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Abstract. Sensors and sensor networks play an important role in decision-making related to water quality, 8 

operational streamflow forecasting, flood early warning systems and other areas. In this paper we review a number 9 

of existing applications and analyse a variety of evaluation and design procedures for sensor networks with respect 10 

to various criteria. Most of the existing approaches focus on maximising the observability and information content 11 

of a variable of interest. From the context of hydrological modelling only a few studies use the performance of the 12 

hydrological simulation in terms of output discharge as a design criteria. In addition to the review, we propose a 13 

framework for classifying the existing design methods, and a generalised procedure for an optimal network design 14 

in the context of rainfall-runoff hydrological modelling.  15 

 16 

Keywords: Sensor network design, Surface hydrological modelling, Precipitation, Discharge, Review, 17 

Geostatistics, Information Theory, Expert Recommendations 18 

1 Introduction 19 

Optimal design of sensor networks is a key procedure for improved water management as it provides information 20 

about the states of water systems. As the processes taking place in catchments are complex and the measurements 21 

are limited, the design of sensor networks is (and has been) a relevant topic since the beginning of the International 22 

Hydrological decade (1965 – 1974, TNO 1986) until today (Pham and Tsai 2016). During this period, the scientific 23 

community has not yet arrived to an agreement about a unified methodology for sensor network design due to the 24 

diversity of cases, criteria, assumptions, and limitations. This is evident from the range of existing reviews on 25 

hydrometric network design, such as those presented by WMO (1972), TNO (1986), Nemec and Askew (1986), 26 

Knapp and Marcus (2003), Pryce (2004), NRC (2004) and Mishra and Coulibaly (2009).  27 

 28 

The design of rainfall and streamflow sensor networks depends to a large extent on the scale of the processes to 29 

be monitored and the objectives to address (TNO 1986, Loucks et al. 2005). Therefore, the temporal and spatial 30 

resolution of measurements are driven by the measurement objectives. For example, information for long-term 31 

planning does not require the same level of temporal resolution as for operational hydrology (WMO 2009, 32 

Dent 2012). On the global and country scale, sensor  networks are commonly used for climate studies and trend 33 

detection (Cihlar et al. 2000, Grabs and Thomas 2002, WMO 2009, Environment Canada 2010, Marsh 2010, 34 

Whitfield et al. 2012), and denoted as National Climate Reference Networks (WMO 2009). On a regional or 35 

catchment-scale, applications require careful selection of monitoring stations, since water resources planning and 36 
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management decisions, such as operational hydrology and water allocation, require high temporal and spatial 37 

resolution data (Dent 2012).  38 

 39 

This paper presents a review of methods for optimal design and evaluation of precipitation and discharge sensor 40 

networks at catchment scale, proposes a framework for classifying the design methods, and suggests a generalised 41 

framework for optimal network design for surface hydrological modelling. It is possible to extend this framework 42 

to other variables in the hydrological cycle, since optimal sensor location problems are similar. The framework 43 

here introduced is part of the results of the FP7 WeSenseIt project (www.wesenseit.eu), and the validation of the 44 

proposed methodology will be presented in subsequent publications. This review does not consider in-situ 45 

installation requirements or recommendations, so the reader is referred to WMO (2008a) for the relevant and 46 

widely accepted guidelines, and to Dent (2012) for current issues in practice. 47 

 48 

The structure of this paper is as follows: first, a classification of sensor network design approaches according to 49 

the explicit use of measurements and models is presented, including a review of existing studies. Next, a second 50 

way of classification is suggested, which is based on the classes of methods for sensor network analysis, including 51 

statistics, Information Theory, case-specific recommendations and others. Then, based on the reviewed literature, 52 

an aggregation of approaches and classes is presented, identifying potential opportunities for improvement. 53 

Finally, a general procedure for the optimal design of sensor networks is proposed, followed by conclusions and 54 

recommendations. 55 

1.1 Main principles of network design 56 

The design of a sensor network use the same concepts as experimental design (Kiefer and Wolfowitz 1959, Fisher 57 

1974). The design should ensure that the data is sufficient and representative, and can be used to derive the 58 

conclusions required from the measurements. (EPA 2002), or to assess the water status of a river system (EC 2000). 59 

In the context of rainfall-runoff hydrological modelling, provide the sufficient data for accurate simulation and 60 

forecasting of discharge and water levels, at stations of interest. 61 

 62 

 The objectives of the sensor network design have been categorised into two groups, the optimality alphabet 63 

(Fedorov 1972, Box 1982, Fedorov and Hackl 1997, Pukelsheim 2006, Montgomery 2012), which uses different 64 

letters to name different design criteria, and the Bayesian framework (Chaloner en Verdinelli 1995, DasGupta 65 

1996). The alphabetic design is based on the linearization of models, optimising particular criteria of the 66 

information matrix (Fedorov and Hackl 1997). Bayesian methods are centred on principles of decision making 67 

under uncertainty, in which it seeks to maximise the gain in Information (Shannon 1948) between the prior and 68 

posterior distributions of parameters, inputs or outputs (Lindley 1956, Chaloner and Verdinelli 1995). Among the 69 

most used alphabetic objectives are the D-optimal, which minimises the area of the uncertainty ellipsoids around 70 

the model parameters; and G-optimal, which minimises the variance of the predicted variable, which can also be 71 

used as objective functions in the Bayesian design. 72 

 73 

These general objectives are indirectly addressed in the literature of optimisation of hydrometric sensor networks, 74 

achieved by the use of several functional alternatives. These approaches do not consider block experimental design 75 
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(Kirk 2009), due to the incapacity to replicate initial conditions in a non-controlled environment, such as natural 76 

processes. 77 

 78 

On the practical end, the design of a sensor network should start with the institutional setup, purposes, objectives 79 

and priorities of the network (Loucks et al. 2005, WMO 2008b). From the technical point of view, an optimal 80 

measurement strategy requires the identification of the process, for which data is required (Casman et al. 1988, 81 

Dent 2012). Considering that neither the information objectives are unique and consistent, nor the characterisation 82 

of the processes is complete, the re-evaluation of the sensor network design should occur on a regular basis. 83 

Therefore, the sensor network should be re-evaluated when either the studied process, information needs, 84 

information use, or the modelling objectives change. Consequently, regulations regarding monitoring activities are 85 

not often strict in terms of station density, but in the suitability of data to provide information about the status of 86 

the water system (EC 2000, EPA 2002). 87 

 88 

The design of meteorological and hydrometric sensor networks should consider at least three aspects. First, it 89 

should meet various objectives that are sometimes conflicting (Loucks et al. 2005, Kollat et al. 2011). Second, it 90 

should be robust under the events of failure of one or more measurement stations (Kotecha et al. 2008). Third, it 91 

must take into account different purposes and users with different temporal and spatial scales (Singh et al. 1986). 92 

Therefore, the design of an optimal sensor network is a multi-objective problem (Alfonso et al. 2010b). 93 

 94 

The sensor network design can also be seen from an economic perspective (Loucks et al. 2005). In most cases, the 95 

main limitation in the deployment of sensor networks is related to costs, being sometimes the main driver of 96 

decisions related to reduction of the monitoring networks. The valuation between the costs of the sensor networks 97 

and the cost of having insufficient information is not usually considered, because the assessment of the 98 

consequences of decisions is made a-posteriori (Loucks et al. 2005, Alfonso et al. 2016). In most studies, it is seen 99 

that the improvement of information content metrics (e.g., entropy, uncertainty reduction, among others) is 100 

marginal as the number of extra sensors increases (Pardo-Iguzquiza 1998, Dong et al. 2006, Ridolfi et al. 2011), 101 

and thus the selection of the adequate number of sensors can be based on a threshold in the rate of increment in 102 

the objective function. However, in many practical applications the number of available sensors may be defined 103 

by budget limitations. Therefore, the optimal number of sensors in a network is strictly case-specific (WMO 2008). 104 

1.2 Scenarios for sensor network design: Augmentation, relocation and reduction 105 

Scenarios for designing of sensor networks may be categorised into three groups: augmentation, relocation and 106 

reduction (NRC 2004, Mishra and Coulibaly 2009, Barca et al. 2015). Augmentation refers to the deployment of 107 

at least one additional sensor in the network, whereas Reduction refers to the opposite case, where at least one 108 

sensor is removed from the original network. Relocation is about repositioning the existing network nodes. 109 

