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Davos, 16 June 2016 

 

Dear Dr. Ross Woods,  

 

We would like to thank you and each of the reviewers for their helpful comments that have helped to 

improve this work.  

 

Please find our discussion of the revisions we have made in response to the comments from the three 

reviewers in the following pages. You will find specific replies to comments along with references to 

changes made in the manuscript. The manuscript with all changes marked in red is below this reply 

letter. The line numbers given in the specific replies refer to the manuscript included below.  

 

For clarification, the manuscript separately uploaded has slightly different line numbers due to the 

LaTeX journal style template. 

 

Thank you and with best regards,  

Nena Griessinger (on behalf of the authors) 
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Review #1 

 

Comment by reviewer: The study evaluates the value of external snow distributed input into a conceptual hydrologic model 

in alpine basins. Three different settings are compared for 20 basins in Switzerland. The results show that assimilation of 

snow improves the runoff model efficiency in basins with mean basin elevation above 2000 m a.s.l. 

This is a nice compact study, I enjoyed reading it. The manuscript is clearly written, has a good structure and it is within the 

scope of the journal.  

I have only a few minor comments which might be considered for revision. These include: 

1) Introduction: I believe, there are some more relevant studies looking on the benefits of additional snow data in hydrologic 

model calibration or modelling. Please consider to extend the introduction section accordingly. (please see e.g. Udnaes et 

al.,2007, Parajka et al. 2007, 2008, or review in Parajka and Blöschl, 2012) 

 

Answer by authors: Thank you for the suggested literature; we have included one of the references in the introduction. 

 

Changes: Additional literature included in the introduction (see lines 62 to 64). 

 

 

Comment by reviewer: 2) Objectives: Is it the sensitivity (or runoff model efficiency) of conceptual hydrologic model to 

snow inputs, which is the main objective? 

 

Answer by authors: We have clarified our objectives and added text in both, the abstract and the introduction. 

 

Changes: Clarified at the end of the introduction (line 67) and in the abstract (line 12). 

 

 

Comment by reviewer: 3) P.3, l.9-10: “daily average values for the entire study”? Please clarify. 

 

Answer by authors:  For each catchment, we used hourly data aggregated to daily sums to match the temporal resolution of 

the involved models. 

 

Changes: Clarified in Section 2 (see lines 81 to 82). 
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Comment by reviewer: 4) Results: It seems that the way DDF is estimated does affect the performance. Please consider to 

provide/discuss more detailed information about the sinusoidal function and snow density model used. Does it change with 

the elevation of the basins? 

 

Answer by authors: We added more information on the DDF in the model description (see lines 152 to 154) and extended 

the discussion by analyzing the performance of the models with particular regards to differences in the formulation of the 

DDF (see lines 263 to 269).  

 

Changes:  Additional information as mentioned in the answer above. 

 

 

Comment by reviewer: 5) Model efficiency: I would suggest to consider extending results and showing also runoff model 

efficiency (NSE) for the entire calibration/validation periods (not only the selected snowmelt seasons). This might serve as a 

baseline for comparison with other studies, as well as to allow to evaluate the value of improved snowmelt for the following 

seasons (e.g. are the soil moisture states/and hence runoff generation different for the three variants?). 

 

Answer by authors: The main objective of this study is to assess how different methods for simulating the snow cover 

influences runoff predictions. Therefore, we focus on a period spanning 60 days that is strongly affected by snowmelt. We 

agree that improved modeling of snowmelt might also affect runoff model performances later in the year. In response to your 

comment we performed an additional analysis of the leave-one-out experiment for a snowmelt period of 120 instead of 60 

days (see below Figure 1 and Figure 2). This analysis gave similar results with the same relative differences between M1, 

M2, M3, but with a lower overall performance due to the decreasing relevance of snowmelt as the snow-covered area 

declines. We thank you for your suggestion, but given these results, we decided not to add the additional figures, but rather 

include these findings in text-form only. 

 

Changes: Extended discussion in Section 4.4 (lines 316-318). 
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Figure 1: Results of the leave-one-out approach calculated for 120 days of melt. EPF (left panel) and EQ (right panel) for each 

elevation class and snowmelt model. For the individual elevation classes and melt models, the left box plots (darker colors) show 

the results for the calibration period, and the right box plots (lighter colors) show the results for the validation period. The whisker 

boxes represent the median (center line), the interquartile range (25-75th percentile; box outline) and highest/lowest performance 

within the interquartile range +/- 1.5 times of the interquartile range (whiskers). The benchmark performance is denoted by a 

solid red line (upper benchmark) and a dashed red line (lower benchmark), and the latter only displayed if within the range of the 

axis limits. 
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Figure 2: Results of the leave-one-out approach calculated for 120 days of melt for catchments with mean elevation above 2000 

m.a.s.l. Median (solid lines) and interquartile (25-75th percentile, shading) range of EPF (left panel) and EQ (right panel) for 

validation years ordered from snow-poor (index=1) to snow-rich (index=15) years. 

 

 

Comment by reviewer: 6) Figure 2: Please consider to decrease the legend and increase the size of the maps. 

 

Answer by authors: We revised the mentioned figure. 

 

Changes: Adapted Figure 2. 

 

 

Comment by reviewer: 7) Table 1. Please give names to basins. 

 

Answer by authors: We revised the mentioned table. 

 

Changes: Added catchment names in Table 1. 
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Review #2 

 

Comment by reviewer: First,  the  uncertainty  associated  with  snow  depth  observation  data  is  never  mentioned. As I 

understand from the manuscript the collected snow depth data were rather punctual and to me, the mentioned ‘flatness’ of 

the terrain where they were collected does not guaranty their ‘local’ representativity.  Elaboration on that, and precisions as 

to the snow depth measurement protocol, would be welcome. An ancillary aspect also regards the hydrological data, which 

are subject to quite high uncertainties in mountain catchments as a result of frequent shifts in the topography of the river 

beds.  This aspect should at least be discussed. 

 

Answer by authors: Thank you for raising the question about the representativeness of the snow observations, which is very 

relevant. Indeed, flat field observations do not necessarily represent areal mean values over complex terrain as snow 

accumulation rates are generally smaller in steep terrain as compared to rates over flat terrain. In fact, our snow models do 

account for the influence of topography on snow distribution and redistribution in mountainous terrain, which is now 

mentioned in the model description (lines 137 to 147). Furthermore, please note that we have carefully selected our snow 

data to avoid assimilating data from sites that were influenced by wind or frequent sensor failures, or known to 

systematically deviate from representative measurements (lines 87 to 92). Regarding the hydrological data, we rely on the 

plausibility check done by FOEN (Federal Office of Environment), to which we refer (see lines 79 to 82).  

 

Changes: Additional information as mentioned in the answer above.  

