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Abstract 12 

Although fractional integration and differentiation have found many applications in various 13 

fields of science, such as physics, finance, bioengineering, continuum mechanics and 14 

hydrology, their engineering applications, especially in the field of fluid flow processes, 15 

are rather limited. In this study, a finite difference numerical approach is proposed to solve 16 

the time-space fractional governing equations of one-dimensional unsteady/non-uniform 17 

open channel flow process. By numerical simulations, results of the proposed fractional 18 

governing equations of the open channel flow process were compared with those of the 19 

standard Saint Venant equations. Numerical simulations showed that flow discharge and 20 

water depth can exhibit heavier tails in downstream locations as space and time fractional 21 

derivative powers decrease from 1. The fractional governing equations under consideration 22 

are generalizations of the well-known Saint Venant equations, which are written in the 23 

integer differentiation framework. The new governing equations in the fractional order 24 

differentiation framework have the capability of modeling nonlocal flow processes both in 25 

time and in space by taking the global correlations into consideration. Furthermore, the 26 

generalized flow process may shed light into understanding the theory of the anomalous 27 
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transport processes and observed heavy tailed distributions of particle displacements in 28 

transport processes.  29 

 30 

Introduction 31 

 32 

The origin of integration and differentiation of arbitrary (non-integer) order dates back to 33 

a letter of Leibniz, in which derivatives of 0.5 order was described (Oldham and Spainer, 34 

1974). Especially after the first international conference (Ross, 1975), the fractional 35 

calculus found many applications in various fields of science, including physics, finance, 36 

bioengineering, continuum mechanics and hydrology (Caputo, 1967; Bouchaud and 37 

Georges, 1990; Carpinteri and Mainardi, 1997; Podlubny, 1999; Hilfer, 2000; Barkai et al., 38 

2000; Benson et al., 2000; Scalas et al., 2000; Baeumer et al., 2001; Meerschaert et al., 39 

2002; Raberto et al., 2002; Zaslavsky, 2002; Magin, 2006; Tarasov, 2010; Benson et al., 40 

2013; Kavvas et al., 2015; Kim et al., 2015; and many others). As Tarasov (2010) stated, 41 

the fractional equations are utilized to describe the fractal distributions of mass, charge and 42 

probability. However, their engineering applications, especially in the field of fluid 43 

dynamics, are limited (Kulish and Lage, 2002; Tarasov, 2010; Kavvas and Ercan, 2015, 44 

2016; Ercan and Kavvas, 2015a).  45 

 46 

The long-range dependence or the long memory occurs when the so called Hurst coefficient 47 

(Hurst, 1951) is between 0.5 and 1 showing that the process is outside the Brownian domain 48 

of finite memory processes. Slowly decaying autocorrelations and unbounded spectral 49 

density near zero frequency are the characteristics of the long memory signals (Beran 50 

1994). The long-range dependency or the long memory was reported for several 51 

geophysical processes, for example, for river flows and velocity fluctuations by Nordin et 52 

al. (1972), Montanari et al. (1997), Vogel et al. (1998), and Szolgayová et al.  (2013); 53 

porosity and hydraulic conductivity in sub-surface hydrology by Molz and Boman (1993); 54 

climate variability by Bloomfield (1992), Stephenson et al. (2000), Koutsoyiannis (2003), 55 

Franzke (2013), and Franzke et al. (2015); and sea levels by Barbosa et al. (2006), and 56 

Ercan et al. (2013). Hurst phenomena or the long-range dependence is also closely related 57 
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to self-similarity of the geophysical processes (Pipiras and Taqqu, 2003; Beran, 1994; 58 

Ercan et al., 2014; Ercan and Kavvas, 2015b, 2015c).  59 

 60 

In order to be able to model both the long-memory behavior as well as the Brownian finite-61 

memory behavior of a flow process at various scales, Kavvas and Ercan (2016) stated that 62 

a model needs to be more flexible than a purely long-memory model (such as fractional 63 