 110 

The lack of data usually drives the sensor network augmentation, whereas economic limitations usually push for 111 

reduction. These costs of the sensor network usually relate to the deployment of physical sensors in the field, 112 

transmission, maintenance and continuous validation of data (WMO 2008). 113 

 114 
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Augmentation and relocation problems are fundamentally similar, as they require estimation of the measured 115 

variable at ungauged locations. For this purpose, statistical models of the measured variable are often employed. 116 

For example, Rodriguez-Iturbe and Mejia (1974) described rainfall regarding its correlation structure in time and 117 

space; Pardo-Igúzquiza (1998) expressed areal averages of rainfall events with ordinary Kriging estimation; 118 

Chacón-Hurtado et al. (2009) represented rainfall fields using block Kriging. In contrast, for network reduction, 119 

the analysis is driven by what-if scenarios, as the measurements become available. Dong et al. (2005) employ this 120 

approach to re-evaluate the efficiency of a river basin network based on the results of hydrological modelling. 121 

  122 

In principle, augmentation and relocation aim to increase the performance of the network (Pardo-Igúzquiza 1998, 123 

Nowak et al. 2010). In reduction, on the contrary, network performance is usually decreased. The driver for these 124 

decisions is usually related to factors such as operation and maintenance costs (Moss et al. 1982, Dong et al. 2005). 125 

1.3 Role of measurements in rainfall-runoff modelling 126 

The typical data flow for hydrological rainfall-runoff modelling can be summarised as in Fig. 1. For discharge 127 

simulation, precipitation and evapotranspiration are the most common data requirements (WMO 2008, Beven 128 

2012), while discharge data is commonly employed for model calibration, correction and update (Sun et al. 2015). 129 

Data-driven hydrological models may use measured discharge as input variables as well (e.g., Solomatine and Xue 130 

2004, Shrestha and Solomatine 2006). Methods for updating of hydrological models have been widely used in 131 

discharge forecasting as data assimilation, using the model error to update the model states. In this way, more 132 

accurate discharge estimates can be obtained (Liu et al. 2012, Lahoz and Schneider 2014). In real-time error 133 

correction schemes, typically, a data-driven model of the error is employed which may require as input any of the 134 

mentioned variables (Xiong and O'Connor 2002, Solomatine and Ostfeld 2008). 135 

 136 

In a conceptual way, we can express the quantification of discharge at a given station as (Solomatine and Wagener 137 

2011): 138 

 139 

 

 
ܳ = ෠ܳ(ݔ, (ߠ +  (1 ) ߝ

 140 

Where Q is the recorded discharge, Q̂ (x,θ) represents a hydrological model, which is function of measured 141 

variables (mainly precipitation and discharge, x) and the model parameters (θ). ε is the simulation error, which is 142 

ideally independent of the model, but in practice is conditioned by it. Considering that neither the measurements 143 

are perfect, nor the model unbiased, the variance of the estimates is proportional to the uncertainty in the model 144 

inputs, σ² (x), and the uncertainty in model parameters, σ² (θ): 145 

 146 

 

 
ଶߪ ቀ ෠ܳ(ݔ, ቁ(ߠ ,(ݔ)ଶߪ ߙ  (2 ) (ߠ)ଶߪ
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2 Classification of approaches for sensor network evaluation 147 

There is a variety of approaches for the evaluation of sensor networks, ranging from theoretically sound to more 148 

pragmatic. In this section, we provide a general classification of these approaches, and more details of each method 149 

are given in the next section. 150 

 151 

Although most of the approaches for the design of sensor networks make use of data, some rely solely on 152 

experience and recommendations. Therefore, a first tier in the proposed classification consists of recognising both 153 

measurement-based and measurement-free approaches (Fig. 2). The former make use of the measured data to 154 

evaluate the performance of the network (Tarboton et al. 1987, Anctil et al. 2006), while the latter use other data 155 

sources (Moss and Tasker 1991), such as topography and land use.  156 

2.1 Measurement-based evaluation 157 

The measurement-based approach can be furtherly subdivided into model-free and model-based approaches 158 

(Fig. 2), depending on the use of modelling results in the performance metric.  159 

2.1.1 Model-free performance evaluation 160 

In model-free approaches, water systems and the external processes that drive their behaviour are observed through 161 

existing measurements, without the use of catchment models. Then, metrics about amount and quality of 162 

information in space and time are evaluated with regards to the management objectives and the decisions to be 163 

made in the system. Some performance metrics in this category are joint entropy (Krstanovic and Singh 1992), 164 

Information Transfer (Yang and Burn 1994), interpolation variance (Pardo-Igúzquiza 1998, Cheng et al. 2007) 165 

and autocorrelation (Moss and Karlinger 1974), among others. Fig. 3 presents the flowchart for the case when 166 

precipitation and discharge, as main drivers of catchment hydrology (WMO 2008) are considered, in model-free 167 

network evaluation. 168 

 169 

Fundamentally, the model-free approach aims to minimise the variance of the measured variable, therefore, (and 170 

in theory) minimising the variance in the estimation (equation 3). However, a design that is optimal for estimation 171 

is not necessarily also optimal for prediction (Chaloner and Verdinelli 1995). 172 

 173 

 

 
min ଶߪ ቀ ෠ܳ(ݔ, ቁ(ߠ ߙ min൫ߪଶ(ݔ)൯ ( 3) 

 174 

Application of model-free approaches can be found in Krstanovic and Singh (1992), Nowak et al. (2010), Li et al. 175 

(2012). Model-free evaluations are suitable for sensor network design aiming mainly to water resources planning, 176 

in which diverse water interests must be balanced. Due to the lack of a quantitative performance metric that relates 177 

simulated discharge, this kind of evaluations do not necessarily improve rainfall-runoff simulations.  178 

2.1.2 Model-based performance evaluation 179 

In the model-based approach, the performance of sensor networks is carried out using a catchment model (Dong 180 

et al. 2005, Xu et al. 2013), In this case, measurements of precipitation are used to simulate discharge, which is 181 
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compared to the discharge measurements at specific locations. Therefore, any metric of the modelling error could 182 

be used to evaluate the performance of the network. Fig. 4 presents a generic model-based approach for evaluating 183 

sensor networks. 184 

 185 

In the model-based design of sensor networks, it is assumed that the model structure and parameters are adequate. 186 

Therefore, it is possible to identify a set of measurements (x) which minimise the modelling error as. 187 

 188 

 

 
min (߳)ଶߪ ߙ  min൫หܳ − ෠ܳ(ݔ,  ห൯ ( 4)(ߠ

 189 

The need for the catchment model and possible high computational efforts for multiple model runs are some 190 

disadvantages of this approach. The computational load is especially critical in case of complex distributed models. 191 

It is worth mentioning particular model error metrics (Nash and Sutcliffe 1970, Gupta et al. 2009) may qualify the 192 

network by its ability to capture certain hydrological processes (Bennet et al. 2013), affecting the network 193 

evaluation.  194 

2.2 Measurement-free evaluation   195 

As it is seen from its name, this approach does not require the previous collection of data of the measured variable 196 

to evaluate the sensor network performance. The evaluation of sensor networks is based on either experience or 197 

physical characteristics of the area such as land use, slope or geology. In this group of methods, the following can 198 

be mentioned: case-specific recommendations (Bleasdale 1965, Wahl and Crippen 1984, Karasseff 1986, WMO 199 

2008a) and physiographic components (Tasker 1986, Laize 2004). This approach is the first step towards any 200 

sensor network development (Bleasdale 1965, Moss et al. 1982, Nemec and Askew 1986, Karasseff 1986).  201 

3 Classification of methods for sensor network evaluation 202 

In this section, we classify the methods used to quantify the performance of the sensor networks based on the 203 

mathematical apparatus used to evaluate the network performance. These methods can be broadly categorised in 204 

statistics-based, information theory-based, expert recommendations, and others.  205 

3.1 Statistics-based methods 206 

Statistics-based methods refer to methods where the performance of the network is evaluated with statistical 207 

uncertainty metrics of the measured or simulated variable. These methods aim to minimise either interpolation 208 

variance (Rodriguez-Iturbe and Mejia 1974, Bastin et al. 1984, Bastin and Gevers 1985, Pardo-Iguzquiza 1998, 209 

