Reply to Reviewer #1

» The authors present an overall picture on hydrometric network design methods and approaches to increase
or reduce sensor density using different methods e.g. expert opinions and hydrologic models. They also
classify these methods and present an optimal network design using complementary rainfall-runoff model
performance. The use of hydrologic model makes sense as the products of the sensors are usually used by
the hydrologic models. This review paper addresses an interesting topic. However, the presentation of the
cases needs some more details on country scale applications as listed below. What are the practicesin very
densely monitored countries (e.g. Germany) and data scarce ones (e.g. Poland, Spain and Turkey). Also what
isthe optimum C1 level of network density.

Overall, magjor revision is recommended for the the manuscript. »

REPL Y. We thank the reviewer for the valuable contributions. This helped us with improving its quality, and
also to address some points that could have been clearer or that were not considered with the adequate level of
detail.

We agree with the reviewer that practitioners may be interested in country-wise practices of hydrometric
network expansion or modification. Asthe essence of the manuscript is to review the available mathematical
methods to make such network expansions/modifications optimal, the connection to practical applications
appeared weak.

In order to address the reviewer’s comment we have included references to country scale network density,
where the reader can find more detailed information (page 1, 31- 40). We have a so added statements to clarify
that the optimal density of the network is case-specific (p3, 91-99), pointing out that practicesin optimal
monitoring network design would be, per-se, another in-depth study. We have framed these ideas in the new
version of the paper without jeopardizing its main focus. Also, main considerations about the selection of the
appropriate number of gauges in the measurement-based methods are highlighted. In the new version of
manuscript we added the following text:

“Design of rainfall and streamflow sensor networks depends to a large extent on the scale of the processesto be
monitored, and the objectives to address (TNO 1986, Loucks et al. 2005). Therefore, the temporal and spatial
resolution of the measurements are driven by the measurement objectives. For example, information for long
term planning does not require the same level of temporal resolution as for operational hydrology WMO (2009).
On the global and country scale, sensor networks are commonly used for climate studies and trend detection
(Cihlar et al. 2000, Grabs and Thomas 2002, WM O 2009, Environment Canada 2010, Marsh 2010, Whitfield et
al. 2012). Thisis also supported by the National Climate Reference Networks (WMO C2 2009). On aregional
or catchment-scale, applications require careful selection of monitoring stations, since water resources planning
and management decisions, such as operational hydrology and water allocation, require different temporal and
spatial resolution data. ”

(for clarity, this section was dightly reworded asin pl 31-40)

The design of rainfall and streamflow sensor networks depends to a large extent on the scale of the processesto
be monitored and the objectives to address (TNO 1986, Loucks et al. 2005). Therefore, the temporal and spatial
resol ution of measurements are driven by the measurement objectives. For example, information for long-term
planning does not require the same level of temporal resolution as for operational hydrology (WMO 2009, Dent
2012). On the global and country scale, sensor networks are commonly used for climate studies and trend
detection (Cihlar et al. 2000, Grabs and Thomas 2002, WMO 2009, Environment Canada 2010, Marsh 2010,
Whitfield et al. 2012), and denoted as National Climate Reference Networks (WMO 2009). On a regional or
catchment-scale, applications require careful selection of monitoring stations, since water resources planning
and management decisions, such as operational hydrology and water allocation, require high temporal and
spatial resolution data (Dent 2012).

“The sensor network design can aso be seen from an economic perspective (Loucks et al. 2005). In most cases,
the main limitation in the deployment of sensor networks is related to cost, being the main driver for the
reduction scenarios. The valuation between the costs of the sensor networks and the cost of the lack of



information is not usually considered, because the assessment of the consequences of decisionsis made a-
posteriori (Alfonso et a. 2016). In most studies, it is seen that the improvement of information content metrics
(e.g., entropy, uncertainty reduction, among others) is margina as the number of extra sensors increases (Pardo-
Iguzquiza 1998, Dong et al. 2006, Ridolfi et al. 2011), and thus the selection of the correct density can be based
on athreshold in the increase in accuracy. However, in many practical applications the number of available
stations may be defined by budget limitations. Therefore, the optimal density of a sensor network is strictly
case-specific (WMO 2008).”

(for clarity, this section was dightly reworded asin p3 97-106)

The sensor network design can also be seen from an economic per spective (Loucks et al. 2005). In most cases,
the main limitation in the deployment of sensor networks is related to costs, being sometimes the main driver of
decisions related to reduction of the monitoring networks. The valuation between the costs of the sensor
networks and the cost of having insufficient information is not usually considered, because the assessment of the
consequences of decisions is made a-posteriori (Loucks et al. 2005, Alfonso et al. 2016). In most studies, it is
seen that the improvement of information content metrics (e.g., entropy, uncertainty reduction, among others) is
marginal asthe number of extra sensors increases (Pardo-lguzquiza 1998, Dong et al. 2006, Ridolfi et al.
2011), and thus the selection of the adequate number of sensors can be based on a threshold in the rate of
increment in the objective function. However, in many practical applications the number of available sensors
may be defined by budget limitations. Therefore, the optimal number of sensorsin a network is strictly case-
specific (WMO 2008).

» Specific Comments: 1. Title: Rainfall and streamflow sensor network design: areview of applications,
classification, and a proposed framework Recommended title: Review of precipitation and streamflow
sensor network design methods from hydrologic modeling perspective. »

REPLY. It isinteresting that we suggested a similar title when we submitted this paper for the first time. During
the first round of reviews, we found that the concept of hydrological modelling implied the inclusion of
groundwater processes which are not included in our review. Therefore, we decided to avoid the term
hydrological modelling, and try to manage readers expectationsin the title including only rainfall-runoff
processes. We hope that the reviewer finds this decision adequate.

» 2. Section/subsection titles should be reorganized in a clear way. For example subC3 section 3.3.2
M ethods based on expert judgement and 3.3 Methods based on expert recommendations are similar and
confusing. »

REPLY. Wetotally agree. We have renamed the methods in section 3.3.2 as ‘ Practical case-specific
considerations’, as we believe this better reflects the content. Additionally, section 5 (opportunities) has been
removed and merged into the section Conclusions and Recommendations.

» 3. In most of the European countries (e.g. Denmark and Germany) or even in USGS, the number of
rainfall/streamflow sensors/stations is decreasing due to maintenance costs and use of radar data. | would
expect to read some more insight on specific examples about sensor density and the country based
approaches. Compare, for example, Spain/Poland and Germany from network density aspect to indicate an
optimum approach. Now the content is very technical and dry for the reader. »

REPLY'. Indeed, we agree that the practices within countries are different, and that there is a clear progressin
monitoring technologies, such as radars and remote sensors. Although we believe that making the comparisons
suggested by the reviewer would expand the current objective of our manuscript, we think that reviewing the
current practices and monitoring plans of different authorities will beat the focus of our discussion. For this
reason we have added a paragraph in this regard, in which the following useful references for the interested
readers are included.



e Cihlar, J,, W. Grabs, J. Landwehr. Establishment of a hydrological observation network for climate.
Report of the GCOS/GTOS/HWRP expert meeting. Report GTOS 26. Geisenheim, Germany. WMO.
2000.

e EC. EU Water Framework Directive. Directive 2000/60/EC of the European Parliament and of the
Council of 23 October 2000 establishing a framework for Community action in the field of water
policy. European Commission. 2000.

e Grabs, W. and A. R. Thomas. Report of the GCOS/GTOS/HWRP expert meeting on C4 the
implementation of aglobal terrestrial network — hydrology (GTN-H). Report GCOS 71, GTOS 29.
Koblenz, Germany. WMO. 2001.

e WMO. Guideto hydrological practices. Volume II: Management of water resources and application of
hydrological practices. WMO 168, 6th ed. 2009.

e Environment Canada. Audit of the national hydrometric program. 2010.

e Marsh, T. The UK Benchmark network — Designation, evolution and application. 10th symposium on
stochastic hydraulics and 5th international conference on water resources and environment research.
Quebec, Canada. 2010.

e Dent, J. E. Climate and meteorological information requirements for water management: A review of
issues. WMO 1094. 2012.

e Withfield, P. H., D. H. Burn, J. Hannaford, H. Higgins, G. A. Hodgkins, T. Marsh and U. Looser.
Reference hydrologic networks |. The status and potential future dierctions of national reference
hydrologic networks for detecting trends. Hydrological Sciences Journal 57 (8), 1562 - 1579.
doi:10.1080/02626667.2012.728706. 2012.

» 4. | couldn’t find an answer on network density regulations at European scale. The reader can be curious if
the number of monitoring sensors are arranged by some directives/regulationsin EU e.g. Water Framework
Directive etc. These aspects could make the content more fruitful then the current very technical
classifications. »

REPLY'. Indeed, it isarelevant point to address. Most of the regulations consider monitoring necessities to
meet a given observation objective, instead of defining (or suggesting) particular network densities. For
example, the EU Water Framework Directive Article 8, states that “Member States shall ensure the
establishment of programmes for the monitoring of water status in order to establish a coherent and
comprehensive overview of water status within each river basin district”, and only stipulates that technical
specifications should be in accordance with aregulatory committee.

Other entities such as the USGS and Environment Canada do not outline regulations, C5 but monitoring plans.
These are re-evaluated, in function of the monitoring objectives and budget limitations. Only WMO provides
minimum density recommendations, as presented in the paper. We have extended the text pointing this out (p3
87-89):

"Consequently, regulations regarding monitoring activities are not often strict in terms of station density, but in
the suitability of data to provide information about the status of the water system (EC 2000, EPA 2002)."

e EC. EU Water Framework Directive. Directive 2000/60/EC of the European Parliament and of the
Council of 23 October 2000 establishing a framework for Community action in the field of water
policy. European Commission. 2000.

e EPA. Guidance on choosing a sampling design for environmental data collection, EPA. US
Environmenta Protection Agency. 2002.



Reply to Reviewer #2

» This article presents areview of methodologies to address the design of sensor networks in hydrology and
water management. The topic of the review istimely and certainly of interest to hydrologists and
practitioners. However, the Authors should consider the following comments to improve on the overall
clarity of the manuscript. »

REPLY . We appreciate the thoughtful comments of the reviewer, and its constructive approach to improving
the clarity and reach of this paper. The particular comments are addressed below. » 1) The manuscript language
should be considerably improved. Please avoid typos C1 and reword extensively to better clarify concepts. »
REPLY . We agree. The paper had a complete re-revision to improve language and clarity.

» 2) Section 3 should be improved through a clear and simple explanation of underlying mathematical
concepts and by adding representative case studies. Also, rather than listing applications, the Authors should
provide comments on pros and cons for each approach, thus guiding the reader toward the selection of a
suitable technique. Sometimes | found it difficult to follow the text as concepts were not properly connected.
Few comments are devoted to Table 2 and to the Conclusions and recommendations. »

REPLY . This comment has triggered several changesin the manuscript, as Section 3 is one of the core sections
of the paper. Indeed, Table 2 was extended to consider some relevant cases where the methods described in
Section 3 are applied, thus guiding the reader into selected in-depth material. Additionally, and we thank the
reviewer for the idea, anew table (Table 3) has been added to highlight advantages and disadvantages of the
different methods. The new tables 2 and 3 are provided as an attachment to thisreply.

