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Abstract

An accurate estimation of water resources dynamics is crucial for proper management of both
agriculture and the local ecology, particularly in semi-arid regions. Imperfections in model
physics, uncertainties in model land parameters and meteorological data, as well as the human
impact on land changes often limit the accuracy of hydrological models in estimating water
storages. To mitigate this problem, this study investigated the assimilation of Terrestrial
Water Storage Variation (TWSV) estimates derived from the Gravity Recovery And Climate
Experiment (GRACE) data using an Ensemble Kalman Filter (EnKF) approach. The region
considered was the Hexi Corridor in Northern China. The hydrological model used for the
analysis was PCR-GLOBWAB, driven by satellite-based forcing data from April 2002 to
December 2010. The impact of the GRACE Data Assimilation (DA) scheme was evaluated in
terms of the TWSV, as well as the variation of individual hydrological storage estimates. The
capability of GRACE DA to adjust the storage level was apparent not only for the entire
TWSV but also for the groundwater component. In this study, spatially-correlated errors in
GRACE data were taken into account, utilizing the full error variance-covariance matrices
provided as a part of the GRACE data product. The benefits of this approach were
demonstrated by comparing the EnKF results obtained with and without taking into account
error correlations. The results were validated against in situ groundwater data from 5 well
sites. On average, the experiments showed that GRACE DA improved the accuracy of
groundwater storage estimates by as much as 25%. The inclusion of error correlations
provided an equal or greater improvement in the estimates. In contrast, a validation against in
situ streamflow data from two river gauges showed no significant benefits of GRACE DA.
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This is likely due to the limited spatial and temporal resolution of GRACE observations.
Finally, results of the GRACE DA study were used to assess the status of water resources
over the Hexi Corridor over the considered 9-year time interval. Areally-averaged values
revealed that TWS, soil moisture, and groundwater storages over the region decreased with an
average rate of approximately 0.2, 0.1, and 0.1 cm/yr in terms of equivalent water heights,
respectively. A particularly rapid decline in TWS (approximately —0.4 cm/yr) was seen over
the Shiyang River Basin located in the southeaster part of Hexi Corridor. The reduction
mostly occurred in the groundwater layer. An investigation of the relationship between water
resources and agricultural activities suggested that groundwater consumption required to
maintain crop yield in the growing season for this specific basin was likely the cause of the
groundwater depletion.

1. Introduction

The focus of this study is the Hexi Corridor. It is a semi-arid region located between the
Gansu province of China and Mongolia (Fig. 1). A semi-arid region can be broadly classified
as an area on the boundary of a larger desert, receiving just enough annual precipitation (300
mm or less) to sustain a limited amount of agriculture (Gong et al., 2004; Zhu et al., 2015).
Inefficient use of the limited amount of surface water can often lead to overuse of
groundwater resources and salinization of the soil (Cui and Shao, 2005). This can result in
desertification, which not only reduces the amount of production but also may have long-term
effects on the local ecology. All of this holds true for the Hexi Corridor (Wang et al., 2003).

Improving the water resources management of semi-arid regions requires accurate knowledge
of the hydrological processes involved. For small areas, this can be partially obtained through
a network of in-situ measurement systems, such as meteorological stations, river gauges,
groundwater wells, evaporation trays, etc. (Dahlgren & Possling, 2007; Huo et al., 2007;
Kang et al., 2004; Ma et al., 2005; Du et al., 2014). While streamflow gauges provide
integrated information for large catchment areas, point observations of hydrometeorological
variables and even groundwater levels can be very local in scope. A sensor at a point several
kilometres away may record significantly different values. For large scales (> 10,000 km?),
such techniques are unlikely capable of delivering accurate results.

Two options for estimating the large-scale Terrestrial Water Storage Variation (TWSV) of a
particular region are using observations from the Gravity Recovery And Climate Experiment
satellite mission (GRACE, Tapley et al., 2004) or utilizing a regional or global hydrological
model. A number of prior studies have reported on the potential of GRACE in the estimation
of snow water equivalent (Niu et al., 2007), groundwater (D4l et al., 2014), and
evapotranspiration (Long et al., 2014) in terms of temporal and spatial variability. However,
GRACE only provides the total column of the water storage at a monthly time scale and large
spatial scales (> 300 km). It is not possible to identify the contribution of separate
hydrological components to the TWSV from GRACE data alone. On the other hand, a
hydrological model can be used to estimate the individual storage components at very high
spatial and temporal scales. The major drawback of the model approach is mainly the
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significant uncertainties influenced by the quality of the model parameter calibration and the
accuracy of the meteorological input data. In addition, hydrological models may suffer from
inadequate process representations (model structure errors).

Data Assimilation (DA) can be employed to combine the strengths of GRACE and
hydrological models while mitigating their respective weaknesses. A number of studies have
shown that GRACE DA can be used to improve the estimation of groundwater and
streamflow (Zaitchik et al., 2008; Tangdamrongsub et al., 2015), snow water equivalent
(Forman et al., 2012; Su et al., 2012), and as well as for evaluation of drought events
(Houborg et al., 2012; Li et al., 2012). Different temporal and spatial resolution of GRACE
observations and hydrological models require proper design of the DA scheme. Several DA
schemes have been developed to distribute GRACE observations into the model, which
include using 5-day interpolated observations and updating the model every 5 days
(Tangdamrongsub et al., 2015); using a monthly observation value and applying the model
update only at the end of the month (Eicker et al., 2014); using a monthly value and
distributing the update as a daily increments (Zaitchik et al., 2008; Forman et al., 2012;
Girotto et al. 2016). Although all DA schemes are acceptable, the scheme proposed by
Forman et al. (2012) is advantageous because it does not require an interpolation of the
observations and can reduce the spurious jump of the water storage estimates caused by
applying the update at the end of the month only. The only price to pay is the additional
computational cost of running the model twice for the same month. A scheme similar to
(Forman et al., 2012) is used in this study. Spatial disaggregation is also needed to reconcile
the difference in horizontal resolution between the observations and the model. Recent studies
by Eicker et al. (2014) and Schumacher et al. (2016) suggested including the GRACE
variance-covariance error information in the spatial disaggregation step. Both studies
proposed using 500-km GRACE spatial resolution to mitigate the ill-posedeness of the error
covariance matrices in the spatial domain. In line with Eicker et al. (2014) and Schumacher et
al. (2016), the assimilation scheme in this study accounts for spatially correlated errors by
using full error variance-covariance matrices of GRACE data. This study will show that
considering the GRACE error correlations leads to an improvement of the state estimates.
Particularly, the Signal-to-Noise Ratio (SNR) of the TWSV is much lower than in the river
basins considered in the previous studies, e.g., Mississippi (Zaitchik et al., 2008), Rhine
(Tangdamrongsub et al., 2015), and Mackenzie (Forman et al., 2012).

