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Abstract 21 

An accurate estimation of water resources dynamics is crucial for proper management of both 22 
agriculture and the local ecology, particularly in semi-arid regions. Imperfections in model 23 
physics, uncertainties in model land parameters and meteorological data, as well as the human 24 
impact on land changes often limit the accuracy of hydrological models in estimating water 25 
storages. To mitigate this problem, this study investigated the assimilation of Terrestrial 26 
Water Storage Variation (TWSV) estimates derived from the Gravity Recovery And Climate 27 
Experiment (GRACE) data using an Ensemble Kalman Filter (EnKF) approach. The region 28 
considered was the Hexi Corridor in Northern China. The hydrological model used for the 29 
analysis was PCR-GLOBWB, driven by satellite-based forcing data from April 2002 to 30 
December 2010. The impact of the GRACE Data Assimilation (DA) scheme was evaluated in 31 
terms of the TWSV, as well as the variation of individual hydrological storage estimates. The 32 
capability of GRACE DA to adjust the storage level was apparent not only for the entire 33 
TWSV but also for the groundwater component. In this study, spatially-correlated errors in 34 
GRACE data were taken into account, utilizing the full error variance-covariance matrices 35 
provided as a part of the GRACE data product. The benefits of this approach were 36 
demonstrated by comparing the EnKF results obtained with and without taking into account 37 
error correlations. The results were validated against in situ groundwater data from 5 well 38 
sites. On average, the experiments showed that GRACE DA improved the accuracy of 39 
groundwater storage estimates by as much as 25%. The inclusion of error correlations 40 
provided an equal or greater improvement in the estimates. In contrast, a validation against in 41 
situ streamflow data from two river gauges showed no significant benefits of GRACE DA. 42 
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This is likely due to the limited spatial and temporal resolution of GRACE observations. 43 
Finally, results of the GRACE DA study were used to assess the status of water resources 44 
over the Hexi Corridor over the considered 9-year time interval. Areally-averaged values 45 
revealed that TWS, soil moisture, and groundwater storages over the region decreased with an 46 
average rate of approximately 0.2, 0.1, and 0.1 cm/yr in terms of equivalent water heights, 47 
respectively. A particularly rapid decline in TWS (approximately –0.4 cm/yr) was seen over 48 
the Shiyang River Basin located in the southeaster part of Hexi Corridor. The reduction 49 
mostly occurred in the groundwater layer. An investigation of the relationship between water 50 
resources and agricultural activities suggested that groundwater consumption required to 51 
maintain crop yield in the growing season for this specific basin was likely the cause of the 52 
groundwater depletion. 53 

 54 

1. Introduction 55 

The focus of this study is the Hexi Corridor. It is a semi-arid region located between the 56 
Gansu province of China and Mongolia (Fig. 1). A semi-arid region can be broadly classified 57 
as an area on the boundary of a larger desert, receiving just enough annual precipitation (300 58 
mm or less) to sustain a limited amount of agriculture (Gong et al., 2004; Zhu et al., 2015). 59 
Inefficient use of the limited amount of surface water can often lead to overuse of 60 
groundwater resources and salinization of the soil (Cui and Shao, 2005). This can result in 61 
desertification, which not only reduces the amount of production but also may have long-term 62 
effects on the local ecology. All of this holds true for the Hexi Corridor (Wang et al., 2003). 63 

Improving the water resources management of semi-arid regions requires accurate knowledge 64 
of the hydrological processes involved.  For small areas, this can be partially obtained through 65 
a network of in-situ measurement systems, such as meteorological stations, river gauges, 66 
groundwater wells, evaporation trays, etc. (Dahlgren & Possling, 2007; Huo et al., 2007; 67 
Kang et al., 2004; Ma et al., 2005; Du et al., 2014). While streamflow gauges provide 68 
integrated information for large catchment areas, point observations of hydrometeorological 69 
variables and even groundwater levels can be very local in scope. A sensor at a point several 70 
kilometres away may record significantly different values. For large scales (> 10,000 km2), 71 
such techniques are unlikely capable of delivering accurate results. 72 

Two options for estimating the large-scale Terrestrial Water Storage Variation (TWSV) of a 73 
particular region are using observations from the Gravity Recovery And Climate Experiment 74 
satellite mission (GRACE, Tapley et al., 2004) or utilizing a regional or global hydrological 75 
model. A number of prior studies have reported on the potential of GRACE in the estimation 76 
of snow water equivalent (Niu et al., 2007), groundwater (Döll et al., 2014), and 77 
evapotranspiration (Long et al., 2014) in terms of temporal and spatial variability. However, 78 
GRACE only provides the total column of the water storage at a monthly time scale and large 79 
spatial scales (> 300 km). It is not possible to identify the contribution of separate 80 
hydrological components to the TWSV from GRACE data alone. On the other hand, a 81 
hydrological model can be used to estimate the individual storage components at very high 82 
spatial and temporal scales. The major drawback of the model approach is mainly the 83 
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significant uncertainties influenced by the quality of the model parameter calibration and the 84 
accuracy of the meteorological input data.  In addition, hydrological models may suffer from 85 
inadequate process representations (model structure errors). 86 

Data Assimilation (DA) can be employed to combine the strengths of GRACE and 87 
hydrological models while mitigating their respective weaknesses. A number of studies have 88 
shown that GRACE DA can be used to improve the estimation of groundwater and 89 
streamflow (Zaitchik et al., 2008; Tangdamrongsub et al., 2015), snow water equivalent 90 
(Forman et al., 2012; Su et al., 2012), and as well as for evaluation of drought events 91 
(Houborg et al., 2012; Li et al., 2012). Different temporal and spatial resolution of GRACE 92 
observations and hydrological models require proper design of the DA scheme. Several DA 93 
schemes have been developed to distribute GRACE observations into the model, which 94 
include using 5-day interpolated observations and updating the model every 5 days 95 
(Tangdamrongsub et al., 2015); using a monthly observation value and applying the model 96 
update only at the end of the month (Eicker et al., 2014); using a monthly value and 97 
distributing the update as a daily increments (Zaitchik et al., 2008; Forman et al., 2012; 98 
Girotto et al. 2016).  Although all DA schemes are acceptable, the scheme proposed by 99 
Forman et al. (2012) is advantageous because it does not require an interpolation of the 100 
observations and can reduce the spurious jump of the water storage estimates caused by 101 
applying the update at the end of the month only. The only price to pay is the additional 102 
computational cost of running the model twice for the same month. A scheme similar to 103 
(Forman et al., 2012) is used in this study. Spatial disaggregation is also needed to reconcile 104 
the difference in horizontal resolution between the observations and the model. Recent studies 105 
by Eicker et al. (2014) and Schumacher et al. (2016) suggested including the GRACE 106 
variance-covariance error information in the spatial disaggregation step. Both studies 107 
proposed using 500-km GRACE spatial resolution to mitigate the ill-posedeness of the error 108 
covariance matrices in the spatial domain. In line with Eicker et al. (2014) and Schumacher et 109 
al. (2016), the assimilation scheme in this study accounts for spatially correlated errors by 110 
using full error variance-covariance matrices of GRACE data. This study will show that 111 
considering the GRACE error correlations leads to an improvement of the state estimates. 112 
Particularly, the Signal-to-Noise Ratio (SNR) of the TWSV is much lower than in the river 113 
basins considered in the previous studies, e.g., Mississippi (Zaitchik et al., 2008), Rhine 114 
(Tangdamrongsub et al., 2015), and Mackenzie (Forman et al., 2012). 115 

Approximately 9 years of GRACE data – between April 2002 and December 2010 – are 116 
considered in this study. GRACE observations are assimilated into the PCRaster Global 117 
Water Balance (PCR-GLOBWB; Van Beek et al., 2011; Sutanudjaja et al., 2014; Wada et al., 118 
2014) hydrological model over the Hexi Corridor. TWS is computed from PCR-GLOBWB as 119 
the sum of all the hydrological components (soil moisture, groundwater, surface water, 120 
inundated water, interception, and snow). The previous studies showed very good agreement 121 
of PCR-GLOBWB based estimates with GRACE observations in several river basins (Wada 122 
et al., 2014; Tangdamrongsub et al., 2016). However, the performance of PCR-GLOBWB has 123 
not yet been evaluated over the Hexi Corridor. In addition, to date the model has not been 124 
incorporated into any GRACE DA scheme, making this study the first attempt to do so. 125 
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Investigating the added value of GRACE DA in the Hexi Corridor is the main objective of 126 
this study. 127 

First of all, the impact of GRACE DA and the effect of taking correlations in GRACE errors 128 
into account are assessed. Both the total terrestrial water storage and the individual 129 
hydrological storage compartments are considered. 130 

Next, the results of the GRACE DA are validated with independent in-situ data. The 131 
agreement is analysed in terms of the correlation coefficient, Nash-Sutcliff coefficient, and 132 
Root-Mean-Square difference (RMSD). The groundwater storage variation (GWSV) and 133 
streamflow estimates after GRACE DA are validated with the well and river stream gauge 134 
measurements, respectively. 135 

Finally, results from this GRACE DA study are used to assess the status of water resources 136 
over the Hexi Corridor. The connections between the water storage (including groundwater 137 
consumption) and agriculture in the area are also presented and discussed. At that stage, we 138 
use precipitation data from the Tropical Rainfall Measuring Mission (TRMM; Huffman et al., 139 
2007) and the Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized 140 
Difference Vegetation Index (NDVI; Huete et al., 2002). 141 

 142 

2. Study region 143 

The Hexi Corridor is a long and narrow area between the Qilian Mountain range and southern 144 
Mongolia (Fig. 1a). The region’s elevation ranges from 5,200 m in the southern upstream area 145 
(Qilian Mountains) to 900 m in the northern downstream zone (Inner Mongolia) (Fig. 1b). 146 
The region is comprised of four typical inland arid and semi-arid regions (Zhu et al., 2015): 147 
the Shiyang River Basin (41,600 km2), the Heihe River Basin (143,000 km2), the Shule River 148 
Basin (157,000 km2), and a Desert Region (152,445 km2) (Geng and Wardlaw, 2013; Zhu et 149 
al., 2015). Located next to the Gobi Desert, most parts of the region have a cold desert climate 150 
(Peel et al., 2007), where precipitation is relatively low to sustain vegetation or crops. 151 
Approximately 60 to 80 % of the annual rainfall is concentrated during the timeframe from 152 
June to September. The inland rivers mainly originate from the Qilian Mountains and 153 
disappear after entering the midstream/downstream plains and oases. As such, the southern 154 
part of the region is more favourable for agriculture.  155 