» 3) Section 6 is poorly related to the others and itstitle is not sufficiently informative. | suggest Sections 5
and 6 are merged into a more comprehensive Discussion. »

REPLY. Wetotally agree. We have merged Section 5 and 6.

» 4) What is the relevance of the topic? | am sure of the importance of the subject but the Authors could
better emphasize through key cases why the design of sensor networksis crucial and what major issues
engineers/researchers may facein their definition. »

REPLY . We agree with the reviewer on highlighting the importance of sensor network design may help the
paper reach awider audience. However, we are concerned about doing it through case studies, as the context
would necessarily change the focus of C2 the paper towards case-specific design practices or regulations. We
therefore suggest the following compromise: we clarify the scope of the paper, and add a paragraph with
references to literature (mostly reports) where the interested reader can find more information.

“Design of rainfall and streamflow sensor networks depends to a large extent on the scale of the processesto be
monitored, and the objectives to address (TNO 1986, Loucks et al. 2005). Therefore, the temporal and spatial
resolution of the measurements are driven by the measurement objectives. For example, information for long-
term planning does not require the same level of temporal resolution as for operational hydrology (WMO 2009,
Dent 2012). On the global and country scale, sensor networks are commonly used for climate studies and trend
detection (Cihlar et al. 2000, Grabs and Thomas 2002, WM O 2009, Environment Canada 2010, Marsh 2010,
Whitfield et al. 2012), and denoted as National Climate Reference Networks (WMO 2009). On aregional or
catchment-scale, applications require careful selection of monitoring stations, since water resources planning
and management decisions, such as operational hydrology and water allocation, require high temporal and
spatial resolution data (Dent 2012).”

(for clarity, this section was dightly reworded asin p1 31-40)



The design of rainfall and streamflow sensor networks depends to a large extent on the scale of the processesto
be monitored and the objectives to address (TNO 1986, Loucks et al. 2005). Therefore, the temporal and spatial
resol ution of measurements are driven by the measurement objectives. For example, information for long-term
planning does not require the same level of temporal resolution as for operational hydrology (WMO 2009, Dent
2012). On the global and country scale, sensor networks are commonly used for climate studies and trend
detection (Cihlar et al. 2000, Grabs and Thomas 2002, WMO 2009, Environment Canada 2010, Marsh 2010,
Whitfield et al. 2012), and denoted as National Climate Reference Networks (WMO 2009). On a regional or
catchment-scale, applications require careful selection of monitoring stations, since water resources planning
and management decisions, such as operational hydrology and water allocation, require high temporal and
spatial resolution data (Dent 2012).

Cihlar, J., W. Grabs, J. Landwehr. Establishment of a hydrological obsevation network for climate.
Report of the GCOS/GTOS/HWRP expert meeting. Report GTOS 26. Geisenheim, Germany. WMO.
2000.

EC. EU Water Framework Directive. Directive 2000/60/EC of the European Parliament and of the
Council of 23 October 2000 establishing a framework for Community action in the field of water
policy. European Commission. 2000.

Grabs, W. and A. R. Thomas. Report of the GCOS/GTOSHWRP expert meeting on the
implementation of aglobal terrestrial network — hydrology (GTN-H). Report GCOS 71, GTOS 29.
Koblenz, Germany. WMO. 2001.

WMO. Guideto hydrological practices. Volume I1: Management of water resources and C3 application
of hydrological practices. WMO 168, 6th ed. 2009. Environment Canada. Audit of the national
hydrometric program. 2010.

Marsh, T. The UK Benchmark network — Designation, evolution and application. 10th symposium on
sthocastic hydraulics and 5th international conference on water resources and environment research.
Quebec, Canada. 2010.

Dent, J. E. Climate and meteorological information reguirements for water management: A review of
issues. WMO 1094. 2012.

Withfield, P. H., D. H. Burn, J. Hannaford, H. Higgins, G. A. Hodgkins, T. Marsh and U. L ooser.
Reference hydrologic networks |. The status and potential future dierctions of national reference
hydrologic networks for detecting trends. Hydrological Sciences Journal 57 (8), 1562 - 1579.
doi:10.1080/02626667.2012.728706. 2012.



Table 2 Classification of sensor network design criteriaincluding recommended reading

Approaches

M easur ement-based

M easur ement-Free

characterisation

Model-free M odel-based
Statistics-based
Pardo-lguzquiza (1998)
Interpolation
Nowak et al. (2010)
Cross- Meaddock (19_74) Vivekanandan and
correlation Moss and Karlinger Jagatp (2012)
(1974)
Tarboton et al. (1987)
Model error
Dong et al. (2005)
Information Theory
Krstanovic and Singh
Entropy (1992) Pham and Tsai (2016)
Alfonso et al. (2014)
Mutual Husain (1987) Coulibaly and Samuel
information Alfonso (2010) (2014)
Expert recommendations
) ) Moss and Karlinger
g Physiographic | o\ ooy (2013) (1974) Lazie (2004)
< components
o Moss et al. (1982)
Wahl and Crippen
Practical case- (1984)
specific Nemec and Askew
considerations (1986)
Karaseff (1986)
Sieber (1970)
User survey
Singh et al. (1986)
Other methods
Black et a. (1999)
) \f/alutthf Alfonso and Price (2012)
information Alfonso et al. (2016)
Lovejoy and
Fractal Mandel brot (1985)

Capecchi et a. (2012)

Network theory

Sivakumar and
Woldemeskel (2014)

Halverson and Fleming
(2015)




Table 3 Advantages and disadvantages of sensor network design methods

Advantages

Disadvantages

Statistics-based

Useful to assess data scarce areas

Heavily rely on the characterisation of
the covariance structure

Interpolation . No relationship with final measurement
. No event-driven -
variance objective
Minimise uncertainty in spatial
distribution of measured variable
. . Augmentation not possible without
Cross- Useful for detecting redundant stations additional assumptions
correlation - :
Computationally inexpensive Limited to linear d_ependency between
stations
Has direct relationship with the Biased towards current measurement
Model error measurement objectives objectives
Biased towards model and error metrics
Information Theory
Assess non-linear relationship between Formal form is computationally
variables intensive
Unbiased estimation of network Quantising (binning) of continuous
performance variables lead to different results
Entropy .
Optimal networks are usually sparse
Difficult to benchmark
Dataintensive
. M utua_l Idem Idem
information
Expert recommendations
Reasonably well understood Not useful for homogeneous catchments
Physiographic Functional for heterogeneous catchments No quantitative measure of network
components with few available measurements accuracy
Useful at country/continental level
No previous measurements are required Biased towards expert
Practical case- ;
specific Useful to observe specific variables Collected da;gggti :ot influence
considerations Biased towards current data
requirements
Pragmatic Extensive user identification
User survey ;
Cost-efficient Biased towards current data
requirements
Other methods
Provides assessment using economics Consequences of decisions are difficult
concepts to quantify
Value of Takes into account decision-maker's prior Usually decisions are made with
information beliefs in the assessment available information
Biased towards arational decision
model
Efficient for large networks Not swtable;?rhsmallt networks or
Fractal catchments
characterisation ] . Does not consider topographic or
Does not require data collection orographic influence
Provides |nsr?ef:\tl\;2rlknsterconnected Not useful for augmentation purposes
Network theory

Dataintensive




Reply to Reviewer #3

» The manuscript presents a review of the existing methods for network sensor design for hydrological
purposes. Moreover, in the introduction, the authors denote the lack of a unified methodology for network
sensor design and, in the last paragraph, they propose a general procedure to fill this gap. | personally have
only few comments and | would suggest the publication of the paper, provided that the authors extend the
text keeping in mind the following comments: »

REPLY. We thank the reviewer for the precise and relevant comments. These comments have helped us to
improve the manuscript.

» | agree with the other two reviewers that a general overview about the network sensor densities at global or
continental scaleismissing. | would suggest to support these considerations with tables or maps to show
some relevant characteristics of the networks. In case this is not possible because of the lack of data, | would
suggest to add some study cases or examples that might be useful for decision-makers. Thiswould trigger
considerations for stakeholders about any actions to be undertaken and to provide answers to questions like
“Under which circumstances should | re-evaluate my sensors networks? Should | improve, reduce or
relocate sensors?’ »

REPL Y. These comments were mainly pointed by Reviewer 1, and we replicate our reply to him/her in the
following lines. We agree that practitioners may be interested in country-wise practices of hydrometric network
expansion or modification. As the essence of the manuscript is to review the available mathematical methods to
make such network expansions/modifications optimal, the connection to practical applications appeared weak.

In order to address the reviewer’s comment, we have included references to country-scale network density,
where the reader can find more detailed information (page 1, 31- 40). We have aso added statements to clarify
that the optimal density of the network is case-specific (p3, 91-99), pointing out that practicesin optimal
monitoring network design would be, per-se, another in-depth study. We have framed these ideas in the new
version of the paper without jeopardising its main focus. Also, main considerations about the selection of the
appropriate number of gauges in the measurement-based methods are highlighted. In the new version of the
manuscript we added the following text:

“Design of rainfall and streamflow sensor networks depends to a large extent on the scale of the processesto be
monitored, and the objectives to address (TNO 1986, Loucks et al. 2005). Therefore, the temporal and spatial
resolution of the measurements are driven by the measurement objectives. For example, information for long-
term planning does not require the same level of temporal resolution as for operational hydrology WMO (2009).
On the global and country scale, sensor networks are commonly used for climate studies and trend detection
(Cihlar et al. 2000, Grabs and Thomas 2002, WMO 2009, Environment Canada 2010, Marsh 2010, Whitfield et
al. 2012). Thisis also supported by the National Climate Reference Networks (WMO 2009). On aregional or
catchment-scale, applications require careful selection of monitoring stations, since water resources planning
and management decisions, such as operational hydrology and water allocation, require different temporal and
spatial resolution data.”

(for clarity, this section was dightly reworded asin pl 31-40)

The design of rainfall and streamflow sensor networks depends to a large extent on the scale of the processesto
be monitored and the objectives to address (TNO 1986, Loucks et al. 2005). Therefore, the temporal and spatial
resol ution of measurements are driven by the measurement objectives. For example, information for long-term
planning does not require the same level of temporal resolution as for operational hydrology (WMO 2009, Dent
2012). On the global and country scale, sensor networks are commonly used for climate studies and trend
detection (Cihlar et al. 2000, Grabs and Thomas 2002, WMO 2009, Environment Canada 2010, Marsh 2010,
Whitfield et al. 2012), and denoted as National Climate Reference Networks (WMO 2009). On a regional or



catchment-scale, applications require careful selection of monitoring stations, since water resources planning
and management decisions, such as operational hydrology and water allocation, require high temporal and
spatial resolution data (Dent 2012).