Bonaccorso 2003), cross-correlation (Maddock 1974, Moss and Karlinger 1974, Tasker 1986), or model error 210 

(Dong et al. 2005, Xu et al. 2015).  211 

3.1.1 Interpolation variance (geostatistical)  212 

Methods to evaluate sensor networks considering a reduction in the interpolation variance assume that for a 213 

network to be optimal, the measured variable should be as certain as possible in the domain of the problem. To 214 

achieve this, a stochastic interpolation model that provides uncertainty metrics is required. Geostatistical methods 215 
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such as Kriging (Journel and Huijbregts 1978, Cressie 1993), or Copula interpolation (Bárdossy 2006) have an 216 

explicit estimation of the interpolation error. This characteristic makes it suitable to identify areas with expected 217 

poor interpolation results, (Bastin et al. 1984, Pardo-Igúzquiza 1998, Grimes et al. 1999, Bonaccorso et al. 2003, 218 

Cheng et al. 2007, Nowak et al. 2009, 2010, Shafiei et al. 2013). 219 

 220 

In the case of Kriging, the optimal estimation of a variable at ungauged locations is assumed to be a linear 221 

combination of the measurements, with a Gaussian distributed probability distribution function. Under the ordinary 222 

Kriging formulation, the variance in the estimation (σ2) of a variable at location (u) over a catchment is: 223 

 224 

 

 
(ݑ)ଶߪ = ଴ܥ − ෍ (ݑ)ఈߣ − ఈݑ)ܥ − ݊(ݑ

ఈୀଵ  ( 5) 

 225 

Where C0 refers to the variance of the random field, λα are the Kriging weights for the station α at the ungauged 226 

location u. ݑ)ܥఈ −  is the covariance between the station α at the location uα and the interpolation target at the 227 (ݑ

location u. n represents the total number of stations in the neighbourhood of u and used in the interpolation. 228 

 229 

Therefore, as an objective function the optimal sensor network is such that the total Kriging variance (TKV) is 230 

minimum: 231 

 232 

 

 
ܸܭܶ =  ෍ ୙(ݑ)ଶߪ

௨ୀଵ  ( 6) 

 233 

Where U is the total number of discrete interpolation targets in the catchment or domain of the problem. 234 

 235 

Bastin and Gevers (1984) optimised a precipitation sensor network at pre-defined locations to estimate the average 236 

precipitation for a given catchment. Their selection of the optimal sensor location consisted of minimising the 237 

normalised uncertainty by reducing the network. The main drawback of their approach is that the network can only 238 

be reduced and not augmented. Similar approaches have also been used by Rodriguez-Iturbe and Mejia (1974), 239 

Bogárdi et al. 1985, and Morrissey et al. (1995). Pardo-Igúzquiza (1998) advanced this formulation by removing 240 

the pre-defined set of locations (allowing augmentation). Instead, rain gauges were allowed to be placed anywhere 241 

in the catchment and its surroundings. A simulated annealing algorithm is used to search for the find the optimal 242 

set of sensors to minimise the interpolation uncertainty. 243 

 244 

Copula interpolation is a geostatistical alternative to Kriging for the modelling of spatially distributed processes 245 

(Bárdossy 2006, Bárdossy and Li 2008, Bárdossy and Pegram 2009). As a geostatistical model, the copula provides 246 

metrics of the interpolation uncertainty, considering not only the location of the stations and the model 247 

parameterisation but also the value of the observations. Li et al. (2011) use the concept of copula to provide a 248 

framework for the design of a monitoring network for groundwater parameter estimation, using a utility function, 249 

related to the cost of a given decision with the available information. 250 

 251 



 

8 

 

In the case of copula, the full conditional probability distribution function of the variable is interpolated. As such, 252 

the interpolation uncertainty depends on the confidence interval, measured values, parameterisation of the copula 253 

and the relative position of the sensors in the domain of the catchment. More details on the formulation of copula-254 

based design can be found in Bárdossy and Li (2008). 255 

 256 

Cheng et al. (2007), as well as Shafiei et al. (2013), recognised that the temporal resolution of the measurements 257 

affects the definition of optimality in minimum interpolation variance methods. This change in the spatial 258 

correlation structure occurs due to more correlated precipitation data between stations in coarser sampling 259 

resolutions (Ciach and Krajewski 2006). For this purpose, the sensor network has to be split into two parts, a base 260 

network and non-base sensors. The former should remain in the same position for long periods, to characterise 261 

longer fluctuation phenomena, based on the definition of a minimum threshold for an area with acceptable 262 

accuracy. The latter is relocated to improve the accuracy of the whole system, and should be relocated as they do 263 

not provide a significant contribution to the monitoring objective. 264 

 265 

Recent efforts have used minimum interpolation variance approaches to consider the non-stationarity assumption 266 

of most geostatistical applications in sensor network design (Chacon-Hurtado et al. 2014). To this end, changes in 267 

the precipitation pattern and its effect on the uncertainty estimation were considered during the development of a 268 

rainfall event.  269 

 270 

3.1.2 Cross-correlation  271 

The objective of minimum cross-correlation methods is to avoid placing sensors at sites that may produce 272 

redundant information. Cross-correlation was suggested by Maddock (1974) for sensor network reduction, as a 273 

way to identify redundant sensors. In this scope, the objective function can be written as: 274 

 275 

 

 
൫ߩ ௜ܺ, ௝ܺ൯ =  ෍ ෍ ,௜ݔ)ݒ݋ܿ ௡(௝ݔ)ߪ(௜ݔ)ߪ(௝ݔ

௝ୀ௜ାଵ
௡

௜ୀଵ   ( 7) 

 276 

Where cov is the covariance function between a pair of stations (i, j), and σ is the standard deviation of the 277 

observations. 278 

 279 

Stedinger and Tasker (1985) introduced the method called Network Analysis Using Generalized Least Squares 280 

(NAUGLS), which assesses the parameters of a regression model for daily discharge simulation based on the 281 

physiographic characteristics of a catchment (Stedinger and Tasker 1985, Tasker 1986, Moss and Tasker 1991). 282 

The method builds a Generalised-Least-Square (GLS) covariance matrix of regression errors to correlate flow 283 

records and to consider flow records of different length, so the sampling mean squared error can be expressed as: 284 

 285 

ܧܵܯܵ  =  1݊ ෍ ௜்ܺ (்ܺΛିଵ ܺ)ିଵ ௜ܺ௝
௜ୀଵ  ( 8) 

 286 
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Where X [k, w] is the matrix of the (k) basin characteristics in a window of size w at discharge measuring site i. Λ 287 

is the GLS Weighting matrix, using a set of n gauges (Tasker 1986) 288 

 289 

A comparable method was proposed by Burn and Goulter (1991), who used a correlation metric to cluster similar 290 

stations. Vivekanandan and Jagtap (2012) proposed an alternative for the location of discharge sensors in a 291 

recurrent approach, in which the most redundant stations were removed, and the most informative stations 292 

remained using the Cooks’ D metrics, a measure of how the spatial regression model at a particular site is affected 293 

by removing another station. The result of these type of sensors is sparse, as the redundancy of two sensors 294 

increases with the inverse of the distance between them (Mishra and Coulibaly 2009). 295 

3.1.3 Model output error  296 

These methods assume that the optimal sensor network configuration is such that satisfy a particular modelling 297 

purpose, e.g. a minimum error in simulated discharge. Considering this, the design of a sensor network should be 298 

such that minimises the difference between the simulated and recorded variable: 299 

 300 

 

 
min ݂൫หܳ − ෠ܳ(ݔ,  ห൯  ( 9)(ߠ

 301 

Where f is a metric that summarises the vector error such as Bias, Root Mean Squared Error (RMSE), or Nash-302 

Sutcliffe Efficiency (NSE); Q is the measurements of the simulated variable, and Q̂ is the simulation results using 303 

inputs x, and parameters θ. Bias measures the mean deviation of the results between the observations (Q) and 304 

simulation results (Q̂) for t pairs of observations and simulation results: 305 

 306 

 