The four basins have distinct characteristics. First, the smallest river basin, Shiyang, has 8 156 
main river streams, including the Xida and Xiying Rivers (Fig. 1c). The annual rainfall and 157 
the mean temperature are approximately 250 mm and 5 °C (Fig. 2a, b), respectively. The 158 
Shiyang River Basin is considered the wettest basin compared to the others, with relatively 159 
high mean total renewable annual water resources of approximately 1.66 billion m3 (Zheng et 160 
al., 2013). However, a highly developed economy and population growth in the past decade 161 
have resulted in a severe water resources overexploitation problem (Zheng et al., 2013). The 162 
Heihe River Basin has a semi-arid climate and the mean daily temperature of ~6 °C (Fig. 2d). 163 
The average annual rainfall is ~150 mm (Fig. 2c) with high heterogeneity both in temporal 164 
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and spatial distribution. The mean total annual available water resources are estimated at 3.7 165 
billion m3 (Hu, 2015). Similar to the Shiyang River Basin, increased water exploitation, 166 
increasing population, and changing climate have aggravated the damage to the downstream 167 
ecology. The Shule River Basin has an arid climate, the mean temperature there is around 4 168 
°C (Fig. 2f), and the average annual rainfall is only approximately 98 mm (Fig. 2e). 169 
Compared to the Shiyang River Basin, the Shule River Basin is approximately four times as 170 
large in terms of surface area, but has similar mean total annual water resources, ~1.6 billion 171 
m3 (Hu, 2015). The district irrigation areas are mainly located in the middle of the Shule 172 
River Basin. Agricultural water consumption accounts for more than 80% of the total water 173 
use. Finally, the Desert Region has an extreme continental desert climate with an average 174 
temperature of 8 °C, and the annual rainfall of ~130 mm. Extensive groundwater abstraction 175 
was also observed over the region (Jiao et al., 2015). 176 

 177 

3. Hydrology model 178 

The global distributed hydrological model PCR-GLOBWB (van Beek et al., 2011; 179 
Sutanudjaja et al., 2016) simulates spatial and temporal continuous fields of fluxes and 180 
storages in various water storage components (soil moisture, groundwater, surface water, 181 
inundated water, interception, and snow). The model version used here (Sutanudjaja et al., 182 
2016) has a spatial resolution of 30 arc minutes (approximately 50 km at the equator), and a 183 
temporal resolution of 1 day. Figure 3 illustrates the structure of PCR-GLOBWB model. The 184 
model includes 2 soil layers (SMupp, SMlow), an underlying hydrologically active and 185 
replenishable groundwater (GWSactive) layer, a non-renewable groundwater (GWSfossil) layer, 186 
as well as interception, surface water, and snow stores. The non-renewable groundwater is 187 
available for abstraction to satisfy water demands once the overlying hydrologically active 188 
groundwater storage is depleted. For soil, snow, inundated top water, and interception stores, 189 
an individual grid cell is divided into sub-grids associated with different types of topography, 190 
vegetation phenology, and soil properties, as well as land cover types. Specifically, there are 4 191 
types of land covers defined: short natural vegetation, tall natural vegetation, irrigated non-192 
paddy field, and irrigated paddy field. Soil components include the upper layer (SMupp, 0 – 30 193 
cm) and the lower layer (SMlow, 30 – 150 cm). The snow component includes snow water 194 
equivalent (SWE), as well as snow free water (SFW) representing the storage of melted snow. 195 
The water stored in the stream channels and lakes is also included in the TWS estimate. Based 196 
on the structure of PCR-GLOBWB, the total water storage (TWS) is computed as the sum of 197 
27 different water storage components: 8 soil moisture layers, 2 groundwater layers, 4 198 
interception layers, 8 snow layers, 4 inundated top water layers, and 1 surface water layer. 199 

For each grid cell and for each daily time step, the model determines the water balance in two 200 
vertically stacked soil layers and the groundwater store. The model also computes the vertical 201 
water exchanges between the soil layers and between the inundated top water layer and the 202 
atmosphere, i.e. rainfall and snowmelt, percolation and capillary rise, as well as evaporation 203 
and transpiration fluxes. The active groundwater store underlies the soil, is fed by net 204 
groundwater recharge, discharges to baseflow as a linear reservoir, and is exempt from the 205 
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direct influence of evaporation and transpiration fluxes. However, capillary rise from the 206 
active groundwater store can occur depending on the simulated groundwater storage, the soil 207 
moisture deficit, and the unsaturated hydraulic conductivity. Fluxes are simulated according 208 
to the different land cover types. The model includes a physically-based scheme for 209 
infiltration and runoff, resulting in the direct runoff, interflow, as well as groundwater 210 
baseflow and recharge. River discharge is calculated by accumulating and routing the specific 211 
runoff along the drainage network. For further details, including model parameterization, the 212 
reader is referred to the technical reports and other relevant publications (van Beek and 213 
Bierkens, 2009; van Beek, 2008; Sutanudjaja et al., 2011, 2014). 214 

 215 

4. Data and data processing 216 

4.1 GRACE data 217 

The GRACE gravity product release 5 (RL05), generated by the University of Texas at 218 
Austin’s Center for Space Research (CSR, Bettadpur, 2012), was used as input. The product 219 
consists of monthly sets of spherical harmonic coefficients (SHC) complete to degree and 220 
order 60.  On this basis, TWSVs were obtained for the study period between April 2002 and 221 
December 2010. The GRACE data were further processed in this study as follows: 222 

• SHCs of degree 1 provided by Swenson et al. (2008) were restored, and all 5 223 
coefficients of degree 2 were replaced by the values estimated from satellite laser 224 
ranging (Cheng and Tapley, 2004).  225 

• SHC variations were computed by removing the long-term mean (computed between 226 
April 2002 and December 2010) from each monthly solution. 227 

• A destriping filter (Swenson and Wahr, 2006) was applied to the SHC variations. The 228 
filter used a 5th degree polynomial (Savitsky-Golay) over a 5-point window to remove 229 
the correlations; orders below 8 remained unchanged. 230 

• An additional 250-km radius Gaussian smoothing (Jekeli, 1981) was applied to SHC 231 
variations to suppress high-frequency noise, and the TWS variations (∆𝜎𝜎 [m]) were 232 
then computed using (Wahr et al 1998) 233 

∆𝜎𝜎(𝜃𝜃,𝜙𝜙) = ∑ ∑ 𝑊𝑊𝑙𝑙
𝑎𝑎𝑒𝑒(2𝑙𝑙+1)
3(1+𝑘𝑘𝑙𝑙)

𝜌𝜌𝑒𝑒
𝜌𝜌𝑤𝑤

�������
𝑆𝑆𝑙𝑙

𝑙𝑙
𝑚𝑚=−𝑙𝑙

60
𝑙𝑙=1 ∆𝐶𝐶𝑙̅𝑙𝑙𝑙𝑌𝑌�𝑙𝑙𝑙𝑙(𝜃𝜃,𝜙𝜙), (1) 

 234 

where 𝜃𝜃, 𝜙𝜙 are co-latitude and longitude in spherical coordinates, ∆𝐶𝐶𝑙̅𝑙𝑙𝑙 is the SHC 235 
variations of degree 𝑙𝑙 and order 𝑚𝑚, 𝑌𝑌�𝑙𝑙𝑙𝑙 is the normalized surface spherical harmonic, 236 
𝑊𝑊𝑙𝑙 is the Gaussian smoothing function, 𝑆𝑆𝑙𝑙 is a scaling factor used to convert 237 
dimensionless coefficients to TWS in terms of Equivalent Water Heights (EWH), 𝑎𝑎𝑒𝑒 238 
is the semi-major axis of the reference ellipsoid, 𝑘𝑘𝑙𝑙 is the load love number of degree 239 
𝑙𝑙, 𝜌𝜌𝑒𝑒 and 𝜌𝜌𝑤𝑤 are the average density of the Earth and water, respectively. In this study, 240 
the TWS variations were computed at every 0.5ox0.5o grid cell. This cell size was 241 
selected through trial and error as a balance between performance and resolution. 242 
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In general, filters suppress not only noise but also the genuine TWSV signal, and are a well-243 
known source of signal leakage. To address this, a signal restoration method (Chen et al., 244 
2014; Tangdamrongsub et al., 2016) was employed. The method iteratively determined the 245 
possible signal reduction caused by the Gaussian filter applied and added it back to the 246 
filtered signals. The errors of the procedure grew with the number of iterations, requiring a 247 
proper selection of the convergence criterion. In this study, the criterion was chosen 248 
empirically: the signal restoration process was iteratively repeated until the increment in every 249 
grid cell inside the Hexi Corridor became smaller than 0.5 cm. This value is 2-3 times smaller 250 
than the GRACE uncertainty (Wahr et al., 2006; Klees et al., 2008; Dahle et al., 2014). Figure 251 
4 demonstrates the signal restoration for October 2002. The convergence criterion was met 252 
after approximately 6 iterations. The signal over the mountain range and Inner Mongolia 253 
became apparent after the signal restoration was applied (see Fig. 4f).  254 

4.2 Forcing data 255 

The forcing data required by PCR-GLOBWB are precipitation, air temperature, and potential 256 
evapotranspiration. Tangdamrongsub et al. (2015) showed that the use of high-quality 257 
precipitation data might lead to better estimates of hydrological fluxes (e.g., TWSV and 258 
streamflow). In principle, local precipitation and surface temperature measurements could be 259 
obtained from the China Daily Ground Climate Dataset provided by the China Meteorological 260 
Data Sharing Service System (http://cdc.cma.gov.cn/home.do). A total of 23 weather stations 261 
were found over the Hexi Corridor (see Fig. 1b). However, the measurements were spatially 262 
sparse and did not cover the entire region. Therefore, the global precipitation data were used 263 
to achieve a better spatial coverage. Four global precipitation products were considered for 264 
inclusion: 265 

• The European Centre for Medium-range Weather Forecasts (ERA-Interim, spatial 266 
resolution: 0.75ox0.75o; Dee et al., 2011) 267 