“The sensor network design can also be seen from an economic perspective (Loucks et al. 2005). In most cases,
the main limitation in the deployment of sensor networks is related to cost, being the main driver for the
reduction scenarios. The valuation between the costs of the sensor networks and the cost of lack of information
isnot usually considered, because the assessment of the consequences of decisions is made a-posteriori (Alfonso
et a. 2016). In most studies, it is seen that the improvement of information content metrics (e.g., entropy,
uncertainty reduction, among others) is marginal as the number of extra sensors increases (Pardo-l1guzquiza
1998, Dong et al. 2006, Ridolfi et al. 2011), and thus the selection of the correct density can be based on a
threshold in the increase in accuracy. However, in many practical applications, the number of available stations
may be defined by budget limitations. Therefore, the optimal density of a sensor network is strictly case-specific
(WMO 2008)."

(for clarity, this section was dightly reworded asin p3 97-106)

The sensor network design can also be seen from an economic perspective (Loucks et al. 2005). In most cases,
the main limitation in the deployment of sensor networks is related to costs, being sometimes the main driver of
decisions related to reduction of the monitoring networks. The valuation between the costs of the sensor
networks and the cost of having insufficient information is not usually considered, because the assessment of the
consequences of decisions is made a-posteriori (Loucks et al. 2005, Alfonso et al. 2016). In most studies, it is
seen that the improvement of information content metrics (e.g., entropy, uncertainty reduction, among others) is
marginal asthe number of extra sensors increases (Pardo-lguzquiza 1998, Dong et al. 2006, Ridolfi et al.
2011), and thus the selection of the adequate number of sensors can be based on a threshold in the rate of
increment in the objective function. However, in many practical applications the number of available sensors
may be defined by budget limitations. Therefore, the optimal number of sensorsin a network is strictly case-
specific (WMO 2008).

To address the reviewer’ s particular comment on the sensor network re-evaluation, we have added more
references to support our statement that it should be made on aregular basis. Considerations of the frequency of
this re-evaluation are driven by the changes in the monitoring objectives, the available observation methods,
budget restrictions and changes in the observed variable, among others (highlighted in section 1.1), and, as one
can imagine, these aspects are totally case-dependent.

The questions the reviewer is suggesting, like “Under which circumstances should | re-evaluate my sensors
networks?’, and “ Should | improve, reduce or relocate sensors?’ are indeed very important and we believe they
should be addressed in a separate manuscript. From areview point of view, considerations of the frequency of
the re-evaluation are driven by the changes in the monitoring objectives, the available observation methods,
budget restrictions and changes in the observed variable. These considerations are highlighted in section 1.1.

» Some considerations about the advantages and disadvantages of the various methods for network sensor
evaluation is missing. For example fractal approach methods suffer from the fact that they consider the
sensors located in atwo dimensional space, ie not considering the elevation. On the contrary, orography
might play an important role in the location of the precipitation maxima, thus fractal methods should be
employed only in relatively flat areas. Another example where advantages and disadvantages might be
relevant is the case of the methods based on expert judgment since these methods are, by definition, biased
because of the expert. »

REPLY . Indeed, highlighting advantages and disadvantages of different design methods provide a reference to
the readers towards the selection of one method over another. Thisis avery good point, so we have added Table
3 presenting advantages and disadvantages of the different design methods. Table 3 can be found in the
attachments of thisreply.




» Since the method proposed in Section 5 isthe novel concept introduced in the paper, | would appreciate an
application of the method in areal case (for example a case when the optimal criteria are met to exit the loop
and another case when they’re not met). This would help the readers to conduct their own experiments based
on this new tool. »

REPLY . We agree with the reviewer that presenting an example application of the proposed design
methodology may be of value to the reader. Although thisis the ongoing research, we find it too difficult to add
it here, asit may compromise the scope and length of the paper. We would like to keep it as a review paper,
with a proposed framework. We understand that proposing aframework in areview paper may outreach its
limits, but considering that this methodology isimplicitly addressed in many of the references, we identified it
as an opportunity.

» Specific comments. The numbering of the Sections is sometimes confusing, | would suggest to simplify it
(eg reducing the sub-sections) to get the text more smoothly. For example the Section 4 is very meager and |
would merge it with another section (perhaps the last one?) »

REPLY. Thank you for the suggestion. We have simplified the paper structure by removing section 5, and
merging its content in section 6. Additionally, we expand section 4 with Table 3. Table 3 can be found in the
attachments of thisreply.

» Technical corrections C2 Please cite correctly the paper by Capecchi et a 2012 (not Cappechi et al 2011)
and change the text accordingly »

REPLY. We regret this mistake. It has been corrected.

» EQ 13: The definition of joint entropy is not well explained for a non-expert. “max” in the right hand side
of theformulais not clear, thedots*”. . . ” arenot clear »

REPLY. The formulas have been clarified.

» Eq 14: “m” stands for? “H”" stands for? Please specify » REPLY . The formulas have been clarified. » Since
I’m not a native English speaker, | have no issues on the language. Anyway some typos are found; here
some examples. — pag 16, line 531: “Heaviside function” with the capital letter — Figure 6, conditional block
(7): “Isit...” instead of “Is|t...” —Figure 6, conditional block (9): “Isit...” instead of “Itis...” »

REPLY. A complete revision of the paper has been undertaken to address the language issues.



Table 3 Advantages and disadvantages of sensor network design methods

Advantages

Disadvantages

Statistics-based

Useful to assess data scarce areas

Heavily rely on the characterisation of
the covariance structure

Interpolation . No relationship with final measurement
: No event-driven I
variance objective
Minimise uncertainty in spatial
distribution of measured variable
Useful for detecting redundant stations Augmentgt!on not possb]ewnhout
Cross- additional assumptions
correlation - .
Computationally inexpensive Limited to linear d_ependency between
stations
Has direct relationship with the Biased towards current measurement
Mode error measurement objectives objectives
Biased towards model and error metrics
Information Theory
Assess non-linear relationship between Formal form is computationally
variables intensive
Unbiased estimation of network Quantising (binning) of continuous
performance variables|ead to different results
Entropy )
Optimal networks are usually sparse
Difficult to benchmark
Dataintensive
_ Muta Idem Idem
information
Expert recommendations
Reasonably well understood Not useful for homogeneous catchments
Physiographic Functional for heterogeneous catchments No quantitative measure of network
components with few available measurements accuracy
Useful at country/continental level
No previous measurements are required Biased towards expert
Practical case- ;
specific Useful to observe specific variables Collected da;gceigt(ie(s) r?Ot influence
considerations Biased towards current data
reguirements
Pragmatic Extensive user identification
User survey ;
Cost-efficient Biased towa_\rds current data
requirements
Other methods
Provides assessment using economics Consequences of decisions are difficult
concepts to quantify
Value of Takes into account decision-maker's prior Usually decisions are made with
information beliefs in the assessment available information
Biased towards arational decision
model
Efficient for large networks Not swtable;(t)rhsmallt networks or
Fractal catchments
characterisation Does not require data collection Does not consi Qer_ topographic or
orographic influence
Provides msr?gf,\; nrlknterconnected Not useful for augmentation purposes
Network theory orks

Dataintensive
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Rainfall and streamflow sensor network design: a review of
applications, classification, and a proposed framework

Juan CasrlesC. Chacon-Hurtado!, Leonardo Alfonso!, Dimitri P. Solomatine 2

! Department of Integrated Water Systems and Governance, UNESCO-IHE, Institute for Water Education, Delft,
the Netherlands.
2 Water Resources Section, Delft University of Technology, the Netherlands.

Abstract. Sensors and sensor networks play an important role in decision-making related to water quality,
operational streamflow forecasting, flood early warning systems and other areas. Altheugh-thereisln this paper

we review a number of existing applications and analyse a variety of evaluation and design procedures for sensor

networks;—mest_with respect to various criteria. Most of the existing approaches focus on maximising the

observability and information content of a variable of interest. Mereever—fromFrom the context of hydrological
modelling; only a few studies use the performance of the hydrological simulation in terms of output discharge as
a design criteria. In this-paper,-we-addition to the review-the-existing-methedelegies-and-, we propose a framework
for classifying the existing design methods, as-weH-asand a generalised procedure for an optimal network design

in the context of rainfall-runoff hydrological modelling.

Keywords: Sensor network design, Surface hydrological modelling, Precipitation, Discharge, Review,
Geostatistics, Information Theory, Expert Recommendations;Fraetal-characterisation

1 Introduction

Optimal design of sensor networks is a key procedure for improved water management as it provides information
about the states of water systems. As the processes taking place in catchments are complex; and the measurements
are limited, the design of sensor networks is (and has been) a relevant topic since the beginning of the International
Hydrological Deeadedecade (1965 — 1974, TNO; 1986) until today (Pham and Tsai 2016). During this period, the
scientific community deeshas not seemyet arrived to-reach an agreement about a unified methodology for sensor
network design due to the diversity of cases, criteria, assumptions, and limitations. Thistack-of-agreement is
evident from the range of existing reviews on hydrometric network design, such as those presented by WMO
(1972), TNO (1986), Nemec and Askew (1986), Knapp and Marcus (2003), Pryce (2004), NRC (2004) and Mishra
and Coulibaly (2009).

The design of rainfall and streamflow sensor networks depends to a large extent on the scale of the processes to

be monitored and the objectives to address (TNO 1986. Loucks et al. 2005). Therefore, the temporal and spatial

resolution of measurements are driven by the measurement objectives. For example, information for long-term

planning does not require the same level of temporal resolution as for operational hydrology (WMO 2009,

Dent 2012). On the global and country scale, sensor networks are commonly used for climate studies and trend
detection (Cihlar et al. 2000, Grabs and Thomas 2002, WMO 2009, Environment Canada 2010, Marsh 2010,
Whitfield et al. 2012), and denoted as National Climate Reference Networks (WMO 2009). On a regional or




38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

catchment-scale, applications require careful selection of monitoring stations, since water resources planning and

management decisions, such as operational hydrology and water allocation, require high temporal and spatial

resolution data (Dent 2012).

This paper presents a review of methods for optimal design and evaluation of precipitation and discharge sensor

networks at catchment scale, proposes a framework for classifying the design methods, and suggests a generalised

framework for optimal network design for surface hydrological modelling. It is possible to extend this framework

to other variables in the hydrological cycle, since optimal sensor location problems are similar. The framework

here introduced is part of the results of the FP7 WeSenselt project (www.wesenseit.eu), and the validation of the

proposed methodology will be presented in subsequent publications. This review does not consider in-situ

installation requirements or recommendations, so the reader is referred to WMO (2008a) for the relevant and

widely accepted guidelines, and to Dent (2012) for current issues in practice.

The structure of this paper is as follows: first, a classification of sensor network design approaches according to

the explicit use of measurements and models is presented, including a review of existing studies. Next, a second

way of classification is suggested, which is based on the classes of methods for sensor network analysis, including

statistics, Information Theory, case-specific recommendations and others. Then, based on the reviewed literature,

an aggregation of approaches and classes is presented, identifying potential opportunities for improvement.