 

 

Comment by reviewer: Second, in most calibration and validation sets of simulations, M3 outperforms the upper-

benchmark, which relies on a calibrated degree-day factorn whereas M3 relies on a constant degree-day factor for all 

catchments.  To me this result is quite counter-intuitive and deserves an explanation.  

 

Answer by authors: Thank you for your remark, we agree that this finding may appear counterintuitive and should be 

discussed. However, please note that all snow models (incl. M3) have been particularly trained for an optimal performance 

in the Swiss Alps, i.e. regarding the representation of processes like liquid water content, refreezing, cold content dynamics, 

the partitioning of rain and snow, and redistribution of snow in steep terrain. Furthermore, calibrating HBV for the melt 

season only could result in a DDF that is too high during the snow accumulation period, which would inhibit an accurate 

timing of the meltwater release (c.f. updated Figure 4).  

We have adapted the manuscript accordingly and provided this discussion to the reader. 

 

Changes: Adapted in Section 4.2 (see lines 263 to 269). 
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Comment by reviewer: Finally, a distinct ‘discussion’ part could be inserted in the manuscript :  Section 4.4 after line 11 

could be part of it, as well as elements coming in response to point 2 mentioned above.  Optionally, more elements as to the 

different, converging metrics used could be provided to the reader. The general decrease of (each) model performances with 

elevation could be commented and interpreted, in link with the quality of the interpolations (/extrapolation) of 

meteorological data and sometimes snow observations at these altitudes. 

 

Answer by authors: Thank you for your suggestion, however the setup of the manuscript was discussed with all authors in 

detail and we found the combination of results and discussion within one chapter appropriate for this paper. We would like 

to point out that Reviewer #1 particularly appreciated the current structure of the paper.  The discussion has been extended in 

response to all other comments. 

 

Changes: No changes. 

 

 

Comment by reviewer: The last sentence of the abstract overlooks the fact that with altitude, not only the accurate 

estimation of snowmelt rate gains importance, but also the accurate estimation of SWE, which is one of the hypotheses 

tested by the paper’s set-up. 

 

Answer by authors: We have adapted the last sentence of the abstract accordingly. 

 

Changes: Adapted abstract. 
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Review #3 

 

Comment by reviewer: a) The first concern addresses the interpretation of the results. What is exactly the added value of 

the assimilated data set. Is it a more sophisticated and correct snow melt model or is it rather the added indirect information 

of precipitation amounts fallen in high altitudes where the meteorological station network is not present. My interpretation 

would be the latter, as the differences between model M1 and M2 (e.g. assimilation) are considerable for the highest 

altitudes. I would appreciate a discussion on this question. 

 

Answer by authors: As M1 and M2 differ in the use of the data assimilation algorithm only, and not in the snow melt 

model, the added value is based on the information coming from the point snow observations. Consequently, in both the 

discussion and the conclusions we highlight the value of data assimilation in M1. We have adapted the model description to 

clarify the exact difference between M1 and M2. 

 

Changes: Additional information about M1 and M2 are given in Section 3.2 (see lines 165 to 168). 

 

 

Comment by reviewer: b) A follow up on this issue. The SLF station data are known to overestimate the SWE amounts. 

How was this issue addressed in the study and if not what are the consequences for your model as you may have calibrated 

your model against “differently wrong” data. 

 

Answer by authors: Indeed, flat field observations do not necessarily represent areal mean values over complex terrain, as 

snow accumulation rates are generally smaller in steep terrain as compared to rates over flat terrain. In fact, our snow models 

do account for the influence topography on snow distribution and redistribution in mountainous terrain, which is now 

mentioned in the model description (lines 137 to 147). Furthermore, note that we have carefully selected our snow data to 

avoid assimilating data from sites that were influenced by wind or frequent sensor failures, or known to systematically 

deviate from representative measurements (lines 87 to 92). 

 

Changes: Additional information as mentioned in the answer above. 

 

 

Comment by reviewer: c) The LOO validation produces by nature highly variable performance values. I find it difficult to 

estimate differences between the models based on medians of boxplot. I would rather use a significance test. I recommend to 

show validation boxplots side by side and add notches to them. 
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Answer by authors: Thank you for this suggestion. We have adapted this visualization of our results and added notches to 

the box plots as suggested. 

 

Changes: Updated Figures 5 and 6. 

 

 

Comment by reviewer: d) I found examples on the model performance given in Figure 3 and 4 show some room for 

improvements. Especially in Figure 3 it seems as the threshold for snowmelt was calibrated incorrectly. Is this threshold 

predefined by the external snowmodel? And if so, doesn’t this mean that the snow model itself needs to be updated and 

calibrated against discharge? And I wonder what the upper benchmark model would look like. 

 

Answer by authors: Thank you for catching this mistake. Indeed, in this conceptual figure, the horizontal lines erroneously 

showed the mean runoff instead of 1.5 times the mean runoff. While calculations of EPF were correct, we replaced Figure 3 

with a correct version. 

 

Changes: Updated Figure 3. 

 

 

Comment by reviewer: Page 1 Line 1: Abstract: The first sentence is somehow isolated from the rest of the text. I 

recommend to delete this sentence 

 

Answer by authors: We deleted this sentence. 

 

Changes: Adapted abstract. 

 

 

Comment by reviewer: P2 L1: and the erroneous precipitation input data at higher altitudes? 

 

Answer by authors: Thank you; we have added this additional information. 

 

Changes: Added information plus references in the introduction (see line 36). 
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Comment by reviewer: P3 L 32 “rain input” : which precipitation data set drives the snow model? Also the RHiresD? 

 

Answer by authors: Yes, RhiresD data were used as input to our snow model. Snowmelt and rain input to HBV are 

subsequently provided by the external snow model versions. 

 

Changes: Clarification in Section 3.1 (line 111). 

 

 

Comment by reviewer: P4 L1 ff: Is it correct that all model combinations HBV+M1-M3 as well as upper and lower 

benchmark models are calibrated? This is somehow suggested by Figure 5. In the calibration section I understood that a 

calibration was done for M3, upper and lower benchmark. 

 

Answer by authors: Yes, all combinations were calibrated separately. We now explicitly mention this in the text. 

 

Changes: Sentence added in Section 3.1 (see lines 127 to 128). 

 

 

Comment by reviewer: P5 L 2-3 what do you mean by “optimal interpolation approach”. What magnitude of summed 

corrections can be found? 

 

Answer by authors: Thank you for your question. Optimal interpolation, sometimes also referred to as statistical 

interpolation, is a technical term for a data assimilation technique. See Magnusson et al. (2014) for further details, including 

the magnitude of summed corrections. 

 

Changes: No changes. 

 

References: 

Magnusson, J., Gustafsson, D., Hüsler, F., and Jonas, T.: Assimilation of point SWE data into a distributed snow cover 

model comparing two contrasting methods. Water Resour. Res., 50(10), 7816-7835, doi: 10.1002/2014WR015302, 2014. 