Approximately 9 years of GRACE data — between April 2002 and December 2010 — are
considered in this study. GRACE observations are assimilated into the PCRaster Global
Water Balance (PCR-GLOBWAB; Van Beek et al., 2011; Sutanudjaja et al., 2014; Wada et al.,
2014) hydrological model over the Hexi Corridor. TWS is computed from PCR-GLOBWB as
the sum of all the hydrological components (soil moisture, groundwater, surface water,
inundated water, interception, and snow). The previous studies showed very good agreement
of PCR-GLOBWB based estimates with GRACE observations in several river basins (Wada
et al., 2014; Tangdamrongsub et al., 2016). However, the performance of PCR-GLOBWB has
not yet been evaluated over the Hexi Corridor. In addition, to date the model has not been
incorporated into any GRACE DA scheme, making this study the first attempt to do so.
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Investigating the added value of GRACE DA in the Hexi Corridor is the main objective of
this study.

First of all, the impact of GRACE DA and the effect of taking correlations in GRACE errors
into account are assessed. Both the total terrestrial water storage and the individual
hydrological storage compartments are considered.

Next, the results of the GRACE DA are validated with independent in-situ data. The
agreement is analysed in terms of the correlation coefficient, Nash-Sutcliff coefficient, and
Root-Mean-Square difference (RMSD). The groundwater storage variation (GWSV) and
streamflow estimates after GRACE DA are validated with the well and river stream gauge
measurements, respectively.

Finally, results from this GRACE DA study are used to assess the status of water resources
over the Hexi Corridor. The connections between the water storage (including groundwater
consumption) and agriculture in the area are also presented and discussed. At that stage, we
use precipitation data from the Tropical Rainfall Measuring Mission (TRMM; Huffman et al.,
2007) and the Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized
Difference Vegetation Index (NDVI; Huete et al., 2002).

2. Study region

The Hexi Corridor is a long and narrow area between the Qilian Mountain range and southern
Mongolia (Fig. 1a). The region’s elevation ranges from 5,200 m in the southern upstream area
(Qilian Mountains) to 900 m in the northern downstream zone (Inner Mongolia) (Fig. 1b).
The region is comprised of four typical inland arid and semi-arid regions (Zhu et al., 2015):
the Shiyang River Basin (41,600 km?), the Heihe River Basin (143,000 km?), the Shule River
Basin (157,000 km?), and a Desert Region (152,445 km?) (Geng and Wardlaw, 2013; Zhu et
al., 2015). Located next to the Gobi Desert, most parts of the region have a cold desert climate
(Peel et al., 2007), where precipitation is relatively low to sustain vegetation or crops.
Approximately 60 to 80 % of the annual rainfall is concentrated during the timeframe from
June to September. The inland rivers mainly originate from the Qilian Mountains and
disappear after entering the midstream/downstream plains and oases. As such, the southern
part of the region is more favourable for agriculture.

The four basins have distinct characteristics. First, the smallest river basin, Shiyang, has 8
main river streams, including the Xida and Xiying Rivers (Fig. 1c). The annual rainfall and
the mean temperature are approximately 250 mm and 5 °C (Fig. 2a, b), respectively. The
Shiyang River Basin is considered the wettest basin compared to the others, with relatively
high mean total renewable annual water resources of approximately 1.66 billion m® (Zheng et
al., 2013). However, a highly developed economy and population growth in the past decade
have resulted in a severe water resources overexploitation problem (Zheng et al., 2013). The
Heihe River Basin has a semi-arid climate and the mean daily temperature of ~6 °C (Fig. 2d).
The average annual rainfall is ~150 mm (Fig. 2c) with high heterogeneity both in temporal
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and spatial distribution. The mean total annual available water resources are estimated at 3.7
billion m® (Hu, 2015). Similar to the Shiyang River Basin, increased water exploitation,
increasing population, and changing climate have aggravated the damage to the downstream
ecology. The Shule River Basin has an arid climate, the mean temperature there is around 4
°C (Fig. 2f), and the average annual rainfall is only approximately 98 mm (Fig. 2e).
Compared to the Shiyang River Basin, the Shule River Basin is approximately four times as
large in terms of surface area, but has similar mean total annual water resources, ~1.6 billion
m? (Hu, 2015). The district irrigation areas are mainly located in the middle of the Shule
River Basin. Agricultural water consumption accounts for more than 80% of the total water
use. Finally, the Desert Region has an extreme continental desert climate with an average
temperature of 8 °C, and the annual rainfall of ~130 mm. Extensive groundwater abstraction
was also observed over the region (Jiao et al., 2015).

3. Hydrology model

The global distributed hydrological model PCR-GLOBWB (van Beek et al., 2011;
Sutanudjaja et al., 2016) simulates spatial and temporal continuous fields of fluxes and
storages in various water storage components (soil moisture, groundwater, surface water,
inundated water, interception, and snow). The model version used here (Sutanudjaja et al.,
2016) has a spatial resolution of 30 arc minutes (approximately 50 km at the equator), and a
temporal resolution of 1 day. Figure 3 illustrates the structure of PCR-GLOBWB model. The
model includes 2 soil layers (SMupp, SMiow), an underlying hydrologically active and
replenishable groundwater (GWSactive) layer, a non-renewable groundwater (GW Stossit) layer,
as well as interception, surface water, and snow stores. The non-renewable groundwater is
available for abstraction to satisfy water demands once the overlying hydrologically active
groundwater storage is depleted. For soil, snow, inundated top water, and interception stores,
an individual grid cell is divided into sub-grids associated with different types of topography,
vegetation phenology, and soil properties, as well as land cover types. Specifically, there are 4
types of land covers defined: short natural vegetation, tall natural vegetation, irrigated non-
paddy field, and irrigated paddy field. Soil components include the upper layer (SMypp, 0 — 30
cm) and the lower layer (SMiow, 30 — 150 cm). The snow component includes snow water
equivalent (SWE), as well as snow free water (SFW) representing the storage of melted snow.
The water stored in the stream channels and lakes is also included in the TWS estimate. Based
on the structure of PCR-GLOBWAB, the total water storage (TWS) is computed as the sum of
27 different water storage components: 8 soil moisture layers, 2 groundwater layers, 4
interception layers, 8 snow layers, 4 inundated top water layers, and 1 surface water layer.

For each grid cell and for each daily time step, the model determines the water balance in two
vertically stacked soil layers and the groundwater store. The model also computes the vertical
water exchanges between the soil layers and between the inundated top water layer and the
atmosphere, i.e. rainfall and snowmelt, percolation and capillary rise, as well as evaporation
and transpiration fluxes. The active groundwater store underlies the soil, is fed by net
groundwater recharge, discharges to baseflow as a linear reservoir, and is exempt from the
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direct influence of evaporation and transpiration fluxes. However, capillary rise from the
active groundwater store can occur depending on the simulated groundwater storage, the soil
moisture deficit, and the unsaturated hydraulic conductivity. Fluxes are simulated according
to the different land cover types. The model includes a physically-based scheme for
infiltration and runoff, resulting in the direct runoff, interflow, as well as groundwater
baseflow and recharge. River discharge is calculated by accumulating and routing the specific
runoff along the drainage network. For further details, including model parameterization, the
reader is referred to the technical reports and other relevant publications (van Beek and
Bierkens, 2009; van Beek, 2008; Sutanudjaja et al., 2011, 2014).