Finally, a general procedure for the optimal design of sensor networks is proposed, followed by conclusions and

recommendations.

1.1 Main principles of network design

The design of a sensor network use the same concepts as experimental design (Kiefer and Wolfowitz; 1959, Fisher;
1974). The design should ensure that the data is sufficient and representative, and can be used to derive the

conclusions required from the measurements. (EPA; 2002), or to assess the water status of a river system

(EC 2000). In the context of rainfall-runoff hydrological modelling, provide the sufficient data for accurate

simulation and forecasting of discharge and water levels, at stations of interest.

The objectives of the sensor network design have been categorised into two groups, the optimality alphabet
(Fedorov 1972, Box 1982, Fedorov and Hackl 1997, Pukelsheim 2006, Montgomery 2012), which uses different
letters to name different design criteria, and the Bayesian framework (Chaloner en Verdinelli 1995, DasGupta
1996). The alphabetic design is based on the linearization of models, optimising particular criteria of the
information matrix (Fedorov and Hackl 1997). Bayesian methods are centred on principles of decision making
under uncertainty, in which it seeks to maximise the gain in Information (SharenShannon 1948) between the prior
and posterior distributions of parameters, inputs or outputs (Lindley 1956, Chaloner and Verdinelli 1995). Among
the most used alphabetic objectives are the D-optimal, which minimises the area of the uncertainty ellipsoids
around the model parameters; and G-optimal, which minimises the variance of the predicted variable—Fhese

alphabetie-design-eriteria, which can also be used as objective functions in athe Bayesian framewerkdesign.
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These general objectives are indirectly addressed in the literature of optimisation of hydrometric sensor networks,
achieved by the use of several functional alternatives. These approaches do not consider block experimental design
(Kirk 2009), due to the incapacity to replicate initial conditions in a non-controlled environment, such as natural

processes.

On the practical end, the design of a sensor network should start with the institutional setup, purposes, objectives
and priorities of the network (Loucks; et al. 2005, WMO 2008b). From the technical point of view, thean optimal
measurement strategy requires the identification of the process, for which data is required (Casman; et al. 1988,
Dent 2012). Considering that neither the information objectives are unique and consistent, nor the characterisation
of the processes is complete, the re-evaluation of the sensor network design should occur on a regular basis.

Therefore, the sensor network should be re-evaluated when either the studied process, information needs,

information use, or the modelling objectives change. Consequently, regulations regarding monitoring activities are

not often strict in terms of station density, but in the suitability of data to provide information about the status of

the water system (EC 2000, EPA 2002).

The design of meteorological and hydrometric sensor networks should consider at least three aspects. First, it
should meet various objectives that are sometimes conflicting (Loucks; et al. 2005, Kollat; et al. 2011). Second, it
should be robust under the events of failure of one or more measurement stations (Kotecha; et al. 2008). Third, it
must take into account different purposes and users with different temporal and spatial scales (Singh; et al. 1986).

Therefore, the design of an optimal sensor network is a multi-objective problem (Alfonso; et al. 2640)2010b).

The sensor network design can also be seen from an economic perspective (Loucks et al. 2005). In most cases, the

main limitation in the deployment of sensor networks is related to costs, being sometimes the main driver of

decisions related to reduction of the monitoring networks. The valuation between the costs of the sensor networks

and the cost of having insufficient information is not usually considered, because the assessment of the

consequences of decisions is made a-posteriori (Loucks et al. 2005, Alfonso et al. 2016). In most studies, it is seen

that the improvement of information content metrics (e.g., entropy, uncertainty reduction, among others) is

marginal as the number of extra sensors increases (Pardo-Iguzquiza 1998, Dong et al. 2006, Ridolfi et al. 2011),

and thus the selection of the adequate number of sensors can be based on a threshold in the rate of increment in

the objective function. However, in many practical applications the number of available sensors may be defined

by budget limitations. Therefore, the optimal number of sensors in a network is strictly case-specific (WMO 2008).

1.2 Scenariosfor sensor network design: Augmentation, relocation and reduction

Scenarios for designing of sensor networks may be categorised into three groups: augmentation, relocation and
reduction (NRC 2004, Mishra and Coulibaly 2009, Barca; et al. 2015). Augmentation refers to the deployment of
at least one additional sensor in the network, whereas Reduction refers to the opposite case, where at least one

sensor is removed from the original network. Relocation is about repositioning the existing network nodes.
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The lack of data usually drives the sensor network augmentation, whereas economic limitations usually push for
reduction. These costs of the sensor network usually relate to the deployment of physical sensors in the field,

transmission, maintenance and continuous validation of data (WMO 2008).

Augmentation and relocation problems are fundamentally similar, as they require the-simulationestimation of the
measured variable at ungauged locations. For this purpose, statistical models of the measured variable are often
employed. For example, Rodriguez-Iturbe and Mejia (1974) described rainfall regarding its correlation structure
in time and space; Pardo-Iglizquiza (1998) expressed areal averages of rainfall events with ordinary Kriging
estimation; Chacon-Hurtado et al. (2009) represented rainfall fields using block Kriging. In contrast, for network
reduction, the analysis is driven by what-if scenarios, as the measurements become available. Dong et al. (2005)
employ this approach to re-evaluatedevaluate the efficiency of a river basin network based on the results of

hydrological modelling.

In principle, augmentation and relocation aim to increase the performance of the network (Pardo-Iguzquiza 1998,
Nowak et al. 2010). In reduction, on the contrary, network performance is usually decreased. The driver for these
decisions is usually related to factors; such as operation and maintenance costs (Moss et al. 1982, Dong et al.

2005).

1.3 RainfallRole of measurementsin rainfall-runoff modelling

The typical data flow for hydrological rainfall-runoff modelling is-presentedcan be summarised as in Fig. 1. For

discharge simulation, precipitation and evapotranspiration are the most common data requirements (WMO 2008,
Seleomatine-and-Wagener 204 Beven 2012), while discharge data is commonly employed for model calibration,
correction and update (Sun; et al. 2015). Data-driven hydrological models may use measured discharge as input
variables as well (e.g., Solomatine and Xue 2004, Shrestha and Solomatine 2006). MedelMethods for updating of
hydrological models hashave been widely used in discharge forecasting as data assimilation, using the model error

to update the model states-by-using-the-model-error-thuspreviding. In this way, more accurate discharge estimates
ofdiseharge-can be obtained (Liu; et al. 2012, Lahoz and Schneider 2014). In real-time error correction schemes,

typically, a data-driven model of the error is employed which may require as input any of the mentioned variables

(Xiong and O'Connor 2002, Solomatine and Ostfeld 2008).

In a conceptual way, we can express the quantification of discharge at a given station as: (Solomatine and Wagener

2011):

Q=0Q(x0)+e ()

Where Q is the recorded discharge, O (x,6) represents a hydrological model, which is function of measured
variables (mainly precipitation and discharge, x) and the model parameters (0). € is the simulation error, which is

ideally independent of the model, but in practice is conditioned by it. Considering that neither the measurements
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are perfect, ernor the model unbiased, the variance of the estimates are-given-by=is proportional to the uncertainty

in the model inputs, 62 (x), and the uncertainty in model parameters, 62 (0):

o2 ( 0(x, a)) a a2(x), 52(0) (2

2 Classification of approachesfor sensor network evaluation

There is a variety of approaches for the evaluation of sensor networks, ranging from theoretically sound to more

pragmatic-te-theoretieal. In this section, we provide a general classification of these approaches, and more details

of each method are given in the next section.

Although most of the approaches for the design of sensor networks make use of data, some rely solely on
experience and recommendations. Therefore, a first tier in the proposed classification consists of recognising both
measurement-based and measurement-free approaches (Fig. 2). The former make use of the measured data to
evaluate the performance of the network (Tarboton et al. 1987, Anctil; et al. 2006), while the latter use other data

sources (Moss and Tasker 1991), such as topography and land use.

2.1 Measurement-based evaluation

The measurement-based approach can be furtherly subdivided into model-free and model-based approaches
(Fig. 2), depending on the use of hydrelogicalmedelmodelling results in the performance metric.

2.1.1 Model-free perfor mance evaluation

In model-free approaches, water systems and the external processes that drive their behaviour are observed through
existing measurements, without the use of catchment models. Then, metrics about amount and quality of

information in space and time are evaluated with regards to the management objectives and the decisions to be
5
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made in the system. Some performance metrics in this category are JeintEntrepyjoint entropy (Krstanovic and
Singh 1992), Information Transfer (Yang and Burn 1994), interpolation variance (Pardo-Igizquiza 1998, Cheng
et al. 2007) and autocorrelation (Moss and Karlinger 1974), among others. Fig. 3 presents the flowchart for the
case when precipitation and discharge, as main drivers of catchment hydrology (WMO 2008) are considered, in

model-free network evaluation.

Fundamentally, the model-free approach aims to minimise the variance of the measured variable, therefore, (and
in theory) minimising the variance in the estimation (equation 3). However, a design that is optimal for estimation

is not necessarily also optimal for prediction (Chaloner and Verdinelli 1995).
min ¢ (Q(x, 9)) amin(c?(x)) (3

Application of model-free approaches can be found in Krstanovic and Singh (1992), Nowak et al. (2010), Li et al.
(2012). Model-free evaluations are suitable for sensor network design aiming mainly atto water resources planning,
in which diverse water interests must be balanced. Due to the lack of a quantitative performance metric that relates

simulated discharge, this kind of evaluations do not necessarily improve rainfall-runoff simulations.

2.1.2 Model-based performance evaluation

In the model-based approach, the performance of sensor networks is carried out using a catchment model (Dong
et al. 2005, Xu et al. 2013), In this case, measurements of precipitation are used to simulate discharge, which is
compared to the discharge measurements at specific locations. Therefore, any metric of the modelling error could
be used to evaluate the performance of the network. Fig. 4 presents a generic model-based approach for evaluating

sensor networks.

In the model-based design of sensor networks, it is assumed that the model structure and parameters are adequate.

Therefore, it is possible to identify a set of measurements (x) which minimise the modelling error as.
mino?(e) amin(|Q — Q(x,0)|) (4)

The need for the catchment model and possible high computational efforts for multiple model runs are some
disadvantages of this approach. The computational load is especially critical in case of complex distributed models.
It is worth mentioning particular model error metrics (Nash and Sutcliffe 1970, Gupta; et al. 2009) may qualify
the network by its ability to capture certain hydrological processes (Bennet; et al. 2013), affecting the network

evaluation.

2.2 M easur ement-fr ee evaluation methods

As it is seen from its name, this approach does not require the previous collection of data of the measured variable

to evaluate the sensor network performance. The evaluation of sensor networks is based on either experience or
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physical characteristics of the area such as land use, slope or geology. In this group of methods, the following can
be mentioned: expertcase-specific recommendations (Bleasdale 1965, Wahl and Crippen 1984, Karasseff 1986,
WMO 2008a) and physiographic components (Tasker 1986, Laize 2004). This approach is the first step towards
any sensor network development (Bleasdale 1965, Moss;-GHrey; et al. 1982, Nemec and Askew 1986, Karasseff
1986).