 

 

Comment by reviewer: P5 L12: . . ... , but the RHiresD precipitation data set. Correct? 
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Answer by authors: Yes, also here RhiresD was used as input to the snow model. 

 

Changes: No changes. 

 

 

Comment by reviewer: P7 L12ff and Figure4: However, the differences between M1-M3 are rather small for the snowmelt 

season as also indicated by the differences in NSE 

 

Answer by authors: Yes, we agree that the differences are small in some instances. 

 

Changes: A respective comment was added in Section 4.1 (see line 237). 

 

 

Comment by reviewer: P7 L27: I wonder if the differences of the LOO validation are significant given the relatively large 

spread. (see general comments) 

 

Answer by authors: We changed the style of the boxplots for clarification (see answer to your general comment above) 

 

Changes: Updated Figures 5 and 6. 

 

 

Comment by reviewer: P7 L31 and Figure 5: - The benchmark lines are only the median of their respective boxplots? What 

is the spread of benchmark models? - The only difference between the benchmark model and M3 is a predefined DDF in M3 

(cp.P5, L17-18)? Or are there further differences? If not, it is unexpected to see M3 to reach higher performance values then 

the upper benchmark. - Why is the performance of the benchmark model so weak in comparison to the other models 

especially in the lowest catchment class where snow does not really play a role? 

 

Answer by authors: Thank you for your comment. We agree that finding instances where even M3 outperforms the upper 

benchmark model may appear counter-intuitive. Note however that all snow models (incl. M3) have been particularly trained 

for an optimal performance in the Swiss Alps, i.e. regarding the representation of processes like liquid water content, 

refreezing, cold content dynamics, the partitioning of rain and snow, and redistribution of snow in steep terrain. Further, 
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calibrating HBV for the melt season only could result in a DDF that is too high during the snow accumulation period, which 

would inhibit an accurate timing of the meltwater release (c.f. updated Figure 4). 

We have adapted the manuscript and included this discussion in the revised version. 

 

Changes: Added information in 4.2 (see lines 263 to 269). 

 

 

Comment by reviewer: P8 L17: Please specify snow-rich: extreme snow years do not necessary result in an increased flood 

risks. To my understanding, largest snow melt contribution to runoff is expected if snow-covered area is largest and snow 

depth is widely insignificant (if SWE is above a certain minimum). 

 

Answer by authors: Thank you, we have clarified this issue in the revised manuscript. 

 

Changes: Sentence added in Section 4.2 (see lines 285 to 286). 

 

 

Comment by reviewer: P8 L30: in snow rich years the extent of snow in the lowlands is presumable larger then in snow-

poor years. Accordingly, I also expected an effect of snow-rich years in the lowlands? Can you comment on this? 

 

Answer by authors: We did not analyze the performances for single years in the lowlands. At low elevations however, a 

large fraction of the snow-covered area can melt out in less than a week, even for snow-rich years. Only as you move to 

higher catchments, you increase the correspondence between the mid-winter snow mass and the duration of the main melt 

season. Since our data analyses were performed over an evaluation period of 2 months duration, it is expected to not find a 

pronounced difference in model performances between snow-rich and snow-poor years for low-elevation catchments, as the 

time scales at which these differences matter at low elevation is much smaller than the evaluation period. 

 

Changes: No changes. 

 

 

Comment by reviewer: Figure 1: The blue lines on black are nearly invisible. Please change colors. 

 

Answer by authors: We changed the colors from blue to white, which we hope improves the presentation. 
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Changes: Changed colors in Figure 1. 

 

 

Comment by reviewer: Figure 2: Instead of showing one specific year, I would rather see a mean snow melt sum. In 

addition, maps showing differences between the models would increase readability. 

 

Answer by authors: Thank you for your recommendation. We discussed showing either cumulative sums or differences 

between the models with all authors in detail and we found this visualization appropriate for this paper. 

 

Changes: No changes. 

 

 

Comment by reviewer: Figure 3: Please indicate which model version is represented by the red dashed line. 

 

Answer by authors: Figure 3 serves only as graphical explanation of how to calculate EPF, therefore the model version 

used here is not of importance. 

 

Changes: No changes. 

 

 

Comment by reviewer: Figure 4: Please add upper benchmark model  

 

Answer by authors: Thank you for this suggestion, we adapted Figure 4 accordingly. 

 

Changes: Added upper benchmark model in Figure 4. 

 

 

Comment by reviewer: Table 1: Instead of numbers I would prefer to see the names of the catchments 

 

Answer by authors: We adapted the mentioned table as requested. 

 

Changes: Added catchment names in Table 1. 
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Abstract. In alpine catchments, snowmelt often is a major contribution to runoff. Therefore, modeling snow processes is 10 

important when concerned with flood or drought forecasting, reservoir operation and inland waterway management. In this 

study, we address the question of how sensitive hydrological models are to the representation of snow cover dynamics and 

whether the performance of a hydrological model can be enhanced by integrating data from a dedicated external snow 

monitoring system. As a framework for our tests we used the hydrological model HBV (in the version HBV light), which has 

been applied in many hydrological studies and is also in use for operational purposes. While HBV originally follows a 15 

temperature index approach with time-invariant calibrated degree-day factors to represent snowmelt, in this study the HBV 

model was modified to use snowmelt time series from an external and spatially distributed snow model as model input. The 

external snow model integrates three-dimensional sequential assimilation of snow monitoring data with a snowmelt model, 

which is also based on the temperature-index approach but uses a time-variant degree-day factor. The following three 

variations of this external snow model were applied: a) the full model with assimilation of observational snow data from a 20 

dense monitoring network, b) the same snow model but with data assimilation switched off, c) a downgraded version of the 

same snow model representing snowmelt with a time-invariant degree-day factor. Model runs were conducted for 20 

catchments at different elevations within Switzerland for 15 years. Our results show that at low and mid elevations the 

performance of the runoff simulations did not vary considerably with the snow model version chosen. At higher elevations, 

however, best performance in terms of simulated runoff was obtained when using the snowmelt time series from the snow 25 

model, which utilized data assimilation. This was especially true for snow-rich years. These findings suggest that with 

increasing elevation and correspondingly increased contribution of snowmelt to runoff, the accurate estimation of SWE and 

snowmelt rates gains importance. 

1 Introduction 

Snowmelt provides a dominant contribution to runoff and groundwater storages in mountainous regions. In such areas, 30 

modeling snow processes is crucial for resource management as well as for flood and drought forecasting. Snow accumulates 

and acts as temporary storage of water that is released as soon as snowmelt occurs. Since erroneous simulations of snow 
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accumulation can bias the amount and timing of simulated snowmelt, accurately modeling both processes is important for 

runoff predictions. Problems for modelers may occur due to the great heterogeneity and variability of these processes, but 

also due to the limited availability of necessary observational data (Adam et al., 2009, Viviroli et al., 2004, Viviroli et al., 35 

2011), including erroneous precipitation input data at higher altitudes (Wiesinger, 1993). Additionally, computational 

resources often constrain operational applications as timely model outputs are required. To cope with these challenges, many 

hydrological models make use of the temperature-index (TI) melt method instead of the energy balance approach, which has 

higher input data requirements and also is computationally more demanding (Vehviläinen, 1992, Kumar et al., 2013).  

