
398 increasing trend for the period of 1958-2000 in the Wudinghe basin. The soil and water conservation
399 measures, including land terracing, tree and grass plantation, check dam and reservoir construction,
400 have been implemented during 1958 to 2000, resulting in the increase of the water holding capacity of
401 the basin, which explains the increasing trends of SC . Moreover, the magnitudes of the engineering
402 measures in different time periods play an important role in the degree of increasing trend for SC . In the
403 Tongtianhe basin, the parameter SC has no significant trend for the period of 1982-2013, which is
404 consistent with the relatively stationary catchment characteristics. The evapotranspiration parameter (C)
405 has temporal variations and can be treated as time-variant parameter, but no obvious trends exist.

406

407 The method proposed in this paper provides an effective tool for the time-variant model parameter
408 identification. Future work will be focused on the influence of the correlations between/among model
409 parameters and performance comparison of multiple data assimilation methods.

410 **Acknowledgments**

411 This study was supported by the Excellent Young Scientist Foundation of NSFC (51422907) and the
412 Open Foundation of State Key Laboratory of Water Resources and Hydropower Engineering Science in
413 Wuhan University (2015SWG01). The authors thank the China Meteorological Data Sharing Service
414 System for providing a part of the data used in this study. The authors would like to thank the editor and
415 the anonymous reviewers for their comments that helped to improve the quality of the paper.

416

417 **References**

418 Abaza, M., Anctil, F., Fortin, V., and Turcotte, R.: Sequential streamflow assimilation for short-term
419 hydrological ensemble forecasting, *J. Hydrol.*, 519, 2692-2706, doi:10.1016/j.jhydrol.2014.08.038,
420 2014.

421 Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration-Guidelines for
422 Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56, Food and Agriculture
423 Organization of the United Nations, Rome, 1998.

424 Andréassian, V., Parent, E., and Michel, C.: A distribution-free test to detect gradual changes in
425 watershed behavior, *Water Resour. Res.*, 39, 1252, doi:10.1029/2003WR002081, 2003.

426 Brigode, P., Oudin, L., and Perrin, C.: Hydrological model parameter instability: A source of
427 additional uncertainty in estimating the hydrological impacts of climate change?, *J. Hydrol.*, 476,
428 410-425, doi:10.1016/j.jhydrol.2012.11.012, 2013.

429 Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., and Vertessy, R. A.: A review of paired
430 catchment studies for determining changes in water yield resulting from alterations in vegetation, *J.*
431 *Hydrol.*, 310, 28-61, doi:10.1016/j.jhydrol.2004.12.010, 2005.

432 Burgers, G., Leeuwen, P. J. v., and Evensen, G.: Analysis scheme in the ensemble Kalman filter, *Mon.*
433 *Wea. Rev.*, 126, 1719-1724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2, 1998.

434 Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and
435 Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: Use of
436 streamflow observations to update states in a distributed hydrological model, *Adv. Water Resour.*,
437 31, 1309-1324, doi:10.1016/j.advwatres.2008.06.005, 2008.

438 Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., and Hendrickx, F.: Crash testing

439 hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments,
440 Water Resour. Res., 48, W05552, doi:10.1029/2011WR011721, 2012.

441 DeChant, C. M. and Moradkhani, H.: Examining the effectiveness and robustness of sequential data
442 assimilation methods for quantification of uncertainty in hydrologic forecasting, Water Resour. Res.,
443 48, W04518, doi:10.1029/2011WR011011, 2012.

444 DeChant, C. M. and Moradkhani, H.: Toward a reliable prediction of seasonal forecast uncertainty:
445 Addressing model and initial condition uncertainty with ensemble data assimilation and sequential
446 Bayesian combination, J. Hydrol., doi:10.1016/j.jhydrol.2014.05.045, 2014.

447 Delijani, E. B., Pishvaie, M. R., and Boozarjomehry, R. B.: Subsurface characterization with localized
448 ensemble Kalman filter employing adaptive thresholding, Adv. Water Resour., 69, 181-196,
449 doi:10.1016/j.advwatres.2014.04.011, 2014.

450 Deng, C., Liu, P., Guo, S., Wang, H., and Wang, D.: Estimation of nonfluctuating reservoir inflow
451 from water level observations using methods based on flow continuity, J. Hydrol.,
452 doi:10.1016/j.jhydrol.2015.09.037, 2015.

453 Deng, C., Liu, P., Liu, Y., Wu, Z. H., and Wang, D.: Integrated hydrologic and reservoir routing model
454 for real-time water level forecasts, J. Hydrol. Eng., 20(9), 05014032,
455 doi:10.1061/(ASCE)HE.1943-5584.0001138, 2015.

456 Duan, Q. Y., Gupta, V. K., and Sorooshian, S.: Shuffled complex evolution approach for effective and
457 efficient global minimization, J. Optimiz. Theory App., 76, 501-521, doi:10.1007/bf00939380,
458 1993.

459 Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo
460 methods to forecast error statistics, J. Geophys. Res., 99, 10143-10162, doi:10.1029/94JC00572,
461 1994.

462 Evensen, G.: The Ensemble Kalman filter: theoretical formulation and practical implementation,
463 Ocean Dyn., 53, 343-367, doi:10.1007/s10236-003-0036-9, 2003.

464 Evensen, G. and Leeuwen, P. J. v.: Assimilation of Geosat altimeter data for the Agulhas Current using
465 the ensemble Kalman filter with a quasigeostrophic model, Mon. Wea. Rev., 124, 85-96,
466 doi:10.1175/1520-0493(1996)124<0085:AOGADF>2.0.CO;2, 1996.

467 Guo, S., Chen, H., Zhang, H., Xiong, L., Liu, P., Pang, B., Wang, G., and Wang, Y.: A semi-distributed
468 monthly water balance model and its application in a climate change impact study in the middle and
469 lower Yellow River basin, Water International, 30, 250-260, doi:10.1080/02508060508691864,
470 2005.

471 Guo, S., Wang, J., Xiong, L., Ying, A., and Li, D.: A macro-scale and semi-distributed monthly water
472 balance model to predict climate change impacts in China, J. Hydrol., 268, 1-15,
473 doi:10.1016/S0022-1694(02)00075-6, 2002.