Gaussian noise or Autoregressive fractionally integrated moving average model), or a 64 

finite-memory model (such as the standard integer governing equations of the river flow 65 

processes). Within this context, time-space fractional governing equations of 66 

unsteady/non-uniform open channel flow process were developed within Caputo fractional 67 

derivative framework by Kavvas and Ercan (2016). The advantage of the fractional 68 

derivatives in Caputo framework is that the traditional initial and boundary conditions, 69 

which are physically interpretable, can be utilized (Podlubny, 1999).  70 

 71 

In this study, a numerical algorithm is proposed to solve the time-space fractional 72 

governing equations of one-dimensional unsteady/non-uniform open channel flow process 73 

and to investigate its modeling capabilities different than the standard Saint Venant 74 

equations. A first-order approximation of the Caputo’s fractional time derivative (Murio, 75 

2008) and a second-order accurate Caputo’s fractional space derivative (Odibat, 2009) are 76 

coupled in the proposed numerical algorithm. When orders (or powers) of the time and 77 

space fractional derivatives become one, the proposed governing equations of 78 

unsteady/non-uniform open channel flow process in fractional differentiation framework 79 

reduce to Saint Venant equations in integer order differentiation framework (Kavvas and 80 

Ercan, 2016), and the proposed numerical algorithm reduces to the explicit finite difference 81 

scheme reported in Viessman, et al. (1977). As such, utilizing the proposed numerical 82 

solution, the capabilities of the proposed fractional governing equations of the 83 

unsteady/nonuniform open channel flow process were investigated, comparing the results 84 

of the fractional governing equations with those of the standard Saint Venant equations. 85 

 86 
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The fractional governing equations of one-dimensional unsteady/non-uniform open 87 

channel flow process based on the Caputo fractional derivatives, as derived in Kavvas and 88 

Ercan (2016), are presented in the next section. 89 

 90 

Governing Equations 91 

 92 

The time-space fractional mass conservation equation and the time-space fractional motion 93 

equation, based on the Caputo fractional derivative framework, for one-dimensional 94 

unsteady/non-uniform open channel flow in straight prismatic channels which is taking 95 

place from the upstream to downstream direction, can be written as (Kavvas and Ercan, 96 

2016), 97 

L1 1

(2 ) A (2 ) AV
q (x, t)

t t x x



   

     
 

 
…     (1) 98 

f 1 1 1 1

(2 ) z (2 ) y V (2 ) V 1 (2 ) V
S

g gx x x x x x t t

   

       

           
    

   
… (2) 99 

where 0 <  ≤ 1 are the time and space fractional derivative powers, Γ( . ) is the gamma 100 

function, Q is the flow rate, A is the flow cross-sectional area, x is distance in the flow 101 

direction, t is time, y is water depth, g is the acceleration due to gravity, z is the channel 102 

bed elevation. The advantage of the utilized Caputo fractional derivative approach is that 103 

the traditional initial and boundary conditions can be incorporated (Podlubny, 1999). 104 

 105 

In the fractional continuity equation and fractional motion equation, there are three 106 

unknown flow variables, while there are only two equations. Accordingly, in order to close 107 

this system a resistance equation is needed. Such a resistance equation is the Manning’s 108 

equation, which can be expressed as  109 

2

f 4/3

n V V
S

R
 …        (3) 110 

The fractional mass conservation equation (1), the fractional motion equation (2) and the 111 

fractional resistance equation (3) form the complete set of governing equations of 112 

upstream-to-downstream one dimensional unsteady open channel flow in fractional time-113 
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space. When α=β=1, governing equations of one dimensional fractional open channel flow 114 

reduce to classical Saint Venant equations.  115 

 116 

A comprehensive explanation of the concepts of fractional differentiation and integration 117 

could be found in Oldham and Spanier (1974), Miller and Ross (1993), Samko et al. (1993), 118 

Podlubny (1999), Podlubny (2002), and Tarasov (2010).  119 

 120 

Numerical Solution 121 

 122 

Although a large number of physical problems are formulated by the fractional differential 123 

equations, the state of art is far less developed for their solution by the numerical 124 

approaches, and the analytical solutions are available for very simple linear problems 125 

(Podlubny, 1999). Therefore, as pointed out by Li and Zeng (2012), it is important to 126 

develop efficient and reliable numerical solutions for the problems governed by the 127 

fractional differential equations. Within this context, a finite difference numerical method, 128 

first order accurate in time and second order accurate in space, is introduced in this article 129 

to solve time-space fractional governing equations of the one-dimensional unsteady/non-130 

uniform open channel flow process. 131 

 132 

Dividing the time interval [0, T] into N subintervals of equal width k = T/N by using the 133 

nodes tn = nk, n = 0, 1, 2, … , N, the first-order approximation of Caputo’s fractional time 134 

derivative can be written as (Murio, 2008)  135 

n
n ( ) n j 1 n j

t i ,k j i i

j 1

D f w (f f )    