TI-models can result in sufficient model performance if evaluated at a daily resolution and at the catchment scale (Lang and 40 

Braun, 1990, Hock, 2003), provided they use a reasonable parameterization (such as degree-day factor (DDF) and threshold 

temperature). The basic concept of TI-models is to use air temperature as a proxy for the three energy sources that contribute 

to snowmelt: incoming longwave radiation, absorbed global radiation, and sensible heat flux (Ohmura, 2001). The methods 

differ in their number of parameters such as threshold values to parameterize snowfall and melt, ranging from 

implementations using 2 to 5, as in HBV (Bergström, 1976), to 11 (Irannezhad et al., 2015) parameters. Inappropriate 45 

calibration of parameters will fail to accurately describe accumulation and melt rates and lead to a biased duration of the 

snow season and incorrect melt-out dates (Seibert, 2003). Identifying catchment characteristics that impact hydrological 

responses (i.e. geology, soil types, or land use types) is also critical (Fontaine et al., 2002).  

Snow models of high complexity have been developed for a great variety of applications and their development is still 

ongoing. For avalanche research or snow studies on a small scale, simulating detailed processes within the snowpack is of 50 

great interest and importance. Otherwise, for operational purposes, which require short computation time and therefore 

cannot represent snowpack processes at great detail, different approaches are used to simulate snow accumulation and melt. 

Recently, various methods to assimilate observational snow data for snow cover models have been developed. At the point 

scale, model improvements due to assimilation of snow water equivalent data from observations were already shown 

(Magnusson et al., 2014).  55 

At the catchment scale and for operational purposes, several studies evaluated the effect of additional information from snow 

observations with different approaches. Franz et al. (2014) evaluated data assimilation based on a small number of ground-

based observation sites within a hindcasting framework. In contrast to predictions of runoff under low flow conditions, the 

overall skill of the forecasts could not be significantly improved. Joerg-Hess et al. (2015) improved snow water and runoff 

volume predictions by replacing simulated snow water equivalent at model initialization with data from measurements. 60 

Integrating snow data sets within the calibration procedures is an additional method to improve hydrological models as 

shown by Finger et al. (2015). A multiple objective calibration based on daily runoff data and snow depth data converted to 

spatially snow cover data, as introduced by Parajka et al. (2007), could improve snow cover simulations, but not runoff 

simulations compared to a single objective calibration based on daily runoff data only. Andreadis et al. (2006) showed that 

the assimilation of remotely sensed snow cover area data did not significantly improve the model performance during 65 

accumulation, while for the snowmelt season small improvements were found. The authors concluded that assimilating snow 
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water equivalent data from observations might be a more successful approach. Therefore, as the main objective of this study, 

we evaluated the sensitivity of a conceptual runoff model (conceptual in terms of the linear reservoir concept) to the external 

input of snowmelt data from three different snow models of different complexities.  Particularly, we examined the benefit of 

snow water equivalent data assimilation for hydrological applications in mountainous regions. 70 

2 Data 

To cover a wide range of elevations and different climatic regions, for this study we chose 20 catchments spread over 

Switzerland. All of them were at most minimally affected by human activities, such as water regulation or abstraction. A 

further crucial selection criterion was the availability of the required data. Since, especially at high elevations, the runoff 

regime of many catchments in Switzerland is affected by man-made installations, the number of possible catchments was 75 

highly limited.  

Catchments analyzed in this study varied in size from 17 to 473 km
2
 and the mean elevations of these catchments ranged 

between 560 and 2656 m.a.s.l. (Table 1 and Figure 1). We grouped the catchments for our analysis based on their mean 

elevation into three elevation classes: below 1000 m.a.s.l., 1000 to 2000 m.a.s.l., and above 2000 m.a.s.l.. Runoff data 

measured at the catchment outlets of these 20 catchments was provided and checked for plausibility by FOEN (Federal 80 

Office of the Environment). According to the temporal resolution of the model output, we aggregated the hourly runoff 

records into daily sums. 

For the data assimilation for the full snow model used in this study we considered daily snow depth measurements from both 

manual and automatic monitoring stations (see red stars in Figure 1 for locations). All stations used were part of either the 

MeteoSwiss (Federal Office of Meteorology and Climatology) or the SLF (WSL Institute for Snow and Avalanche 85 

Research) snow station networks in Switzerland, covering elevations between 210 and 2950 m.a.s.l. and located on open, flat 

terrain. Out of approximately 600 available stations, only 320 were used after a careful selection process to avoid sites that 

were influenced by wind or frequent sensor failures, or known to systematically deviate from representative measurements.  

Daily data from the morning measurements between 01 September 1998 and 31 August 2013 was carefully checked for 

missing values or erroneous readings and corrected where necessary. Those values were replaced using a stochastic gap 90 

filling model that accounts for data from the same station before and after the gap, as well as for data from neighbouring 

stations at similar elevations.  

Temperature data was obtained from 220 stations and interpolated using an inverse distance weighting approach as described 

in Magnusson et al. (2014), which considers both, horizontal and vertical distances between measurement stations and 

interpolated grid cells. A variable weighting factor was used to determine the influence of horizontally near but vertically 95 

distant stations. The resolution of the resulting temperature grid dataset was 1 km by 1 km. 

Precipitation data was also required as a gridded input dataset. We used a daily product (RhiresD) with a spatial resolution of 

2 km by 2 km available from MeteoSwiss. The product is based on a dense precipitation gauge network with approximately 
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500 stations within Switzerland. Methodological details are described in Frei and Schär (1998), Frei et al. (2006) and Isotta 

et al. (2013). 100 

3 Methods 

3.1 Hydrological Model 

The hydrological model HBV (Bergström 1976, 1992, 1995; Lindström et al., 1997) in the version HBV light (Seibert and 

Vis, 2012) was used to simulate runoff at the 20 selected catchments. HBV requires a time series of precipitation, air 

temperature, and potential evaporation to simulate runoff for a specific catchment. Potential evaporation was calculated 105 

following the methods of Priestly and Taylor (1972). In the HBV snow routine, precipitation is expected to be solid below a 

certain temperature threshold and multiplied by a correction factor to account for possible undercatch and to compensate for 

the missing snow interception. Snowmelt is usually calculated using the same threshold temperature and a DDF. Up to a 

certain fraction, liquid water can be stored in the snowpack and refreezes if temperatures are below the threshold 

temperature. In our study, however, we disabled this snow routine of the HBV model and replaced snowmelt as well as rain 110 

input with data coming both from the external snow model. Groundwater recharge and actual evaporation were simulated in 

a soil routine depending on the actual water storage. A response routine consisting of three linear reservoirs and a routing 

routine using a triangular weighting function follow. Runoff data observed at the outlet of all catchments considered in this 

study was used for calibration and validation of the model. More details are available in Seibert and Vis (2012). 