474 Han, E., Merwade, V., and Heathman, G. C.: Implementation of surface soil moisture data assimilation
475 with watershed scale distributed hydrological model, J. Hydrol., 416-417, 98-117,

476 doi:10.1016/j.jhydrol.2011.11.039, 2012.

477 Jeremiah, E., Marshall, L., Sisson, S. A., and Sharma, A.: Specifying a hierarchical mixture of experts
478 for hydrologic modeling: Gating function variable selection, *Water Resour. Res.*, 49, 2926-2939,
479 doi:10.1002/wrcr.20150, 2013.

480 Kumar, S. V., Reichle, R. H., Harrison, K. W., Peters-Lidard, C. D., Yatheendradas, S., and Santanello,
481 J. A.: A comparison of methods for a priori bias correction in soil moisture data assimilation, *Water
482 Resour. Res.*, 48, W03515, doi:10.1029/2010WR010261, 2012.

483 Kurtz, W., Hendricks Franssen, H.-J., and Vereecken, H.: Identification of time-variant river bed
484 properties with the ensemble Kalman filter, *Water Resour. Res.*, 48, W10534,
485 doi:10.1029/2011WR011743, 2012.

486 Leisenring, M. and Moradkhani, H.: Analyzing the uncertainty of suspended sediment load prediction
487 using sequential data assimilation, *J. Hydrol.*, 468-469, 268-282, doi:10.1016/j.jhydrol.2012.08.049,
488 2012.

489 Li, S., Xiong, L., Dong, L., and Zhang, J.: Effects of the Three Gorges Reservoir on the hydrological
490 droughts at the downstream Yichang station during 2003–2011, *Hydrol. Processes* 27, 3981-3993,
491 doi:10.1002/hyp.9541, 2013.

492 Li, X.-N., Xie, P., Li, B.-B., and Zhang, B.: A probability calculation method for different grade
493 drought event under changing environment-Taking Wuding River basin as an example, *Shuili
494 Xuebao/Journal of Hydraulic Engineering*, 45, 585-594, doi:10.13243/j.cnki.slxb.2014.05.010,
495 2014 (in Chinese).

496 Li, Z., Liu, P., Deng, C., Guo, S., He, P., and Wang, C.: Evaluation of the estimation of distribution
497 algorithm to calibrate a computationally intensive hydrologic model, *J. Hydrol. Eng.*,
498 doi:10.1061/(ASCE)HE.1943-5584.0001350, 2015.

499 Liu, Y. and Gupta, H. V.: Uncertainty in hydrologic modeling: Toward an integrated data assimilation
500 framework, *Water Resour. Res.*, 43(7), 1-18, doi:10.1029/2006WR005756, 2007.

501 Li, Y., Ryu, D., Western, A. W., and Wang, Q. J.: Assimilation of stream discharge for flood
502 forecasting: The benefits of accounting for routing time lags, *Water Resour. Res.*, 49, 1887-1900,
503 doi:10.1002/wrcr.20169, 2013.

504 Lü, H. S., Hou, T., Horton, R., Zhu, Y. H., Chen, X., Jia, Y. W., Wang, W., and Fu, X. L.: The
505 streamflow estimation using the Xinanjiang rainfall runoff model and dual state-parameter
506 estimation method, *J. Hydrol.*, 480, 102-114, doi:10.1016/j.jhydrol.2012.12.011, 2013.

507 Merz, R., Parajka, J., and Blöschl, G.: Time stability of catchment model parameters: Implications for
508 climate impact analyses, *Water Resour. Res.*, 47, W02531, doi:10.1029/2010WR009505, 2011.

509 Montzka, C., Grant, J. P., Moradkhani, H., Franssen, H.-J. H., Weihermüller, L., Drusch, M., and
510 Vereecken, H.: Estimation of radiative transfer parameters from L-band passive microwave
511 brightness temperatures using advanced data assimilation, *Vadose Zone J.*, 12,
512 doi:10.2136/vzj2012.0040, 2013.

513 Moradkhani, H., Sorooshian, S., Gupta, H. V., and Houser, P. R.: Dual state-parameter estimation of
514 hydrological models using ensemble Kalman filter, *Adv. Water Resour.*, 28, 135-147,
515 doi:10.1016/j.advwatres.2004.09.002, 2005.

516 Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I: A discussion
517 of principles, *J. Hydrol.*, 10, 282-290, doi:10.1016/0022-1694(70)90255-6, 1970.

518 Nie, S., Zhu, J., and Luo, Y.: Simultaneous estimation of land surface scheme states and parameters
519 using the ensemble Kalman filter: identical twin experiments, *Hydrol. Earth Syst. Sci.*, 15,
520 2437-2457, doi:10.5194/hess-15-2437-2011, 2011.

521 Paik, K., Kim, J. H., Kim, H. S., and Lee, D. R.: A conceptual rainfall-runoff model considering
522 seasonal variation, *Hydrol. Processes* 19, 3837-3850, doi:10.1002/hyp.5984, 2005.

523 Panzeri, M., Riva, M., Guadagnini, A., and Neuman, S. P.: Data assimilation and parameter estimation
524 via ensemble Kalman filter coupled with stochastic moment equations of transient groundwater
525 flow, *Water Resour. Res.*, 49, 1334-1344, doi:10.1002/wrcr.20113, 2013.

526 Patil, S. D. and Stieglitz, M.: Comparing spatial and temporal transferability of hydrological model
527 parameters, *J. Hydrol.*, 525, 409-417, doi:10.1016/j.jhydrol.2015.04.003, 2015.

528 Pauwels, V. R. N. and Lannoy, G. J. M. D.: Improvement of Modeled Soil Wetness Conditions and
529 Turbulent Fluxes through the Assimilation of Observed Discharge, *J. Hydrometeorol.*, 7, 458-477,
530 doi:doi:10.1175/JHM490.1, 2006.

531 Peel, M. C. and Bloschl, G.: Hydrological modelling in a changing world, *Prog. Phys. Geogr.*, 35(2),
532 249-261, doi:10.1177/0309133311402550, 2011.

533 Samuel, J., Coulibaly, P., Dumedah, G., and Moradkhani, H.: Assessing model state and forecasts
534 variation in hydrologic data assimilation, *J. Hydrol.*, 513, 127-141,
535 doi:10.1016/j.jhydrol.2014.03.048, 2014.