3 Classification of methods for sensor network evaluation

In this section, we classify the methods used to quantify the performance of the sensor networks based on the £ype

of-the-mathematical teelsapparatus used-_to evaluate the network performance. These methods can be broadly

categorised in statistics-based, information theory-based, metheds-based-en-expert recommendations, and others.

3.1 Statistics-based methods

Statistics-based methods refer to methods where the performance of the network is evaluated with statistical
uncertainty metrics of the measured or simulated variable. These methods aim at-minimistrgto minimise either
interpolation variance (Rodriguez-Iturbe and Mejia 1974, Bastin et al. 1984, Bastin and Gevers 1985, Bogardi-et
al—=985Pardo-Iguzquiza 1998, Bonaccorso 2003), cross-correlation (Maddock 1974, Moss and Karlinger 1974,
Tasker 1986), or model error (Dong et al. 2005, Xu et al. 2015).

3.1.1 Minimum-interpeolation] nterpolation variance (geostatistical) methods:

Methods to evaluate sensor networks considering a reduction in the interpolation variance assume that for a
network to be optimal, the measured variable should be as certain as possible in the domain of the problem. To
achieve this, a stochastic interpolation model that provides uncertainty metrics is required. Geostatistical methods
such as Kriging (Journel and Huijbregts 1978, Cressie 1993), or Copula interpolation (Bardossy 2006) have an
explicit estimation of the interpolation error. This characteristic makes it suitable to identify areas with expected
poor interpolation results, (Bastin; et al. 1984, Pardo-Iguzquiza 1998, Grimes et al. 1999, Bonaccorso et al. 2003,
Cheng et al. 2007, Nowak et al. 2009, Newaketal-2010, Shafiei; et al. 2013).

In the case of Kriging, the optimal estimation of a variable at ungauged locations is assumed to be a linear
combination of the measurements, with a Gaussian distributed probability distribution function. Under the ordinary

Kriging formulation, the variance in the estimation 6°£%(®) of a variable at location () over a catchment is:

A n
2(% )= - 02(W) = Co— Y Aq(w) — C(ug — ) (5)

Where Cy refers to the variance of the random field, 4, are the Kriging weights for the station a at the ungauged
location #u. Cte—+#)(u, — u) is the covariance between the station a at the location u, and the interpolation target
at the location #—4u. n represents the total number of stations in the neighbourhood of #: and used in the

interpolation.
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Therefore, as an objective function the optimal sensor network is such that_the total Kriging variance (TKV) is

minimum:

mm%gi@\ig}mv = igz(u) (6)
t=1 u=1

Where QU is the total number of discrete interpolation targets in the catchment or domain of the problem.

Bastin and Gevers (1984) optimised a precipitation sensor network at pre-defined locations to estimate the average
precipitation for a given catchment. Their selection of the optimal sensor location consisted of minimising the
normalised uncertainty by reducing the network. The main drawback of their approach is that the network can only
be reduced and not augmented. Similar approaches have also been used by Rodriguez-Iturbe and Mejia (1974),
BérdessyandBegardi{1983)-Bogardi et al. 1985, and Morrissey et al. (1995)-and Benaceorso-etal+2003). Pardo-
Iglizquiza (1998) advanced this formulation by removing the pre-defined set of locations (allowing augmentation).
Instead, rain gauges were allowed to be placed anywhere in the catchment and its surroundings. A simulated
annealing algorithm is used to search for the find the optimal set of sensors to minimise the interpolation

uncertainty.

Copula interpolation is a geostatistical alternative to Kriging for the modelling of spatially distributed processes
(Bardossy 2006, Bardossy and Li 2008, Bardossy and Pegram 2009). As a geostatistical model, the copula provides
metrics of the interpolation uncertainty, considering not only the location of the stations and the model
parameterisation but also the value of the observations. Li et al. (2011) use the concept of copula to provide a
framework for the design of a monitoring network for groundwater parameter estimation, using a utility function,

related to the cost of a given decision with the available information.

In the case of the-Cepulacopula, the full conditional probability distribution function of the variable is interpolated.
As such, the interpolation uncertainty depends on the confidence interval, measured values, parameterisation of
the copula and the relative position of the sensors in the domain of the catchment. More details on the formulation

of-the copula-based design can be found in Bardossy and Li (2008).

Cheng et al. (2007), as well as Shafiei et al. (2013), recognised that the temporal resolution of the measurements
affects the definition of optimality in minimum interpolation variance methods. This change in the spatial
correlation structure occurs due to more correlated precipitation data between stations in coarser sampling
resolutions (Ciach and Krajewski 2006). For this purpose, the sensor network has to be split into two parts, a base
network and non-base sensors. The former should remain in the same position for long periods, to characterise
longer fluctuation phenomena, based on the definition of a minimum threshold for an area with acceptable
accuracy. The latter is relocated to improve the accuracy of the whole system, and should be relocated as they do

not provide a significant contribution to the monitoring objective.
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Recent efforts have used minimum interpolation variance approaches to consider the non-stationarity assumption
of most geostatistical applications in sensor network design (Chacon-Hurtado et al. 2014). To this end, changes in
the precipitation pattern and its effect on the uncertainty estimation were considered during the development of a
rainfall event.

Mini

3.1.2 Cross-corr elation methods

The objective of minimum cross-correlation methods is to avoid placing sensors at sites that may produce
redundant information. Cross-correlation was suggested by Maddock (1974) for sensor network reduction, as a

way to identify redundant sensors. In this scope, the objective function can be written as:

NN RO NN ovC ) -
{é{i;éh%% p(Xu.X;) ;j;lo(xi)o(xj)

Where cov is the covariance function between a pair of stations (i, j), and o is the standard deviation of the

observations.

Stedinger and Tasker (1985) introduced the method called Network Analysis Using Generalized Least Squares

(NAUGLS), which assesses the parameters of a regression model for daily discharge simulation based on the
physiographic characteristics of a catchment (Stedinger and Tasker 1985, Tasker 1986, Moss and Tasker 1991).
The method builds a Generalised-Least-Square (GLS) covariance matrix of regression errors to correlate flow

records and to consider flow records of different length, so the sampling mean squared error can be expressed as:

s

j
1 1
. - § ,;f(;;?zﬁ—; ¥)—4¥* SMSE = Ez XiT(XTA—l X)_lXi (8)

i=1 i=1

Where X [k, w] is the matrix of the (k) basin characteristics in a window of size w at discharge measuring site i. A

is the GLS Weighting matrix, using a set of n gauges (Tasker 1986)

A comparable method was proposed by Burn and Goulter (1991), who used a correlation metric to cluster similar
stations. Vivekanandan and Jagtap (2012) proposed an alternative for the location of discharge sensors in a
recurrent approach, in which the most redundant stations were removed, and the most informative stations
remained using the €eeksCooks’ D metrics, a measure of how the spatial regression model at a particular site is
affected by removing another station. The result of these type of sensors is sparse, as the redundancy of two sensors

increases with the inverse of the distance between them (Mishra and Coulibaly 2009).

3.1.3 Minbimum-modelM odel output error methods

These methods assume that the optimal sensor network configuration is such that satisfy a particular modelling
purpose, e.g. a minimum error in simulated discharge. Considering this, the design of a sensor network should be

such that minimises the difference between the simulated and recorded variable:
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min f(|Q — Q(x,0)|) (9

Where f'is a metric that summarises the vector error such as Bias, Root Mean Squared Error (RMSE), or Nash-
Sutcliffe Efficiency (NSE); Q is the measurements of the simulated variable, and O is the simulation results

ferusing inputs x, and parameters §. Bias measures the mean deviation of the meanresults between the observations

(0) and simulation results (Q) for #¢ pairs of observations and simulation results:

i3 t
Bias =~ (0—ar) - > (0~ Q) (10
=1 i=1

This metric theoretically varies from minus infinity to infinity, and its optimal value is equal to zero. The root

mean square error (RMSE) measures the standard deviation of the residuals as:

n t
_ {4Y‘m a2 (1 5. —0.)? (11)
RMSE = Jﬂé\*ﬂ £y nZ(Qi Ql.)

The RMSE can vary then from zero to infinity, where zero represents a perfect fit between model results and
observations. As RMSE is a statistical moment of the residuals, the result is a magnitude rather than a score.
Therefore, benchmarking between different case studies is not trivial. To overcome this issue, Nash and Sutcliffe
(1970) proposed a score (also known as coefficient of determination) based on the ratio of the model results in

variance-ofthe-modelresiduals over the observation variance as:

n PN 2 PN 2
Nop o g D@6 i-2(0: - Q) (12)

t
N ——NSE =1 — —
PO—02 i21(Q; — Q)?

In which Q are the measurements, O are the model results and Q is the average of the recorded series.

Theoretically, this score varies from minus infinity to one. However, its practical range lies between zero and one.
On the one hand, an NSE equal to zero indicates that the model has the same explanatory capabilities that the mean
of the observations. On the other end, a value of one represents a perfect fit between model results and observations.
Model output error formulations have been used to identify the most convenient set of sensors that provide the
best model performance (Tarboton et al. 1987) to propose measurement strategies regarding the number of gauges

and sampling frequency.

Another application is provided by Dong et al. (2005) who proposed to evaluate the rainfall network using a
lumped HBV model. They found that the model performance does not necessarily improve when extra rain gauges

are placed. A similar approach was presented by Xu et al. (2013) who evaluated the effect of diverse rain gauge

10
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locations on runoff simulation using a similar hydrological model. It was found that rain gauge locations could
have a significant impact and suggest that a gauge density less than 0.4 stations per 1000 km2 can negatively affect

the model performance.

Anctil et al. (2006) aimed at improving lumped neural network rainfall-runoff forecasting models through mean
areal rainfall optimisation, and concluded that different combinations of sensors lead to noticeable streamflow
forecasting improvements. Studies in other fields have also used this method. For example, Melles et al. (2009,
2011), obtained optimal monitoring designs for radiation monitoring networks, which minimise the prediction
error of mean annual background radiation. The main drawback of this approach is that multiple error metrics are

considered, as specific objectives relate to different processes

3.2 Information Theory-based methods

Information Theory-(Shanen1948)The use of Information Theory (Shannon 1948) in the design of sensor networks

for environmental monitoring is based on Communication Theory, which studies the problem of transmitting

signals from a source to a receiver throughout a noisy medium. Information Theory provides the possibility of

estimating probability distribution functions in the presence of partial information with the less biassed estimation
(Jaynes 1957). Some of its concepts are analogous to statistics concepts, and therefore similarities between

Entrepyentropy and uncertainty, as mutual information and correlation—, etc., can be found (Cover and Thomas

2005, Alfonso 20103y, Singh 2013).