• The Tropical Rainfall Measuring Mission (TRMM 3B42, spatial resolution: 0.25o 268 
x0.25o; Huffman et al., 2007; Kummerow et al., 1998) 269 

• The Climate Research Unit dataset (CRU, spatial resolution: 0.5o x0.5o; Mitchell and 270 
Jones, 2005; van Beek, 2008) 271 

• The Princeton's Global Meteorological Forcing Dataset (Princeton, spatial resolution: 272 
0.5o x0.5o; Sheffield et al., 2005) 273 

To select the best product, the global precipitation values were first interpolated to the 274 
weather station locations and then the correlation coefficient, Nash-Sutcliffe (NS) coefficient, 275 
and RMSD between the interpolated and observed ground data were calculated. The mean 276 
values of the statistical estimates are shown in Fig. 5a. Overall, TRMM provided the best data 277 
quality, with the highest correlation (~0.85) and NS coefficients (~0.46), and an RMSD 278 
approximately 2–3 mm lower than other products. The high spatial resolution of TRMM is 279 
probably the reason for its better performance. Therefore, this product was chosen as the 280 
precipitation input. The low NS coefficient in all 4 cases suggests that the coarse spatial 281 
resolution of the global precipitation datasets prevents them from capturing all the local 282 
precipitation events. 283 
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A similar procedure was used to compare the air temperature data from ERA-Interim, CRU, 284 
and Princeton. The statistical estimates are shown in Fig. 5b. Although the results from all 285 
products were very similar, CRU provided the highest data quality in terms of correlation and 286 
RMSD values, and therefore, it was used as the temperature input. As far as potential 287 
evapotranspiration is concerned, few data are available for this region, so the data from (van 288 
Beek, 2008) were used. 289 

4.3 Validation data 290 

4.3.1 Groundwater 291 

Monthly groundwater well measurements at 5 locations (Fig. 1c) were obtained from the 292 
ground network maintained by the Shiyang River Basin Management Bureau, and Institute of 293 
Water Resources and Hydropower of Gansu Province. The in situ data were provided in the 294 
form of piezometric heads (relative to the mean sea level), which needed to be converted to 295 
units of storage. For such a task, several parameters, e.g., storage coefficient and specific 296 
yield are required, but they are not available over the Hexi Corridor. To solve that problem, a 297 
scale factor computed using the information from GRACE and soil moisture (SM) from the 298 
Global Land Data Assimilation System (GLDAS, Rodell et al., 2004) was used for the 299 
conversion using the approach outlined by Tangdamrongsub et al. (2015).  As discussed in 300 
Tangdamrongsub et al. (2015), it is ideally preferred to use the in-situ soil moisture data to 301 
represent the SM term, but they are not available at the well locations. The soil moisture 302 
estimated from remote sensing was also not appropriate due to the limitation of the 303 
penetration depth. The use of SM from PCR-GLOBWB is avoided to reduce the bias when 304 
compared the adjusted well measurements to the final DA result. Therefore, the GLDAS 305 
derived SM was used. 306 

The adjustment procedure was as follows. First, GLDAS-based soil moisture storage 307 
variations (SMSV) were removed from GRACE-derived TWSV. Four variants of GLDAS 308 
model (NOAH, CLM, MOSAIC, and VIC; see Rodell et al., 2004) were considered and the 309 
average SMSV value was calculated. Taking into account that SMSV and groundwater 310 
storage variations (GWSV) are the major contributions to TWS variations, this resulted in 311 
GWSV (GWSV(GRACE-SMSV)). Then, by conducting a regression analysis between the monthly 312 
time-series of piezometric head variation (Δh) and ΔGWS(GRACE-SMSV) at each individual 313 
location, a bias (𝑏𝑏) and a scale factor (f) were estimated using the following linear 314 
relationship: 315 

ΔGWS(GRACE−SMSV) + 𝑒𝑒 = 𝑏𝑏 + 𝑓𝑓 ∙ ∆ℎ,       (2) 316 

where e indicates the observation error. Finally, the estimated bias (𝑏𝑏�) and scale factor (𝑓𝑓) 317 
were used to convert the in situ head measurements into groundwater storage variation 318 
(GWSVin situ) as: 319 

GWSVin situ = 𝑏𝑏� + 𝑓𝑓 ∙ ∆ℎ.         (3) 320 

 321 
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4.3.2 Streamflow 322 

Monthly river gauge data were obtained from the same data centre as the groundwater 323 
measurements. Due to the coarse spatial resolution of PCR-GLOBWB, it models only the 324 
main river streams. Therefore, the gauge measurements of small river streams, as well as the 325 
gauge measurements that contained many data gaps (i.e., more than 24 months), were 326 
excluded. As a result, the measurements from only 2 gauges – at Xida and Xiying Rivers (see 327 
Fig. 1c) – were used in this study. 328 

4.4.3 Normalized Difference Vegetation Index (NDVI) 329 

NDVI (Carlson and Ripley, 1997) is an indicator of vegetation health or “greenness”. In this 330 
study, NDVI and GWS were analysed to determine if the growing season was being extended 331 
beyond the limited rainy period through groundwater extraction for irrigation. NDVI was 332 
computed from the MODIS 8-day, 500-m spatial resolution surface reflectance product 333 
(Vermote et al., 2011) based on data from Aqua satellite (MYD09A1 product). Based on the 334 
location of the in situ groundwater measurements, the MODIS tiles h25v05 and h26v05 were 335 
selected. First, the data were quality controlled to exclude pixels with cloud cover. The 8-day 336 
NDVI was then computed as (Huete et al., 2002) 337 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁−𝜌𝜌𝑅𝑅
𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁+𝜌𝜌𝑅𝑅

,          (4) 338 

where 𝜌𝜌𝑁𝑁𝑁𝑁𝑁𝑁 and 𝜌𝜌𝑅𝑅 are the observed surface reflectances in the near-infrared and red portions 339 
of the electromagnetic spectrum, respectively. The monthly-averaged NDVI was then 340 
computed based on the derived 8-day NDVI values.  341 

 342 

5. Methodology and implementation 343 

5.1 Ensemble Kalman Filter (EnKF) 344 

The Ensemble Kalman Filter (EnKF; Evensen, 2003) is used to assimilate GRACE derived 345 
TWSV into the PCR-GLOBWB model. The EnKF works in two steps, a forecast step and 346 
analysis (update) step. The forecast step involves propagating the states forward in time using 347 
the model (PCR-GLOBWB). Identical to how the EnKF is implemented by Forman et al. 348 
(2012), the state vector (𝝍𝝍 in this study is an nm x 1 vector, where n = 27 is the number of 349 
TWS-related states from PCR-GLOBWB (see Sect. 3), and m is the number of model grid 350 
cells. The model estimates are related to the GRACE observations by 351 

𝒅𝒅 = 𝐇𝐇𝝍𝝍 + 𝝐𝝐; 𝝐𝝐~𝒩𝒩(𝟎𝟎,𝐑𝐑),        (5) 352 

where 𝒅𝒅 is an m x 1 vector containing the GRACE observations for the month of interest, and 353 
𝐇𝐇 is a measurement operator which relates the PCR-GLOBWB state 𝝍𝝍 to the observation 354 
vector 𝒅𝒅. Notice that the number of observations is equal to the number of grid cells because 355 
the GRACE-based estimates are obtained for all the grid cells of the PCR-GLOBWB model 356 
(see Sect. 4.1). The uncertainties in the observations are given in the random error 𝝐𝝐, which is 357 
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assumed to have zero mean and covariance matrix 𝐑𝐑𝑚𝑚×𝑚𝑚. As the sum of all state elements at 358 
a given cell is equal to TWSV, the 𝐇𝐇 matrix is defined as: 359 

𝐇𝐇 = ��

(1 1 1 … 1)1×𝑛𝑛 0 ⋯ 0
0 (1 1 1 … 1)1×𝑛𝑛 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ (1 1 1 … 1)1×𝑛𝑛

��

𝑚𝑚×𝑛𝑛𝑛𝑛

.   (6) 360 

Let the ensemble of the states be stored in a matrix 𝐀𝐀𝑛𝑛𝑛𝑛×𝑁𝑁 = (𝝍𝝍1,𝝍𝝍2,𝝍𝝍3, … ,𝝍𝝍𝑁𝑁), where N 361 
is the number of ensemble members. Then, the ensemble perturbation matrix is defined as 362 
𝐀𝐀′ = 𝐀𝐀 − 𝐀𝐀�, where the matrix 𝐀𝐀� is of the same size as A and filled in with the mean values 363 
computed from all ensemble members. Similarly, the GRACE observation vector is stored in 364 
the matrix 𝐃𝐃𝑚𝑚×𝑁𝑁 = (𝒅𝒅1,𝒅𝒅2,𝒅𝒅3, … ,𝒅𝒅𝑁𝑁), in which each column is a replicate of the 365 
observation but perturbed with random noise ~𝒩𝒩(𝟎𝟎,𝐑𝐑). The analysis equation can be 366 
expressed as (Evensen, 2003) 367 

𝐀𝐀𝑎𝑎 = 𝐀𝐀 + ∆𝐀𝐀 = 𝐀𝐀 + 𝐊𝐊(𝐃𝐃 − 𝐇𝐇𝐇𝐇)        (7) 368 

with 369 

𝐊𝐊 = 𝐏𝐏𝑒𝑒𝐇𝐇𝑇𝑇(𝐇𝐇𝐏𝐏𝑒𝑒𝐇𝐇𝑇𝑇 + 𝐑𝐑)−1,         (8) 370 

where 𝐀𝐀𝑛𝑛𝑛𝑛×𝑁𝑁
𝒂𝒂  is the updated model state, ∆𝐀𝐀𝑛𝑛𝑛𝑛×𝑁𝑁 is the update from Kalman filter, and 371 

𝐊𝐊𝑛𝑛𝑛𝑛×𝑚𝑚 is the Kalman gain matrix. The model error covariance matrix (𝐏𝐏𝑒𝑒)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛 is 372 
computed as 373 

𝐏𝐏𝑒𝑒 = 𝐀𝐀′(𝐀𝐀′)𝑇𝑇 (𝑁𝑁 − 1)⁄ .         (9) 374 

The matrix 𝐑𝐑 is the error variance-covariance matrix of GRACE data in the spatial domain, its 375 
computation is discussed in Sect. 5.2.2. 376 