 
ݏܽ݅ܤ =  1݊ ෍൫ ෠ܳ௜ − ܳ௜൯௧

௜ୀଵ  ( 10) 

 307 

This metric theoretically varies from minus infinity to infinity, and its optimal value is equal to zero. The root 308 

mean square error (RMSE) measures the standard deviation of the residuals as: 309 

 310 

 

 
ܧܵܯܴ = ඩ1݊ ෍൫ ෠ܳ௜ − ܳ௜൯ଶ௧

௜ୀଵ  ( 11) 

 311 

The RMSE can vary then from zero to infinity, where zero represents a perfect fit between model results and 312 

observations. As RMSE is a statistical moment of the residuals, the result is a magnitude rather than a score. 313 

Therefore, benchmarking between different case studies is not trivial. To overcome this issue, Nash and Sutcliffe 314 

(1970) proposed a score (also known as coefficient of determination) based on the ratio of the model results in 315 

variance over the observation variance as: 316 

 317 
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ܧܵܰ = 1 − ∑ ൫ ෠ܳ௜ − ܳ௜൯ଶ௧௜ୀଵ∑ (ܳ௜ − തܳ௜)ଶ௧௜ୀଵ  ( 12) 

 318 

In which Q are the measurements, Q̂ are the model results and Q̅ is the average of the recorded series. 319 

 320 

Theoretically, this score varies from minus infinity to one. However, its practical range lies between zero and one. 321 

On the one hand, an NSE equal to zero indicates that the model has the same explanatory capabilities that the mean 322 

of the observations. On the other end, a value of one represents a perfect fit between model results and observations. 323 

Model output error formulations have been used to identify the most convenient set of sensors that provide the 324 

best model performance (Tarboton et al. 1987) to propose measurement strategies regarding the number of gauges 325 

and sampling frequency. 326 

 327 

Another application is provided by Dong et al. (2005) who proposed to evaluate the rainfall network using a 328 

lumped HBV model. They found that the model performance does not necessarily improve when extra rain gauges 329 

are placed. A similar approach was presented by Xu et al. (2013) who evaluated the effect of diverse rain gauge 330 

locations on runoff simulation using a similar hydrological model. It was found that rain gauge locations could 331 

have a significant impact and suggest that a gauge density less than 0.4 stations per 1000 km2 can negatively affect 332 

the model performance. 333 

 334 

Anctil et al. (2006) aimed at improving lumped neural network rainfall-runoff forecasting models through mean 335 

areal rainfall optimisation, and concluded that different combinations of sensors lead to noticeable streamflow 336 

forecasting improvements. Studies in other fields have also used this method. For example, Melles et al. (2009, 337 

2011), obtained optimal monitoring designs for radiation monitoring networks, which minimise the prediction 338 

error of mean annual background radiation. The main drawback of this approach is that multiple error metrics are 339 

considered, as specific objectives relate to different processes 340 

 341 

3.2 Information Theory-based methods 342 

The use of Information Theory (Shannon 1948) in the design of sensor networks for environmental monitoring is 343 

based on Communication Theory, which studies the problem of transmitting signals from a source to a receiver 344 

throughout a noisy medium. Information Theory provides the possibility of estimating probability distribution 345 

functions in the presence of partial information with the less biassed estimation (Jaynes 1957). Some of its concepts 346 

are analogous to statistics concepts, and therefore similarities between entropy and uncertainty, as mutual 347 

information and correlation, etc., can be found (Cover and Thomas 2005, Alfonso 2010, Singh 2013).  348 

 349 

Information Theory-based methods for designing sensor networks mainly consider the maximisation of 350 

information content that sensors can provide, in combination with the minimisation of redundancy among them 351 

(Krstanovic and Singh 1992, Mogheir and Singh 2002, Alfonso et al. 2010a,b, Alfonso 2010, Alfonso et al. 2013,  352 

Singh 2013). Redundancy can be measured by using either Mutual Information (Singh 2000, Steuer et al. 2002), 353 
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Directional Information Transfer (Yang and Burn 1994), Total Correlation (Alfonso et al. 2010a,b, Fahle et al. 354 

2015), among others.  355 

3.2.1 Entropy  356 

The Principle of Maximum Entropy (POME) is based on the premise that probability distribution with the largest 357 

remaining uncertainty (i.e., the maximum entropy) is the one that best represent the current stage of knowledge. 358 

POME has been used as a criterion for the design of sensor networks, by allowing the identification of the set of 359 

sensors that maximises the joint entropy among measurements (Krstanovic and Singh 1992). In other words, to 360 

provide as much information content, from the Information Theory perspective, as possible (Jaynes 1988).  361 

 362 

In the design of sensor networks, the objective is to maximise the joint entropy (H) of the sensor network as: 363 

 364 

)ܪ  ଵܺ, ܺଶ, … , ܺ௡) = − ෍ … ෍ ,௜ଵݔ൫݌ … ௝௠൯ݔ log ,௜ଵݔ൫݌ … ௝௠൯௠ݔ
௝ୀଵ

௞
௜ୀଵ  ( 13) 

 365 

Where p(X) is the probability of the random variable X to take a discrete value xm. As in many applications, X is a 366 

continuous variable which has to be discretised (quantised) into intervals (k, m) to calculate its entropy. The 367 

probabilities are calculated following frequency analysis, such that the probability of a variable X to take a value 368 

in the interval i,…,j which is defined by the number of times in which this value appear, divided by the complete 369 

length of the dataset. When calculating the entropy of more than one variable simultaneously (joint entropy), joint 370 

probabilities are used. 371 

 372 

Krstanovich and Singh (1992) presented a concise work on rainfall network evaluation using entropy. They used 373 

POME to obtain multivariate distributions to associate different dependencies between sensors, such as joint 374 

information and shared information, which was used later either reduce the network (in the case of high 375 

redundancy) or expand it (in the case of lack of common information). 376 

 377 

Fuentes et al. (2007) proposed an entropy-utility criterion for environmental sampling, particularly suited for air-378 

pollution monitoring. This approach considers Bayesian optimal sub-networks using an entropy framework, 379 

relying on the spatial correlation model. An interesting contribution of this work is the assumption of non-380 

stationarity, contrary to traditional atmospheric studies, and relevant in the design of precipitation sensor networks. 381 

 382 

The use of hydraulic 1D models and metrics of entropy have been used to select the adequate spacing between 383 

sensors for water level in canals and polder systems (Alfonso et al. 2010a,b). This approach is based on the current 384 

conditions of the system, which makes it useful for operational purposes, but it does not necessarily support the 385 

modifications in the water system conditions or changes in the operation rules. Studies on the design of sensor 386 

networks using these methods are on the rise in the last years (Alfonso 2010, Alfonso et al. 2013, Ridolfi et al. 387 

2013, Banik et al 2017). 388 

 389 
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Benefits of POME include the robustness of the description of the posterior probability distribution since it aims 390 

to define the less biassed outcome. This is because neither the models nor the measurements are completely certain. 391 

Li et al. (2012) presented, as part of a multi-objective framework for sensor network optimisation, the criteria of 392 

maximum (joint) entropy, as one of the objectives. Other studies in this direction have been presented by Lindley 393 

(1956), Caselton and Zidek (1984), Guttorp et al. (1993), Zidek et al. (2000), Yeh et al. (2011) and Kang et al. 394 

(2014).  395 

 396 

More recently, Samuel et al. (2013) and Coulibaly and Samuel (2014), proposed a mixed method involving 397 

regionalisation and dual entropy multi-objective optimisation (CRDEMO), which is a step forward if compared to 398 

single-objective optimisation for sensor network design. 399 

3.2.2 Mutual information (trans-information)  400 

Mutual information is a measurement of the amount of information that a variable contains about another. This is 401 

measured as the relative entropy between the joint distribution and the product distribution (Cover and Thomas 402 

2005). In the simplest expression (two variables), the mutual information can be defined as: 403 

 404 

)ܫ  ଵܺ, ܺଶ) = )ܪ ଵܺ) + (ଶܺ)ܪ − )ܪ ଵܺ, ܺଶ) ( 14) 

 405 

where H(X1) and H(X2) is the entropy of each of the variables, and H(X1, X2) is the joint entropy between them. 406 