536 Seiller, G., Anctil, F., and Perrin, C.: Multimodel evaluation of twenty lumped hydrological models
537 under contrasted climate conditions, *Hydrol. Earth Syst. Sci.*, 16, 1171-1189,
538 doi:10.5194/hess-16-1171-2012, 2012.

539 Shi, Y., Davis, K. J., Zhang, F., Duffy, C. J., and Yu, X.: Parameter estimation of a physically based
540 land surface hydrologic model using the ensemble Kalman filter: A synthetic experiment, *Water
541 Resour. Res.*, 50, 706-724, doi:10.1002/2013WR014070, 2014.

542 Su, T., Feng, T., and Feng, G.: Evaporation variability under climate warming in five reanalyses and its
543 association with pan evaporation over China, *Journal of Geophysical Research: Atmospheres*, 120,
544 8080-8098, doi:10.1002/2014JD023040, 2015.

545 Tamura, H., Bacopoulos, P., Wang, D., Hagen, S. C., and Kubatko, E. J.: State estimation of tidal
546 hydrodynamics using ensemble Kalman filter, *Adv. Water Resour.*, 63, 45-56,
547 doi:10.1016/j.advwatres.2013.11.002, 2014.

548 Thirel, G., Andréassian, V., Perrin, C., Audouy, J. N., Berthet, L., Edwards, P., Folton, N., Furusho, C.,
549 Kuentz, A., Lerat, J., Lindström, G., Martin, E., Mathevret, T., Merz, R., Parajka, J., Ruelland, D.,

550 and Vaze, J.: Hydrology under change: an evaluation protocol to investigate how hydrological
551 models deal with changing catchments, *Hydrol. Sci. J.*, 60, 1184-1199,
552 doi:10.1080/02626667.2014.967248, 2015.

553 Vrugt, J. A., ter Braak, C. J. F., Diks, C. G. H., and Schoups, G.: Hydrologic data assimilation using
554 particle Markov chain Monte Carlo simulation: Theory, concepts and applications, *Adv. Water
555 Resour.*, 51, 457-478, doi:10.1016/j.advwatres.2012.04.002, 2013.

556 Wang, D., Chen, Y., and Cai, X.: State and parameter estimation of hydrologic models using the
557 constrained ensemble Kalman filter, *Water Resour. Res.*, 45, W11416, doi:10.1029/2008WR007401,
558 2009.

559 Wang, G. and Fan, Z.: A study of water and sediment changes in the Yellow River, Publishing House
560 of Yellow River Water Conservancy, Zhengzhou, 2003 (in Chinese).

561 Weerts, A. H. and El Serafy, G. Y. H.: Particle filtering and ensemble Kalman filtering for state
562 updating with hydrological conceptual rainfall-runoff models, *Water Resour. Res.*, 42, 1-17,
563 doi:10.1029/2005WR004093, 2006.

564 Westra, S., Thyre, M., Leonard, M., Kavetski, D., and Lambert, M.: A strategy for diagnosing and
565 interpreting hydrological model nonstationarity, *Water Resour. Res.*, 50, 5090-5113,
566 doi:10.1002/2013WR014719, 2014.

567 Xie, X., Meng, S., Liang, S., and Yao, Y.: Improving streamflow predictions at ungauged locations
568 with real-time updating: application of an EnKF-based state-parameter estimation strategy, *Hydrol.
569 Earth Syst. Sci.*, 18, 3923-3936, doi:10.5194/hess-18-3923-2014, 2014.

570 Xie, X. and Zhang, D.: Data assimilation for distributed hydrological catchment modeling via
571 ensemble Kalman filter, *Adv. Water Resour.*, 33, 678-690, doi:10.1016/j.advwatres.2010.03.012,
572 2010.

573 Xie, X. and Zhang, D.: A partitioned update scheme for state-parameter estimation of distributed
574 hydrologic models based on the ensemble Kalman filter, *Water Resour. Res.*, 49, 7350-7365,
575 doi:10.1002/2012WR012853, 2013.

576 Xiong, L. and Guo, S.: Appraisal of Budyko formula in calculating long-term water balance in humid
577 watersheds of southern China, *Hydrol. Processes* 26, 1370-1378, doi:10.1002/hyp.8273, 2012.

578 Xiong, L. and Guo, S. L.: A two-parameter monthly water balance model and its application, *J.
579 Hydrol.*, 216, 111-123, doi:10.1016/S0022-1694(98)00297-2, 1999.

580 Xiong, L., Yu, K.-x., and Gottschalk, L.: Estimation of the distribution of annual runoff from climatic
581 variables using copulas, *Water Resour. Res.*, 50, 7134-7152, doi:10.1002/2013WR015159, 2014.

582 Xu, J.: Variation in annual runoff of the Wudinghe River as influenced by climate change and human
583 activity, *Quat. Int.*, 244, 230-237, doi:10.1016/j.quaint.2010.09.014, 2011.

584 Xue, L. and Zhang, D.: A multimodel data assimilation framework via the ensemble Kalman filter,
585 *Water Resour. Res.*, 50, 4197-4219, doi:10.1002/2013WR014525, 2014.

586 Yan, H., DeChant, C. M., and Moradkhani, H.: Improving soil moisture profile prediction with the

587 particle filter-Markov chain Monte Marlo method, IEEE Trans. Geosci. Remot. Sen., 53, 6134-6147,
588 doi:10.1109/tgrs.2015.2432067, 2015.

589 Ye, W., Bates, B. C., Viney, N. R., Sivapalan, M., and Jakeman, A. J.: Performance of conceptual
590 rainfall-runoff models in low-yielding ephemeral catchments, Water Resour. Res., 33, 153-166,
591 doi:10.1029/96WR02840, 1997.

592 Zhang, D., Liu, X. M., Liu, C. M., and Bai, P.: Responses of runoff to climatic variation and human
593 activities in the Fenhe River, China, Stoch. Environ. Res. Risk Assess., 27, 1293-1301,
594 doi:10.1007/s00477-012-0665-y, 2013.

595 Zhang, H., Huang, G. H., Wang, D., and Zhang, X.: Multi-period calibration of a semi-distributed
596 hydrological model based on hydroclimatic clustering, Adv. Water Resour., 34, 1292-1303,
597 doi:10.1016/j.advwatres.2011.06.005, 2011.

599 **Tables**

600

Table 1. States and parameters of the two-parameter monthly water balance model.