In the initialization phase, which was needed to obtain the initial states, the model was spun 377 
up between 1 January 2000 and 31 December 2000 as a hot start. This time interval was 378 
sufficient to reach the dynamic equilibrium. The initial state 𝝍𝝍 for 31 December 2000 379 
obtained this way was perturbed to yield 𝑁𝑁 = 100 ensemble members 𝝍𝝍𝑖𝑖, 𝑖𝑖 = 1, 2, 3, … ,𝑁𝑁. 380 
The 𝑁𝑁 ensemble runs between 1 January 2001 and 31 March 2002 were then conducted 381 
independently based on the perturbed initial states. This resulted in an ensemble spread of the 382 
estimated states. The model was then propagated in time between 1 April 2002 and 31 383 
December 2010 without assimilating any observation. This case is referred to hereafter as the 384 
Ensemble Open Loop (EnOL). For the EnKF, the model was also propagated beginning from 385 
1 April 2002, but the observations (when available) were assimilated.  386 

The processing diagram is shown in Fig. 6, and follows the methodology introduced by 387 
Forman et al. (2012). The state is first propagated in time from the first to the last day of the 388 
month without applying DA, and the monthly averaged states are calculated from the daily 389 
values. When the GRACE observation for that month is available, the DA routine is activated 390 
(otherwise, the model continues propagating to the next month without applying DA). The 391 
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DA routine computes the monthly averaged update ∆A of the TWS-related states, cf. Eq. (7). 392 
The daily increment (DINC) of the update is then computed by dividing the monthly averaged 393 
update by the total numbers of days in that month (numdaymonth). The model propagation is 394 
then restarted (second run), using the last day of the previous month (month-1, numdaymonth-1) 395 
as the initial state. In this second run, the DINC is added to the current states every day up to 396 
the last day of the month. The DA scheme is repeated for each month up to the end of the 397 
study period. 398 

Spatial correlations of model errors and observation errors were also taken into account in 399 
view of the fact that the latter are highly correlated at neighbouring 0.5ox0.5o grid cells. De 400 
Lannoy et al. (2009) proposed a so-called 3D-Fm (3-dimentional fine scale with multiple 401 
observation) approach, which is called EnKF 3D in this paper. The approach only considers 402 
the spatial correlations between the neighbouring grid cells. In this study, the neighbouring 403 
grid cells were assumed to be the ones inside the Gaussian smoothing radius applied, i.e., 250 404 
km. This reduced the computational cost, as only a small subset of cells pairs was considered 405 
instead of all cells pairs. That approach was applied not only to observation errors, but also to 406 
model errors in TWSV and TWS-related components in this study. The EnKF 3D scheme is 407 
illustrated in Fig. 7. For a particular grid cell (centre grid cell), all TWS-related components 408 
of the neighbouring grid cells and the centre grid cell are used to form the state (𝐀𝐀𝑛𝑛𝑛𝑛×𝑁𝑁

𝐬𝐬 ) and 409 

observation (𝐃𝐃𝑝𝑝×𝑁𝑁
𝐬𝐬 ) matrices, where 𝑝𝑝 is the number of the considered grid cells. The matrix 410 

notation with superscript s (e.g., As) is only used to emphasize the cell-dependent version, and 411 
it can be substituted into the original matrix notation (e.g., A) in Eqs. (5–9). It is emphasized 412 
here that EnKF 3D involves only p grid cells instead of all m grid cells. As such, the 413 
measurement operator, model error covariance matrix, and observation error covariance 414 
matrix become 𝐇𝐇𝑝𝑝×𝑛𝑛𝑝𝑝

𝐬𝐬 , (𝐏𝐏𝑒𝑒𝐬𝐬)𝑛𝑛𝑛𝑛×𝑛𝑛𝑛𝑛, and 𝐑𝐑𝑝𝑝×𝑝𝑝
𝐬𝐬 , respectively. The EnKF was then applied and 415 

the states of the centre grid cell (only) were updated. The procedure was repeated through all 416 
grid cells. To investigate the impact of including spatial correlations of errors, the EnKF 1D 417 
was also considered. The EnKF 1D scheme is similar to EnKF 3D, but the spatial correlations 418 
are omitted (i.e., the off-diagonal elements of the covariance matrices 𝐏𝐏𝑒𝑒𝐬𝐬 and 𝐑𝐑𝐬𝐬 are set to 419 
zero). 420 

Furthermore, sampling errors caused by finite ensemble size might lead to spurious 421 
correlations in the estimated model error covariance matrices (Hamill et al., 2001). To reduce 422 
such an effect, a distance-dependent localization function is applied to 𝐏𝐏𝑒𝑒𝐬𝐬 (pair-wise). In this 423 
study, the Gaussian function (𝑐𝑐(𝛼𝛼)) (Jekeli, 1981) was used for that:  424 

𝑐𝑐�𝛼𝛼𝑗𝑗1 ,𝑗𝑗2� = 𝑒𝑒−𝑏𝑏�1−cos�𝛼𝛼𝑗𝑗1,𝑗𝑗2/𝑎𝑎𝑒𝑒��

1−𝑒𝑒−2𝑏𝑏
         (10) 425 

with 𝑏𝑏 = ln(2)
1−cos(𝐿𝐿/𝑎𝑎𝑒𝑒),          (11) 426 

where 𝛼𝛼𝑗𝑗1,𝑗𝑗2 is the distance on the Earth’s surface between two grid cells (𝑗𝑗1 and 𝑗𝑗2), and 𝐿𝐿 is 427 
the correlation distance. The variogram analysis was used to derive the TWSV correlation 428 
distance (𝐿𝐿) of PCR-GLOBWB, assuming that it is similar to the correlation distance of 429 
model errors. It was found to be approximately equal to 110 km over the Hexi Corridor. For 430 
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GRACE observations, to ensure that the spurious error correlations at distances greater than 431 
the Gaussian smoothing distance, 250 km, are insignificant, the localization applied to 𝐑𝐑𝐬𝐬 was 432 
based on 𝐿𝐿 = 250 km. The localization also makes the correlations at short distances slightly 433 
weaker. As a result, the condition number of the error covariance matrix is increased. In this 434 
study, for instance, the condition number increased from ~1014 to ~102. Thus, this matrix had 435 
a full rank after localization (see Sect. 5.2.2 for a further discussion). 436 

 437 

5.2 Errors of PCR-GLOBWB model and errors in GRACE observations 438 

5.2.1 Model errors 439 

The two primary sources of considered errors in the PCR-GLOBWB model are the 440 
meteorological forcing data and the model parameters. For forcing data, the precipitation 441 
uncertainties were quantified as the RMS error provided by the TRMM product (Huffman, 442 
1997). The uncertainties of temperature and potential evapotranspiration were not provided as 443 
parts of the corresponding products, and therefore errors of 2oC, and 30% of the nominal 444 
potential evapotranspiration value were assumed, respectively. The error levels were chosen 445 
through trial-and-error, mainly to allow the ensemble to grow between updates. The 446 
precipitation and potential evapotranspiration were perturbed with additive lognormal noise 447 
while the temperature was perturbed with additive Gaussian noise. The forcing data 448 
uncertainties were assumed to be spatially correlated, which was accounted for using an 449 
exponential decay function. Based on a variogram analysis, the correlation distances of 450 
precipitation, temperature and potential evapotranspiration were found to be approximately 451 
150 km, 450 km, and 450 km, respectively. 452 

As far as model parameters are concerned, a total of 15 TWS-related parameters (see Table 1, 453 
Sutanudjaja et al., 2011, 2014) were perturbed using additive Gaussian noise without spatial 454 
correlations. The standard deviation of the perturbations of the parameters was set to 20% of 455 
the range of the nominal values. 456 

5.2.2 GRACE observation errors 457 

Spatial correlations of GRACE observation errors were also taken into account in the DA 458 
scheme. The uncertainties in the GRACE-derived TWSV over the Hexi Corridor were 459 
computed using the monthly calibrated error variance-covariance matrix of the SHCs (𝚺𝚺) 460 
provided by the CSR. Recalling the replacement of the low degree SHCs (see Sect. 4.1), the 461 
error (co-)variances of SHCs degree 2 were not provided by Cheng and Tapley (2004), and 462 
therefore the values obtained from the CSR were used. As for SHCs of degree 1, the error (co-463 
) variances were not available from (Swenson et al., 2008) either and were set to zero. Note 464 
that 𝚺𝚺 only reflects the error of the original GRACE data, i.e. before the GRACE processing 465 
described in Sect. 4.1 was applied. To obtain the error variance-covariance matrix associated 466 
with the post-processed GRACE data, an ensemble of SHC noise realizations 𝐐𝐐𝑐𝑐 was first 467 
generated based on 𝚺𝚺 as follows: 468 
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𝐐𝐐𝑐𝑐 = (𝚺𝚺)
𝟏𝟏
𝟐𝟐 𝐐𝐐𝑤𝑤,           (12) 469 

where 𝐐𝐐𝑤𝑤 = (𝑞𝑞1𝑤𝑤, 𝑞𝑞2𝑤𝑤, 𝑞𝑞3𝑤𝑤, … , 𝑞𝑞𝑁𝑁𝑤𝑤) contains a set of white noise realizations and has the 470 
dimension of 𝑠𝑠 × 𝑁𝑁, where 𝑠𝑠 = 1891 is the number of SHCs, and N = 100 is the number of 471 
realizations. The matrix 𝐐𝐐𝑐𝑐 = (𝑞𝑞1𝑐𝑐, 𝑞𝑞2𝑐𝑐 , 𝑞𝑞3𝑐𝑐 , … , 𝑞𝑞𝑁𝑁𝑐𝑐 )  has the same dimension as 𝐐𝐐𝑤𝑤 and contains 472 
an ensemble of correlated noise realizations in SHCs. Then, each noise realization (i.e., 473 
column of 𝐐𝐐𝑐𝑐) was post-processed in the same way as the GRACE data (Sect. 4.1), which 474 
resulted in 𝐐𝐐�𝑐𝑐 = (𝑞𝑞�1𝑐𝑐,𝑞𝑞�2𝑐𝑐 , 𝑞𝑞�3𝑐𝑐 , … , 𝑞𝑞�𝑁𝑁𝑐𝑐 ). The post-processing included applying the destriping and 475 
Gaussian smoothing filters, as well as the signal restoration using the same number of 476 
iterations as was used in the GRACE data post-processing. The error variance-covariance 477 
matrix 𝚺𝚺� associated with the SHCs after post-processing was then computed as 478 