To evaluate the performance of the hydrological model in response to the input from different variants of the external 115 

snowmelt model, we focused our analysis on the main melt period, denoted below as snowmelt season. Although onset and 

duration of the snowmelt season vary from year to year, we have determined a fixed snowmelt season for each individual 

catchment (Table 1), based on the average timing of first snowmelt runoff in the spring and the average duration until 75% 

of melt-out. 

Two approaches were chosen to split the available runoff data into separate datasets for calibration and validation. The first 120 

approach was to use all years for calibration except one, which was used for validation. This so called leave-one-out 

procedure was repeated so that each year was used for validation once. The second approach was differential split-sampling 

(Klemeš, 1986), where the snow-poor and normal years were used for calibration and the snow-rich years were used for 

validation. This separation into different snow year groups was done individually for each catchment.  

To optimize the parameter set of the hydrological model for each catchment and each of the input datasets within the 125 

calibration period, we ran a genetic calibration algorithm as described in Seibert (2000) with 5000 model runs and 1000 runs 

for local optimization. This was done individually for each of the above model configurations, as well as for the benchmark 

model. As the objective function, we used the Nash-Sufcliffe model efficiency (Nash Sutcliffe, 1970) computed for the 

catchment-specific snowmelt season.  
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3.2 Snow Model 130 

The external snow model framework, which we used in this study instead of the snow routine built in the HBV model, also 

simulates snowmelt by a TI approach but in addition allows for integration of observational snow data using a data 

assimilation scheme. While some details on the external snow model framework are given below, a full description of model 

and data assimilation methods is available in Magnusson et al. (2014). We applied three versions of this model, denoted M1 

to M3. Version M1 includes the full model and data assimilation scheme (an approach unavailable in the internal snow 135 

routine of HBV), whereas M2 an M3 are downgraded versions of M1 as described below.  

Several characteristics are common to all model versions described below. First, a threshold temperature differentiates 

whether precipitation falls as snowfall or rain. However, the models allow for mixed precipitation in a range close to the 

threshold temperature (see Equation 10 and the corresponding description in Magnusson et al. (2014)). Second, fractional 

snow-covered area (SCF) is parameterized using modeled snow depth and terrain parameters that were derived from a 25m 140 

digital elevation model according to Helbig et al. (2015). Third, all three model versions allow the snow cover to hold a 

fraction of liquid water. Fourth, all model versions consider the influence of topography on snow distribution and 

redistribution in mountainous terrain. Slope- and aspect-dependent correction functions were trained using a set of high 

resolution snow depth maps from airborne LiDAR acquisitions in the European Alps as presented in Grünewald et al. 

(2015), and applied at a subgrid 25m spatial resolution. This procedure ensured accurate inference of areal mean snow 145 

depths from snow and precipitation measurements on flat field sites. In the following section, we describe the three versions 

of the snow model used in this study: 

 

- TI snowmelt model with data assimilation and time-varying DDF (M1): 

This model is the same as described in detail in Magnusson et al. (2014). Using an elaborated TI approach, daily snowmelt at 150 

each grid cell was calculated if a certain threshold temperature is exceeded. The DDF defines the possible melt rate per day 

and per degree temperature above the threshold. For M1, the DDF varied as a function of season between a minimal [1.0 mm 

°C
-1

 day
-1

] and maximal [4.5 mm °C
-1

 day
-1

] value using a sinusoidal function (see Equation 12 in Magnusson (2014)). The 

DDF is independent of elevation. For the data assimilation, the daily measured snow depth data at all stations were first 

converted to snow water equivalents (SWE) using a snow density model, which is based on the methods of Jonas et al. 155 

(2009) and Martinec and Rango (1991). Second, by applying an optimal interpolation approach, the SWE data was used to 

correct the computed snowfall amounts. Finally, the simulated melt rates and model state variables (SWE and liquid water 

content) were updated using the ensemble Kalman filter with the same SWE data. Both the optimal interpolation scheme and 

the ensemble Kalman filter were setup using spatially correlated error statistics. With such an approach, often called three-

dimensional data assimilation, the point snow observations influences the gridded simulation results even at locations 160 

lacking observations. For more details about the model, and the data assimilation method in particular, see Magnusson et al. 

(2014). 
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- TI snowmelt model with time-varying DDF without data assimilation (M2): 

In this version, the same elaborated TI approach as in M1 was applied to simulate snow accumulation and melt at each grid 165 

cell based on the same input data grids as in M1. Also, the DDF seasonal variations are equal to those in M1. The only 

difference concerns the data assimilation procedures which were switched off in M2, such that observed SWE data were not 

used to update the initial estimates on snow accumulation and melt rates. 

 

- TI snowmelt model using a constant DDF without data assimilation (M3): 170 

This version differs from M2 with respect to the DDF. Here the DDF does not show seasonal variations but is assumed to be 

constant over season. The average DDF of 2.5 mm °C
-1

 day
-1

 was chosen, which is a good compromise if used for the full 

winter season. For comparison only, complementary analyses were performed with the constant DDF of 4.0 mm °C
-1

 day
-1

, 

which is more appropriate if used for a late snowmelt season only. Note that M3 represent the type of snow routine used in 

HBV light, except for that DDF is a model parameter determined by calibration in HBV, whereas it is a pre-defined value in 175 

M3. 

 

Replacing a TI model with another TI model, and not with an energy-balance or snowpack-physics model, may appear 

unusual at first glance. However, if concerned with conceptual hydrological modeling at a daily time scale, the TI model 

framework used here constituted an ideal testing environment. To provide daily snowmelt rates, the dynamic data 180 

assimilation framework within M1 represents current state-of-the art methodology in operational snow hydrological 

monitoring. Since it accounts for measured snow depletion rates at hundreds of monitoring sites, it provides the best possible 

input to the hydrological model. Even with data assimilation switched off (M2), if validated against snow lysimeter data at 

daily time steps, the performance is almost on par with the output of top-notch energy balance models (Magnusson et al., 

2015). Only the concept of using a constant DDF (M3) could result in a severely downgraded performance, as already seen 185 

by Lang and Braun (1990). Hence, the triplet [M1, M2, M3] provides a ranked set of input options, which allows an 

evaluation of the sensitivity of conceptual hydrological modeling on the input from different types of snow models. This 

ultimately was the purpose of the study, rather than testing the performance of a specific runoff model (i.e., HBV). 

As mentioned above, HBV originally uses a TI snowmelt routine, which is similar to our external model version M3. 