The extension of the mutual information for more than two variables should not only consider the joint entropy 407 

between them, but also the joint entropy between pairs of variables, leading to a significantly complex expression 408 

for the multivariate mutual information. Regarding this issue, the multivariate mutual information can be addressed 409 

as a nested problem, such that: 410 

 411 

)ܫ  ଵܺ, ܺଶ, … , ܺ௡) = )ܫ ଵܺ, ܺଶ, … , ܺ௡ିଵ) − )ܫ ଵܺ, ܺଶ, … , ܺ௡ିଵ|ܺ௡) ( 15) 

 412 

Where I(X1, X2, …, Xn) is the multivariate mutual information among  n variables, and I(X1, X2, …, Xn-1 | Xn) is the 413 

conditional information of n-1 variables with respect to the nth  variable. The conditional mutual information can 414 

be understood as the amount of information that a set of variable share with another variable (or variables). The 415 

conditional mutual information of two variables (X1 and X2) with respect to a third one (X3) can be quantified as: 416 

 417 

)ܫ  ଵܺ, ܺଶ|ܺଷ) = )ܪ ଵܺ|ܺଷ) − )ܪ ଵܺ|ܺଶ, ܺଷ) ( 16) 

 418 

Where H(X1 | X3) is the conditional entropy of X1 to X3 and H(X1 | X2, X3) is the conditional entropy of X1 with 419 

respect to X2 and X3 simultaneously. The conditional entropy can be understood as the amount information that a 420 

variable does not share with another. The joint entropy between two variables can be quantified as: 421 

 422 

)ܪ  ଵܺ|ܺଶ) = ෍ ෍ ൫݌ ଵܺ௜, ܺଶ௝൯ log )݌ ଵܺ௜)݌൫ ଵܺ௜, ܺଶ௝൯௠
௝ୀଵ

௞
௜ୀଵ  ( 17) 
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 423 

where p(X1, X2) is the joint probability, for k and m discrete values, of X1and X2. 424 

 425 

An optimal sensor network should avoid collecting repetitive or redundant information, in other words, it should 426 

be such that reduces the mutual (shared) information between sensors in the network. Alternatively, it should 427 

maximise the transferred information from a measured to a modelled variable at a point of interest (Amorocho and 428 

Espildora 1973). Following this idea, Husain (1987) suggested an optimisation scheme for the reduction of a rain 429 

sensor network. His objective was to minimise the trans-information between pairs of stations. However, 430 

assumptions of the probability and joint probability distribution functions are strong simplifications of this method. 431 

To overcome these assumptions, the Directional Information Transfer (DIT) index was introduced (Yang and Burn 432 

1994) as the inverse of the coefficient of non-transferred information (NTI) (Harmancioglu and Yevjevich 1985). 433 

Both DIT and NTI are a normalised measure of information transfer between two variables (X1 and X2).  434 

 435 

ܶܫܦ  = )ܫ ଵܺ, ܺଶ)ܪ( ଵܺ)  ( 18) 

 436 

Particularly for the design of precipitation sensor networks, Ridolfi et al. (2011) presented a definition of the 437 

maximum achievable information content for designing a dense network of precipitation sensors at different 438 

temporal resolutions. The results of this study show that there exists a linear dependency between the non-439 

transferred information and the sampling frequency of the observations. 440 

 441 

Total Correlation (C) is an alternative measure of the amount of shared information between two or more variables, 442 

and has also been used as a measure of information redundancy in the design of sensor networks (Alfonso et al. 443 

2010a, b, Leach et al. 2015) as: 444 

 445 

)ܥ  ଵܺ, … , ܺ௡) = ෍ )ܪ ௜ܺ)௡
௜ୀଵ − )ܪ ଵܺ, … , ܺே) ( 19) 

 446 

Where C(X1, X2, …, Xn) is the total correlation among the n variables, H(Xi) is the entropy of the variable i, and 447 

H(X1, X2, …, Xn) is the joint entropy of the n variables. Total Correlation can be seen then as a simplification of 448 

the multivariate mutual information, where only the interaction among all the variables is considered. In the design 449 

of sensor networks, it is expected that the mutual information among the different variables is minimum, therefore, 450 

the difference between the total correlation and multivariate mutual information tends to be minimised as well. 451 

The advantage of total correlation is the computational advantage that represents assuming a marginal value for 452 

the interaction among variables. 453 

 454 

A method to estimate trans-information fields at ungauged locations has been proposed by Su and You (2014), 455 

employing a trans-information-distance relationship. This method accounts for spatial distribution of precipitation, 456 

supporting the augmentation problem in the design of precipitation sensor networks. However, as the relationship 457 
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between trans-information between sensors and their distance is monotonic, the resulting sensor networks are 458 

generally sparse. 459 

3.3 Methods based on expert recommendations  460 

3.3.1 Physiographic components  461 

Among the most used planning tools for hydrometric network design are the technical reports presented by the 462 

WMO (2008), in which a minimum density of stations depending on different physiographic units, are suggested 463 

(Table 1). Although these guidelines do not provide an indication about where to place hydrometric sensors, rather 464 

they recommend that their distribution should be as uniform as possible and that network expansion has to be 465 

considered. The document also encourages the use of computationally aided design and evaluation of a more 466 

comprehensive design. For instance, Coulibaly et al. (2013) suggested the use of these guidelines to evaluate the 467 

Canadian national hydrometric network. 468 

 469 

Moss et al. (1982) presented one of the first attempts to use physiographic components in the design of sensor 470 

networks in a method called Network Analysis for Regional Information (NARI). This method is based on relations 471 

of basin characteristics proposed by Benson and Matalas (1967). NARI can be used to formulate the following 472 

objectives for network design: minimum cost network, maximum information and maximum net benefit from the 473 

data-collection program, in a Bayesian framework, which can be approximated as: 474 

 475 

 log ൫ܵ൫หߪ ෠ܳ − ܳห൯ఈ൯ = ܽ + ܾଵ݊ + ܾଶݕ  ( 20) 

 476 

where the function S(|Q̂ - Q|)α  is the α percentile of the standard error in the estimation of Q, a, b1 and b2  are the 477 

parameters from the NARI analysis, n is the number of stations used in the regional analysis, and y is the harmonic 478 

mean of the records used in the regression. 479 

 480 

Laize (2004) presented an alternative for evaluating precipitation networks based on the use of the Representative 481 

Catchment Index (RCI), a measure to estimate how representative a given station in a catchment is for a given 482 

area, on the stations in the surrounding catchments. The author argues that the method, which uses datasets of land 483 

use and elevation as physiographical components, can help identifying areas with a insufficient number of 484 

representative stations on a catchment. 485 

 486 

3.3.2 Practical case-specific considerations  487 

Most of the first sensor networks were designed based on expert judgement and practical considerations. Aspects 488 

such as the objective of the measurement, security and accessibility are decisive to select the location of a sensor. 489 

Nemec and Askew (1986) presented a short review of the history and development of the early sensor networks, 490 

where it is highlighted that the use of “basic pragmatic approaches” still had most of the attention, due to its 491 

practicality in the field and its closeness with decision makers. 492 

 493 
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Bleasdale (1965) presented a historical review of the early development process of the rainfall sensor networks in 494 

the United Kingdom. In the early stages of the development of precipitation sensor networks, two main 495 

characteristics influencing the location of the sensors were identified: at sites that were conventionally satisfactory 496 

and where good observers were located. However, the necessity of a more structured approach to select the location 497 

of sensors was underlined. As a guide, Bleasdale (1965) presented a series of recommendations on the minimal 498 

density of sensors for operational purposes, summarised in Fig. 5, relating the characteristics of the area to be 499 

monitored and the minimum required a number of rain sensors, as well as its temporal resolution. 500 

 501 

In a more structured approach, Karasseff (1986) introduced some guidelines for the definition of the optimal sensor 502 

network to measure hydrological variables for operational hydrological forecasting systems. The study specified 503 

the minimum requirements for the density of measurement stations based on the fluctuation scale and the 504 

variability of the measured variable by defining zonal representative areas. This author suggested the following 505 

considerations for selecting the optimal placement of hydrometric stations: 506 

 507 

• “in the lower part of inflow and wastewater canals” 508 

• “at the heads of irrigation and watering canals taking water from the sources” 509 