𝚺𝚺� = �𝐐𝐐�𝑐𝑐�𝐐𝐐�𝑐𝑐�
𝑇𝑇
� (𝑁𝑁 − 1)� .         (13) 479 

Recalling Eq. (1), the TWSV over the Hexi Corridor can be computed as 480 

∆𝛔𝛔 = 𝐘𝐘𝐘𝐘𝐘𝐘,           (14) 481 

where ∆𝛔𝛔 is the vector composed of the computed TWSV at grid cells, 𝐘𝐘 is the matrix of 482 
spherical harmonic synthesis (cf. Eq. (1)), 𝐒𝐒 is the matrix containing the scaling factors 𝑆𝑆𝑙𝑙, and 483 
𝐱𝐱 is the vector composed of the dimensionless SHC variations after GRACE data post-484 
processing described in Sect. 4.1. Then, the error covariance matrix 𝐑𝐑 of the GRACE-based 485 
TWSV over the Hexi Corridor was computed with the error propagation law as 486 

𝐑𝐑 = 𝐘𝐘𝐘𝐘 𝚺𝚺�  (𝐘𝐘𝐘𝐘)𝑇𝑇.          (15) 487 

Some statistics of GRACE TWSV errors over the Hexi Corridor are shown in Fig. 8. The 488 
error standard deviation in Oct. 2002 varied with location (Fig. 8a), whereas the error 489 
correlation showed a distance-decay pattern in all directions (Fig. 8b). The areally-averaged 490 
standard deviations over 4 basins stayed in most of the months at a similar level of 491 
approximately 1 cm (Fig. 8c). The large uncertainty in September 2004 was likely caused by 492 
the near-repeat orbit of GRACE satellites during that month. 493 

 494 

6. Results and discussion 495 

The structure of this section is as follows. First, the impact of assimilation using EnKF 3D on 496 
the TWSV is considered in Sect. 6.1. Then, the impact of the EnKF 3D on the estimates of the 497 
individual stores is investigated in Sect. 6.2. The results of the EnKF 1D and EnKF 3D 498 
schemes are compared in Sect. 6.3 in terms of TWSV and the individual stores. Furthermore, 499 
the obtained results are validated against independent data in Sect. 6.4. Finally, in Sect. 6.5-500 
6.6, the assimilation results are used together with ancillary remote sensing data to study 501 
water resources in the Hexi Corridor.  502 

 503 
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6.1 Impact of GRACE DA 504 

To demonstrate the impact of DA, Fig. 9 shows the daily TWSV estimates over the Shiyang 505 
River Basin between 1 April 2002 and 31 December 2003. Several features associated with 506 
the EnKF can be observed. Firstly, when a GRACE observation is available, the EnKF moves 507 
the estimated TWSV towards it. As a result, the estimated TWSV lies between the EnOL 508 
estimate and the GRACE observation most of the time. It is seen that GRACE-derived TWSV 509 
has a greater annual amplitude compared to the model estimated TWSV. This can likely be 510 
attributed to the poor quality of the model parameter calibration and the accuracy of the 511 
meteorological input data over the data-sparse regions. In the absence of observations, model 512 
parameters are difficult to determine and only the best available knowledge (or guess) is 513 
generally used, leading to inaccurate model state estimates. Updating the water storage 514 
estimates using GRACE DA showed a clear improvement in this case. Secondly, the standard 515 
deviation across the EnKF ensemble of TWSV values is smaller than that of the EnOL and 516 
smaller than the GRACE observation error. Thirdly, at the first month (April 2002) the 517 
TWSV estimates of the EnOL and EnKF were similar at the forecast step (as the initial states 518 
were the same, see point (a) in Fig. 9), but became different when the daily increment was 519 
applied to the EnKF. Finally, discontinuities in the time-series before the update were 520 
observed at the end of the month e.g., in November and December 2002 (point (b) and (c)), 521 
and February 2003 (point (d)). Applying the daily increment (see Sect. 5.3) served as a 522 
smoother, and these stepwise changes were reduced. 523 

Similar features were also seen in the EnKF 1D TWSV estimates (not shown).  524 

 525 

6.2 Impact of GRACE DA on individual stores 526 

The monthly-averaged values of the TWSV and individual stores in each of the 4 basins are 527 
presented in Fig. 10. Overall, TWSV estimates over the Hexi Corridor mostly reflect SMSV 528 
and GWSV components, while snow water storage variation (SNSV) and surface water 529 
storage variation (SFWV) are minor contributors, constituting less than 5% in most basins. 530 
Clear seasonal variations in TWSV were seen in all basins for GRACE, EnOL and GRACE 531 
DA (both EnKF 1D and EnKF 3D) time-series (Fig. 10 a,b,c,d). As observed in Fig. 10, the 532 
GRACE DA estimated TWSVs are generally between the GRACE observations and the 533 
EnOL estimates. As a result of assimilating GRACE data, both the EnKF 1D and EnKF 3D 534 
added water to all basins between 2002 and 2005 and reduced it from the basins between 535 
2006 and 2010. This is also seen in the time-series of SMSV (Fig. 12 e,f,g,h ) and GWSV 536 
(Fig. 12 I,j,k,l). Additionally, the annual amplitudes and phases of GRACE DA estimated 537 
TWSV were also found mostly in between the values computed from the GRACE 538 
observations and the EnOL results (see Table 2). In particular, the GRACE-DA estimated 539 
TWSV’s phase was always closer to the GRACE observation. The phase shifts of 540 
approximately 1 month were seen in both GRACE DA estimated TWS and GRACE 541 
observations compared to the EnOL results. Similar phase differences of approximately 1 542 
month were also observed in SMSV and GWSV components. 543 
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Differences in the long-term trends were also detected between the TWSV estimates from the 544 
model alone (EnOL) and the GRACE DA. The GRACE DA results showed decreasing 545 
TWSV trends similarly to the GRACE data, while the EnOL showed increasing trends (Fig. 546 
10 a,b,c,d, see also Table 7). This change in TWSV trend was clearly a result of assimilating 547 
GRACE observations. The negative trends were also observed after DA in the GWSV 548 
component in most basins (Fig. 10 i,j,l). This indicates the potential of GRACE DA in 549 
adjusting GWSV. In this way, one can reveal continued groundwater consumption to support 550 
local agricultural activities (Li et al., 2013). Unlike over other basins, the negative trend of 551 
GWSV estimates was not clearly present over the Desert Region (Fig.10k). This could be due 552 
to the small amplitude of the groundwater variation of this region (see also below), and most 553 
of the update took place in the SM component. As a result, a relatively large negative trend 554 
was seen in SMSV rather than GWSV after GRACE DA (see also Table 7). Further 555 
discussions on the trends are given in Sect. 6.4. 556 

The impact of GRACE DA on different stores was influenced by both the model parameters 557 
and the forcing data. The 4 basins have similar soil water storage capacities (see Table 3), 558 
which indicates that the basins can store similar amounts of soil water and generate similar 559 
amounts of groundwater recharge under the same rainfall conditions. However, the 4 basins 560 
received different amounts of rainfall, which resulted in different SMSV and GWSV 561 
estimates. For example, the Shiyang River Basin received the greatest amount of rainfall (~ 562 
twice of Heihe River Basin), which led to the greatest amount of the SMSV estimate (~1 cm 563 
annual amplitude). Such a large amount was also sufficient to percolate into the groundwater 564 
layer, resulting in GWSV of ~0.7 cm (see Fig. 10i and Table 2). In contrast, the Desert 565 
Region received approximately 3 times less rainfall, which led to a somewhat smaller amount 566 
of SMSV (~0.7 cm annual amplitude) and a much smaller amount of GWSV, ~0.2 cm (see 567 
Fig. 10g, k). As the uncertainty of the water storage variation is associated with the signal 568 
amplitude, the greater (smaller) water storage variation leads to greater (smaller) uncertainty, 569 
resulting in greater (smaller) update from GRACE DA. As such, a greater update (in 570 
particular, in GWSV) is seen over the Shiyang River Basin, as compared to other basins. 571 

Snow estimates (SWE plus SFW) were very small (less than 0.2 cm) over the Hexi Corridor 572 
and therefore were only slightly updated by GRACE DA. Note that the large variability in the 573 
amount of snow seen as the sharp peaks (e.g., in January 2008) was caused by the 574 
precipitation and temperature variability. In January 2008, the precipitation records were 159 575 
% higher than the January average value while the temperature was 2 – 3oC lower. Such a 576 
condition resulted in a large amount of snow. Finally, GRACE DA influences the surface 577 
water, but the amplitude is still lower than that of the GRACE uncertainties. Validation of the 578 
surface water estimates in terms of river streamflow is given in Sect. 6.4.2. 579 

 580 

6.3 Impact of taking spatial correlations of errors into account 581 

The impact of accounting for the error correlations was clearly seen in the TWSV estimates 582 
(Fig. 10 a,b,c,d). When the error correlations were ignored (EnKF 1D), the TWSV estimate 583 
received a larger update from GRACE, particularly between 2002 and 2005. Hence, the 584 
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estimate was drawn significantly closer to the observation. The presence of error correlations 585 
effectively reduces the amount of information in the GRACE data, since spatial averaging of 586 
such data mitigates noise to a much less extent than averaging of data with uncorrelated 587 
errors. Therefore, the impact of GRACE data in the EnKF 3D case is reduced. As such, the 588 
EnKF 3D estimated TWSV was always between the EnOL and EnKF 1D results. Validating 589 
against the in situ groundwater and streamflow data will quantitatively reveal the performance 590 
of each approach (Sect. 6.4). 591 

Taking error correlations into account also has a clear impact on the SMSV and GWSV 592 
components. For SMSV, similarly to TWSV, the EnKF 1D yielded a larger update between 593 
2002 and 2005 compared to the EnKF 3D (Fig. 10 e,f,g,h). The difference between EnKF 1D 594 
and 3D results became smaller after 2005. This can be attributed to the fact that the ensemble 595 
spread in the soil moisture component becomes smaller after several years of updates. After 596 
2005, the ensemble spread of SMS was lower than the GRACE uncertainty, and therefore 597 
taking the error correlations into account did not have a significant impact on the SMS 598 
estimates. For GWS, the impact of taking error correlations into account was even clearer, 599 
especially in terms of the long-term trend (Fig. 10, i,j,k,l). With the exception of the Desert 600 
Region, the EnKF 1D showed a steeper decreasing trend in all basins. For snow and surface 601 
water, the impact of considering error correlations was not significant due to the fact that the 602 
stores are small, as compared to SMS and GWS.  603 