Parameters and state variables		Description	Ranges and unit
Parameter	C	Evapotranspiration parameter	0.2-2.0 (-)
	SC	Catchment water storage capacity	100-4000 (mm)
State variable	S	Soil water content	mm

Table 2. Different variations of model parameters in the synthetic experiment.

Scenario	Description
Scenario 1	C has a periodic variation, and SC has an increasing trend
Scenario 2	C has a periodic variation, and SC has an abrupt change
Scenario 3	C has a periodic variation with an increasing trend, and SC has an increasing trend
Scenario 4	C has a periodic variation with an increasing trend, and SC has an abrupt change
Scenario 5	Both C and SC are constant

Table 3. Proportional factors of the standard deviations for precipitation (γ_P) and runoff (γ_Q) uncertainties.

Type	Low level	Medium level	High level
γ_P	0	0.05	0.10
γ_Q	0.05	0.10	0.20

605
606
607**Table 4.** Performance statistics for various changes of (a) parameter C and (b) SC estimations under different levels of uncertainty in the synthetic experiment.

Scenario	Low level			Medium level			High level		
	RMSE	MARE	R	RMSE	MARE	R	RMSE	MARE	R
(a) Parameter C									
Scenario 1	0.15	0.21	0.55	0.16	0.18	0.68	0.18	0.11	0.89
Scenario 2	0.16	0.19	0.63	0.17	0.16	0.75	0.18	0.09	0.91
Scenario 3	0.12	0.13	0.64	0.13	0.11	0.72	0.14	0.07	0.91
Scenario 4	0.13	0.12	0.70	0.13	0.10	0.77	0.14	0.06	0.93
Scenario 5	0	--	--	0	--	--	0	--	--
(b) Parameter SC									
Scenario 1	182.87	0.03	0.99	187.76	0.05	0.94	253.35	0.83	0.83
Scenario 2	158.30	0.04	0.96	167.47	0.07	0.91	189.59	0.80	0.80
Scenario 3	180.20	0.03	0.99	183.06	0.04	0.97	215.04	0.88	0.88
Scenario 4	156.42	0.03	0.97	158.50	0.05	0.93	170.90	0.86	0.86
Scenario 5	1.54	--	--	3.67	--	--	20.54	--	--

608

609

610 **Table 5.** Performance of runoff estimations for various parameter changes under different levels of uncertainty in the
611 synthetic experiment.

Scenario	Low level		Medium level		High level	
	<i>NSE</i>	<i>VE</i>	<i>NSE</i>	<i>VE</i>	<i>NSE</i>	<i>VE</i>
Scenario 1	0.999	-0.0003	0.988	-0.0046	0.967	-0.0230
Scenario 2	0.999	0.0001	0.990	-0.0028	0.967	-0.0141
Scenario 3	0.999	-0.0011	0.990	-0.0013	0.974	-0.0264
Scenario 4	0.999	-0.0009	0.992	0.0002	0.959	-0.0147
Scenario 5	0.999	-0.0022	0.992	-0.0077	0.961	-0.0187

Figures

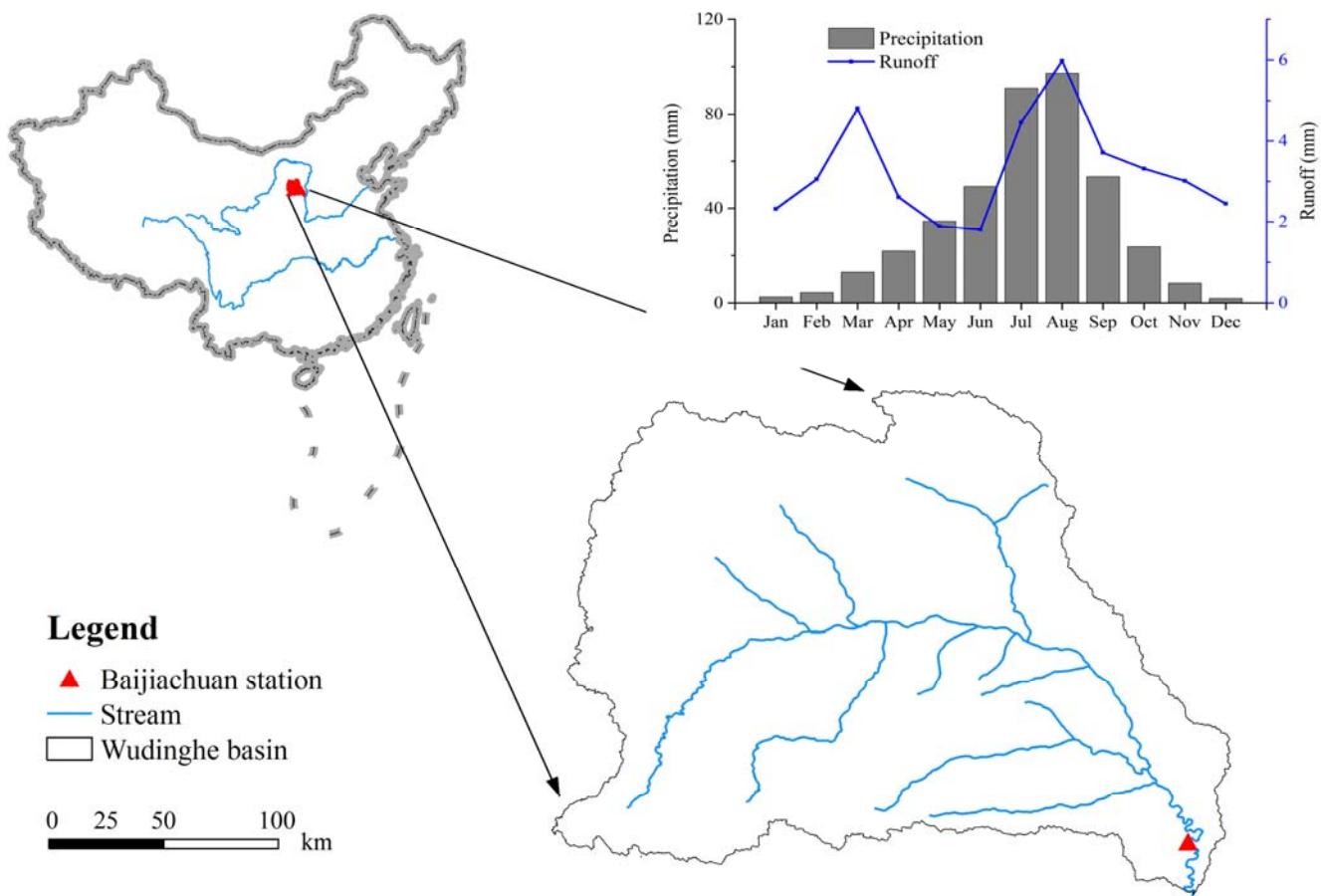


Figure 1. Location and mean monthly precipitation and runoff from 1956 to 2000 of the Wudinghe basin.