   …      (4) 136 

where n
i i nf f (x , t ) , ,k

1 1 1

(1 ) (1 ) k
 

 
  

 and 
( ) 1 1
jw j (j 1)      137 

Then, the fractional continuity equation given by Eqn. (1) can be discretized as  138 

n 1 n n n 1n 1
( ) n j 2 n j 1 ni i i i

,k j i i Lin 1
j 1 i

(t ) A V (t )(2 )
w (A A ) q

(2 ) (2 )(x ) x

  
    

  


 
   

   
 … (5) 139 

where n
i i nA A(x , t ) . Rearranging the known variables on the right hand side and the 140 

unknown flow area on the left hand side results in 141 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-364, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 28 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



6 

 

n 1 n n n 1n 1
n 1 n ( ) n j 2 n j 1 ni i i i
i i j i i Lin 1

j 2 ,k ,ki

(t ) A V (t )(2 )
A A w (A A ) q

(2 ) (2 )(x ) x

  
     

 
  

 
    

     


 

142 

           

…(6) 143 

Fractional space derivative term 
x








 in Eqn. (6) can be obtained from the second order 144 

accurate approximation of the Caputo fractional derivatives, as proposed by Odibat (2009). 145 

Dividing the space interval [0, a] into M subintervals [xj, xj+1] of equal width h = a/M using 146 

the nodes xj = jh, for j = 0, 1, 2,…, M-1, the Caputo fractional derivative xD f (x)
 at a>0 147 

can be approximated by (Odibat, 2009)  148 

 149 


1

2 1 ' '
x

h
(D f (x))(a) (M 1) (M 2)M f (0) f (a)

(3 )


       

  
 150 

M 1
2 2 2 '

j

j 1

(M j 1) 2(M j) (M j 1) f (x )


  




          


 …(7) 151 

 152 

where 0 < α ≤1 is the arbitrary order of the derivative and '
jf (x )  is the first order derivative 153 

at xj , which can be estimated by the central-difference formula as 154 

j j' 2
j

f (x h) f (x h)
f (x ) O(h )

2h

  
  …     (8) 155 

The first order derivative of the function f can be estimated as 
' f (h) f (0)

f (0)
h


  at the 156 

upstream boundary and as 
' f (a) f (a h)

f (a)
h

 
 at the downstream boundary when the 157 

further upstream and further downstream function values are not available, which is usually 158 

the case in open channel flow problems. 159 

 160 

Analogous to the explicit finite difference scheme for the equation of motion in terms of 161 

integer order derivatives in Viessman, et al. (1977), and utilizing the first-order 162 

approximation of Caputo’s fractional time derivative (Murio, 2008), the fractional equation 163 

of motion given by Eqn. (2) can be discretized as 164 
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n n n n
n 1 i i i i

f i n 1 n 1 n 1
i i i

z y V V(2 ) (2 ) (2 )
(S )

g(x ) x (x ) x (x ) x
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

     

       
   
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 165 

     
n 1

,k ( ) n j 2 n j 1
j i in 1

j 1i

(2 )
w (V V )

g(t )


     




  
  …(9) 166 

When the flow is from upstream to downstream V V  in Eqn. (3) becomes V2 and Eqn. (9) 167 

can be written as   168 

2 n 1 2 n n n n
i i i i i

n 1 4/3 n 1 n 1 n 1
i i i i

n (V ) z y V V(2 ) (2 ) (2 )

g(R ) (x ) x (x ) x (x ) x

   

      

       
   
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 169 

     
n 1

,k ( ) n j 2 n j 1
j i in 1

j 1i

(2 )
w (V V )

g(t )