It is also worth discussing the impact of GRACE DA on the spatial pattern of the water 604 
storage estimates. To demonstrate this, the update term (∆A in Eq. (7)) of October 2002 from 605 
EnKF 1D and 3D cases is shown in Fig. 11. Only TWSV, SMSV, and GWSV are presented, 606 
since other components (snow, surface water, and interception) are small. As discussed above, 607 
EnKF 3D shows smaller update in all components. Due to a greater amplitude of GRACE-608 
derived TWSV over northern and southern parts of the region (see Fig. 4), the update is 609 
mostly seen there. Almost all update is limited to the soil moisture layer. Higher precipitation 610 
is generally observed over the southern part, which leads to higher groundwater recharge (and 611 
GWSV) over that region. As such, a GWSV update is clearly seen over the southern part of 612 
the region. 613 

 614 

6.4 Validation against independent data 615 

6.4.1 Validation of groundwater estimates against well data 616 

The GWSs estimated from GRACE DA were validated against the well measurements at 5 617 
locations shown in Fig. 1c.  Yang et al. (2001) showed that the specific yield values obtained 618 
from the field measurements over the Shiyang River Basin was between 0.01 and 0.3. 619 
Although the measurements were not collected at the well stations used in this study, the 620 
values obtained can be used as a guidance of the specific yield of the Shiyang River Basin. In 621 
this study, the head measurements were converted to storage unit with the approach described 622 
in Sect. 4.3.1. The bias term in Eq. (3) was found to be very close to zero, as the variation 623 
(mean removed) was used in the regression analysis. The estimated scale factor was 0.23, 624 
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0.04, 0.24, 0.25, and 0.32 at W1 – W5, respectively, which is in line with the values obtained 625 
from the field measurement. 626 

The GWSV estimate at each well location is shown in Fig. 12. Compared to the EnOL results, 627 
GRACE DA results were visually closer to the well measurements at all 5 locations. The 628 
EnKF 1D and EnKF 3D showed a noticeable difference at each location. The updated GWSV 629 
estimates were evaluated in terms of the correlation coefficient, RMSD, and long-term trend 630 
(Table 4, 5). Overall, the EnOL resulted in relatively poor correlation coefficients at most 631 
stations (except station W1), with the average value of only 0.06. Clear improvements were 632 
seen after GRACE DA was applied. The average correlation coefficient increased to 633 
approximately 0.6 – 0.7. Although the EnKF 1D introduced a greater update than the EnKF 634 
3D, it only showed higher correlation coefficients at stations W1 and W3. Applying the EnKF 635 
3D led to correlation coefficients greater than 0.45 in all stations, and on average it improved 636 
the correlation coefficient by approximately 0.1 over EnKF 1D. In terms of RMSD, applying 637 
GRACE DA reduced the difference by approximately 15 – 25% compared to the EnOL. 638 
Compared to EnKF 1D, the EnKF 3D significantly improved the RMSD in most stations. The 639 
EnKF 1D only performed better than EnKF 3D at station W1, where it reduced the RMSD by 640 
approximately 16 % compared to 8% reduction by the EnKF 3D. The noticeably low GWSV 641 
observed by the well data at station W2 in the summers of 2007 and 2008 (Fig. 12b) was 642 
probably caused by significant groundwater abstraction. These local features could not be 643 
reproduced by the model and GRACE observations due to a limited spatial resolution. As a 644 
result, neither of the EnKF algorithms could improve the GWSV estimates at the W2 location 645 
during those periods.  646 

The long-term trend estimated between 2007 and 2010 was also used to evaluate the impact of 647 
GRACE DA and the effect of taking the error correlations into account (Table 5). The EnOL 648 
trend estimates were considered poor as they showed the largest RMSD respected to the in 649 
situ data. In fact, they were the least consistent with the in situ estimates at each individual 650 
station. Similar to the results in terms of correlation coefficient and RMSD (see Table 4), the 651 
EnKF 3D led to the largest improvement in the trend estimates (RMSD=0.54 compared to 652 
0.93 after EnKF 1D). However, while the EnKF 3D showed closer long-term trends to the in 653 
situ measurements at stations W2, W4, W5, the EnKF 1D produced better estimates at station 654 
W1 and W3. 655 

Thus, both EnKF 1D and 3D led to the improvement of the GWSV estimates in terms of all 656 
metrics. In terms of the average results and at the majority of well locations, the EnKF 3D 657 
provided more improvement than the EnKF 1D. 658 

 659 

6.4.2 Validation of streamflow estimates against river gauge data 660 

The streamflow estimates were validated against the river gauge measurements at locations 661 
G1 and G2 (Fig 1c). Results are shown in Figure 13 and Table 6. Only modest improvements 662 
in the streamflow estimates were observed in terms of the correlation coefficient, NS 663 
coefficient, and RMSD. This behaviour is similar to what was observed previously for the 664 
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Rhine River Basin, when a different hydrology model and input data were used 665 
(Tangdamrongsub et al., 2015). Figure 13 shows that taking error correlations into account 666 
had little impact, i.e. similar streamflow estimates were seen for EnKF 1D and 3D results. At 667 
location G1 (Fig. 13a), GRACE DA added more water to the stream channel between 2002 668 
and 2006 and reduced it between 2008 and 2010. This behaviour is consistent with the TWSV 669 
estimates discussed in Sect. 6.2. GRACE DA increased the correlation coefficient from 0.82 670 
to 0.84, increased the NS coefficient from 0.65 to 0.69, and reduced the RMSD by 671 
approximately 5 % (Table 6). A lesser improvement was observed at G2. 672 

Comparing to the gauge measurements, both the EnOL and GRACE DA overestimated the 673 
streamflow in September 2007 and September 2008 at G2. The sudden surge in the estimated 674 
streamflow resulted from heavy rainfall recorded by precipitation data while the soil was, 675 
according to the model, already saturated (Fig. 14). For example, in September 2007, the 676 
second highest amount of SM storage in the record (~19.5 cm) was obtained when the third 677 
largest amount of rainfall (~90 mm/month) was observed. Similarly, in September 2008, large 678 
SM storage (~20 cm) and the heaviest rainfall (~100 mm/day) forced PCR-GLOBWB to 679 
generate a large amount of streamflow. In both cases, the modelled streamflow significantly 680 
exceeded the actual one observed at G2. Inaccurate precipitation data and model calibration 681 
likely led to these discrepancies. GRACE DA was unable to reduce these spurious peaks due 682 
to the limited spatial (~250 km) and temporal (1 month) resolution of GRACE data. 683 

 684 

6.5 Declining water storages in the Hexi Corridor 685 

The water resources situation over the Hexi Corridor was assessed using long-term trends 686 
estimated from the 9-year EnKF 3D results. This DA variant is primarily discussed here as it 687 
provided better agreement with well observations than the EnKF 1D (see Sect. 6.4.1). For 688 
completeness, however, the values estimated from GRACE, EnOL, EnKF 1D, and 689 
precipitation are also provided. The trends in the TWSV, SMSV and GWSV for the 4 basins, 690 
as well as the areally-averaged values for the entire Hexi Corridor, are given in Table 7. The 691 
average EnKF 3D trends are all negative: approximately –0.2, –0.1, and –0.1 cm/yr for 692 
TWSV, SMSV, and GWSV, respectively. This reduction in the water storages is observed 693 
despite the increased amount of rainfall, which shows a positive trend of about 0.4 694 
(mm/month)/yr. The water storage reductions can likely be attributed to the extraction of 695 
groundwater to meet irrigation demands. In Sect. 6.6, it will be shown that groundwater 696 
extractions are essential for that purpose in the Hexi Corridor.  697 

Focusing on individual river basins provides additional insight into the water storage issue, as 698 
the influence of the large desert area is removed. The water storage losses in the individual 699 
basins outside the desert are even more pronounced, particularly in the Shiyang River Basin. 700 
This basin had the greatest TWS loss (approximately 0.4 cm/yr), which was entirely caused 701 
by the reduction of GWS. This can be explained by groundwater abstraction to meet the 702 
irrigation demand in the region. The Heihe and Shule River Basins also experienced a TWS 703 
loss of ~0.2 cm/yr, which came from a reduction of both soil moisture and groundwater 704 
storages. Again, the negative GWS trend was likely caused by significant pumping of 705 
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groundwater to maintain crop production. This is consistent with the extreme water stress 706 
over the Heihe River basin between 2001 and 2010, which was documented in Table 11.7 of 707 
the study by Chen et al. (2014). In the Desert Region, in contrast to other basins, the minor 708 
decreasing TWS trend of -0.1 cm/yr was dominated by loss of SM storage. This was likely 709 
caused by inaccurate model parameter calibration over the Desert Region (i.e., too large SC 710 
value). Separation of the TWS into groundwater and soil moisture store was likely incorrect. 711 
As such, the annual signal in GWS is much less than in SM there. Therefore, GRACE update 712 
was mostly attributed to the SM component, so that a groundwater-pumping signature (Jiao et 713 
al., 2015) was seen in the SM instead of the GWS layer. 714 

 715 

6.6 Connection to agriculture activity 716 

Figure 15 shows the monthly averaged groundwater head measurements at wells W1 to W5 in 717 
the Shiyang River Basin (Fig. 1c). Monthly averaged precipitation and NDVI values are 718 
shown as well. Since extracted water can be used to support agriculture not only at the well 719 
location but also in the nearby area, precipitation and NDVI are reported as the average values 720 
within a circular area of the 10-km radius. These data will be used to ascertain if groundwater 721 
extractions to support agriculture might be the source of the negative GWS trends observed in 722 
Fig. 12 and Table 6. From Fig. 14, it is noticed that the growing period is approximately 723 
between May and October, where the amount of rainfall is higher than 15 mm/month and the 724 
NDVI is typically greater than 0.2. By observing well measurements, precipitation, and NDVI 725 
together, some groundwater extraction signatures can be explained by the extension of the 726 
growing period over the dry season. For example, at station W1, the groundwater in 2010 was 727 
lower than the average, showing a gradual decrease in summer (Fig. 15a). One may attribute 728 
this to the shortage of rainfall in July and August 2010, which was lower than the average 729 
(Fig. 15b). However, the NDVI value was higher than the average during summer 2010 (Fig. 730 
15c), which implies that water from other sources than precipitation was probably used to 731 
maintain the growing period. This additional water was likely extracted from the ground, and 732 
such an activity led to a decreased groundwater table during summer 2010. A similar 733 
explanation can be applied to station W2, where low groundwater head, low rainfall, and high 734 
NDVI were observed in summer 2007 and summer 2008 (Fig. 15 d,e,f). At station W3, the 735 
behaviour is similar to station W1: the extension of the growing period was observed in 736 
summer 2010, where the GWS and precipitation were lower than the average, while NDVI 737 
was significantly higher (Fig. 15 g,h,i). Groundwater pumping signatures were not present at 738 
stations W4 and W5. 739 