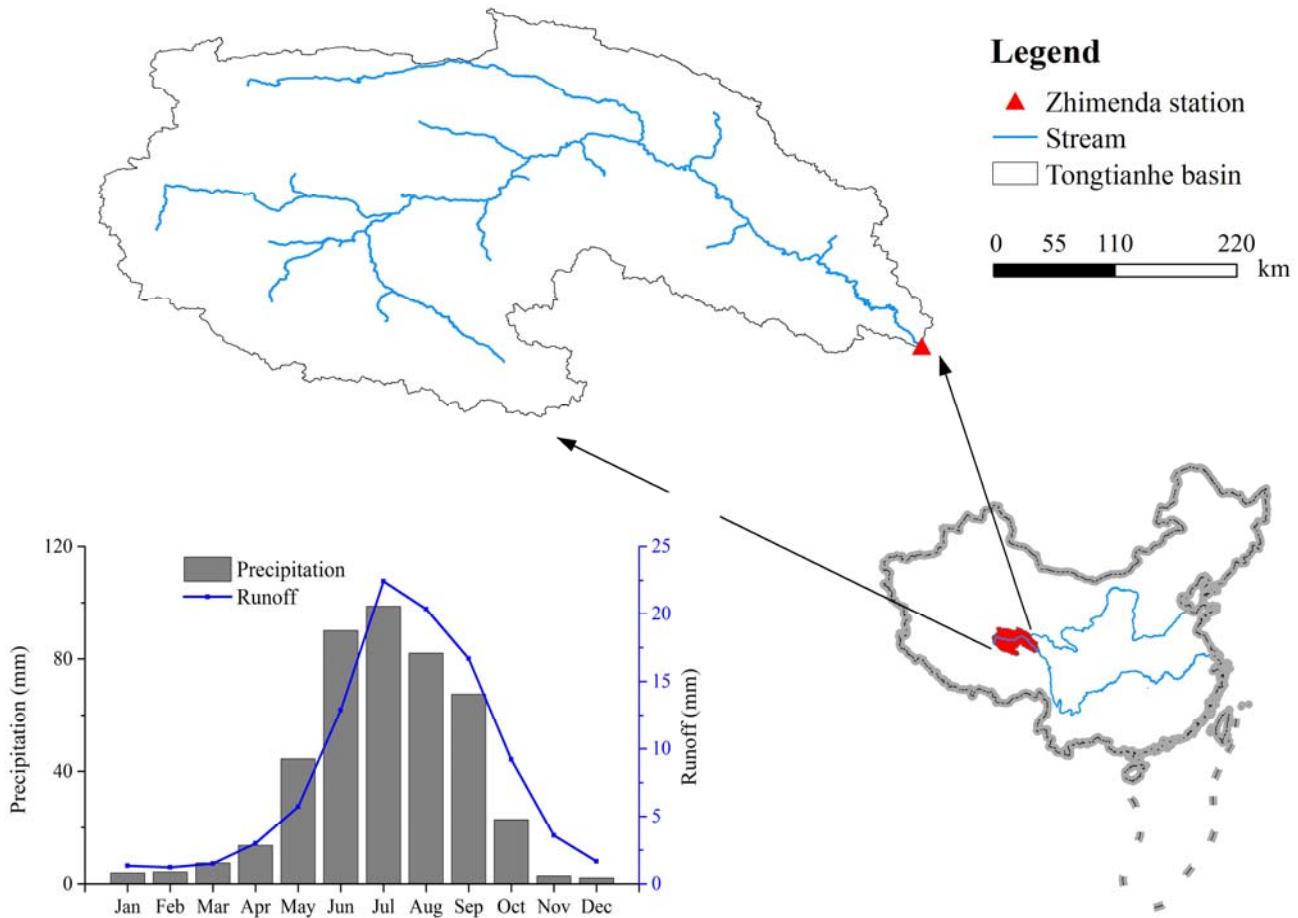
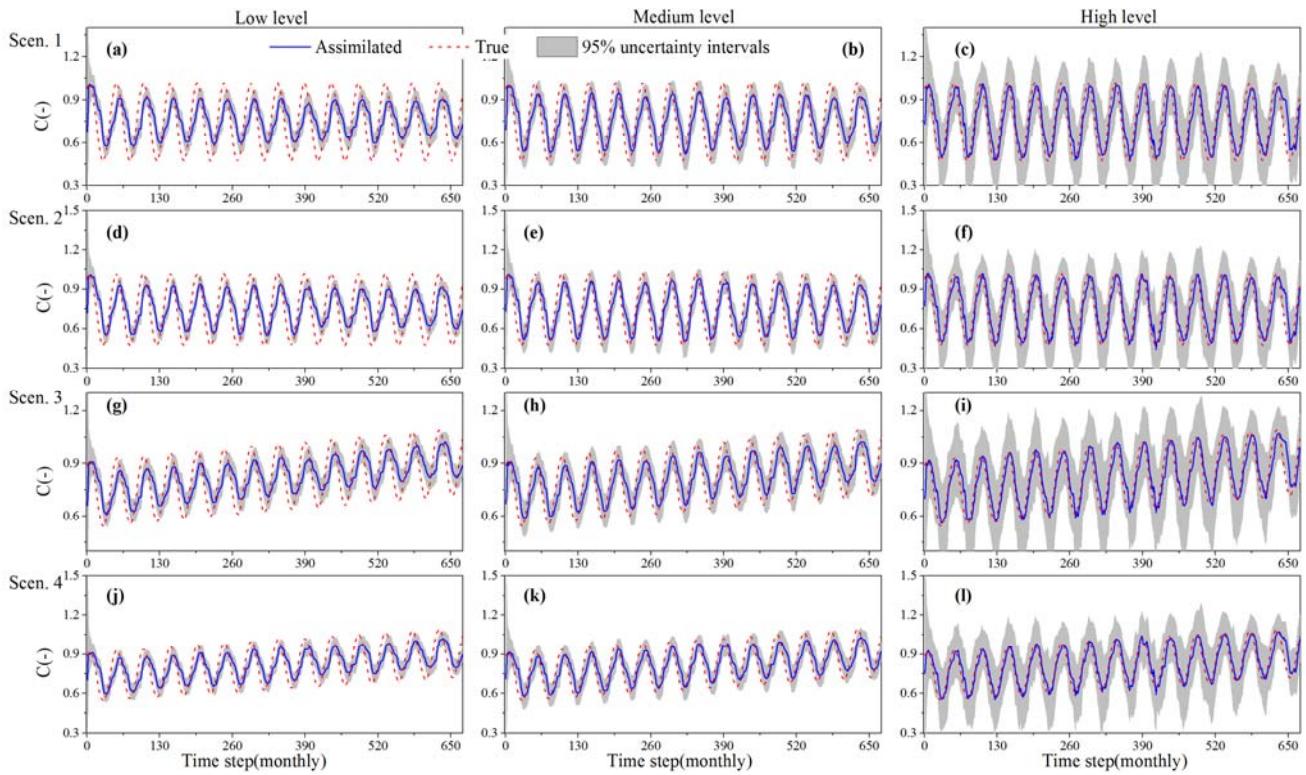
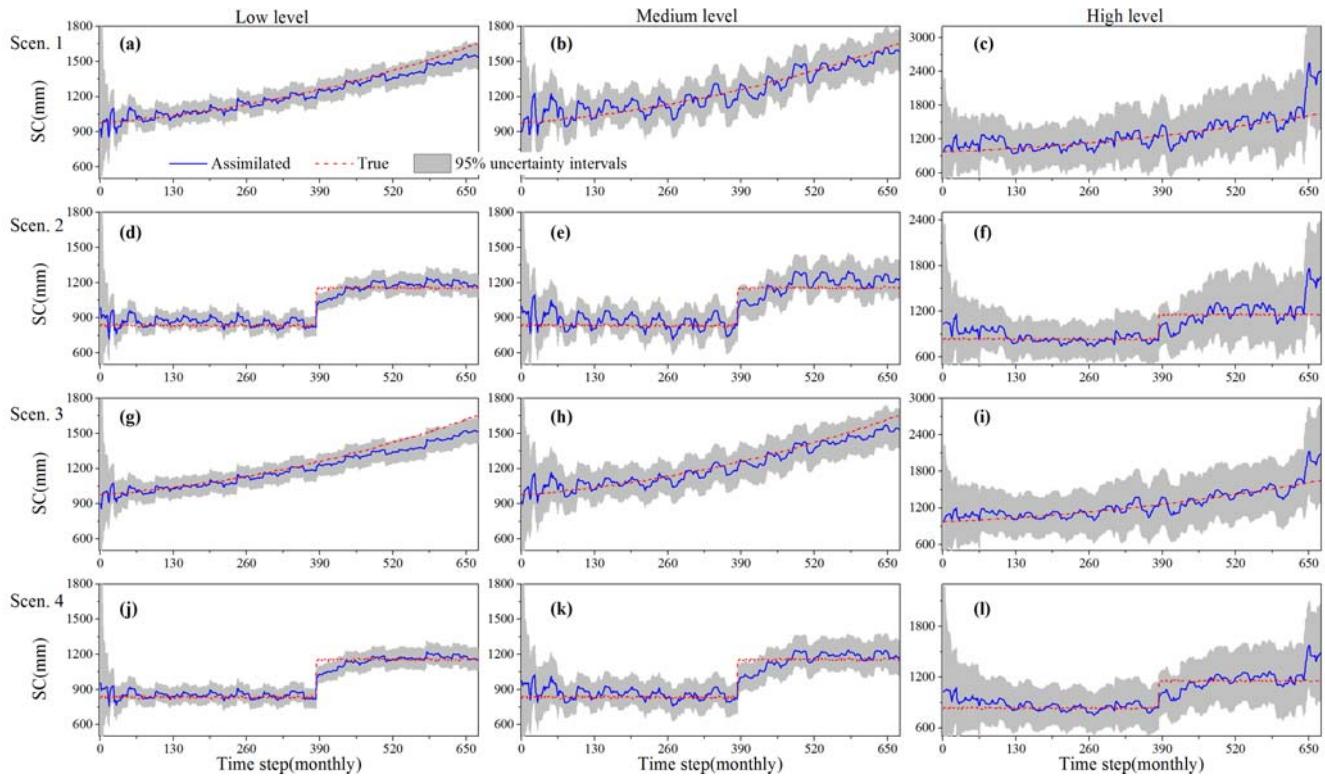