Information Theory-based methods for designing sensor networks mainly consider the maximisation of
information content that sensors can provide, in combination with the minimisation of redundancy among them

(Krstanovic and Singh 1992, Mogheir and Singh 2002, Alfonso et al. 264062010a.b, Alfonso 2010, Alfonso; et al.

2013, Singh 2013). Redundancy can be measured by using either Mutual Information (Singh 2000, Steuer; et al.
2002), Directional Information Transfer (Yang and Burn 1994), Total Correlation (Alfonso et al. 2009;
2061462010a.b, Fahle; et al. 2015), among others.

3.2.1 Maximum-Entropy methods

The Principle of Maximum Entropy (POME) is based on the premise that probability distribution with the largest
remaining uncertainty (i.e., the maximum Entrepyentropy) is the one that best represent the current stage of
knowledge. POME has been used as a criterion for the design of sensor networks, by allowing the identification
of the set of sensors that maximises the joint Eatrepyentropy among measurements (Krstanovic and Singh 1992).
In other words, to provide as much information_content, from the Information Theory perspective, as possible

(Jaynes 1988).

As-an-In the design of sensor networks, the objective fanetion;the-maximisation-ofis to maximise the joint entropy
(H) of the measurementsis-given-bysensor network as:
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(13)

m

k
=— Z z p(xil, ...xjm) logp(xl-l, ...xjm)
=1

i j=1

Where p(X) is the probability of the random variable X to take thea discrete value x,,. As in many applications, x,,X
is a continuous value-the-variable Xwhich has to be discretised (quantised) into intervals before(k, m) to calculate

its entropy. The probabilities are calculated following frequency analysis, such that the probability of a variable X

to take a value in the interval i, ...,/ which is defined by the ealewlationofnumber of times in which this value

appear, divided by the JeintyEntropyycomplete length of the dataset. When calculating the entropy of more than

one variable simultaneously (joint entropy), joint probabilities are used.

Krstanovich and Singh (1992) presented a concise work on rainfall network evaluation using Entrepyentropy.
They used POME to obtain multivariate distributions to associate different dependencies between sensors, such as
joint information and shared information, which was used later either reduce the network (in the case of high

redundancy) or expand it (in the case of lack of common information).

Fuentes et al. (2007) proposed an Entrepyentropy-utility criterion for environmental sampling, particularly suited
for air-pollution monitoring. This approach considers Bayesian optimal sub-networks using an Entrepyentropy
framework, relying on the spatial correlation model. An interesting contribution of this work is the assumption of
non-stationarity, contrary to traditional atmospheric studies, and relevant in the design of precipitation sensor

networks.

The use of hydraulic 1D models and metrics of Entrepyentropy have been used to select the adequate spacing

between sensors for water level in canals and polder systems (Alfonso et al. 26442010a.b). This approach is based

on the current conditions of the system, which makes it useful for operational purposes, but it does not necessarily
support the modifications in the water system conditions or changes in the operation rules. Studies on the design
of sensor networks using these methods are on the rise in the last years (Alfonso 2010, Alfonso et al. 2013, Ridolfi

et al. €2013, Banik et al 2017).

Benefits of POME include the robustness of the description of the posterior probability distribution since it aims
to define the less biassed outcome. This is because neither the models nor the measurements are completely certain.
Li et al. (2012) presented, as part of a multi-objective framework for sensor network optimisation, the criteria of
maximum (Jeint)Entrepyjoint) entropy, as one of the objectives. Other studies in this direction have been
presented by Lindley (1956), Caselton and Zidek (1984), Guttorp et al. (1993), Zidek et al. (2000), Yeh et al.

(2011) and Kang et al. (2014).

More recently, Samuel et al. (2013) and Coulibaly and Samuel (2014), proposed a mixed method involving
regionalisation and dual Entrepyentropy multi-objective optimisation (CRDEMO)—This-method), which is a step

forward if compared to single-objective optimisation-methods for sensor network design.
12
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3.2.2 Minmum-mutualM utual information (trans-infor mation) methods

Mutual information is a measurement of the amount of information that a variable contains about another. This is
measured as the relative Entropyentropy between the joint distribution and the product distribution (Cover and
Thomas 2005). Fhe-desiento-mintmiseln the simplest expression (two variables), the mutual information can be

expresseddefined as:

(14)

1(X1,X,) = H(Xy) + H(X;) — H(Xy, X3)
Hader
where H(X;) and H(X>) is the entropy of each of the variables, and H(X;, X>) is the joint entropy between them.

The extension of the mutual information for more than two variables should not only consider the joint entropy

between them, but also the joint entropy between pairs of variables, leading to a significantly complex expression

for the multivariate mutual information. Regarding this petrspeetive;the-issue, the multivariate mutual information

can be addressed as a nested problem, such that:

1(Xy, Xgy oo X)) = 1(X0, Xy ooy Xnea) — I(X1, Xop s Xner 1 X) (15)

Where I(X;, X, ..., X,) is the multivariate mutual information among n variables, and /(X}, X5, ..., X1 | X)) is the

conditional information of n-1 variables with respect to the n" variable. The conditional mutual information can

be understood as the amount of information that a set of variable share with another variable (or variables). The

conditional mutual information of two variables (X; and X>) with respect to a third one (X3) can be quantified as:

I(X1'X2 |X3) = H(X1 |X3) - H(X1|X2'X3) (16)

Where H(X; | X;) is the conditional entropy of X; to X3 and H(X; | X5, X3) is the conditional entropy of X; with

respect to X> and X; simultaneously. The conditional entropy can be understood as the amount information that a

variable does not share with another. The joint entropy between two variables can be quantified as:

k m
p(X1;)
HX,|X,) ZZp(Xll,ij)log (Xu,lxz,) (17)
i=1 j=

where p(X;, X5) is the joint probability, for k£ and m discrete values, of X;and X.

An optimal sensor network should avoid collecting repetitive or redundant information, in other words, it should

be such that reduces the infermation-mutual (shared) information between sensors in the network. Alternatively,

that-maximisesit should maximise the transferred information from a measured to a modelled variable to—a
measured—variable-at a point of interest (Amorocho and Espildora 1973). Following this idea, Husain (1987)

suggested an optimisation scheme for the reduction of a rain sensor network. His objective was to minimise the
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trans-information between pairs of stations. However, assumptions of the probability and joint probability
distribution functions are strong simplifications of this method. To overcome these assumptions, the Directional
Information Transfer (DIT) index was introduced (Yang and Burn 1994) as the inverse of the coefficient of non-
transferred information (NTI) (Harmancioglu and Yevjevich 1985). Both DIT and NTI are a normalised measure

of information transfer between two variables (X; and X>).

I1(Xy, X
o 1K)
HO)

(18)

Particularly for the design of precipitation sensor networks, Ridolfi et al. (2011) presented a definition of the
maximum achievable information content for designing a dense network of precipitation sensors at different
temporal resolutions. The results of this study show that there exists a linear dependency between the non-

transferred information and the sampling timefrequency of the observations.

Total Correlation (C) is an alternative measure of the amount of shared information between two or more variables,

and has also been used as a measure of information redundancy in the design of sensor networks (Alfonso et al.

2010a, b, Leach et al. 2015) as:

CXy, o Xy) = Z HX,) — H(Xy, o, Xy) (19)

=1

Where C(X;, X>, ..., X,) is the total correlation among the n variables, H(Xj) is the entropy of the variable i, and

H(X), X5, ..., X;) is the joint entropy of the n variables. Total Correlation can be seen then as a simplification of

the multivariate mutual information, where only the interaction among all the variables is considered. In the design

of sensor networks, it is expected that the mutual information among the different variables is minimum, therefore,

the difference between the total correlation and multivariate mutual information tends to be minimised as well.

The advantage of total correlation is the computational advantage that represents assuming a marginal value for

the interaction among variables.

A method to estimate trans-information fields at ungauged locations has been proposed by Su and You (2014),
employing a trans-information-distance relationship. This method accounts for the-spatial distribution of-the
precipitation, supporting the augmentation problem in the design of precipitation sensor networks. However, as
the relationship between trans-information between sensors and their distance is monotonic, the resulting sensor

networks are generally sparse.
3.3 Methods based on expert recommendations

3.3.1 Physiographic components metheds

Among the most used planning tools for hydrometric network design are the technical reports presented by the
WMO (2008), in which a minimum density of stations depending on different physiographic units, are suggested

(Table 1). Although these guidelines do not provide an indication about where to place hydrometric sensors, rather
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they recommend that their distribution should be as uniform as possible and that network expansion has to be
considered. The document also encourages the use of computationally aided design and evaluation of a more

comprehensive design. For instance, Coulibaly et al. (2013) suggested the use of these guidelines to evaluate the

Canadian national hydrometric network.

Moss et als. (1982) presented one of the first attempts to use physiographic components in the design of sensor
networks in a method called Network Analysis for Regional Information (NARI). This method is based on relations
of basin characteristics proposed by Benson and Matalas (1967). NARI can be used to formulate the following
objectives for network design: minimum cost network, maximum information and maximum net benefit from the

data-collection program, in a Bayesian framework, which can be approximated as:

, - o by b A_NTy_ L D1 b 20
m—m—leg&(&@Q—QH—)—mmﬁT-?loga(SdQ Q|))—a+n+y (20

Wherewhere the function S(|0 - Q|)* is the o percentile of the standard error in the estimation of Q, a, b; and b;
are the parameters from the NARI analysis, » is the number of stations used in the regional analysis, and y is the

harmonic mean of the records used in the regression.

Laize (2004) presented an alternative for evaluating precipitation networks based on the use of the Representative
Catchment Index (RCI), a measure to estimate how representative a given station in a catchment is for a given
area, on the stations in the surrounding catchments. The author argues that the method, which uses datasets of land
use and elevation as physiographical components, can help identifying areas with a insufficient number of

representative stations on a catchment.
Mecthods-bascd-on-expertjudecment

3.3.2 Practical case-specific consider ations

Most of the first sensor networks were designed based on expert judgement and practical considerations. Aspects

such as the objective of the measurement, security and accessibility are decisive to select the location of a sensor.
Nemec and Askew (1986) presented a short review of the history and development of the early sensor networks,
where it is highlighted that the use of “basic pragmatic approaches” still had most of the attention, due to its

practicality in the field and its closeness with decision makers.