4. Data and data processing
4.1 GRACE data

The GRACE gravity product release 5 (RLO5), generated by the University of Texas at
Austin’s Center for Space Research (CSR, Bettadpur, 2012), was used as input. The product
consists of monthly sets of spherical harmonic coefficients (SHC) complete to degree and
order 60. On this basis, TWSVs were obtained for the study period between April 2002 and
December 2010. The GRACE data were further processed in this study as follows:

e SHCs of degree 1 provided by Swenson et al. (2008) were restored, and all 5
coefficients of degree 2 were replaced by the values estimated from satellite laser
ranging (Cheng and Tapley, 2004).

e SHC variations were computed by removing the long-term mean (computed between
April 2002 and December 2010) from each monthly solution.

e A destriping filter (Swenson and Wahr, 2006) was applied to the SHC variations. The
filter used a 5™ degree polynomial (Savitsky-Golay) over a 5-point window to remove
the correlations; orders below 8 remained unchanged.

e An additional 250-km radius Gaussian smoothing (Jekeli, 1981) was applied to SHC
variations to suppress high-frequency noise, and the TWS variations (Ao [m]) were
then computed using (Wahr et al 1998)

S
—t
ae(21+1) pe

- 1
80 (0,$) = T2, Thoe o W, 22D LE A, 7,0, ), @

where 6, ¢ are co-latitude and longitude in spherical coordinates, AC,,, is the SHC
variations of degree [ and order m, Y;,,, is the normalized surface spherical harmonic,
W, is the Gaussian smoothing function, S; is a scaling factor used to convert
dimensionless coefficients to TWS in terms of Equivalent Water Heights (EWH), a,
is the semi-major axis of the reference ellipsoid, k; is the load love number of degree
[, p. and p,, are the average density of the Earth and water, respectively. In this study,
the TWS variations were computed at every 0.5°x0.5° grid cell. This cell size was
selected through trial and error as a balance between performance and resolution.
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In general, filters suppress not only noise but also the genuine TWSV signal, and are a well-
known source of signal leakage. To address this, a signal restoration method (Chen et al.,
2014; Tangdamrongsub et al., 2016) was employed. The method iteratively determined the
possible signal reduction caused by the Gaussian filter applied and added it back to the
filtered signals. The errors of the procedure grew with the number of iterations, requiring a
proper selection of the convergence criterion. In this study, the criterion was chosen
empirically: the signal restoration process was iteratively repeated until the increment in every
grid cell inside the Hexi Corridor became smaller than 0.5 cm. This value is 2-3 times smaller
than the GRACE uncertainty (Wahr et al., 2006; Klees et al., 2008; Dahle et al., 2014). Figure
4 demonstrates the signal restoration for October 2002. The convergence criterion was met
after approximately 6 iterations. The signal over the mountain range and Inner Mongolia
became apparent after the signal restoration was applied (see Fig. 4f).

4.2 Forcing data

The forcing data required by PCR-GLOBWB are precipitation, air temperature, and potential
evapotranspiration. Tangdamrongsub et al. (2015) showed that the use of high-quality
precipitation data might lead to better estimates of hydrological fluxes (e.g., TWSV and
streamflow). In principle, local precipitation and surface temperature measurements could be
obtained from the China Daily Ground Climate Dataset provided by the China Meteorological
Data Sharing Service System (http://cdc.cma.gov.cn/home.do). A total of 23 weather stations
were found over the Hexi Corridor (see Fig. 1b). However, the measurements were spatially
sparse and did not cover the entire region. Therefore, the global precipitation data were used
to achieve a better spatial coverage. Four global precipitation products were considered for
inclusion:

e The European Centre for Medium-range Weather Forecasts (ERA-Interim, spatial
resolution: 0.75°x0.75°% Dee et al., 2011)

e The Tropical Rainfall Measuring Mission (TRMM 3B42, spatial resolution: 0.25°
x0.25% Huffman et al., 2007; Kummerow et al., 1998)

e The Climate Research Unit dataset (CRU, spatial resolution: 0.5° x0.5°; Mitchell and
Jones, 2005; van Beek, 2008)

e The Princeton's Global Meteorological Forcing Dataset (Princeton, spatial resolution:
0.5° x0.5°%; Sheffield et al., 2005)

To select the best product, the global precipitation values were first interpolated to the
weather station locations and then the correlation coefficient, Nash-Sutcliffe (NS) coefficient,
and RMSD between the interpolated and observed ground data were calculated. The mean
values of the statistical estimates are shown in Fig. 5a. Overall, TRMM provided the best data
quality, with the highest correlation (~0.85) and NS coefficients (~0.46), and an RMSD
approximately 2-3 mm lower than other products. The high spatial resolution of TRMM is
probably the reason for its better performance. Therefore, this product was chosen as the
precipitation input. The low NS coefficient in all 4 cases suggests that the coarse spatial
resolution of the global precipitation datasets prevents them from capturing all the local
precipitation events.
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A similar procedure was used to compare the air temperature data from ERA-Interim, CRU,
and Princeton. The statistical estimates are shown in Fig. 5b. Although the results from all
products were very similar, CRU provided the highest data quality in terms of correlation and
RMSD values, and therefore, it was used as the temperature input. As far as potential
evapotranspiration is concerned, few data are available for this region, so the data from (van
Beek, 2008) were used.

4.3 Validation data
4.3.1 Groundwater

Monthly groundwater well measurements at 5 locations (Fig. 1¢) were obtained from the
ground network maintained by the Shiyang River Basin Management Bureau, and Institute of
Water Resources and Hydropower of Gansu Province. The in situ data were provided in the
form of piezometric heads (relative to the mean sea level), which needed to be converted to
units of storage. For such a task, several parameters, e.g., storage coefficient and specific
yield are required, but they are not available over the Hexi Corridor. To solve that problem, a
scale factor computed using the information from GRACE and soil moisture (SM) from the
Global Land Data Assimilation System (GLDAS, Rodell et al., 2004) was used for the
conversion using the approach outlined by Tangdamrongsub et al. (2015). As discussed in
Tangdamrongsub et al. (2015), it is ideally preferred to use the in-situ soil moisture data to
represent the SM term, but they are not available at the well locations. The soil moisture
estimated from remote sensing was also not appropriate due to the limitation of the
penetration depth. The use of SM from PCR-GLOBWB is avoided to reduce the bias when
compared the adjusted well measurements to the final DA result. Therefore, the GLDAS
derived SM was used.

The adjustment procedure was as follows. First, GLDAS-based soil moisture storage
variations (SMSV) were removed from GRACE-derived TWSV. Four variants of GLDAS
model (NOAH, CLM, MOSAIC, and VIC; see Rodell et al., 2004) were considered and the
average SMSV value was calculated. Taking into account that SMSV and groundwater
storage variations (GWSV) are the major contributions to TWS variations, this resulted in
GWSV (GWSV erace-smsv)). Then, by conducting a regression analysis between the monthly
time-series of piezometric head variation (Ah) and AGWSGrace-smsv) at each individual
location, a bias (b) and a scale factor (f) were estimated using the following linear
relationship:

AGWSGrace-smsv) + € = b + f - Ah, (2)

where e indicates the observation error. Finally, the estimated bias (b) and scale factor (f)
were used to convert the in situ head measurements into groundwater storage variation
(GWSVm situ) as:

GWSVip situ = b + f + Ah. (3)
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4.3.2 Streamflow

Monthly river gauge data were obtained from the same data centre as the groundwater
measurements. Due to the coarse spatial resolution of PCR-GLOBWSB, it models only the
main river streams. Therefore, the gauge measurements of small river streams, as well as the
gauge measurements that contained many data gaps (i.e., more than 24 months), were
excluded. As a result, the measurements from only 2 gauges — at Xida and Xiying Rivers (see
Fig. 1c) — were used in this study.