Figure 2. Location and mean monthly precipitation and runoff from 1980 to 2013 of the Tongtianhe basin.



617
618 **Figure. 3.** Comparison between estimated C and its true values for various parameter changes under different
619 uncertainty levels. The grey areas represent the 95% prediction uncertainty intervals.



621 **Figure 4.** Comparison between estimated SC and its true values for various parameter changes under different
622 uncertainty levels. The grey areas represent the 95% prediction uncertainty intervals.

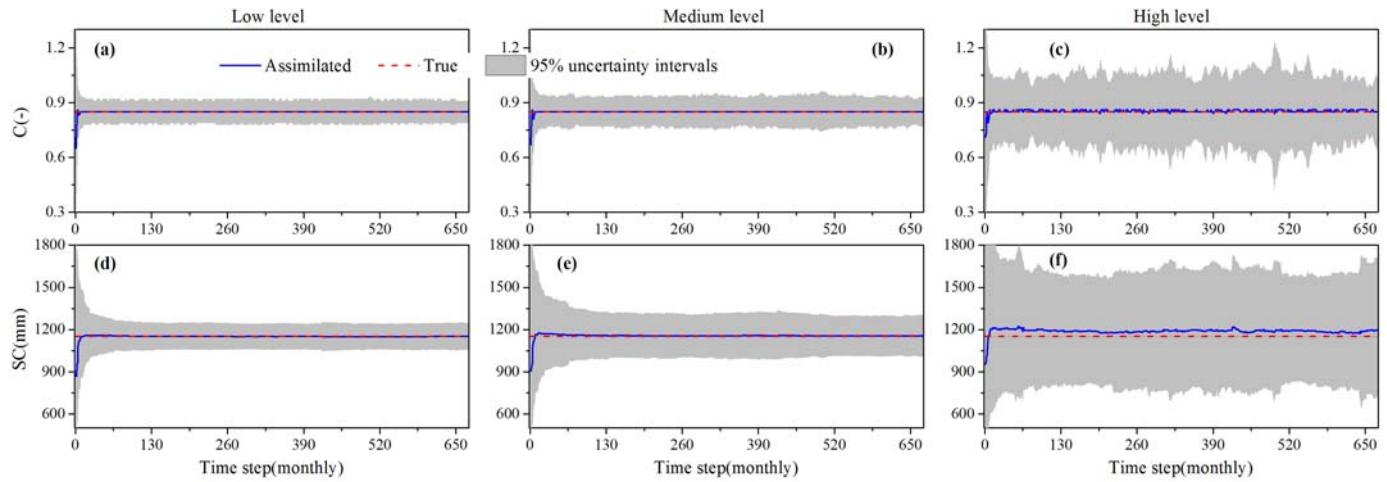


Figure 5. Estimations of time-invariant C and SC under different uncertainty levels. The grey areas represent the 95% prediction uncertainty intervals.