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


  
  …(10) 170 

Space-fractional derivative terms

n
iz

x








,

n
iy

x








, and 

n
iV

x








 can be estimated from Eqn. (7). 171 

If bed elevation does not change through time, then the initial estimate of 

n
iz

x








will be the 172 

same for all time steps. On the other hand, if bed elevation changes through time, such as 173 

in the case of sediment transport processes, then this term should be calculated for each 174 

time step as the bed elevation changes through time due to erosion and deposition 175 

processes.  176 

 177 

For a known geometry, hydraulic radius n 1
iR   can be calculated from the known flow 178 

cross-sectional area n 1
iA  .  For example, water depth can be calculated as n 1 n 1

i iy A / B   179 

for a rectangular channel of width B and the hydraulic radius can be calculated as180 

n 1 n 1 n 1
i i iR A /(B 2y )    . Eqn. (10) is a quadratic equation in the form of 181 

n 1 2 n 1
1 i 2 i 3c (V ) c V c 0    , from which n 1

iV   can be estimated.  182 

 183 

Numerical Example  184 

 185 
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For a numerical example problem, a 3218.7-meter long, 6.1-meter wide rectangular 186 

channel with a bottom slope of 0.0015 and an estimated Manning’s roughness of 0.02 is 187 

considered. At the upstream boundary, 1.83-meter depth initial uniform flow is subjected 188 

to an increase to 56.63 m3/s in a period of 20 minutes. Then this flow decreases uniformly 189 

to the initial flow depth during a subsequent period of 40 minutes duration. During the rest 190 

of the simulation, the initial flow conditions are applied. In this example problem, the 191 

upstream flow is routed utilizing the time-space fractional governing equations of the one-192 

dimensional unsteady/non-uniform open channel flow (Eqns 1-3, Kavvas and Ercan, 193 

2016), by applying the proposed numerical solution approach given above.  194 

 195 

A classical solution of this problem by the Saint Venant equations in integer order 196 

differentiation framework was provided by Viessmann et al. (1977). In addition to the 197 

above proposed numerical solution for the time-space fractional governing equations, this 198 

problem was also simulated by the Viessmann et al. (1977)’s explicit numerical scheme 199 

for the Saint Venant equations, with the difference that the hydraulic radius was estimated 200 

by the ratio of the flow cross-sectional area to the wetted perimeter. The solutions by the 201 

Saint Venant equations were depicted as Viessmann et al. (1977) in Figures 1 and 2.   202 

 203 

Non-dimensional flow discharges (Q/Q0) and non-dimensional water depths (y/y0) through 204 

time at the downstream boundary are depicted in Figure 1 when space and time fractional 205 

powers 1    , 0.9, 0.8, 0.7. Here, Q0 and y0 are initial flow and water depths. As shown 206 

in Figures 1a and 1b, when time and space derivative powers are equal to one (α=β=1), 207 

non-dimensional water depths and flows at the downstream location, simulated by the 208 

proposed numerical scheme for the fractional governing equations of the one-dimensional 209 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-364, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 28 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



9 

 

unsteady/non-uniform open channel flow, coincide well with those simulated by the 210 

Viessmann et al. (1977)’s explicit numerical scheme for standard Saint Venant equations. 211 

In order to visualize the tails better, non-dimensional flow discharges (Q/Q0) and non-212 

dimensional water depths (y/y0), which were depicted in Figures 1a and 1b, are zoomed 213 

over the [0.9-1.1] range and presented in Figures 2a and 2b, respectively.  As presented in 214 

Figures 2a and 2b, non-dimensional flow discharges and non-dimensional water depths 215 

exhibit heavier tails as space and time fractional derivative powers decrease from 1.  216 

 217 

Magnitudes and occurrence times of the peak non-dimensional flows (Q/Q0) at the 218 

downstream boundary for various values of the fractional space derivative power   and of 219 

the fractional time derivative power   are tabulated in Table 1. Both the magnitude and 220 

the occurrence time of the peak flow decrease as the time and space fractional derivative 221 

powers decrease. The magnitude of the peak flow decreases from 2.05 to 1.82 and the 222 

occurrence time of the peak flow decreases from 0.59 to 0.50 hr.  223 

 224 

Non-dimensional flow discharges through longitudinal length x at various simulation times 225 