4.4.3 Normalized Difference Vegetation Index (NDVI)

NDVI (Carlson and Ripley, 1997) is an indicator of vegetation health or “greenness”. In this
study, NDVI and GWS were analysed to determine if the growing season was being extended
beyond the limited rainy period through groundwater extraction for irrigation. NDVI was
computed from the MODIS 8-day, 500-m spatial resolution surface reflectance product
(Vermote et al., 2011) based on data from Aqua satellite (MYDO09AL product). Based on the
location of the in situ groundwater measurements, the MODIS tiles h25v05 and h26v05 were
selected. First, the data were quality controlled to exclude pixels with cloud cover. The 8-day
NDVI was then computed as (Huete et al., 2002)
NDVI = pNIR_pR’ (4)
PNIRTPR
where py;r @and py are the observed surface reflectances in the near-infrared and red portions
of the electromagnetic spectrum, respectively. The monthly-averaged NDVI was then
computed based on the derived 8-day NDV1 values.

5. Methodology and implementation
5.1 Ensemble Kalman Filter (EnKF)

The Ensemble Kalman Filter (EnKF; Evensen, 2003) is used to assimilate GRACE derived
TWSV into the PCR-GLOBWB model. The EnKF works in two steps, a forecast step and
analysis (update) step. The forecast step involves propagating the states forward in time using
the model (PCR-GLOBWB). Identical to how the EnKF is implemented by Forman et al.
(2012), the state vector (y in this study is an nm x 1 vector, where n = 27 is the number of
TWS-related states from PCR-GLOBWB (see Sect. 3), and m is the number of model grid
cells. The model estimates are related to the GRACE observations by

d = Hy + €, e~N(0,R), 5)

where d is an m x 1 vector containing the GRACE observations for the month of interest, and
H is a measurement operator which relates the PCR-GLOBWSB state 1 to the observation
vector d. Notice that the number of observations is equal to the number of grid cells because
the GRACE-based estimates are obtained for all the grid cells of the PCR-GLOBWB model
(see Sect. 4.1). The uncertainties in the observations are given in the random error €, which is
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assumed to have zero mean and covariance matrix R, .. As the sum of all state elements at
a given cell is equal to TWSV, the H matrix is defined as:

(111..10)54, 0 0

9 (111 Dixn 0 (6)

0 0 e (111 .. Dy

mxnm

Let the ensemble of the states be stored in a matrix A,,,xy = (W1, P2, Y5, ..., Py), Where N
is the number of ensemble members. Then, the ensemble perturbation matrix is defined as
A’ = A — A, where the matrix A is of the same size as A and filled in with the mean values
computed from all ensemble members. Similarly, the GRACE observation vector is stored in
the matrix D,,xy = (d4,d;, ds, ..., dy), in which each column is a replicate of the
observation but perturbed with random noise ~NV' (0, R). The analysis equation can be
expressed as (Evensen, 2003)

A=A+ AA = A+ K(D — HA) 7)
with
K =P,H"(HP,H” + R)" !, 8

where A%,y is the updated model state, AA,,,,xn IS the update from Kalman filter, and
K,.mxm 1S the Kalman gain matrix. The model error covariance matrix (P.),.mxnm 1S
computed as

P, =A'(A)T/(N - D). (9)

The matrix R is the error variance-covariance matrix of GRACE data in the spatial domain, its
computation is discussed in Sect. 5.2.2.

In the initialization phase, which was needed to obtain the initial states, the model was spun
up between 1 January 2000 and 31 December 2000 as a hot start. This time interval was
sufficient to reach the dynamic equilibrium. The initial state ¥ for 31 December 2000
obtained this way was perturbed to yield N = 100 ensemble members ¥;,i = 1,2,3, ..., N.
The N ensemble runs between 1 January 2001 and 31 March 2002 were then conducted
independently based on the perturbed initial states. This resulted in an ensemble spread of the
estimated states. The model was then propagated in time between 1 April 2002 and 31
December 2010 without assimilating any observation. This case is referred to hereafter as the
Ensemble Open Loop (EnOL). For the EnKF, the model was also propagated beginning from
1 April 2002, but the observations (when available) were assimilated.

The processing diagram is shown in Fig. 6, and follows the methodology introduced by
Forman et al. (2012). The state is first propagated in time from the first to the last day of the
month without applying DA, and the monthly averaged states are calculated from the daily
values. When the GRACE observation for that month is available, the DA routine is activated
(otherwise, the model continues propagating to the next month without applying DA). The
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DA routine computes the monthly averaged update AA of the TWS-related states, cf. Eq. (7).
The daily increment (DINC) of the update is then computed by dividing the monthly averaged
update by the total numbers of days in that month (humdaymonth). The model propagation is
then restarted (second run), using the last day of the previous month (month-1, numdaymonth-1)
as the initial state. In this second run, the DINC is added to the current states every day up to
the last day of the month. The DA scheme is repeated for each month up to the end of the
study period.

Spatial correlations of model errors and observation errors were also taken into account in
view of the fact that the latter are highly correlated at neighbouring 0.5°x0.5° grid cells. De
Lannoy et al. (2009) proposed a so-called 3D-Fm (3-dimentional fine scale with multiple
observation) approach, which is called EnKF 3D in this paper. The approach only considers
the spatial correlations between the neighbouring grid cells. In this study, the neighbouring
grid cells were assumed to be the ones inside the Gaussian smoothing radius applied, i.e., 250
km. This reduced the computational cost, as only a small subset of cells pairs was considered
instead of all cells pairs. That approach was applied not only to observation errors, but also to
model errors in TWSV and TWS-related components in this study. The EnKF 3D scheme is
illustrated in Fig. 7. For a particular grid cell (centre grid cell), all TWS-related components
of the neighbouring grid cells and the centre grid cell are used to form the state (A%,.y) and
observation (D3, ) matrices, where p is the number of the considered grid cells. The matrix
notation with superscript s (e.g., A%) is only used to emphasize the cell-dependent version, and
it can be substituted into the original matrix notation (e.g., A) in Egs. (5-9). It is emphasized
here that EnKF 3D involves only p grid cells instead of all m grid cells. As such, the
measurement operator, model error covariance matrix, and observation error covariance
matrix become H3 . (P2)npxnp, and RS, respectively. The EnKF was then applied and
the states of the centre grid cell (only) were updated. The procedure was repeated through all
grid cells. To investigate the impact of including spatial correlations of errors, the EnKF 1D
was also considered. The EnKF 1D scheme is similar to EnKF 3D, but the spatial correlations
are omitted (i.e., the off-diagonal elements of the covariance matrices P; and R® are set to
zero).