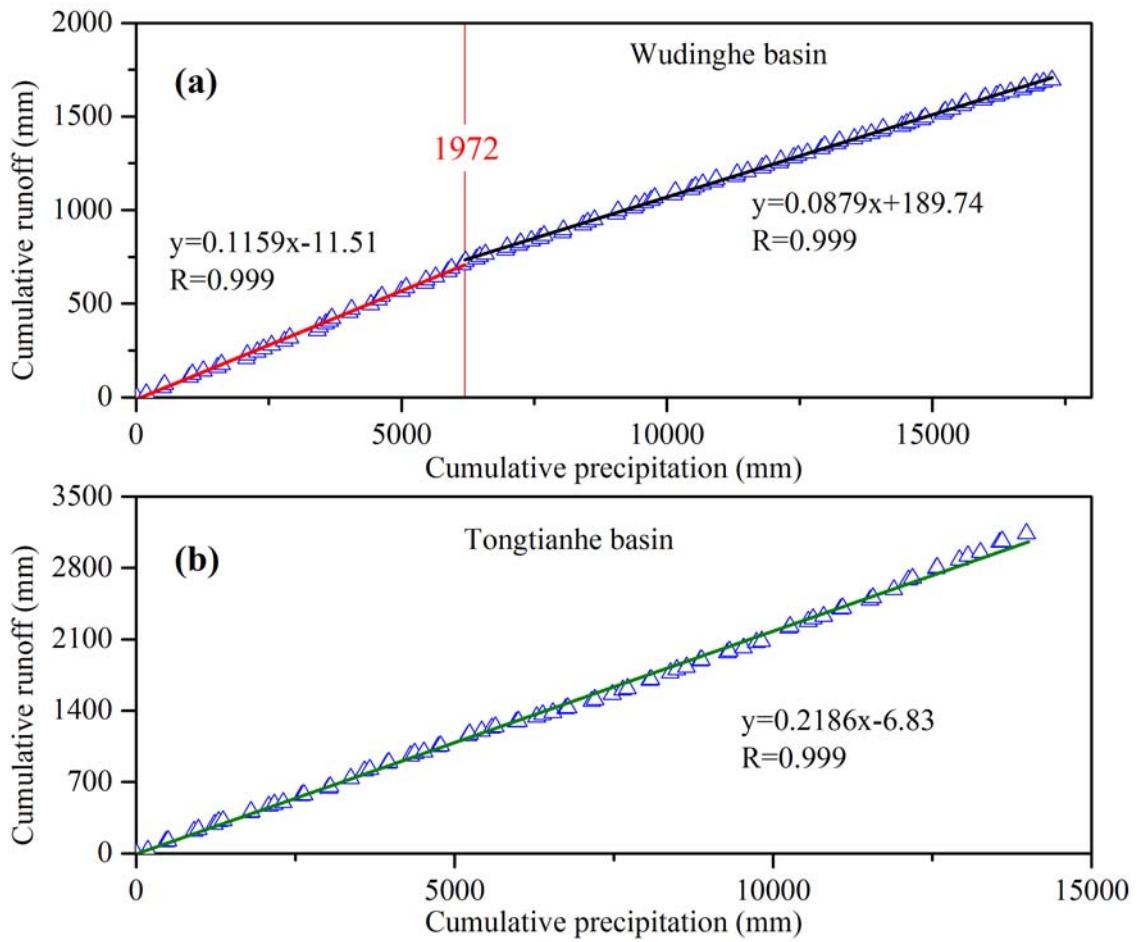
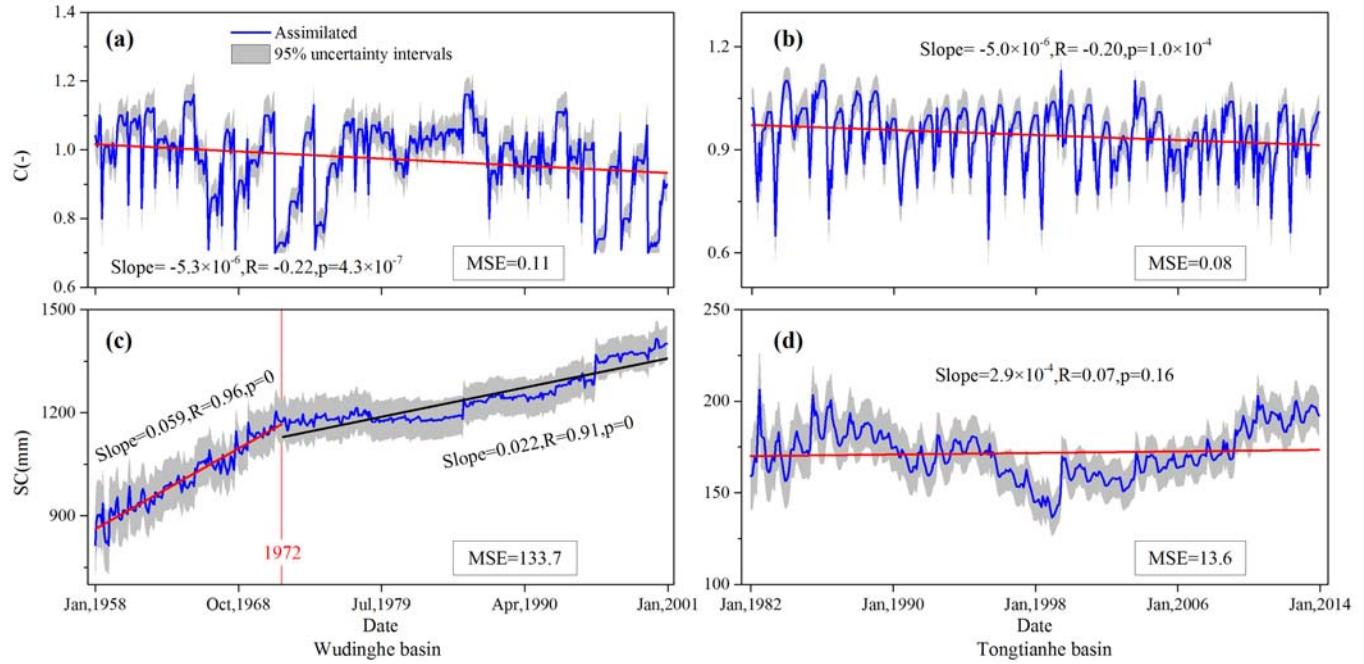
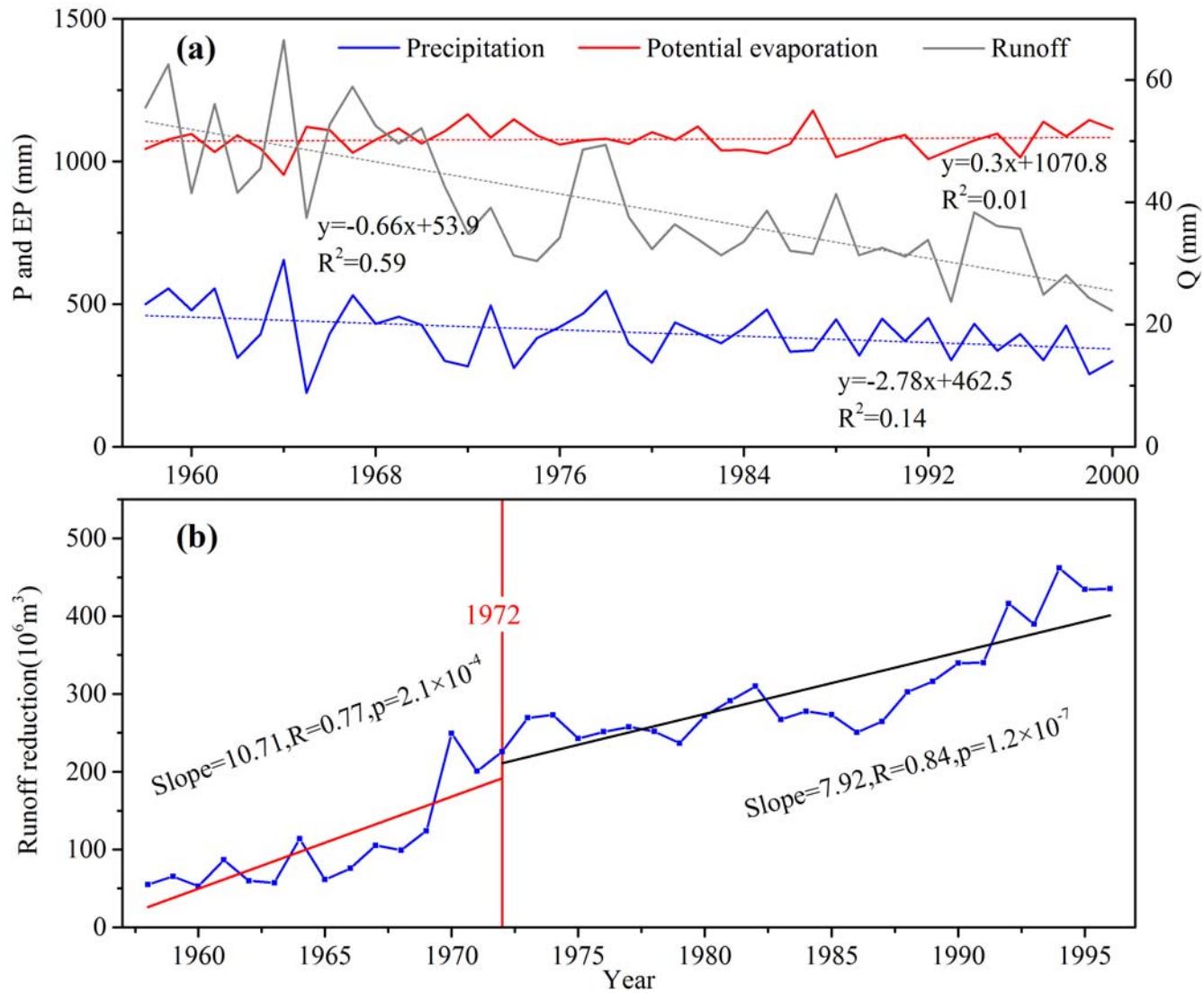


Figure 6. Double mass curve between monthly runoff and precipitation for Wudinghe basin within the period of 1958-2000 (top figure) and Tongtianhe basin within the period of 1982-2013, respectively.



629

630 **Figure 7.** Estimated parameter values of C and SC for (1) Wudinghe basin within the period of 1958-2000, and (2)
 631 Tongtianhe basin within the period of 1982-2013. The grey areas represent the 95% prediction uncertainty intervals.
 632 Note that the MSE denotes the standard deviation of the estimated parameter values.



633
634 **Figure 8.** (a) Yearly precipitation, potential evaporation and runoff in Wudinghe basin during the period of
635 1958-2000; (b) Runoff reduction in Wudinghe basin caused by all the soil and water conservation measures, i.e., land
636 terracing, tree and grass plantation, check dam and reservoir construction for the period of 1958- 1996. Note that the
637 data is from Wang and Fan (2003) and is only available from 1956 to 1996.