However, as part of HBV light, the constant DDF is a free parameter to be optimized during calibration of the snowmelt 190 

season. Hence, to provide a benchmark for our performance tests, we also ran the HBV model with the original snow routine 

switched on. We used these runs as an upper benchmark, since the HBV snow routine was tuned by calibration to allow the 

maximum possible performance of the runoff model for each individual catchment. In contrast, we created a lower 

benchmark by assuming all precipitation to be rain, i.e., a no-snow-model scenario. These two benchmarks allowed scaling 

of the performances, which were achieved when using M1 to M3 to provide input to HBV. 195 
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All model variants were run for the whole study period on a daily time step at 1 km spatial resolution. During the snowmelt 

season, the three snow model methods created individual spatial pattern of simulated snowmelt. As an illustrative example, 

the cumulative sums of snowmelt between 01 February 2007 and 30 April 2007 are shown in Figure 2. As expected for the 

snowmelt season, M2 yielded higher amounts of snowmelt compared to M3 due to differences in the DDF. In this particular 

year, the observations used for the assimilation did not support the high melt rates as predicted by M2, resulting in M1 to 200 

calculate lesser amounts of snowmelt. 

3.3 Validation methods 

Timing of snowmelt onset and of runoff events due to snowmelt affects the availability of water resources and influences 

flooding and droughts (Semmens et al., 2013). Therefore, it is crucial to simulate and to evaluate the timing of streamflow 

accurately when comparing snowmelt models. Several efficiency criteria are used in the literature for evaluating 205 

hydrological models and should be selected carefully depending on the aim of the validation (Krause et al., 2005). To assess 

the performance of the hydrological model in combination with the input options from our set of snow models, we chose the 

following two criteria.  

First, since we were interested in how precise single peak flow events due to snowmelt could be simulated when integrating 

data from the different snow model approaches, we used the “Peak flow Efficiency for snowmelt season” (EPF). Figure 3 210 

illustrates the procedure to calculate this measure. Observed peak flow events during the snowmelt season (yellow period in 

Figure 3) that exceed a certain threshold (defined as 1.5 times of the mean runoff during snowmelt season; horizontal line in 

Figure 3) were picked and denoted as 𝑄𝑝𝑒𝑎𝑘_𝑜𝑏𝑠_𝑖  (blue circles in Figure 3). The maximum simulated runoff in a time 

window of one day before and after each of the n observed peak flow events were taken as simulated reference values 

𝑄𝑝𝑒𝑎𝑘_𝑠𝑖𝑚_𝑖 (red stars in Figure 3). These values did not necessarily have to be local peaks or greater than a certain threshold 215 

(Eq. (1); Seibert, 2003).  

𝐸𝑃𝐹 = 1 −
∑ |𝑄𝑝𝑒𝑎𝑘_𝑜𝑏𝑠_𝑖−𝑄𝑝𝑒𝑎𝑘_𝑠𝑖𝑚_𝑖|
𝑛
𝑖=1

∑ 𝑄𝑝𝑒𝑎𝑘_𝑜𝑏𝑠_𝑖
𝑛
𝑖=1

 ,         (1) 

Additionally, the frequently used Nash-Sutcliffe efficiency of runoff EQ (Eq. 2) according to Nash and Sutcliffe (1970), 

which is also supposed to be sensitive to peak flow events (Krause et al., 2005) was chosen and applied to the defined 

snowmelt season. 220 

𝐸𝑄 = 1 −
∑ (𝑄𝑜𝑏𝑠_𝑖−𝑄𝑠𝑖𝑚_𝑖)

2𝑚
𝑖=1

∑ (𝑄𝑜𝑏𝑠_𝑖−𝑚𝑒𝑎𝑛(𝑄𝑜𝑏𝑠))
2𝑚

𝑖=1

 ,         (2) 

where i represents all (1 to m) days within the snowmelt season and 𝑄𝑜𝑏𝑠_𝑖 and 𝑄𝑠𝑖𝑚_𝑖 are observed and simulated runoff at 

day i, respectively.  This was also used as the objective function for the genetic calibration algorithm (GAP-optimization) 

within the hydrological model framework. 
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4 Results and Discussion 225 

Both efficiency metrics were calculated for a) each catchment and b) each of the two calibration experiments. The 

performance statistics are discussed separately for each of the three groups of catchments depending on mean elevation. 

4.1 Example of runoff simulation for a representative catchment 

To look for differences between the three snow model methods, individual catchments and years were selected. Representing 

a catchment at high elevations, results for the Dischma catchment (EZG 2327, gauge Davos Kriegsmatte) with a mean 230 

elevation of 2349 m.a.s.l. are shown in Figure 4. The yellow background displays the catchment-specific snowmelt season 

during which the bulk of the snowmelt typically occurs. The blue and grey lines at top of the graph indicate the snowmelt 

input to the hydrological model from M1 excluding and including rain, respectively, in this example for the record-high 

snow year 1999. The observed runoff is shown by the black curve, while the different colored curves indicate the simulations 

with M1, M2 and M3. The curves as well as the performance metrics achieved by the differential split-sample experiment 235 

demonstrate that for this catchment, the M1 model as input to the hydrological framework provided the best runoff 

simulations, even though the differences are small. Note however, that in this example M1 particularly outperforms the other 

models in the month of July, which is outside the standard evaluation period. 

4.2 Model performance across elevation classes: leave-one-out sample 

First, we used the leave-one-out approach to calibrate the hydrological model. The leave-one-out approach represents a 240 

typical scenario in operational conceptual runoff modeling, i.e. to use as much data as possible for calibration and to apply 

the resulting parameter values to the current season. 

Results grouped according to mean catchment height are presented below (Figure 5). Using this calibration procedure, for 

catchments with mean elevation below 1000 m.a.s.l. the hydrological model showed good results independent of which snow 

model was used as input to the hydrological model framework. Even without using a snow model at all (i.e., the lower 245 

benchmark), the runoff model resulted in lower but still positive performance values, indicating that the choice of snow 

model within a conceptual runoff modeling framework is of less importance when dealing with catchments at lower 

elevations. 

Similarly for catchments with mean elevation between 1000 and 2000 m.a.s.l. the differences between the three model runs 

were small. While EPF levels were maintained relative to our assessment for catchments below 1000 m.a.s.l., they were 250 

separated more clearly from the benchmark model runs, which dropped in performance. EQ values, on the other hand, 

decreased for all the M1, M2, M3 and the benchmark model runs. 

Only for the highest elevation class did the results based on M1 significantly outperform the other model runs, and even 

reached better EPF values than most simulations at lower elevation classes. Even the model runs based on M2 performed 

better than those based on M3. This shows that the benefit of better snowmelt input data for conceptual runoff modeling only 255 
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seems to pay off if considering catchments above a certain elevation. At lower elevation, differences between the model 

input options could be mitigated by way of the calibration procedure. 