Furthermore, sampling errors caused by finite ensemble size might lead to spurious
correlations in the estimated model error covariance matrices (Hamill et al., 2001). To reduce
such an effect, a distance-dependent localization function is applied to P; (pair-wise). In this
study, the Gaussian function (c(a)) (Jekeli, 1981) was used for that:

e bli-cos(aj, jp/ae)]

c(ay, ,) = T (10)

In(2)

with b = TcosL/ay)’

(11)
where a;_ ;, is the distance on the Earth’s surface between two grid cells (j; and j,), and L is
the correlation distance. The variogram analysis was used to derive the TWSV correlation
distance (L) of PCR-GLOBWB, assuming that it is similar to the correlation distance of
model errors. It was found to be approximately equal to 110 km over the Hexi Corridor. For
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GRACE observations, to ensure that the spurious error correlations at distances greater than
the Gaussian smoothing distance, 250 km, are insignificant, the localization applied to R® was
based on L = 250 km. The localization also makes the correlations at short distances slightly
weaker. As a result, the condition number of the error covariance matrix is increased. In this
study, for instance, the condition number increased from ~10** to ~10%. Thus, this matrix had
a full rank after localization (see Sect. 5.2.2 for a further discussion).

5.2 Errors of PCR-GLOBWAB model and errors in GRACE observations
5.2.1 Model errors

The two primary sources of considered errors in the PCR-GLOBWB model are the
meteorological forcing data and the model parameters. For forcing data, the precipitation
uncertainties were quantified as the RMS error provided by the TRMM product (Huffman,
1997). The uncertainties of temperature and potential evapotranspiration were not provided as
parts of the corresponding products, and therefore errors of 2°C, and 30% of the nominal
potential evapotranspiration value were assumed, respectively. The error levels were chosen
through trial-and-error, mainly to allow the ensemble to grow between updates. The
precipitation and potential evapotranspiration were perturbed with additive lognormal noise
while the temperature was perturbed with additive Gaussian noise. The forcing data
uncertainties were assumed to be spatially correlated, which was accounted for using an
exponential decay function. Based on a variogram analysis, the correlation distances of
precipitation, temperature and potential evapotranspiration were found to be approximately
150 km, 450 km, and 450 km, respectively.

As far as model parameters are concerned, a total of 15 TWS-related parameters (see Table 1,
Sutanudjaja et al., 2011, 2014) were perturbed using additive Gaussian noise without spatial
correlations. The standard deviation of the perturbations of the parameters was set to 20% of
the range of the nominal values.

5.2.2 GRACE observation errors

Spatial correlations of GRACE observation errors were also taken into account in the DA
scheme. The uncertainties in the GRACE-derived TWSV over the Hexi Corridor were
computed using the monthly calibrated error variance-covariance matrix of the SHCs (%)
provided by the CSR. Recalling the replacement of the low degree SHCs (see Sect. 4.1), the
error (co-)variances of SHCs degree 2 were not provided by Cheng and Tapley (2004), and
therefore the values obtained from the CSR were used. As for SHCs of degree 1, the error (co-
) variances were not available from (Swenson et al., 2008) either and were set to zero. Note
that X only reflects the error of the original GRACE data, i.e. before the GRACE processing
described in Sect. 4.1 was applied. To obtain the error variance-covariance matrix associated
with the post-processed GRACE data, an ensemble of SHC noise realizations Q¢ was first
generated based on X as follows:
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Q= @i, 12

where Q¥ = (g7, 9Y, 4%, ..., qy) contains a set of white noise realizations and has the
dimension of s X N, where s = 1891 is the number of SHCs, and N = 100 is the number of
realizations. The matrix Q¢ = (g5, g5, g5, ---, q5) has the same dimension as Q" and contains
an ensemble of correlated noise realizations in SHCs. Then, each noise realization (i.e.,
column of Q¢) was post-processed in the same way as the GRACE data (Sect. 4.1), which
resulted in Q¢ = (g5, g5, 45, ..., §5). The post-processing included applying the destriping and
Gaussian smoothing filters, as well as the signal restoration using the same number of
iterations as was used in the GRACE data post-processing. The error variance-covariance
matrix  associated with the SHCs after post-processing was then computed as

- ~ . ra\T

= [QC(QC) ]/(N ~1). (13)
Recalling Eq. (1), the TWSV over the Hexi Corridor can be computed as

Ao = YSx, (24)

where Ao is the vector composed of the computed TWSV at grid cells, Y is the matrix of
spherical harmonic synthesis (cf. Eg. (1)), S is the matrix containing the scaling factors S;, and
x is the vector composed of the dimensionless SHC variations after GRACE data post-
processing described in Sect. 4.1. Then, the error covariance matrix R of the GRACE-based
TWSV over the Hexi Corridor was computed with the error propagation law as

R =YSZ (YS)”. (15)

Some statistics of GRACE TWSV errors over the Hexi Corridor are shown in Fig. 8. The
error standard deviation in Oct. 2002 varied with location (Fig. 8a), whereas the error
correlation showed a distance-decay pattern in all directions (Fig. 8b). The areally-averaged
standard deviations over 4 basins stayed in most of the months at a similar level of
approximately 1 cm (Fig. 8c). The large uncertainty in September 2004 was likely caused by
the near-repeat orbit of GRACE satellites during that month.

6. Results and discussion

The structure of this section is as follows. First, the impact of assimilation using EnKF 3D on
the TWSV is considered in Sect. 6.1. Then, the impact of the EnKF 3D on the estimates of the
individual stores is investigated in Sect. 6.2. The results of the EnKF 1D and EnKF 3D
schemes are compared in Sect. 6.3 in terms of TWSV and the individual stores. Furthermore,
the obtained results are validated against independent data in Sect. 6.4. Finally, in Sect. 6.5-
6.6, the assimilation results are used together with ancillary remote sensing data to study
water resources in the Hexi Corridor.
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6.1 Impact of GRACE DA

To demonstrate the impact of DA, Fig. 9 shows the daily TWSV estimates over the Shiyang
River Basin between 1 April 2002 and 31 December 2003. Several features associated with
the EnKF can be observed. Firstly, when a GRACE observation is available, the EnKF moves
the estimated TWSV towards it. As a result, the estimated TWSV lies between the EnOL
estimate and the GRACE observation most of the time. It is seen that GRACE-derived TWSV
has a greater annual amplitude compared to the model estimated TWSV. This can likely be
attributed to the poor quality of the model parameter calibration and the accuracy of the
meteorological input data over the data-sparse regions. In the absence of observations, model
parameters are difficult to determine and only the best available knowledge (or guess) is
generally used, leading to inaccurate model state estimates. Updating the water storage
estimates using GRACE DA showed a clear improvement in this case. Secondly, the standard
deviation across the EnKF ensemble of TWSV values is smaller than that of the EnOL and
smaller than the GRACE observation error. Thirdly, at the first month (April 2002) the
TWSV estimates of the EnOL and EnKF were similar at the forecast step (as the initial states
were the same, see point (a) in Fig. 9), but became different when the daily increment was
applied to the EnKF. Finally, discontinuities in the time-series before the update were
observed at the end of the month e.g., in November and December 2002 (point (b) and (c)),
and February 2003 (point (d)). Applying the daily increment (see Sect. 5.3) served as a
smoother, and these stepwise changes were reduced.