(t=20, 30, 40, 60, 75, 90, 120, 180 minutes) are depicted in Figure 3 when space and time 226 

fractional derivative powers 1    , 0.9, 0.8, 0.7. Figure 3 clearly shows that non-227 

dimensional flow discharges reached the equilibrium value of 1 from upstream boundary 228 

to downstream boundary (from x=0 to x=3.2187 km) after the simulation time of 120 229 

minutes when space and time fractional derivative powers are 1 ( 1    ). However, 230 

when the simulation time is greater than 120 minutes, the non-dimensional flow discharges 231 

deviate from the value of 1 toward the downstream boundary as space and time fractional 232 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-364, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 28 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



10 

 

derivative powers decrease from 1. In other words, the influence of the flood hydrograph 233 

that enters to the channel reach from the upstream boundary, is observed for a longer 234 

duration in the downstream locations when the space and time fractional derivative powers 235 

are smaller than 1. This finding also explains the heavier tails at the downstream boundary 236 

when the fractional derivative powers are less than 1. 237 

 238 

Concluding remarks 239 

 240 

In this study, a numerical algorithm, first order accurate in time and second order accurate 241 

in space, was proposed to solve time-space fractional governing equations of one-242 

dimensional unsteady/non-uniform open channel flow process (Kavvas and Ercan, 2016) 243 

and to investigate its modeling capabilities that are different from the standard Saint Venant 244 

equations. The fractional governing equations under consideration are generalizations of 245 

the well-known Saint Venant equations written in the integer differentiation framework. 246 

When orders (powers) of the fractional time and fractional space derivatives become one, 247 

the proposed fractional governing equations of open channel flow process (Kavvas and 248 

Ercan, 2016) reduce to standard Saint Venant equations and the proposed numerical 249 

algorithm reduces to the explicit finite difference scheme reported in Viessman, et al. 250 

(1977). The new governing equations in the fractional order differentiation framework 251 

have the capability of modeling nonlocal flow processes both in time and in space by taking 252 

the global relations into consideration (see Eqn. 4 and Eqn. 7).  253 

 254 

The following conclusions can be drawn from the numerical investigation: 255 
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1. When the time and space fractional derivative powers become one, the proposed 256 

numerical scheme for the time-space fractional governing equations of one-257 

dimensional unsteady/non-uniform open channel flow process give similar results 258 

with the explicit finite difference scheme for standard Saint Venant equations 259 

(Viessman, et al., 1977). 260 

2. Non-dimensional flow discharges and non-dimensional water depths exhibit 261 

heavier tails at the downstream boundary as space and time fractional derivative 262 

powers decrease from 1. 263 

3. Both the magnitude and the occurrence time of the peak flow decrease as the 264 

powers of the time and space fractional derivatives decrease from 1. 265 

4. The influence of the flood hydrograph that enters to the channel reach from the 266 

upstream boundary, is observed for a longer duration in the downstream locations 267 

when the space and time fractional derivative powers are smaller than 1. This 268 

finding also explains the heavier tails at the downstream boundary when the 269 

fractional derivative powers are less than 1. 270 
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 411 

 412 

 413 
Table 1. Magnitudes and occurrence times of the peak non-dimensional flows (Q/Q0) at 414 

the downstream boundary for various fractional space derivative power   and fractional 415 

time derivative power    416 

    peak Q/Q0 
time of peak 

Q/Q0 (hr) 

      

1 1 2.05 0.59 

0.9 0.9 1.94 0.56 

0.8 0.8 1.87 0.53 

0.7 0.7 1.82 0.50 

    

 417 

 418 

  419 

Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-364, 2016
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Published: 28 July 2016
c© Author(s) 2016. CC-BY 3.0 License.



16 

 

a) 

 
b) 

 
Figure 1. a) Non-dimensional flow discharges, b) non-dimensional water depths through 420 

time at the downstream boundary when space and time fractional derivative powers421 

1    , 0.9, 0.8, 0.7 422 
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 423 

 424 
Figure 2. a) Non-dimensional flow discharges (zoomed to 0.9-1.1 range), b) non-425 

dimensional water depths (zoomed over 0.9-1.1 range) through time at the downstream 426 

boundary when space and time fractional derivative powers are 1    , 0.9, 0.8, 0.7  427 
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 430 
Figure 3. Non-dimensional flow discharges through longitudinal length x at simulation 431 

times t=20, 30, 40, 60, 75, 90, 120, 180 minutes when space and time fractional 432 

derivative powers are 1    , 0.9, 0.8, 0.7 433 
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