• “at the beginning of a debris cone before the zone of infiltration, and at its end, where ground-water 510 

decrement takes place” 511 

• “at the boundaries of irrigated areas and zones of considerable industrial water diversions (towns) ” 512 

• “at the sites of hydroelectric power plants and hydro projects” 513 

 514 

From a different perspective, Wahl and Crippen (1984), as well as Mades and Oberg (1986) proposed a qualitative 515 

score assessment of different factors related to the use of data and the historical availability of records for the 516 

evaluation of sensor value. Their analyses aimed at identifying candidate sensors to be discontinued, due to their 517 

limited accuracy. 518 

3.3.3 User survey  519 

These approaches aim to identify the information needs of particular groups of users (Sieber 1970), following the 520 

idea that the location of a certain sensor (or group of sensors) should satisfy at least one specific purpose. To this 521 

end, surveys to identify the interests for the measurement of certain variables, considering the location of the 522 

sensor, record length, frequency of the records, methods of transmission, among others, are executed.  523 

 524 

Singh et al. (1986) applied two questionnaires to evaluate the streamflow network in Illinois: one to identify the 525 

main uses of streamflow data collected at gauging stations, where participants described how data was used and 526 

how they would categorise it in either site-specific management activities, local or regional planning and design, 527 

or determination of long-term trends. The second questionnaire was used to determine present and future needs 528 

for streamflow information. The results showed that the network was reduced due to the limited interest about 529 



 

16 

 

certain sensors, which allowed for enhancing the existing network using more sophisticated sensors or recording 530 

methods. Additionally, this redirection of resources increased the coverage at specific locations. 531 

3.4 Other methods 532 

There are also other methods that cannot be easily attributed to the previously mentioned categories. Among them, 533 

Value of Information, fractal, and network theory-based methods can be mentioned. 534 

3.4.1 Value of Information  535 

The Value of Information (VOI, Howard 1966, Hirshleifer and Riley 1979) is defined as the value a decision-536 

maker is willing to pay for extra information before making a decision. This willingness to pay is related to the 537 

reduction of uncertainty about the consequences of making a wrong decision (Alfonso and Price 2012).  538 

 539 

The main feature of this approach is the direct description of the benefits of additional piece of information, 540 

compared with the costs of acquiring that extra piece of information (Black et al. 1999, Walker 2000, Nguyen and 541 

Bagajewicz 2011, Alfonso and Price 2012, Ballari et al. 2012). The main advantage of this method is that provides 542 

a pragmatic framework in which information have a utilitarian value, usually economic, which is especially suited 543 

for budget constraint conditions.   544 

 545 

One of the assumptions of this type of models is that a prior estimation of consequences is needed. If a is the action 546 

that has been decided to perform, m is the additional information that comes to make such a decision, and s is the 547 

state that is actually observed, then the expected utility of any action a can be expressed as:  548 

 549 

,ܽ)ݑ  ௦ܲ) = ෍ ௦ܲݑ(ܥ௔௦)ௌ  ( 21) 

 550 

where Ps is the perception, in probabilistic terms, of the occurrence of a particular state (s) among a total number 551 

of possible states (S), and u is the utility of the outcome Cas of the actions given the different states. When new 552 

information (i.e., a message m) becomes available, and the decision-maker accepts it, his prior belief Ps will be 553 

subject to a Bayesian update. If P (m|s) is the likelihood of receiving the message m given the state s and Pm is the 554 

probability of getting a message m then: 555 

 556 

 ௠ܲ = ෍ ௦ܲܲ(݉|ݏ)ௌ  ( 22) 

 557 

The value of a single message m can be estimated as the difference between the utility, u, of the action, am that is 558 

chosen given a particular message m and the utility of the action, a0,  that would have been chosen without 559 

additional information as:  560 

 561 

 ∆௠= ,൫ܽ௠ݑ ൯(݉|ݏ)ܲ − ,൫ܽ଴ݑ  ൯ ( 23)(݉|ݏ)ܲ

 562 
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The Value of Information, VOI, is the expected utility of the values Δm:  563 

 564 

ܫܱܸ  = (௠∆)ܧ = ෍ ௠ܲ∆௠ெ  ( 24) 

 565 

Following the same line of ideas, Khader et al. (2013) proposed the use of decision trees to account for the 566 

development of a sensor network for water quality in drinking groundwater applications. VOI is a straightforward 567 

methodology to establish present causes and consequences of scenarios with different types of actions, including 568 

the expected effect of additional information. A recent effort by Alfonso et al. (2016) towards identifying valuable 569 

areas to get information for floodplain planning consists of the generation of VOI maps, where probabilistic flood 570 

maps and the consequences of urbanisation actions are taken into account to identify areas where extra information 571 

may be more critical. 572 

3.4.2 Fractal-based  573 

Fractal-based methods employ the concept of Gaussian self-affinity, where sensor networks show the same spatial 574 

patterns at different scales. This affinity can be measured by its fractal dimension (Mandelbrot 2001). Lovejoy et 575 

al. (1986) proposed the use of fractal-based methods to measure the dimensional deficit between the observations 576 

of a process and its real domain. Consider a set of evenly distributed cells representing the physical space, and the 577 

fractal dimension of the network representing the number of observed cells in the correlation space. The lack of 578 

non-measured cells in the correlation space is known as the fractal deficit of the network. Considering that a large 579 

number of stations have to be available at different scales, the method is suitable for large networks, but less useful 580 

in the deployment of few sensors in a catchment scale. 581 

 582 

Lovejoy and Mandelbrot (1985) and Lovejoy and Schertzer (1985) introduced the use of fractals to model 583 

precipitation. They argued that the intermittent nature of the atmosphere can be characterised by fractal measures 584 

with fat-tailed probability distributions of the fluctuations, and stated that standard statistical methods are 585 

inappropriate to describe this kind of variability. Mazzarella and Tranfaglia (2000) and Capecchi et al. (2012) 586 

presented two different case studies using this method for the evaluation of a rainfall sensor networks. The former 587 

study concludes that for network augmentation, it is important to select the optimal locations that improve the 588 

coverage, measured by the reduction of the fractal deficit. However, there are no practical recommendations on 589 

how to select such locations. The latter proposes the inspection of seasonal trends as the meteorological processes 590 

of precipitation may have significant effects on the detectability capabilities of the network.  591 

 592 

A common approach for the quantification of the dimensional deficit is the box-counting method (Song et al. 2007, 593 

Kanevski 2008), mainly used in the fractal characterisation of precipitation sensor networks. The fractal dimension 594 

of the network (D) is quantified as the ratio of the logarithm of the number of blocks (NB) that have measurements 595 

and the logarithm of the scaling radius (R). 596 

 597 

ܦ  =  log (ܰܤ(ܴ))log (ܴ)  ( 25) 

 598 
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Due to the scarcity of measurements of precipitation type of networks, the quantification of the fractal dimension 599 

may result unstable. An alternative fractal dimension may be calculated using a correlation integral (Mazzarella & 600 

Tranfaglia 2000) instead of the number of blocks, such that: 601 

 602 

(ܴ)ܫܥ  = ܤ)ܤ2  − 1) ෍ ෍ ൫ܴ߆ − หݑఈ௜ − ఈ௝ห൯஻ݑ
௝ୀଵ : ݎ݋݂ ݅ ≠ ݆஻

௜ୀଵ  ( 26) 

 603 

In which CI is the correlation integral, R is the scaling radius, B is the total number of blocks at each scaling radius, 604 

and Uα is the location of station α. Θ is the Heaviside function. A normalisation coefficient is used, as the number 605 

of estimations of the counting of blocks considers each station as a centre. 606 

 607 

The consequent definition of the fractal dimension of the network is the rate between the logarithm of the 608 

correlation integral and the logarithm of the scaling radius. This ratio is calculated from a regression between 609 

different values of R, for which the network exhibit fractal behaviour (meaning, a high correlation between log(CI) 610 

and log(R)). 611 

 612 

ܦ  =  log (ܫܥ)log (ܴ)  ( 27) 

 613 

The Maximum potential value for the fractal dimension of a 2-D network (such as for spatially distributed 614 

variables) is two. However, this limit considers that the stations are located on a flat surface, as elevation is 615 

consequence of the topography, and is not a variable that can be controlled in the network deployment. 616 