Similar features were also seen in the EnKF 1D TWSV estimates (not shown).

6.2 Impact of GRACE DA on individual stores

The monthly-averaged values of the TWSV and individual stores in each of the 4 basins are
presented in Fig. 10. Overall, TWSV estimates over the Hexi Corridor mostly reflect SMSV
and GWSV components, while snow water storage variation (SNSV) and surface water
storage variation (SFWV) are minor contributors, constituting less than 5% in most basins.
Clear seasonal variations in TWSV were seen in all basins for GRACE, EnOL and GRACE
DA (both EnKF 1D and EnKF 3D) time-series (Fig. 10 a,b,c,d). As observed in Fig. 10, the
GRACE DA estimated TWSVs are generally between the GRACE observations and the
EnOL estimates. As a result of assimilating GRACE data, both the EnKF 1D and EnKF 3D
added water to all basins between 2002 and 2005 and reduced it from the basins between
2006 and 2010. This is also seen in the time-series of SMSV (Fig. 12 e,f,g,h ) and GWSV
(Fig. 12 1,j,k,I). Additionally, the annual amplitudes and phases of GRACE DA estimated
TWSV were also found mostly in between the values computed from the GRACE
observations and the EnOL results (see Table 2). In particular, the GRACE-DA estimated
TWSV’s phase was always closer to the GRACE observation. The phase shifts of
approximately 1 month were seen in both GRACE DA estimated TWS and GRACE
observations compared to the EnOL results. Similar phase differences of approximately 1
month were also observed in SMSV and GWSV components.
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Differences in the long-term trends were also detected between the TWSV estimates from the
model alone (EnOL) and the GRACE DA. The GRACE DA results showed decreasing
TWSV trends similarly to the GRACE data, while the EnOL showed increasing trends (Fig.
10 a,b,c,d, see also Table 7). This change in TWSV trend was clearly a result of assimilating
GRACE observations. The negative trends were also observed after DA in the GWSV
component in most basins (Fig. 10 i,j,1). This indicates the potential of GRACE DA in
adjusting GWSV. In this way, one can reveal continued groundwater consumption to support
local agricultural activities (Li et al., 2013). Unlike over other basins, the negative trend of
GWSV estimates was not clearly present over the Desert Region (Fig.10k). This could be due
to the small amplitude of the groundwater variation of this region (see also below), and most
of the update took place in the SM component. As a result, a relatively large negative trend
was seen in SMSV rather than GWSV after GRACE DA (see also Table 7). Further
discussions on the trends are given in Sect. 6.4.

The impact of GRACE DA on different stores was influenced by both the model parameters
and the forcing data. The 4 basins have similar soil water storage capacities (see Table 3),
which indicates that the basins can store similar amounts of soil water and generate similar
amounts of groundwater recharge under the same rainfall conditions. However, the 4 basins
received different amounts of rainfall, which resulted in different SMSV and GWSV
estimates. For example, the Shiyang River Basin received the greatest amount of rainfall (~
twice of Heihe River Basin), which led to the greatest amount of the SMSV estimate (~1 cm
annual amplitude). Such a large amount was also sufficient to percolate into the groundwater
layer, resulting in GWSV of ~0.7 cm (see Fig. 10i and Table 2). In contrast, the Desert
Region received approximately 3 times less rainfall, which led to a somewhat smaller amount
of SMSV (~0.7 cm annual amplitude) and a much smaller amount of GWSV, ~0.2 cm (see
Fig. 10g, k). As the uncertainty of the water storage variation is associated with the signal
amplitude, the greater (smaller) water storage variation leads to greater (smaller) uncertainty,
resulting in greater (smaller) update from GRACE DA. As such, a greater update (in
particular, in GWSV) is seen over the Shiyang River Basin, as compared to other basins.

Snow estimates (SWE plus SFW) were very small (less than 0.2 cm) over the Hexi Corridor
and therefore were only slightly updated by GRACE DA. Note that the large variability in the
amount of snow seen as the sharp peaks (e.g., in January 2008) was caused by the
precipitation and temperature variability. In January 2008, the precipitation records were 159
% higher than the January average value while the temperature was 2 — 3°C lower. Such a
condition resulted in a large amount of snow. Finally, GRACE DA influences the surface
water, but the amplitude is still lower than that of the GRACE uncertainties. VValidation of the
surface water estimates in terms of river streamflow is given in Sect. 6.4.2.

6.3 Impact of taking spatial correlations of errors into account

The impact of accounting for the error correlations was clearly seen in the TWSV estimates
(Fig. 10 a,b,c,d). When the error correlations were ignored (EnKF 1D), the TWSV estimate
received a larger update from GRACE, particularly between 2002 and 2005. Hence, the
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estimate was drawn significantly closer to the observation. The presence of error correlations
effectively reduces the amount of information in the GRACE data, since spatial averaging of
such data mitigates noise to a much less extent than averaging of data with uncorrelated
errors. Therefore, the impact of GRACE data in the EnKF 3D case is reduced. As such, the
EnKF 3D estimated TWSV was always between the EnOL and EnKF 1D results. Validating
against the in situ groundwater and streamflow data will quantitatively reveal the performance
of each approach (Sect. 6.4).

Taking error correlations into account also has a clear impact on the SMSV and GWSV
components. For SMSV, similarly to TWSV, the EnKF 1D vyielded a larger update between
2002 and 2005 compared to the EnKF 3D (Fig. 10 e,f,g,h). The difference between EnKF 1D
and 3D results became smaller after 2005. This can be attributed to the fact that the ensemble
spread in the soil moisture component becomes smaller after several years of updates. After
2005, the ensemble spread of SMS was lower than the GRACE uncertainty, and therefore
taking the error correlations into account did not have a significant impact on the SMS
estimates. For GWS, the impact of taking error correlations into account was even clearer,
especially in terms of the long-term trend (Fig. 10, i,j,k,1). With the exception of the Desert
Region, the EnKF 1D showed a steeper decreasing trend in all basins. For snow and surface
water, the impact of considering error correlations was not significant due to the fact that the
stores are small, as compared to SMS and GWS.

It is also worth discussing the impact of GRACE DA on the spatial pattern of the water
storage estimates. To demonstrate this, the update term (AA in Eq. (7)) of October 2002 from
EnKF 1D and 3D cases is shown in Fig. 11. Only TWSV, SMSV, and GWSYV are presented,
since other components (snow, surface water, and interception) are small. As discussed above,
EnKF 3D shows smaller update in all components. Due to a greater amplitude of GRACE-
derived TWSV over northern and southern parts of the region (see Fig. 4), the update is
mostly seen there. Almost all update is limited to the soil moisture layer. Higher precipitation
is generally observed over the southern part, which leads to higher groundwater recharge (and
GWSV) over that region. As such, a GWSV update is clearly seen over the southern part of
the region.