 740 

7. Conclusions 741 

This study was focused on the estimation of water resources dynamics in the Hexi Corridor by 742 
assimilating GRACE-derived TWSV into the PCR-GLOBWB hydrological model. Validating 743 
against well data showed that DA led to noticeable improvement in the state estimates in 744 
terms of correlation, RMSD, and long-term trend. Furthermore, GRACE DA estimates 745 
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revealed the reduction of water storages between 2002 and 2010. The Shiyang River Basin – 746 
the southeaster part of the Hexi Corridor area – suffered the most from the water loss, which 747 
was likely caused by the overuse of the groundwater for irrigation. Due to inaccurate 748 
groundwater abstraction information, PCR-GLOBWB alone could not properly capture the 749 
downward trend of water storages. This highlights the value of the GRACE DA in this 750 
situation.  It should be emphasized that GRACE does not fix a technical problem of the 751 
hydrological model, but rather it provides information, which is not available otherwise. Note 752 
that, in principle, the model may predict any long-term behaviour of water storage, but that 753 
information should be brought in "by hand" (e.g., via the groundwater abstraction parameter). 754 
As soon as that information is not available, reliable long-term predictions on the basis of 755 
hydrological modelling alone are conceptually impossible. GRACE DA acts as a provider of a 756 
missing puzzle piece here. Of course, the performance of GRACE DA needs to be further 757 
investigated in other geographical locations and with different hydrological models to confirm 758 
its benefits. 759 

A substantial decrease in the water storage in the Hexi Corridor between 2002 and 2010, 760 
particularly over the Shiyang River Basin, took place in spite of the increased precipitation. 761 
The amount of water from rainfall was likely insufficient to support irrigation water 762 
requirements. Irrigation water demands increased significantly to maintain the crop 763 
production and, as a result, the region was under extreme water stress. Water consumption 764 
from all available sources was essential for bridging the deficit, including a sizeable amount 765 
of groundwater extraction. This study illustrates how ground observations and remote sensing 766 
data may reveal the connection between groundwater pumping and agricultural activity.  767 

The conversion approach between the groundwater head measurement and groundwater 768 
storage is proven feasible over the Shiyang River Basin. The scale factor estimates produced 769 
with this approach are consistent with the specific yield estimated from the field observations. 770 
However, it is noted here that the results of the conducted validation might be over-optimistic, 771 
since the well data processed with the adopted conversion procedure are not fully independent 772 
of the assimilated GRACE data. The specific yield from the field observation must be used 773 
when available. 774 

Furthermore, we demonstrate how the error covariance matrix 𝐑𝐑 of GRACE-derived TWSV 775 
can be obtained from the error covariance matrix of GRACE SHCs (which is currently 776 
provided together with the SHCs themselves). This study shows that it is necessary to use the 777 
𝐑𝐑 matrix in order to properly take into account the error correlations in the DA scheme. To 778 
come to that conclusion, we considered 2 variants of the error variance-covariance matrix in 779 
the data assimilation: excluding and including error correlations. Validating against well data 780 
showed that ignoring error correlations in DA tended to over-fit results to the observations, 781 
and in many cases led to less accurate state estimates. This finding is in agreement with the 782 
recommendation in Schumacher et al. (2016). We explain this finding by the fact that 783 
GRACE errors at the neighbouring 0.5ox0.5o grid cells are highly correlated. As such, the 784 
simultaneous consideration of GRACE data at multiple neighbouring cells does not reduce 785 
data noise, as it would be the case if noise were white. In other words, the white-noise 786 
assumption may severely overestimate the information content of GRACE data. We recognize 787 
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that the derivation of GRACE-derived TWSV error variance-covariance matrices is very 788 
computationally demanding. Still, we believe that this is a reasonable price to pay as deriving 789 
the error variance-covariance matrix from the full (and only full) error covariance matrix 790 
noticeably improves the results of GRACE data assimilation.  791 

To further improve the DA performance, an extended or an alternative DA framework can be 792 
considered. One of the points of attention is only a minor improvement in streamflow 793 
estimates, which is caused by an insufficient temporal and spatial resolution of GRACE data. 794 
A promising way to go is to improve the runoff scheme at a conceptual level, e.g., by 795 
extending GRACE DA with a simultaneous parameter calibration. To that end, the state 796 
vector should be extended to also include selected model parameters (Eicker et al., 2014; 797 
Wanders et al., 2014). This allows for the adjustment of the storage size and might lead to a 798 
more accurate estimate of model states, including streamflow (Wanders et al., 2014). 799 
Alternative ensemble-based DA approaches, such as particle filters (Weerts and El Serafy, 800 
2006), can also be considered. Particle filters estimate a sample from the realistic posteriori 801 
distribution, which is not necessarily Gaussian, like in the EnKF. The approach has been 802 
shown very effective for the parameter calibration (Dong et al., 2015). 803 

Finally, the usage of improved gravity solutions to be available after the launch of the 804 
GRACE Follow-on mission (Flechtner et al., 2014) will probably further increase the 805 
accuracy of the GRACE DA estimates.  806 
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Table 1. PCR-GLOBWB model parameters related to the TWS estimate. Parameters are 1055 
functions of spatial coordinates, except DDF which is a constant.  1056 

Parameter Description unit 
Ksat,up  Saturated hydraulic conductivity of the upper soil storage m/day 
Ksat,low  Saturated hydraulic conductivity of the lower soil storage m/day 
SCup Storage capacity of the upper soil m 
SClow Storage capacity of the lower soil m 
𝑓𝑓𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 
 𝑓𝑓𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 

Minimum soil depth fraction of grassland (g), forest (f), 
paddy irrigation (p), non-paddy irrigation (np) 

- 

𝑓𝑓𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, 
 𝑓𝑓𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚, 𝑓𝑓𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 

Maximum soil depth fraction of grassland (g), forest (f), 
paddy irrigation (p), non-paddy irrigation (np) 

- 

J Groundwater recession coefficient 1/day 
DDF Degree-day factor in the snow pack oCm/day 
KCmin Minimum crop coefficient - 
 1057 

Table 2. TWSV, SMSV and GWSV estimated annual amplitude (A, cm) and phase (P, 1058 
month) in 4 different basins computed between April 2002 and December 2010. Areally 1059 
averaged values for the entire Hexi Corridor are also given. 1060 

   Shiyang Heihe Desert Shule Areally-average 

TWSV 

GRACE A 2.05 ± 0.31 1.49 ± 0.21 1.79 ± 0.23 1.21 ±  0.27 1.43 ±  0.18 
P 6.97 ± 0.29 6.80 ± 0.27 6.49 ± 0.24 8.61 ±  0.42 7.05 ±  0.24 

EnOL A 1.35 ± 0.16 0.90 ± 0.07 0.66 ± 0.07 0.37 ±  0.06 0.70 ±  0.06 
P 6.35 ± 0.23 5.61 ± 0.14 5.80 ± 0.19 5.40 ±  0.31 5.74 ±  0.16 

EnKF 1D A 1.61 ± 0.16 0.87 ± 0.10 1.05 ± 0.11 0.40 ±  0.11 0.80 ±  0.09 
P 6.96 ± 0.19 6.80 ± 0.22 6.47 ± 0.19 8.35 ±  0.51 6.92 ±  0.23 

EnKF 3D A 1.49 ± 0.13 0.80 ± 0.08 0.72 ± 0.07 0.26 ±  0.09 0.72 ±  0.07 
P 6.42 ± 0.17 6.12 ± 0.19 6.40 ± 0.20 8.48 ±  1.02 6.44 ±  0.22 

SMSV 

EnOL A 1.03 ± 0.11 0.70 ± 0.06 0.62 ±  0.07 0.31 ±  0.05 0.59 ±  0.06 
P 5.77 ± 0.20 5.60 ± 0.16 5.82 ±  0.21 5.03 ±  0.32 5.62 ±  0.18 

EnKF 1D A 0.88 ± 0.09 0.75 ± 0.09 0.99 ± 0.11 0.36 ±  0.10 0.67 ±  0.08 
P 6.55 ± 0.21 7.01 ± 0.22 7.08 ± 0.21 8.47 ±  0.54 7.26 ±  0.24 

EnKF 3D A 1.30 ± 0.10 0.66 ± 0.07 0.71 ±  0.08 0.12 ±  0.08 0.55 ±  0.07 
P 5.59 ± 0.15 6.25 ± 0.20 6.44 ±  0.20 8.19 ±  0.37 6.32 ±  0.22 

GWSV 

EnOL A 0.50 ± 0.08 0.19 ± 0.03 0.02 ±  0.004 0.09 ±  0.01 0.12 ±  0.01 
P 7.84 ± 0.29 7.13 ± 0.26 5.43 ±  0.34 6.91 ±  0.29 7.22 ±  0.21 

EnKF 1D A 0.65 ± 0.05 0.12 ± 0.03 0.01 ±  0.01 0.05 ±  0.01 0.10 ±  0.01 
P 8.69 ± 0.16 7.82 ± 0.40 7.91 ±  1.90 8.49 ±  0.29 8.32 ±  0.25 

EnKF 3D A 0.70 ± 0.06 0.11 ± 0.02 0.02 ±  0.01 0.05 ±  0.01 0.10 ±  0.01 
P 8.52 ± 0.16 7.50 ± 0.31 7.76 ±  1.00 8.66 ±  1.33 8.26 ±  0.23 

 1061 

Table 3. Averaged values and standard deviations of precipitation and model parameters for 4 1062 
different basins. 1063 

