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Response to Interactive comment by Anonymous Referee #2, which 
was received and published on 28 September 2016, on “Numerical 
Solution and Application of Time-Space Fractional Governing 
Equations of One-Dimensional Unsteady Open Channel Flow Process” 
by Ali Ercan and M. Levent Kavvas 
 
We thank Anonymous Referee #2 for the valuable comments. As copied below, we added a 

“Discussion” section in the revised manuscript before the “Concluding Remarks” section in order 

to respond to the comments provided by the referee and to clarify the purpose and contribution of 

this manuscript. We believe that the manuscript improved significantly after the revision based on 

the referee’s comments/suggestions. 

 

“Discussion 

As Yevdjevich (1964) pointed out, the standard Saint Venant equations cannot be solved by 

analytical methods, except for very special cases. Therefore, various numerical solutions of these 

equations, differing one from another in the numerical scheme implemented, have already been 

developed, for example, by utilizing the method of characteristics (e.g., Abbott, 1966), finite-

difference methods (e.g., Amein and Fang, 1970; Viessmann et al., 1977; Cunge et al., 1980) and 

finite element approaches (e.g., Cooley and Moin, 1976; Szymkiewicz, 1991). The kinematic wave, 

diffusive wave and the dynamic wave forms of the Saint Venant equations have also been widely 

implemented depending on the governing forces of the flow problem (e.g., Woolhiser and Liggett, 

1967; Singh, 1994; Moussa and Bocquillon, 1996).  

 

The purpose of this study is not to propose an alternative way of solving the standard Saint Venant 

equations, for which numerical solution methodology is already well-developed over the last 

several decades in terms of computational speed and efficiency. Instead, it is aimed at exploring 

and discussing the capabilities of the recently proposed time-space fractional governing equations 

of one-dimensional unsteady open channel flow process (Kavvas and Ercan, 2016) based on the 

numerical solution of these fractional governing equations. It is important to note that the 

proposed fractional governing equations of open channel flow process, when orders of the 

fractional time and space derivatives become one, reduce to standard Saint Venant equations 

(Kavvas and Ercan, 2016). As demonstrated in the above numerical example, the proposed 

numerical solution compares well with those by Viessman et al. (1977) and USACE (2016) when 

the fractional derivative powers become one. 

 

The estimation of fractional derivatives of a flow variable involve considerably more flow 

information in time and space, compared to that of the integer order derivatives, which involve 

local information in time and space. Therefore, the proposed numerical solution of the time-space 

fractional governing equations of one-dimensional unsteady open channel flow process is 

computationally intensive compared to the numerical solution of the standard Saint Venant 

equations. On the other hand, the new governing equations in the fractional order differentiation 

framework have the capability of modeling nonlocal flow processes both in time and in space by 

taking the global correlations into consideration (see Eqn. 4 and Eqn. 7, which provides the 

algorithms to estimate time and space fractional derivatives). As was shown in the numerical 

application section, the proposed time-space fractional governing equations of one-dimensional 
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unsteady open channel flow process have the capability of modeling flow variables with heavy 

tails by their ability of modeling nonlocal flow processes. Hence, the proposed generalized flow 

process may possibly shed light on understanding the theory of the anomalous transport processes 

and observed heavy tailed distributions of particle displacements in transport processes [for 

example, as reported in Foufoula‐Georgiou and Stark (2010), and the references therein] because 

the flow process is the main mechanism contributing to the movement of particles in transport. 

However, this hypothesis needs to be validated by future studies utilizing experimental and/or field 

data. 

 

Furthermore, the proposed governing equations and the numerical solution of time-space 

fractional governing equations of one-dimensional unsteady/non-uniform open channel flow 

process can be beneficial especially when the physically-known range of Manning’s roughness 

coefficient values [for example as suggested by Chow (1959), and Arcement and Schneider (1989)] 

are insufficient in the calibration of a 1D unsteady flow model. As Abbott et al. (2001) pointed out, 

unrealistic values of Manning’s roughness coefficient could hide unknown information or physical 

phenomena not represented in the flow model, and in such case the model would not be predictive, 

even with an excellent calibration.“ 

 

In order to respond to the Referee’s suggestion on the initial and boundary conditions, sentences 

below are added after Eq. 8: 

“The initial and boundary conditions for the standard Saint Venant equations depends on the flow 

being subcritical (Froude number<1), supercritical (Froude number>1), or intermediate (partly 

subcritical and partly supercritical) (Litrico and Fromion, 2009). Because governing equations 

under consideration in this study are in terms of Caputo fractional derivatives, the traditional 

initial and boundary conditions similar to those of the standard Saint Venant equations can be 

applied (Podlubny, 1999).” 

 

As suggested by the referee, authors added Table 1 (in the revised manuscript) to provide 

comparison with the other numerical solutions of the Saint Venant equations and the proposed 

numerical solution (when space and time fractional derivative powers are 1). Predictive capability 

of the proposed numerical solution, when space and time fractional derivative powers are one, is 

evaluated in comparison to numerical solutions by Viessman et al. (1977) and USACE (2016) in 

terms of correlation coefficients and Nash–Sutcliffe coefficients. It is found that the flow 

discharges and water depths at the downstream boundary, estimated by the proposed numerical 

solution, compare well with those obtained by Viessman et al. (1977) and USACE (2016) for 

standard Saint Venant equations. Please also see 2nd and 3rd paragraphs of the “Discussion” section.    
 
Table 1. Statistical evaluation of the flow discharges and water depths at the downstream boundary. 

Results of numerical solutions by Viessman et al. (1977) and USACE (2016) are compared with those of 

the proposed numerical solution when space and time fractional derivative powers are 1. 

 

Correlation 

Coefficient 

Nash–

Sutcliffe Coefficient 

Water depth, y   

Viessman et al. (1977) 0.9999 0.9998 

USACE (2016) 0.9968 0.9922 

Discharge, Q   

Viessman et al. (1977) 0.9999 0.9998 



3 
 

USACE (2016) 0.9970 0.9940 
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