6.4 Validation against independent data
6.4.1 Validation of groundwater estimates against well data

The GWSs estimated from GRACE DA were validated against the well measurements at 5
locations shown in Fig. 1c. Yang et al. (2001) showed that the specific yield values obtained
from the field measurements over the Shiyang River Basin was between 0.01 and 0.3.
Although the measurements were not collected at the well stations used in this study, the
values obtained can be used as a guidance of the specific yield of the Shiyang River Basin. In
this study, the head measurements were converted to storage unit with the approach described
in Sect. 4.3.1. The bias term in Eq. (3) was found to be very close to zero, as the variation
(mean removed) was used in the regression analysis. The estimated scale factor was 0.23,

16



625
626

627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

647
648
649
650
651
652
653
654
655

656
657
658

659

660

661
662
663
664

0.04, 0.24, 0.25, and 0.32 at W1 — W5, respectively, which is in line with the values obtained
from the field measurement.

The GWSV estimate at each well location is shown in Fig. 12. Compared to the EnOL results,
GRACE DA results were visually closer to the well measurements at all 5 locations. The
EnKF 1D and EnKF 3D showed a noticeable difference at each location. The updated GWSV
estimates were evaluated in terms of the correlation coefficient, RMSD, and long-term trend
(Table 4, 5). Overall, the EnOL resulted in relatively poor correlation coefficients at most
stations (except station W1), with the average value of only 0.06. Clear improvements were
seen after GRACE DA was applied. The average correlation coefficient increased to
approximately 0.6 — 0.7. Although the EnKF 1D introduced a greater update than the EnKF
3D, it only showed higher correlation coefficients at stations W1 and W3. Applying the EnKF
3D led to correlation coefficients greater than 0.45 in all stations, and on average it improved
the correlation coefficient by approximately 0.1 over EnKF 1D. In terms of RMSD, applying
GRACE DA reduced the difference by approximately 15 — 25% compared to the EnOL.
Compared to EnKF 1D, the EnKF 3D significantly improved the RMSD in most stations. The
EnKF 1D only performed better than EnKF 3D at station W1, where it reduced the RMSD by
approximately 16 % compared to 8% reduction by the EnKF 3D. The noticeably low GWSV
observed by the well data at station W2 in the summers of 2007 and 2008 (Fig. 12b) was
probably caused by significant groundwater abstraction. These local features could not be
reproduced by the model and GRACE observations due to a limited spatial resolution. As a
result, neither of the EnKF algorithms could improve the GWSV estimates at the W2 location
during those periods.

The long-term trend estimated between 2007 and 2010 was also used to evaluate the impact of
GRACE DA and the effect of taking the error correlations into account (Table 5). The EnOL
trend estimates were considered poor as they showed the largest RMSD respected to the in
situ data. In fact, they were the least consistent with the in situ estimates at each individual
station. Similar to the results in terms of correlation coefficient and RMSD (see Table 4), the
EnKF 3D led to the largest improvement in the trend estimates (RMSD=0.54 compared to
0.93 after EnKF 1D). However, while the EnKF 3D showed closer long-term trends to the in
situ measurements at stations W2, W4, W5, the EnKF 1D produced better estimates at station
W1 and Wa3.

Thus, both EnKF 1D and 3D led to the improvement of the GWSV estimates in terms of all
metrics. In terms of the average results and at the majority of well locations, the EnKF 3D
provided more improvement than the EnKF 1D.

6.4.2 Validation of streamflow estimates against river gauge data

The streamflow estimates were validated against the river gauge measurements at locations
G1 and G2 (Fig 1c). Results are shown in Figure 13 and Table 6. Only modest improvements
in the streamflow estimates were observed in terms of the correlation coefficient, NS
coefficient, and RMSD. This behaviour is similar to what was observed previously for the
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Rhine River Basin, when a different hydrology model and input data were used
(Tangdamrongsub et al., 2015). Figure 13 shows that taking error correlations into account
had little impact, i.e. similar streamflow estimates were seen for EnKF 1D and 3D results. At
location G1 (Fig. 13a), GRACE DA added more water to the stream channel between 2002
and 2006 and reduced it between 2008 and 2010. This behaviour is consistent with the TWSV
estimates discussed in Sect. 6.2. GRACE DA increased the correlation coefficient from 0.82
to 0.84, increased the NS coefficient from 0.65 to 0.69, and reduced the RMSD by
approximately 5 % (Table 6). A lesser improvement was observed at G2.

Comparing to the gauge measurements, both the EnOL and GRACE DA overestimated the
streamflow in September 2007 and September 2008 at G2. The sudden surge in the estimated
streamflow resulted from heavy rainfall recorded by precipitation data while the soil was,
according to the model, already saturated (Fig. 14). For example, in September 2007, the
second highest amount of SM storage in the record (~19.5 cm) was obtained when the third
largest amount of rainfall (~90 mm/month) was observed. Similarly, in September 2008, large
SM storage (~20 cm) and the heaviest rainfall (~100 mm/day) forced PCR-GLOBWB to
generate a large amount of streamflow. In both cases, the modelled streamflow significantly
exceeded the actual one observed at G2. Inaccurate precipitation data and model calibration
likely led to these discrepancies. GRACE DA was unable to reduce these spurious peaks due
to the limited spatial (~250 km) and temporal (1 month) resolution of GRACE data.

6.5 Declining water storages in the Hexi Corridor

The water resources situation over the Hexi Corridor was assessed using long-term trends
estimated from the 9-year EnKF 3D results. This DA variant is primarily discussed here as it
provided better agreement with well observations than the EnKF 1D (see Sect. 6.4.1). For
completeness, however, the values estimated from GRACE, EnOL, EnKF 1D, and
precipitation are also provided. The trends in the TWSV, SMSV and GWSV for the 4 basins,
as well as the areally-averaged values for the entire Hexi Corridor, are given in Table 7. The
average EnKF 3D trends are all negative: approximately —0.2, 0.1, and 0.1 cm/yr for
TWSV, SMSV, and GWSYV, respectively. This reduction in the water storages is observed
despite the increased amount of rainfall, which shows a positive trend of about 0.4
(mm/month)/yr. The water storage reductions can likely be attributed to the extraction of
groundwater to meet irrigation demands. In Sect. 6.6, it will be shown that groundwater
extractions are essential for that purpose in the Hexi Corridor.

Focusing on individual river basins provides additional insight into the water storage issue, as
the influence of the large desert area is removed. The water storage losses in the individual
basins outside the desert are even more pronounced, particularly in the Shiyang River Basin.
This basin had the greatest TWS loss (approximately 0.4 cm/yr), which was entirely caused
by the reduction of GWS. This can be explained by groundwater abstraction to meet the
irrigation demand in the region. The Heihe and Shule River Basins also experienced a TWS
loss of ~0.2 cm/yr, which came from a reduction of both soil moisture and groundwater
storages. Again, the negative GWS trend was likely caused by significant pumping of
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groundwater to maintain crop production. This is consistent with the extreme water stress
over the Heihe River basin between 2001 and 2010, which was documented in Table 11.7 of
the study by Chen et al. (2014). In the Desert Region, in contrast to other basins, the minor
decreasing TWS trend of -0.1 cm/yr was dominated by loss of SM storage. This was likely
caused by inaccurate model parameter calibration over the Desert Region (i.e., too large SC
value). Separation of the TWS into groundwater and soil moisture store was likely incorrect.
As such, the annual signal in GWS is much less than in SM there. Therefore, GRACE update
was mostly attributed to the SM component, so that a groundwater-pumping signature (Jiao et
al., 2015) was seen in the SM instead of the GWS layer.