Bleasdale (1965) presented a historical review of the early development process of the rainfall sensor networks in
the United Kingdom. In the early stages of the development of precipitation sensor networks, two main
characteristics influencing the location of the sensors were identified: at sites that were conventionally satisfactory
and where good observers were located. However, the necessity of a more structured approach to select the location
of sensors was underlined. As a guide, Bleasdale (1965) presented a series of recommendations on the minimal
density of sensors for operational purposes, summarised in Fig. 5, relating the characteristics of the area to be

monitored and the minimum required a number of preeipitationrain sensors, as well as its temporal resolution.
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In a more structured approach, Karasseff (1986) introduced some guidelines for the definition of the optimal sensor
network to measure hydrological variables for operational hydrological forecasting systems. The study specified
the minimum requirements for the density of measurement stations based on the fluctuation scale and the
variability of the measured variable by defining zonal representative areas. HeThis author suggested the following

considerations for selecting the optimal placement of hydrometric stations:

"“in the lower part of inflow and wastewater canals”

““at the heads of irrigation and watering canals taking water from the sources’’

““at the beginning of a debris cone before the zone of infiltration, and at its end, where ground-water

decrement takes place”

““at the boundaries of irrigated areas and zones of considerable industrial water diversions (towns)

“at the sites of hydroelectric power plants and hydro projects”

From a different perspective, Wahl and Crippen (1984), as well as Mades and Oberg (1986) proposed a qualitative
score assessment of different factors related to the use of data and the historical availability of records for the
evaluation of sensor value. Their analyses aimed at identifying candidate sensors to be discontinued, due to their

limited accuracy.

3.3.3 User survey methods

These approaches aim to identify the information needs of particular groups of users (Sieber 1970), following the
idea that the location of a certain sensor (or group of sensors) should satisfy at least one specific purpose. To this
end, surveys to identify the interests for the measurement of certain variables, considering the location of the

sensor, record length, frequency of the records, methods of transmission, among others, are executed.

Singh et al-. (1986) applied two questionnaires to evaluate the streamflow network in Illinois—Ose: one to identify
the main uses of streamflow data collected at gauging stations, where participants described how data was used;
and how they would categorise it in ajeither site-specific management activities, local or regional planning and
design, or-b} determination of long-term trends. The second questionnaire was used to determine present and future
needs for streamflow information. The results showed that the network was reduced due to the limited interest

about certain datasensors, which allowed for enhancing the existing network using more sophisticated sensors or

recording methods. Additionally, this redirection of resources increased the coverage at specific locations-efhigh

interest.

3.4 Other methods

There are also other methods that cannot be easily attributed to the previously mentioned categories. Among them,

Value of Information, fractal, and network theory-based methods can be mentioned.
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3.4.1 Value of Information M-etheds

The Value of Information (VOI, Howard 1966, +986Hirshleifer and Riley 1979) is defined as the value a decision-

maker is willing to pay for extra information before making a decision. This willingness to pay is related to the

reduction of uncertainty about the consequences of making a wrong decision (Alfonso and Price 2012).

The main attributefeature of this approach is the direct description of the benefits of eertain-the-additional piece of
information, compared with the costs of acquiring that extra piece of information (Black et al. 1999, Walker 2000,
Nguyen and Bagajewicz 2011, Alfonso and Price 2012, Ballari et al. 2012). The main advantage of this method is
that provides a pragmatic framework in which information have a utilitarian value, usually economic, which is

especially suited for budget constraint conditions.

One of the assumptions of this type of models is that a prior estimation of consequences is needed. If a is the action
that has been decided to perform, m is the additional information that comes to make such a decision, and s is the

state that is actually observed, then the expected utility of any action a can be expressed as:
u(@P) = ) PuCes) (21
S

Wherewhere Py is the perception, in probabilistic terms, of the occurrence of a particular state (s) among a total
number of possible states (S), and u is the utility of the outcome C,, of the actions given the different states. When
new information (i.e., a message m) becomes available, and the decision-maker accepts it, his prior belief P, will
sufferbe subject to a Bayesian update. If P (m|s) is the likelihood of receiving the message m given the state s and
P,, is the probability of getting a message m then:

Pn= Y RP(nls) (22
N

The value of a single message m can be estimated as the difference between the utility, u, of the action, a,, that is
chosen given a particular message m -and the utility of the action, ay, that would have been chosen without
additional information as:

A= u(am, P(sm)) — u(ao, P(s|m)) (23)

The Value of Information, VOI, is the expected utility of the values A4,
VOI = E(y) = ) Puby, (24)
M

Following the same line of ideas, Khader et al. (2013) proposed the use of decision trees to account for the

development of a sensor network for water quality in drinking groundwater applications. VOI is a straightforward

17



598
599
600
601
602
603

604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

630
631
632
633
634

methodology to establish present causes and consequences of scenarios with different types of actions, including

the expected effect of additional information.

A recent effort by Alfonso et al. (2016) towards identifying valuable areas to get information for floodplain
planning consists of the generation of VOI maps, where probabilistic flood maps and the consequences of

urbanisation actions are taken into account to identify areas where extra information may be more critical.

3.4.2 Fractal-based metheds

Fractal-based methods employ the concept of Gaussian self-affinity, where sensor networks show the same spatial
patterns at different scales. This affinity can be measured by its fractal dimension (Mandelbrot 2001). Lovejoy et
al;. (1986) proposed the use of fractal-based methods to measure the dimensional deficit between the observations
of a process and its real domain. Consider a set of evenly distributed cells representing the physical space, and the
fractal dimension of the network representing the number of observed cells in the correlation space. The lack of

non-measured cells in the correlation space is known as the fractal deficit of the network. Considering that a large

number of stations have to be available at different scales, the method is suitable for large networks, but less useful

in the deployment of few sensors in a catchment scale.

Lovejoy and Mandelbrot (1985) and Lovejoy and Schertzer (1985) introduced the use of fractals to model
precipitation. They argued that the intermittent nature of the atmosphere can be characterised by fractal measures
with fat-tailed probability distributions of the fluctuations, and stated that standard statistical methods are
inappropriate to describe this kind of variability. Mazzarella and Tranfaglia (2000) and CappeehiCapecchi et al.
(26442012) presented two different case studies using this method for the evaluation of a rainfall sensor networks.
The former study concludes that for network augmentation, it is important to select the optimal locations that
improve the coverage, measured by the reduction of the fractal deficit. However, there are no practical
recommendations on how to select such locations. The latter proposes the inspection of seasonal trends as the
meteorological processes of precipitation may have significant effects on the detectability capabilities of the

network.

A common approach for the quantification of the dimensional deficit is the box-counting method (Song et al. 2007,
Kanevski 2008), mainly used in the fractal characterisation of precipitation sensor networks. The fractal dimension
of the network (D) is quantified as the ratio of the logarithm of the number of blocks (NB) that have measurements

and the logarithm of the scaling radius (R).

_ log(NB(R)) (25)
log(R)

Due to the scarcity of measurements of precipitation type of networks, the quantification of the fractal dimension

may result unstable. An alternative fractal dimension may be calculated using a correlation integral (Mazzarella &

Tranfaglia; 2606): 2000) instead of the number of blocks, such that:
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CIR) = ————

BB —1) ZQ(R—|uai—uaj|):fori¢j (26)

j=1

B B
=1

In which CI is the correlation integral, R is the scaling radius, B is the total number of blocks at each scaling radius,
and U, is the location of station a. @ is the heavsysideHeaviside function. A normalisation coefficient is used, as

the number of estimations of the counting of blocks considers each station as a centre.

The consequent definition of the fractal dimension of the network is the rate between the logarithm of the
correlation integral and the logarithm of the scaling radius. This ratio is calculated from a regression between
different values of R, for which the network exhibit fractal behaviour (meaning, a high correlation between log(CI)

and log(R)).

_ log(CI) (27)
log(R)

The Maximum potential value for the fractal dimension of a 2-D network (such as for spatially distributed
variables) is two. However, this limit considers that the stations are located on a flat surface, as elevation is a

consequence of the topography, and is not era variable that can be controlled in the network deployment.

3.4.3 Network theory-based methods

Recently, research efforts have been devoted to the use of the so-called network theory to assess the performance
of discharge sensor networks (Sivakumar and Woldemeskel 2014, Halverson and Fleming 2015). These studies
analyse three main features, namely average clustering coefficient, average path length and degree distribution.
Average clustering is a degree of the tendency of stations to form clusters. Average path length is the average of
the shortest paths between every combination of station pairs. Degree distribution is the probability distribution of
network degrees across all the stations, being network degree defined as the number of stations to which a station
is connected. Halverson and Fleming (2015) observed that regular streamflow networks are highly clustered (so
the removal of any randomly chosen node has little impact on the network performance) and have long average

path lengths (so information may not easily be propagated across the network).

In hydrometric networks, three metrics are identified (Halverson and Fleming; 2015): degree distribution,
clustering coefficient and average path length. The first of these measures is the average node degree, which
corresponds to the probability of a node to be connected to other nodes. The metric is calculated in the adjacency
matrix (a binary matrix in which connected nodes are represented by 1 and the missing links by 0). Therefore, the

degree of the node is defined as:

n

k(a) = Z o, (28)

=1

Where k(o) is the degree of station a, 7 is the total number of stations, and a is the adjacency matrix.
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The clustering coefficient is a measure of how much the nodes cluster together. High clustering indicates that

nodes are highly interconnected. The clustering coefficient (CC) for a given station is defined as:

cC(a) = (29)

2 n
k() (ke(o) — 1) ]Z e

Additionally, the average path length refers to the mean distance of the interconnected nodes. The length of the

connections in the network, provide some insights in the length of the relationships between the nodes in the

network.
1 k(a) n
= . (30)
L n(n—1) Z Z da.s
a=1 j=1

As can be seen from the formulation, the metrics of the network largely depends on the definition of the network
topology (adjacency matrix). The links are defined from a metric of statistical similitude such as the Pearson r or
the Spearman rank coefficient. The links are such pair of stations over which statistical similitude is over a certain

threshold.

According to Halverson and Fleming (2015), an optimal configuration of streamflow networks should consist of
measurements with small membership communities, high--betweenness, and index stations with large numbers of
intracommunity-links. Small communities represent clusters of observations, thus, indicating efficient
measurements. Large numbers of intra-community links ensure that the network has some degree of redundancy,
and thus, resistant to sensor failure. High--betweenness indicates that such stations which have the most inter-
communal links are adequately connected, and thus, able to capture the heterogeneity of the hydrological processes

at a larger scale.

43.5 Aggregation of approaches and classes

Table 2 summarises the sensor network design classes and approaches—Fhe-erosses-indicate, with the existenee-of
studies-thatasfarasselected references to the authers-are-aware-of-are-presentrelevant papers in each eategeryof

the categories for further reference.

It is of special interest in the review to highlight the lack of model-based information theory methods, as well as
the little amount of publications in network theory-based methods. Also, quantitative studies in the comparison of
different methodologies for the design of sensor networks are limited. It is suggested, therefore, that a pilot
catchment is used for the scientific community to test all the available methods for network evaluation, establish

similarities and differences among them.

Table 3 summarises the main advantages and disadvantages for each of the design and evaluation methods. These

recommendations are general, but take into account the most general points in the design considerations of sensor
20
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networks. Some of the advantages of these methods have been exploited in combined methodologies, such as those

presented by Yeh et al. (2011), Samuel et al. (2013), Barca et al. (2014), Coulibaly and Samuel (2014) and Kang
et al. (2014).