 Shiyang Heihe Desert Shule 
Precipitation 
(mm/month) 

21 ± 12 13 ± 12 11 ± 2 8 ± 6 

SC,up (m) 0.08 ± 0.02 0.09 ± 0.02 0.09 ± 0.01 0.08 ± 0.01 
SC,low (m) 0.33 ± 0.08 0.37 ± 0.07 0.35 ± 0.04 0.33 ± 0.08 
 1064 
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 1065 

Table 4. Statistical values of the GWSV computed from the in situ well measurement and 1066 
GRACE DA estimates between January 2007 and December 2010. The average values are 1067 
computed by averaging the estimated statistical values from all well locations.  1068 

  W1 W2 W3 W4 W5 Average 
value 

Correlation 
coefficient [-
] 

EnOL 0.74 0.17 -0.04 -0.05 -0.53 0.06 
EnKF 1D 0.84 0.32 0.90 0.45 0.64 0.63 
EnKF 3D 0.82 0.49 0.85 0.51 0.83 0.70 

RMS 
difference 
[cm] 

EnOL 0.69 1.67 0.77 3.34 3.81 2.06 
EnKF 1D 0.58 1.63 0.40 2.56 2.58 1.55 
EnKF 3D 0.63 1.43 0.38 2.24 1.27 1.19 

 1069 

Table 5. Long-term trends and standard deviations of the in situ data and the DA estimates. 1070 
The RMS difference (RMSD) between the in situ data and the DA trend estimates are also 1071 
provided. 1072 

 W1 W2 W3 W4 W5 RMSD 
In situ -0.49 ± 0.03 0.01 ± 0.06 -0.60 ± 0.004 0.56 ± 0.12 -1.40 ± 0.03 0 

EnOL -0.57 ± 0.01 -0.64 ± 0.002 -0.01 ± 0.01 -1.69 ± 0.01 1.29 ± 0.02 1.62 
EnKF 1D -0.52 ± 0.02 -0.58 ± 0.04 -0.74 ± 0.02 -1.33 ± 0.08 -1.99 ± 0.13 0.93 

EnKF 3D -0.83 ± 0.02 -0.51 ± 0.03 -0.38 ± 0.01 -0.44 ± 0.08 -1.18 ± 0.06 0.54 

 1073 

Table 6. Statistical values of the streamflow computed from the river stream gauge 1074 
measurement and GRACE DA estimates between April 2002 and December 2010. The 1075 
average values are calculated by averaging the estimated statistical values from both gauge 1076 
locations. 1077 

  G1 G2 Average value 
Correlation 
coefficient [-] 

EnOL 0.82 0.76 0.79 
EnKF 1D 0.84 0.77 0.81 
EnKF 3D 0.84 0.78 0.81 

NS coefficient [-] EnOL 0.65 0.56 0.61 
EnKF 1D 0.69 0.57 0.63 
EnKF 3D 0.69 0.57 0.63 

RMS difference 
[cm] 

EnOL 5.49 3.09 4.29 
EnKF 1D 5.18 3.08 4.14 
EnKF 3D 5.23 3.04 4.14 

 1078 

 1079 

 1080 

Table 7. TWSV, SMSV, GWSV, and precipitation estimated long-term trends in 4 different 1081 
basins computed between April 2002 and December 2010. Areally averaged values for the 1082 
entire Hexi Corridor are also given. 1083 
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  Shiyang Heihe Desert Shule Areally-average 

TWSV 
(cm/yr) 

GRACE -0.73 ± 0.04 -0.64 ± 0.03 -0.72 ± 0.03 -0.34 ±  0.04 -0.59 ±  0.03 
EnOL 0.30 ± 0.15 0.24 ± 0.09 0.20 ± 0.04 0.18 ±  0.06 0.22 ±  0.07 
EnKF 1D -0.72 ± 0.08 -0.41 ± 0.04 -0.33 ± 0.05 -0.34 ±  0.04 -0.39 ±  0.07 
EnKF 3D -0.36 ± 0.02 -0.21 ± 0.02 -0.11 ± 0.03 -0.25 ±  0.03 -0.20 ±  0.03 

SMSV 
(cm/yr) 

EnOL 0.38 ± 0.05 0.21 ± 0.02 0.17 ± 0.03 0.14 ±  0.02 0.19 ±  0.02 
EnKF 1D -0.11 ± 0.03 -0.20 ± 0.01 -0.29 ± 0.04 -0.22 ±  0.04 -0.23 ±  0.03 
EnKF 3D 0.10 ± 0.03 -0.12 ± 0.01 -0.12 ±  0.02 -0.14 ±  0.01 -0.11 ±  0.004 

GWSV 
(cm/yr) 

EnOL -0.08 ± 0.12 0.03 ± 0.07 0.02 ± 0.007 0.04 ± 0.02 0.02 ± 0.04 
EnKF 1D -0.61 ± 0.01 -0.16 ± 0.004 -0.01 ±  0.005 -0.12 ±  0.02 -0.16 ± 0.02 
EnKF 3D -0.39 ± 0.01 -0.09 ± 0.003 0.01 ±  0.004 -0.11 ±  0.001 -0.11 ± 0.002 

Precipitation 
((cm/month)/yr) 

0.04 ± 0.01 0.04 ± 0.01 0.05 ± 0.01 0.02 ± 0.01 0.04 ± 0.01 

 1084 
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 1085 

Figure 1. Geography of the Hexi Corridor. (a) Land cover and division into individual regions 1086 
(Shiyang River Basin, Heihe River Basin, Shule River Basin, and a Desert), (b) Topography 1087 
and locations of the local meteorological stations (triangles), (c) Zoom-in on the Shiyang 1088 
River Basin, showing the locations of considered groundwater wells (x) and river stream 1089 
gauges (+).  1090 
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 1091 

Figure 2. Monthly total precipitation and averaged temperature over 4 regions of the Hexi 1092 
Corridor. 1093 

 1094 
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 1095 

Figure 3. The structure of PCR-GLOBWB hydrological model. 1096 
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 1097 

Figure 4. GRACE-derived TWS variation of October 2002. The signal restoration was 1098 
applied to restore the signal mitigated by the applied Gaussian filter. After each iteration (It), 1099 
the increment in each cell was computed. The procedure was stopped after six iterations, 1100 
when the maximum increment (Inc) was lower than 0.5 cm (f).  1101 

 1102 

 1103 

 1104 
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 1105 

Figure 5. The correlation coefficient, NS coefficient, and RMS difference computed between 1106 
the local and different global forcing data. The RMS difference is shown as the radius of the 1107 
circle (also explicitly provided as the number). 1108 

 1109 
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 1110 

Figure 6. DA diagram representing the disaggregation of monthly averaged TWS from 1111 
GRACE into the daily PCR-GLOBWB state estimates. 1112 

 1113 



38 
 

 1114 

Figure 7. Demonstration of EnKF 3D scheme, accounting for the spatially-correlated errors. 1115 
For a centre grid cell, the state and observation matrices contain all TWS-related components 1116 
of the neighbouring grid cells and the centre grid cell (left). The graphic demonstrates the case 1117 
of one pixel (0.5 degree) correlation distance. The boundary stretches farther for larger 1118 
correlation distance. The covariance matrices Pe and R are computed based on the data from 1119 
these grid cells. Then, the EnKF is applied and the states of the centre grid cell are updated 1120 
(right). The procedure is repeated through all grid cells. 1121 

 1122 

 1123 

 1124 

 1125 

 1126 

 1127 

 1128 

 1129 

 1130 

 1131 
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 1132 

 1133 

Figure 8. Some statistics of errors in GRACE-derived TWS variation over the Hexi Corridor. 1134 
The standard deviation (a) and the correlation coefficient with respect to the green point (b) 1135 
for a sample month, October 2002, are shown in the top. The time-series of averaged standard 1136 
deviation computed over four different basins are shown in the bottom plot (c). 1137 

 1138 

 1139 

 1140 

 1141 

 1142 
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 1143 

Figure 9. Daily TWS variations estimated between 1 April 2002 and 31 December 2003, 1144 
averaged over Shiyang River Basin. The mean value of the ensemble is given as the solid line, 1145 
and the standard deviation is shown as the shaded envelope. The TWS estimates from model 1146 
only (EnOL), GRACE DA forecast (EnKF before the update), GRACE DA update (EnKF 1147 
after update), and GRACE observations are shown. The x-axis labels represent the first day of 1148 
the month. Some features of the DA scheme regarding the identical TWS estimate seen at the 1149 
beginning of the update (point a) and the observed spurious jumps (point b,c,d) are also 1150 
shown. 1151 

 1152 
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 1153 

Figure 10. Monthly TWSV, SMSV, GWSV, snow water storage variation (SNSV), and 1154 
surface water storage variation (SFWV) estimated between April 2002 and December 2010 1155 
from the EnOL, EnKF 1D, EnKF 3D, and GRACE observations over 4 basins. 1156 
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 1157 

Figure 11. TWSV, SMSV, and GWSV updates of October 2002 without the correlation error 1158 
applied (EnKF 1D) and with the correlation error applied (EnKF 3D). 1159 
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 1160 

Figure 12. Monthly GWS variation estimates from the in situ well measurements, as well as 1161 
EnOL, EnKF 1D, and EnKF 3D results, between January 2007 and December 2010 at 5 1162 
groundwater well locations. The chosen period is based on the availability of the well data. 1163 
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 1164 

Figure 13. Monthly streamflow estimates from the in situ river gauge measurements, as well 1165 
as EnOL, EnKF 1D, and EnKF 3D results, between April 2002 and December 2010 at 2 river 1166 
gauge locations, G1 (a) and G2 (b). 1167 

 1168 

 1169 

Figure 14. Monthly total precipitation (mm/month) and SM storage estimates (cm) from 1170 
EnKF 1D and EnKF 3D results at river gauge G2 location. 1171 

 1172 

 1173 

 1174 
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 1175 

Figure 15. The monthly averaged groundwater head measurement (left), total precipitation 1176 
(middle) and NDVI (right) for five groundwater well locations. Precipitation and NDVI data 1177 
are reported as the average values within the circular areas of the 10-km radius. The long-term 1178 
average values between January 2007 and December 2010 are shown in the grey shed, and the 1179 
values in 2007, 2008, 2009, and 2010 are shown as blue, green, red, and black lines, 1180 
respectively. The period is chosen based on the availability of the well data. 1181 
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