3.4.3 Network theory-based  617 

Recently, research efforts have been devoted to the use of the so-called network theory to assess the performance 618 

of discharge sensor networks (Sivakumar and Woldemeskel 2014, Halverson and Fleming 2015). These studies 619 

analyse three main features, namely average clustering coefficient, average path length and degree distribution. 620 

Average clustering is a degree of the tendency of stations to form clusters. Average path length is the average of 621 

the shortest paths between every combination of station pairs. Degree distribution is the probability distribution of 622 

network degrees across all the stations, being network degree defined as the number of stations to which a station 623 

is connected. Halverson and Fleming (2015) observed that regular streamflow networks are highly clustered (so 624 

the removal of any randomly chosen node has little impact on the network performance) and have long average 625 

path lengths (so information may not easily be propagated across the network).  626 

 627 

In hydrometric networks, three metrics are identified (Halverson and Fleming 2015): degree distribution, 628 

clustering coefficient and average path length. The first of these measures is the average node degree, which 629 

corresponds to the probability of a node to be connected to other nodes. The metric is calculated in the adjacency 630 

matrix (a binary matrix in which connected nodes are represented by 1 and the missing links by 0). Therefore, the 631 

degree of the node is defined as: 632 

 633 
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(ߙ)݇  = ෍ ܽఈ,௝௡
௝ୀଵ  ( 28) 

 634 

Where k(α) is the degree of station α, n is the total number of stations, and a is the adjacency matrix. 635 

 636 

The clustering coefficient is a measure of how much the nodes cluster together. High clustering indicates that 637 

nodes are highly interconnected. The clustering coefficient (CC) for a given station is defined as: 638 

 639 

(ߙ)ܥܥ  = (α)݇)(ߙ)2݇  − 1) ෍ ܽఈ,௝௡
௝ୀଵ  ( 29) 

 640 

Additionally, the average path length refers to the mean distance of the interconnected nodes. The length of the 641 

connections in the network, provide some insights in the length of the relationships between the nodes in the 642 

network. 643 

 644 

ܮ  =  1݊(݊ − 1) ෍ ෍ ݀ఈ,௝௡
௝ୀଵ

௞(ఈ)
ఈୀଵ  ( 30) 

 645 

As can be seen from the formulation, the metrics of the network largely depends on the definition of the network 646 

topology (adjacency matrix). The links are defined from a metric of statistical similitude such as the Pearson r or 647 

the Spearman rank coefficient. The links are such pair of stations over which statistical similitude is over a certain 648 

threshold. 649 

 650 

According to Halverson and Fleming (2015), an optimal configuration of streamflow networks should consist of 651 

measurements with small membership communities, high-betweenness, and index stations with large numbers of 652 

intracommunity-links. Small communities represent clusters of observations, thus, indicating efficient 653 

measurements. Large numbers of intra-community links ensure that the network has some degree of redundancy, 654 

and thus, resistant to sensor failure. High-betweenness indicates that such stations which have the most inter-655 

communal links are adequately connected, and thus, able to capture the heterogeneity of the hydrological processes 656 

at a larger scale. 657 

3.5 Aggregation of approaches and classes 658 

Table 2 summarises the sensor network design classes and approaches, with the selected references to the relevant 659 

papers in each of the categories for further reference. 660 

 661 

It is of special interest in the review to highlight the lack of model-based information theory methods, as well as 662 

the little amount of publications in network theory-based methods. Also, quantitative studies in the comparison of 663 

different methodologies for the design of sensor networks are limited. It is suggested, therefore, that a pilot 664 
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catchment is used for the scientific community to test all the available methods for network evaluation, establish 665 

similarities and differences among them. 666 

 667 

Table 3 summarises the main advantages and disadvantages for each of the design and evaluation methods. These 668 

recommendations are general, but take into account the most general points in the design considerations of sensor 669 

networks. Some of the advantages of these methods have been exploited in combined methodologies, such as those 670 

presented by Yeh et al. (2011), Samuel et al. (2013), Barca et al. (2014), Coulibaly and Samuel (2014) and Kang 671 

et al. (2014). 672 

4 General procedure for sensor network design 673 

Based on the presented literature review, in this section an attempt is made to present a first version of a unified, 674 

general procedure for sensor network design. Such procedure logically link in a flowchart various methods, 675 

following the measurement-based approaches (Fig. 6). The flowchart suggests two main loops: one to measure the 676 

network performance (optimisation loop), and a second one to represent the selection in the number of sensors in 677 

either augmentation or reduction scenarios. Most of the measurement-based methods, as well as most of the design 678 

scenarios can be typically seen as particular cases of this generalised algorithmic flowchart. 679 

 680 

The general procedure consists of 11 steps (boxes in Fig. 6). In the first place, physical measurements (1) are 681 

acquired by the sensor network. This data is used to parameterise an estimator (2), which will be used to estimate 682 

the variable at the Candidate Measurement Locations (CML) using, for instance, Kriging (Pardo-Igúzquiza 1998, 683 

Nowak et al. 2009), or 1D hydrodynamic models (Neal et al. 2012, Rafiee 2012, Mazzoleni et al. 2015). The sensor 684 

network reduction does not require such estimator as measurements are already in place.  685 

 686 

The selection of the CML should consider factors such as physical and technical availability, as well as costs 687 

related to maintenance and accessibility of stations, as illustrated by the WMO (2008) recommendations. The 688 

selection of CML can also be based, for example, on expert judgement. These limitations may be presented in the 689 

form of constraints in the optimisation problem. 690 

 691 

Then an optimisation loop starts (Fig. 6), by the estimation of the measured variable at the CML (3), using the 692 

estimator built in (2). Next, the performance of the sensor network at the CML is evaluated (4), using any of the 693 

previously discussed methods. The selection of the method depends on the designer and its information 694 

requirements, which also determines if an optimal solution is found (5). The stopping criteria in the optimisation 695 

problem can be set by a desired accuracy of the network, some non-improved number of solutions or a maximum 696 

number of iterations. As pointed out in the review, these performance metrics can be either model-based or model-697 

free and should not be confused with the use of a (geostatistical) model of the measured variable. 698 

 699 

In case the optimisation loop is not complete, a new set of CML is selected (6). The use of optimisation algorithms 700 

may drive the search of the new potential CML (Pardo-Igúzquiza 1998, Kollat et al. 2008, Alfonso 2010, Kollat 701 

et al. 2011). The decision about adequate performance should not only consider the expected performance of the 702 

network but also, recognise the effect of a limited number of sensors. 703 
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 704 

Once the performance is optimal, an iteration over the number of sensors is required. If the scenario is for network 705 

augmentation (7), then a possibility of including additional sensors has to be considered (8). The decision to go 706 

for an additional sensor will depend on the constraints of the problem, such as a limitation on the number of sensors 707 

to install, or on the marginal improvement of performance metrics. 708 

 709 

The network reduction scenario (9) is inverse: due to diverse reasons, mainly of financial nature, networks require 710 

to have fewer sensors. Therefore, the analysis concerns what sensors to remove from the network, within the 711 

problem constraints (10). 712 

  713 

Finally, the sensor network is selected (11) from the results of the optimisation loop, with the adequate number of 714 

sensors. It is worth mentioning that an extra loop is required, leading to re-evaluation, typically done on a periodical 715 

basis, when objectives of the network may be redefined, new processes need to be monitored, or when information 716 

from other sources is available, and that can potentially modify the definition of optimality. 717 

 718 

5 Conclusions and recommendations 719 

This paper summarises some of the methodological criteria for the design of sensor networks in the context of 720 

hydrological modelling, proposed a framework for classifying the approaches in the existing literature and also 721 

proposed a general procedure for sensor network design. The following conclusions can be drawn: 722 

 723 

Most of the sensor network methodologies aim to minimise the uncertainty of the variable of interest at ungauged 724 

locations and the way this uncertainty is estimated varies between different methods. In statistics-based models, 725 

the objective is usually to minimise the overall uncertainty about precipitation fields or discharge modelling error. 726 