Further, while results based on M1 showed a relatively constant performance across all elevation classes in both EPF and EQ, 

this was not the case for results based on M2 and M3, which deteriorated with increasing elevation. 

Looking at all elevation classes, the median performance of the M1 runs was always higher than the upper benchmark. This 260 

was also mostly the case for M2 and M3. This result shows that all versions of the external snow model performed 

unexpectedly well in combination with the hydrological framework even though they were not included in the calibration 

procedure. Finding instances where even M3 (which uses a prescribed DDF) outperforms the upper benchmark model 

(which relies on a calibrated DDF) may appear counter-intuitive. However, note that [M1, M2, M3] have been particularly 

trained for an optimal performance in the Swiss Alps, e.g., regarding the representation of processes like liquid water 265 

content, refreezing, cold content dynamics, the partitioning of rain and snow, and redistribution of snow in steep terrain. 

Further, calibrating HBV for the melt season only could result in a DDF that is too high during the snow accumulation 

period, which would inhibit an accurate timing of the meltwater release (c.f. Figure 4). On the contrary, M3 features a more 

moderate DDF of 2.5 mm °C
-1 

day
-1

, allowing for a more balanced performance over the entire snow season.  

The above results demonstrate a benefit of using an advanced snowmelt modeling system in the context of conceptual 270 

hydrological modeling, even if the benefit seems comparably small and restricted to catchments above a certain elevation. 

Other studies that evaluated the influence of integrating snow water equivalent data into hydrological models showed similar 

results (Finger et al., 2015, Joerg-Hess et al., 2015). Only a few studies have used direct assimilation of ground based snow 

data. Due to limited availability of ground observations, assimilating remotely sensed snow data is a more common practice 

but requires further inversion methods, which is quite challenging to implement and induces additional uncertainties 275 

(Andreadis et al., 2006). Several studies used satellite observations of snow cover extent in different assimilation schemes to 

update snow models. Clark et al. (2006) as well as Thirel et al. (2013) could slightly improve runoff predictions by 

assimilation of snow covered area using the Ensemble Kalman filter and the particle assimilation filter, respectively. 

As in the above studies, we focused on a catchment specific snowmelt season and used two performance measures that 

evaluated the ability of the models to capture peakflow events, among other characteristics of the hydrograph. Simulating 280 

such events is of great importance, especially for operational flood forecasting purposes. While the performance of well-

calibrated models may be adequate independent of model complexity (Hock, 2003, Magnusson et al., 2015), we are 

particularly interested in the model performance in extreme years, when the snowmelt contribution greatly increases flood 

risks. This is why in the second set of modeling experiments we singled out snow-rich years as validation dataset to generate 

both, a more challenging and more relevant test scenario. For the snow-rich years, we selected the 6 years with the highest 285 

cumulative snowmelt individually for each catchment. 
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4.3 Model performance across elevation classes: differential split-sample 

For the differential split-sample approach, snow-rich years were used to validate the runoff models. As expected, the analysis 

using the differential split-sample approach revealed similar performance patterns compared to the leave-one-out approach, 

but with increased differences between model runs (Figure 6). As seen before, at low and mid elevation classes the 290 

differences between the three model versions as well as between calibration and validation were comparably small. The 

median values of efficiencies for each model version ranged between 0.7 and 0.8 (EPF) respectively 0.75 and 0.85 (EQ).  As 

seen before, at high elevations, model results based on M1 were superior (significantly for EQ) to those based on M2, which 

in turn outperformed the model runs based on M3. However, the differences between the three runs were considerably larger 

than those seen with the leave-one-out approach. Another notable difference between both calibration methods was that the 295 

differential split-sample approach led to significantly higher EQ for validation years compared to calibration years, while the 

opposite was the case when using the leave-one-out approach. Both findings strongly suggest that the benefit of advanced 

snowmelt input data for conceptual runoff modeling is particularly valuable in situations that feature a strong snowmelt 

component (high elevation, snow-rich years). Both EPF and EQ for M1-based model runs show an exceptional performance at 

high elevation for validation years, which highlights the value of snow data assimilation when concerned with forecasting 300 

snowmelt related floods. 

An additional analysis was performed with M3 using a DDF of 4.0 mm °C
-1

 day
-1

 (results not included in figures). This is a 

typical value found in the literature for high elevations with melting conditions later in the season (Martinec et al., 1983). As 

expected, compared to the standard DDF of 2.5 mm °C
-1

 day
-1

 in M3, the additional model runs resulted in slightly better 

performance metrics at high elevations with later onset of snowmelt (catchments above 2000 m.a.s.l.), but considerably 305 

worse performance in all other model runs. 

4.4 Model performance for high elevation catchments: leave-one-out sample 

The validation of the differential split-sample experiment showed that the three external snow models provided the best 

runoff simulations for snow-rich years, specifically for catchments with a mean elevation of above 2000 m.a.s.l.. In a further 

analysis, we ordered the single validation years individually by catchment for the leave-one-out approach from snow-poor to 310 

snow-rich based on peak SWE. This procedure allowed testing of whether there was a trend in the runoff performance 

metrics associated with the snow amount of single years. Such a trend was indeed evident, as seen in Figure 7. Independent 

of the snow model used, the best results were achieved when validating the model performance during snow-rich years 

regarding both EPF and EQ.  

The performance measures discussed above were computed for a catchment-specific pre-defined fix snowmelt season, which 315 

was based on the typical timing of observed snowmelt runoff. Extending the snowmelt season to 120 days gave similar 

results (data not shown) with the same relative differences between M1, M2, M3 but with a lower overall performance due to 

the decreasing relevance of snowmelt as the snow-covered area declines. While our approach allowed us to focus on the 
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sensitivity of runoff modeling to different approaches for estimating snowmelt, it has four main implications to the 

interpretation of the results. First, EQ values tend to be lower if calculated over a short period, and values may not be 320 

comparable to EQ data from assessment of multi-year or multi-season datasets, in particular if analyzing daily runoff data 

that do not encompass diurnal variations. Second, within a pre-defined season, the variation of a time-varying DDF as used 

in M2 is small. Especially at low elevations and early in the year, the DDF of M2 and M3 do not differ much and therefore 

produces similar runoff simulations with comparable performance. According to Lang and Braun (1990) and Magnusson et 

al. (2015), a clearer benefit of using a flexible instead of a fixed DDF would have been expected if used within a longer time 325 

window. Third, at low elevations snowmelt may occur sporadically and not necessarily within a pre-defined season. At high 

elevations, it is also possible that the main melt does not occur within the catchment-specific snowmelt season due to longer 

melt-out duration of extremely snow-rich years. Consequently, if snowmelt occurred outside of the validation period, it 

would not affect the performance statistics. This may have partly suppressed differences between the three different snow 

models. Finally, note that seasonal EPF and EQ statistics are two metrics out of several possible evaluation criteria. While we 330 

also tested other metrics, those were not further integrated to the discussion, given that the results were similar compared to 

the performance data presented above.  