54 General procedure for sensor network design

Based on the presented literature review, in this section an attempt is made to present a first version of a unified

general procedure for thesensor network design-efsensersnetworks. Such procedure logically link in a flowchart

various methods, following the measurement-based approaches-is-prepesed (Fig. 6). The flowchart suggests two
main loops: one to measure the network performance (optimisation loop), and ethera second one to represent the

iterationsrequiredselection in the number of sensors in either augmentation or reduction scenarios. Most of the

measurement-based methods, as well as most of the design scenarios; can fellewbe typically seen as particular

cases of this generalised algorithmic flowchart.

The general procedure consists of 11 steps (boxes in Fig. 6). In the first place, physical measurements (1) are
acquired by the sensor network. This data is used to parameterise an estimator (2), which will be used to estimate
the variable at the Candidate Measurement Locations (CML) using, for instance, Kriging (Pardo-Iguzquiza 1998,
Nowak et al;. 2009), or 1D hydrodynamic models (Neal et al;. 2012, Rafiee 2012, Mazzoleni et al;. 2015). The

sensor network reduction does not require such estimator as measurements are already in place.

The selection of the CML should consider factors such as physical and technical availability, as well as costs
related to maintenance and accessibility of stations, as illustrated by the WMO (2008) recommendations. The

selection of CML can also be based, for example, on expert judgement. These limitations may be a—medel

aspresented in the form of constraints in the optimisation problem.

Then an optimisation loop starts (Fig. 6), withby the seleetionestimation of EMI—(based,for-example,on-expert
jadgement)—Then;-the-estimator-in{(2)-simulates-the measured variable at the CML (3), using the estimator built

in (2). Next, the performance of the sensor network at the CML is evaluated (4), using any of the previously

discussed methods. The selection of the method depends on the designer and its information requirements, which
also determines if an optimal solution is found (5). The stopping criteria in the optimisation problem can be set by

thea desired accuracy of the network, some non-#mprevirg-improved number of solutions or a maximum number

of iterations. As pointed out in the review, these performance metrics can be either model-based or model-free and

should not be confused with the use of a (geostatistical) model of the measured variable.

In case the optimisation loop is not complete, a new set of CML is selected (6). The use of optimisation algorithms
may drive the search of the new potential CML (Pardo-Igizquiza 1998, Kollat et al. 2008, Alfonso 2010, Kollat
et al. 2011). The decision about adequate performance should not only consider the expected performance of the

network but also, recognise the effect of a limited number of sensors.

Once the performance is optimal, an iteration over the number of sensors is required. If the scenario is for network

augmentation (7), then a possibility of including additional sensors has to be considered (8). The decision to go
21
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for an additional sensor will depend on the constraints of the problem, such as a limitation on the number of sensors

to install, or on the marginal improvement of performance metrics.

The network reduction scenario (9) is inverse: due to diverse reasons, mainly of financial nature, networks require

to have fewer sensors9).. Therefore, the analysis concerns what sensors to remove from the network, within the

problem constraints (10).

Finally, the sensor network is selected (11) from the results of the optimisation loop, with the adequate number of
sensors. It is worth mentioning that an extra loop is required, leading to re-evaluation, typically done on a periodical

basis, when objectives of the network may be redefined, new processes need to be monitored, or when information

from other sources is available, and that can potentially modify the definition of optimality.

75 Conclusions and recommendations

This paper summarisedsummarises some of the methodological criteria for the design of sensor networks in the
context of hydrological modelling—and, proposed a framework for classifying the approaches in the existing

literature_and also proposed a general procedure for sensor network design. The following conclusions can be

drawn:

Most of the sensor network methodologies aim to minimise the uncertainty of the variable of interest at ungauged
locations and the way this uncertainty is estimated varies between different methods. In statistics-based models,
the objective is usually to minimise the overall uncertainty about precipitation fields or discharge modelling error.
Information Fheerytheory-based methods aim to find measurements at locations with maximum information
content and minimum redundancy. In network theory-based methods, estimations are generally not accurate,

resulting in less biassed estimations. In methods based on expertjuadgementpractical case-specific considerations
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and Valwevalue of Infermatieninformation, the critical consequences of decisions dictate the network

configuration.

However, in spite of the underlying resemblances between methods, different formulations of the design problem
can lead to rather different solutions. This gap between methods has not been deeply covered in the literature and

therefore a general agreement on sensor network design procedure is relevant.

In particular, for catchment modelling, the driving criteria should also consider model performance. This driving
criterion ensures that the model adequately represents the states and processes of the catchment, reducing model
uncertainty and leading to more informed decisions. Currently, most of the network design methods do not ensure

minimum modelling error, as often it is not the main performance criteria for design.

Furthermore, in the last years, the rise of various sensing technologies in operational environments have promoted

the inclusion of additional design considerations towards a unified heterogeneous sensor network. These new

sensing technologies include, e.g., passive and active remote sensing using radars and satellites (Thenkabali 2015)

microwave link (Overeem et al. 2011), mobile sensors (Haberlandt and Sester 2010, Dahm et al. 2014),

crowdsourcing and citizen observatories (Huwald et al. 2013, Lanfranchi et al. 2014, Alfonso et al. 2015). These

non-conventional information sources have the potential to complement conventional networks, by exploiting the

synergies between the virtues and reducing limitations of various sensing techniques, and at the same time, require

the new network design methods allowing for handling the heterogeneous dynamic data with varying uncertainty.

The proposed classification of the available network design methods was used to develop a general framework for
network design. Different design scenarios, namely relocation, augmentation and reduction of networks are
included, for measurement-based methods. This framework is open and offers “placeholders” for various methods

to be used depending on the problem type.

Concerning the further research, from the hydrological modelling perspective, we propose to direct efforts towards
the joint design of precipitation and discharge sensor networks. Hydrological models use precipitation data to
provide discharge estimates, however as these simulations are error-prone, the assimilation of discharge data, or
error correction, reduces the systematic errors in the model results. The joint design of both precipitation and

discharge sensor networks may help to provide more reliable estimates of discharge at specific locations.

Another direction of research may include methods for designing dynamic sensor networks, given the increasing
availability of low-cost sensors, as well as the expansion of citizen-based data collection initiatives
(crowdsourcing). These information sources are on the rise in the last years, and one may foresee appearance of

interconnected, multi-sensor heterogeneous sensor networks shortly.

The presented review has also shown that limited effort has been devoted to considering changes in long-term

patterns of the measured variable in the sensor network design. This assumption of stationarity has become more

relevant in the last years due to new sensing technologies and increased systemic uncertaities, €.g. due to climate
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and land use change and rapidly changing weather patterns. Although this topic has been recognised for quite some

time already (see e.g. Nemec and Askew 1986), the number of publications presenting effective methods to deal

with them is still limited. This problem, and the techniques to solve it, are being addressed in the ongoing research.
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Table 1 Recommended minimum densities of stations (areain Kmz2 per station) — Adopted from WM O [2008]

Physiographic Precipitation ) ) Water
unit Non-recording Recording Evaporation  Streamflow  Sediments Quality
Coastal 900 9,000 50,000 2,750 18,300 55,000
Mountains 250 2,500 50,000 1,000 6,700 20,000
Interior plains 575 5,750 5,000 1,875 12,500 37,500
Hilly/undulating 575 5,750 50,000 1,875 12,500 47,500
Small islands 25 250 50,000 300 2,000 6,000
Urban areas - 10-20 - - - -
Polar/arid 10,000 10,000 100,000 20,000 200,000 200,000
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Table 2 Classification of sensor network design criteria appted-in-thetiteratureincluding recommended reading

Soppreaehes
B
Based Measurement-
Model- Model-
free based
Statistics-based-methods
Mintmum-modeletror %
Information-Theory-based-methods
Pl ne s * -
Meothessbossd o nesn o s asotiens
Physiographic components x x
e
User-survey
Other-methods
Valwe-of mformation % x
Fraetal-characterisation b3
Network-theory *
Approaches

M easur ement-based

Model-free

M odel-based

M easur ement-Free

.

O

Statistics-based

Interpolation

Pardo-Iguzquiza (1998)

Bardossy and Li (2008)

variance - -
Nowak et al. (2010)
Maddock (1974) .
Cross- Maddock ]974 Vivekanandan and
correlation Moss and Karlinger Jagatp (2012 -
(1974)
Tarboton et al. (1987)
Model error ~ _
Dong et al. (2005)
Information Theory
Krstanovic and Singh
Entropy 1992 Pham and Tsai (2016) _
Alfonso et al. (2014)
Mutual Husain (1987 Coulibaly and Samuel
information (2014) -

Alfonso (2010)

Expert recommendations
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198

Physiographic
components

Samuel et al. (2013)

Moss and Karlinger
(1974)

Moss et al. (1982

Lazie (2004)

Wahl and Crippen

Practical case- . 198;A "
specific i i emec and Askew
considerations 1986
Karaseff (1986)
Sieber (1970
User survey ~ ~
Singh et al. (1986)
Other methods
Black et al. (1999)
. \f/aLeO.f Alfonso and Price (2012) _
Information Alfonso et al. (2016)
Lovejoy and
Fractal Mandelbrot (1985)
characterisation - -
Capecchi et al. (2012)
Sivakumar and
Woldemeskel (2014)
Network theory

Halverson and Fleming
(2015)
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Table 3 Advantages and disadvantages of sensor network design methods

Advantages Disadvantages
Statistics-based

Interpolation

Useful to assess data scarce areas

No event-driven

Heavily rely on the characterisation of
the covariance structure

No relationship with final measurement

variance objective
Minimise uncertainty in spatial
distribution of measured variable -
. . Augmentation not possible without
Useful for detecting redundant stations = . e Withou
Cross- additional assumptions
correlation . . . Limited to linear dependency between
Computationally inexpensive p
stations
Has direct relationship with the Biased towards current measurement
Model error measurement objectives objectives
Biased towards model and error metrics
Information Theory
Assess non-linear relationship between Formal form is computationally
variables intensive
Unbiased estimation of network Quantising (binning) of continuous
performance variables lead to different results
Entropy )
Optimal networks are usually sparse
Difficult to benchmark
Data intensive
Mutual
| ~ouuat Idem Idem
information e
Expert recommendations
Reasonably well understood Not useful for homogeneous catchments
Physiographic Functional for heterogeneous catchments No quantitative measure of network

components

with few available measurements

Useful at country/continental level

accuracy

Practical case-

No previous measurements are required

Biased towards expert
Collected data does not influence

i Useful to observe specific variables .
specific P selection
considerations Biased towards current data
requirements
Pragmatic Extensive user identification
User survey . Biased towards current data
Cost-efficient ;
requirements
Other methods
Provides assessment using economics Consequences of decisions are difficult
concepts to quantify
Value of Takes into account decision-maker's prior Usually decisions are made with
information beliefs in the assessment available information
Biased towards a rational decision
- model
. Not suitable for small networks or
Efficient for large networks tch "

Fractal catchments
characterisation . . Does not consider topographic or
- Does not require data collection lerlopograp

orographic influence
Provides insight in interconnected .
tworks Not useful for augmentation purposes
Network theory DEtworks

Data intensive
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