Information theory-based methods aim to find measurements at locations with maximum information content and 727 

minimum redundancy. In network theory-based methods, estimations are generally not accurate, resulting in less 728 

biassed estimations. In methods based on practical case-specific considerations and value of information, the 729 

critical consequences of decisions dictate the network configuration. 730 

 731 

However, in spite of the underlying resemblances between methods, different formulations of the design problem 732 

can lead to rather different solutions. This gap between methods has not been deeply covered in the literature and 733 

therefore a general agreement on sensor network design procedure is relevant. 734 

 735 

In particular, for catchment modelling, the driving criteria should also consider model performance. This driving 736 

criterion ensures that the model adequately represents the states and processes of the catchment, reducing model 737 

uncertainty and leading to more informed decisions. Currently, most of the network design methods do not ensure 738 

minimum modelling error, as often it is not the main performance criteria for design. 739 

 740 

Furthermore, in the last years, the rise of various sensing technologies in operational environments have promoted 741 

the inclusion of additional design considerations towards a unified heterogeneous sensor network. These new 742 
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sensing technologies include, e.g., passive and active remote sensing using radars and satellites (Thenkabali 2015), 743 

microwave link (Overeem et al. 2011), mobile sensors (Haberlandt and Sester 2010, Dahm et al. 2014), 744 

crowdsourcing and citizen observatories (Huwald et al. 2013, Lanfranchi et al. 2014, Alfonso et al. 2015). These 745 

non-conventional information sources have the potential to complement conventional networks, by exploiting the 746 

synergies between the virtues and reducing limitations of various sensing techniques, and at the same time, require 747 

the new network design methods allowing for handling the heterogeneous dynamic data with varying uncertainty. 748 

 749 

The proposed classification of the available network design methods was used to develop a general framework for 750 

network design. Different design scenarios, namely relocation, augmentation and reduction of networks are 751 

included, for measurement-based methods. This framework is open and offers “placeholders” for various methods 752 

to be used depending on the problem type.   753 

 754 

Concerning the further research, from the hydrological modelling perspective, we propose to direct efforts towards 755 

the joint design of precipitation and discharge sensor networks. Hydrological models use precipitation data to 756 

provide discharge estimates, however as these simulations are error-prone, the assimilation of discharge data, or 757 

error correction, reduces the systematic errors in the model results. The joint design of both precipitation and 758 

discharge sensor networks may help to provide more reliable estimates of discharge at specific locations. 759 

 760 

Another direction of research may include methods for designing dynamic sensor networks, given the increasing 761 

availability of low-cost sensors, as well as the expansion of citizen-based data collection initiatives 762 

(crowdsourcing). These information sources are on the rise in the last years, and one may foresee appearance of 763 

interconnected, multi-sensor heterogeneous sensor networks shortly. 764 

 765 

The presented review has also shown that limited effort has been devoted to considering changes in long-term 766 

patterns of the measured variable in the sensor network design. This assumption of stationarity has become more 767 

relevant in the last years due to new sensing technologies and increased systemic uncertaities, e.g. due to climate 768 

and land use change and rapidly changing weather patterns. Although this topic has been recognised for quite some 769 

time already (see e.g. Nemec and Askew 1986), the number of publications presenting effective methods to deal 770 

with them is still limited. This problem, and the techniques to solve it, are being addressed in the ongoing research. 771 

 772 
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Figure 1 Typical data flow in discharge simulation with hydrological models 1114 
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 1116 

Figure 2 Proposed classification of methods for sensor network evaluation 1117 
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Figure 3 General procedure for Model-free sensor network evaluation 1119 

 1120 

Water 
system

Precipitation 
measurement

Discharge 
measurement

Performance 
metric

Catchment 
model

 1121 

Figure 4 General procedure for Model-based sensor network evaluation 1122 
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 1124 

Figure 5 Minimum number of rain gauges required in reservoired moorland areas - adapted from: (Bleasdale 1965) 1125 
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Figure 6 Sensor network (re) design flow chart. (CML=candidate measurement locations) 1127 
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Table 1 Recommended minimum densities of stations (area in Km² per station) – Adopted from WMO [2008] 1129 

Physiographic 

unit 

Precipitation 
Evaporation Streamflow Sediments 

Water 

Quality Non-recording Recording 

Coastal 900  9,000  50,000  2,750  18,300  55,000  

Mountains 250  2,500  50,000  1,000  6,700  20,000  

Interior plains 575  5,750  5,000  1,875  12,500  37,500  

Hilly/undulating 575     5,750  50,000  1,875  12,500  47,500  

Small islands 25  250  50,000  300  2,000  6,000  

Urban areas  –   10–20   –   –   –   –  

Polar/arid  10,000 10,000  100,000  20,000  200,000  200,000 

 1130 
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Table 2 Classification of sensor network design criteria including recommended reading 1132 

 1133 

    Approaches 

    

Measurement-based Measurement-Free 

    Model-free Model-based   

C
la

ss
es

 

Statistics-based 

Interpolation 
variance 

Pardo-Iguzquiza (1998) 

    Bardossy and Li (2008) 

 Nowak et al. (2010) 

Cross-
correlation 

Maddock (1974) 
Vivekanandan and 

Jagatp (2012) 
  Moss and Karlinger 

(1974) 

Model error   
Tarboton et al. (1987)

  
 Dong et al. (2005) 

Information Theory 

Entropy 

Krstanovic and Singh 
(1992) Pham and Tsai (2016)   

Alfonso et al. (2014) 

Mutual 
information 

Husain (1987) Coulibaly and Samuel 
(2014)   

 Alfonso (2010) 

Expert recommendations 

Physiographic 
components 

Samuel et al. (2013) 

Moss and Karlinger 
(1974) Lazie (2004) 

Moss et al. (1982) 

Practical case-
specific 

considerations 
    

Wahl and Crippen 
(1984) 

Nemec and Askew 
(1986) 

Karaseff (1986) 

User survey     
Sieber (1970) 

Singh et al. (1986) 

Other methods 

Value of 
information 

Alfonso and Price (2012) 
Black et al. (1999) 

  
Alfonso et al. (2016) 

Fractal 
characterisation 

    

Lovejoy and 
Mandelbrot (1985) 

Capecchi et al. (2012) 

Network theory 

Sivakumar and 
Woldemeskel (2014) 

    

Halverson and Fleming 
(2015) 

 1134 

  1135 



 

37 

 

Table 3 Advantages and disadvantages of sensor network design methods 1136 

  Advantages Disadvantages 

Statistics-based 

Interpolation 
variance 

Useful to assess data scarce areas 
Heavily rely on the characterisation of 

the covariance structure 

No event-driven 
No relationship with final measurement 

objective 

Minimise uncertainty in spatial 
distribution of measured variable   

Cross-
correlation 

Useful for detecting redundant stations 
Augmentation not possible without 

additional assumptions 

Computationally inexpensive 
Limited to linear dependency between 

stations 

Model error 

Has direct relationship with the 
measurement objectives 

Biased towards current measurement 
objectives 

  Biased towards model and error metrics 

Information Theory 

Entropy 

Assess non-linear relationship between 
variables 

Formal form is computationally 
intensive 

Unbiased estimation of network 
performance 

Quantising (binning) of continuous 
variables lead to different results 

 Optimal networks are usually sparse 

  Difficult to benchmark 

  Data intensive 

Mutual 
information 

Idem Idem 

Expert recommendations 

Physiographic 
components 

Reasonably well understood Not useful for homogeneous catchments 

Functional for heterogeneous catchments 
with few available measurements 

No quantitative measure of network 
accuracy 

Useful at country/continental level   

Practical case-
specific 

considerations 

No previous measurements are required Biased towards expert 

Useful to observe specific variables 
Collected data does not influence 

selection 

  Biased towards current data 
requirements 

User survey 
Pragmatic Extensive user identification 

Cost-efficient 
Biased towards current data 

requirements 

Other methods 

Value of 
information 

Provides assessment using economics 
concepts 

Consequences of decisions are difficult 
to quantify 

 Takes into account decision-maker's prior 
beliefs in the assessment 

Usually decisions are made with 
available information 

  
Biased towards a rational decision 

model 

Fractal 
characterisation 

Efficient for large networks 
Not suitable for small networks or 

catchments 

Does not require data collection 
Does not consider topographic or 

orographic influence 

Network theory 

Provides insight in interconnected 
networks 

Not useful for augmentation purposes 

  Data intensive 

 1137 