5 Conclusions 

Based on daily runoff data measured over a period of 15 years at 20 catchments in Switzerland, we evaluated the sensitivity 

of a conceptual hydrological modeling framework to snowmelt input from snow models of different complexity. The most 335 

complex snow model integrated three-dimensional sequential assimilation of snow monitoring data with a snowmelt model 

based on the temperature index approach. In contrast, the simplest snow model represented snowmelt with a constant degree-

day factor, and did not include any data assimilation. The snow models were combined with the HBV light hydrological 

model (Seibert and Vis, 2012) to produce a runoff record. The performance of the HBV runs based on snowmelt data from 

the snow models was assessed by way of performance metrics evaluated during the snowmelt season only.  340 

Our results showed that advanced methods to calculate snowmelt as input to conceptual runoff models only improved model 

performance if considering snow-dominated catchments. At low elevations, differences between the model input options 

were found to be minor. For higher elevation catchments, however, snowmelt input from the data assimilation framework 

consistently provided the best results. Further analysis demonstrated considerably higher performance metrics for snow-rich 

years as compared to years with little snow. In contrast to earlier studies, which have shown that assimilation of snow 345 

covered area only has limited impact on runoff simulations, our results indicate that the assimilation of snow water 

equivalent data can have a larger benefit for accurate stream flow predictions. This finding highlights the value of choosing 

appropriate snow data assimilation methods, and perhaps even more important, selecting the correct variable for assimilation 

when concerned with operational forecasting of snowmelt related floods. 

 350 
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Table 1. Characteristics of 20 Swiss catchments in this study. 

Number Station name Area [km2] Min 

elevation 

[m.a.s.l.] 

Max 

elevation 

[m.a.s.l.] 

Mean 

elevation 

[m.a.s.l.] 

Elevation 

class 

Begin 

snowmelt 

[month-day] 

End 

snowmelt 

[month-day] 

EZG 2202 Ergolz - Liestal 276 305 1087 577 1 01-01 03-01 

EZG 2126 Murg - Wängi 77 501 911 640 1 01-14 03-14 

EZG 2034 Broye - Payerne, Caserne 

d'aviation 

416 450 1402 721 1 01-14 03-14 

EZG 2343 Langeten - Huttwil, 

Häberenbad 

61 592 1032 757 1 01-14 03-14 

EZG 2374 Necker - Mogelsberg, 

Aachsäge 

89 649 1359 948 1 02-14 04-14 

EZG 2321 Cassarate - Pregassona 74 286 1809 954 1 02-14 04-14 

EZG 2603 Ilfis - Langnau 188 699 1695 1040 2 02-21 04-21 

EZG 2634 Kleine Emme - Emmen 473 440 2261 1044 2 02-21 04-21 

EZG 2179 Sense - Thörishaus, 

Sensematt 

355 609 2028 1072 2 03-01 05-01 

EZG 2609 Alp - Einsiedeln 82 845 1577 1096 2 02-21 04-21 

EZG 2409 Emme - Eggiwil, 

Heidbüel 

127 770 2007 1296 2 02-21 04-21 

EZG 2300 Minster - Euthal, Rüti 59 918 1994 1345 2 03-07 05-07 

EZG 2203 Grande Eau - Aigle 130 579 2830 1546 2 03-14 05-14 

EZG 2605 Verzasca - Lavertezzo, 

Campiòi 

188 546 2590 1656 2 03-14 05-14 

EZG 2276 Grosstalbach - Isenthal 43 931 2682 1794 2 03-14 05-14 

EZG 2232 Allenbach - Adelboden 31 1360 2587 1907 2 03-14 05-14 

EZG 2366 Poschiavino - La Rösa 17 1920 3005 2316 3 04-14 06-14 

EZG 2304 Ova dal Fuorn - Zernez, 

Punt la Drossa 

56 1797 2903 2337 3 04-14 06-14 

EZG 2327 Dischmabach - Davos, 

Kriegsmatte 

42 1772 2869 2349 3 04-14 06-14 

EZG 2256 Rosegbach - Pontresina 67 1833 3721 2686 3 05-01 07-01 
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Figure 1: Locations of snow observation stations (red stars) and 20 studied catchments (white border lines) in 450 

Switzerland. 
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Figure 2: Cumulative snowmelt during the snowmelt season 2007 as calculated by the snow model method M1 (full 

model with data assimilation, left), M2 (full model without data assimilation, middle), and M3 (simplified model, 455 

right). The sums between the three model methods differ depending on the use of observational snow data 

assimilation and the use of different DDFs. 
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Figure 3: Graphical explanation of how to calculate EPF. The yellow background shows a catchment-specific 

snowmelt season window within which the efficiency criteria were computed. The horizontal line indicates the 460 

threshold of 1.5 times the mean observed runoff (blue line) above which measured peak flow events (blue circles) are 

detected. Red stars present corresponding events of the simulated runoff (dashed red line). See Sect. 3.3 for details. 
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Figure 4: Observed and modeled runoff for the Dischma catchment for year 1999, as well as water input from 

snowmelt and rain modeled with method M1. The upper benchmark model BM in red. 465 
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Figure 5: Results of the leave-one-out approach. EPF (left panel) and EQ (right panel) for each elevation class and 

snowmelt model. For the individual elevation classes and melt models, the left box plots (darker colors) show the 

results for the calibration period, and the right box plots (lighter colors) show the results for the validation period. 

The whisker boxes represent the median (center line), the interquartile range (25-75th percentile; box outline) and 470 

highest/lowest performance within the interquartile range +/- 1.5 times of the interquartile range (whiskers). The 

benchmark performance is denoted by a solid red line (upper benchmark) and a dashed red line (lower benchmark), 

and the latter only displayed if within the range of the axis limits. 
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Figure 6: Results of the differential split-sample approach. EPF (left panel) and EQ (right panel) for each elevation 475 

class and snowmelt model. For the individual elevation classes and melt models, the left box plots (darker colors) 

show the results for the calibration period, and the right box plots (lighter colors) show the results for the validation 

period. The whisker boxes represent the median (center line), the interquartile range (25-75th percentile; box outline) 

and highest/lowest performance within the interquartile range +/- 1.5 times of the interquartile range (whiskers). The 

benchmark performance is denoted by a solid red line (upper benchmark) and a dashed red line (lower benchmark), 480 

and the latter only displayed if within the range of the axis limits. 
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Figure 7: Results of the leave-one-out approach for catchments with mean elevation above 2000 m.a.s.l. Median (solid 

lines) and interquartile (25-75th percentile, shading) range of EPF (left panel) and EQ (right panel) for validation years 

ordered from snow-poor (index=1) to snow-rich (index=15) years. 485 

 

 