6.6 Connection to agriculture activity

Figure 15 shows the monthly averaged groundwater head measurements at wells W1 to W5 in
the Shiyang River Basin (Fig. 1c). Monthly averaged precipitation and NDV1 values are
shown as well. Since extracted water can be used to support agriculture not only at the well
location but also in the nearby area, precipitation and NDV1 are reported as the average values
within a circular area of the 10-km radius. These data will be used to ascertain if groundwater
extractions to support agriculture might be the source of the negative GWS trends observed in
Fig. 12 and Table 6. From Fig. 14, it is noticed that the growing period is approximately
between May and October, where the amount of rainfall is higher than 15 mm/month and the
NDVI is typically greater than 0.2. By observing well measurements, precipitation, and NDVI
together, some groundwater extraction signatures can be explained by the extension of the
growing period over the dry season. For example, at station W1, the groundwater in 2010 was
lower than the average, showing a gradual decrease in summer (Fig. 15a). One may attribute
this to the shortage of rainfall in July and August 2010, which was lower than the average
(Fig. 15b). However, the NDVI value was higher than the average during summer 2010 (Fig.
15c¢), which implies that water from other sources than precipitation was probably used to
maintain the growing period. This additional water was likely extracted from the ground, and
such an activity led to a decreased groundwater table during summer 2010. A similar
explanation can be applied to station W2, where low groundwater head, low rainfall, and high
NDVI1 were observed in summer 2007 and summer 2008 (Fig. 15 d,e,f). At station W3, the
behaviour is similar to station W1: the extension of the growing period was observed in
summer 2010, where the GWS and precipitation were lower than the average, while NDV I
was significantly higher (Fig. 15 g,h,i). Groundwater pumping signatures were not present at
stations W4 and W5.

7. Conclusions

This study was focused on the estimation of water resources dynamics in the Hexi Corridor by
assimilating GRACE-derived TWSV into the PCR-GLOBWB hydrological model. Validating
against well data showed that DA led to noticeable improvement in the state estimates in
terms of correlation, RMSD, and long-term trend. Furthermore, GRACE DA estimates
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revealed the reduction of water storages between 2002 and 2010. The Shiyang River Basin —
the southeaster part of the Hexi Corridor area — suffered the most from the water loss, which
was likely caused by the overuse of the groundwater for irrigation. Due to inaccurate
groundwater abstraction information, PCR-GLOBWAB alone could not properly capture the
downward trend of water storages. This highlights the value of the GRACE DA in this
situation. It should be emphasized that GRACE does not fix a technical problem of the
hydrological model, but rather it provides information, which is not available otherwise. Note
that, in principle, the model may predict any long-term behaviour of water storage, but that
information should be brought in by hand” (e.g., via the groundwater abstraction parameter).
As soon as that information is not available, reliable long-term predictions on the basis of
hydrological modelling alone are conceptually impossible. GRACE DA acts as a provider of a
missing puzzle piece here. Of course, the performance of GRACE DA needs to be further
investigated in other geographical locations and with different hydrological models to confirm
its benefits.

A substantial decrease in the water storage in the Hexi Corridor between 2002 and 2010,
particularly over the Shiyang River Basin, took place in spite of the increased precipitation.
The amount of water from rainfall was likely insufficient to support irrigation water
requirements. Irrigation water demands increased significantly to maintain the crop
production and, as a result, the region was under extreme water stress. Water consumption
from all available sources was essential for bridging the deficit, including a sizeable amount
of groundwater extraction. This study illustrates how ground observations and remote sensing
data may reveal the connection between groundwater pumping and agricultural activity.

The conversion approach between the groundwater head measurement and groundwater
storage is proven feasible over the Shiyang River Basin. The scale factor estimates produced
with this approach are consistent with the specific yield estimated from the field observations.
However, it is noted here that the results of the conducted validation might be over-optimistic,
since the well data processed with the adopted conversion procedure are not fully independent
of the assimilated GRACE data. The specific yield from the field observation must be used
when available.

Furthermore, we demonstrate how the error covariance matrix R of GRACE-derived TWSV
can be obtained from the error covariance matrix of GRACE SHCs (which is currently
provided together with the SHCs themselves). This study shows that it is necessary to use the
R matrix in order to properly take into account the error correlations in the DA scheme. To
come to that conclusion, we considered 2 variants of the error variance-covariance matrix in
the data assimilation: excluding and including error correlations. Validating against well data
showed that ignoring error correlations in DA tended to over-fit results to the observations,
and in many cases led to less accurate state estimates. This finding is in agreement with the
recommendation in Schumacher et al. (2016). We explain this finding by the fact that
GRACE errors at the neighbouring 0.5°x0.5° grid cells are highly correlated. As such, the
simultaneous consideration of GRACE data at multiple neighbouring cells does not reduce
data noise, as it would be the case if noise were white. In other words, the white-noise
assumption may severely overestimate the information content of GRACE data. We recognize

20



788
789
790
791

792
793
794
795
796
797
798
799
800
801
802
803

804
805
806

807

808

809
810
811
812
813
814
815
816
817
818

819

820

821
822

823
824
825

that the derivation of GRACE-derived TWSV error variance-covariance matrices is very
computationally demanding. Still, we believe that this is a reasonable price to pay as deriving
the error variance-covariance matrix from the full (and only full) error covariance matrix
noticeably improves the results of GRACE data assimilation.

To further improve the DA performance, an extended or an alternative DA framework can be
considered. One of the points of attention is only a minor improvement in streamflow
estimates, which is caused by an insufficient temporal and spatial resolution of GRACE data.
A promising way to go is to improve the runoff scheme at a conceptual level, e.g., by
extending GRACE DA with a simultaneous parameter calibration. To that end, the state
vector should be extended to also include selected model parameters (Eicker et al., 2014;
Wanders et al., 2014). This allows for the adjustment of the storage size and might lead to a
more accurate estimate of model states, including streamflow (Wanders et al., 2014).
Alternative ensemble-based DA approaches, such as particle filters (Weerts and EIl Serafy,
2006), can also be considered. Particle filters estimate a sample from the realistic posteriori
distribution, which is not necessarily Gaussian, like in the EnKF. The approach has been
shown very effective for the parameter calibration (Dong et al., 2015).

Finally, the usage of improved gravity solutions to be available after the launch of the
GRACE Follow-on mission (Flechtner et al., 2014) will probably further increase the
accuracy of the GRACE DA estimates.
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Table 1. PCR-GLOBWB model parameters related to the TWS estimate. Parameters are
functions of spatial coordinates, except DDF which is a constant.

Parameter Description unit
Ksat,up Saturated hydraulic conductivity of the upper soil storage | m/day
Ksat,low Saturated hydraulic conductivity of the lower soil storage | m/day
SCup Storage capacity of the upper soil m
SCliow Storage capacity of the lower soil m
fgml'n, fmi", Minimgm so?l depth fraction of grgsslgnd (9), forest (f), -
fpmin’ ngu'n paddy irrigation (p), non-paddy irrigation (np)

fg %, £, | Maximum soil depth fraction of grassland (g), forest (f), -
fymax | fmax paddy irrigation (p), non-paddy irrigation (np)

J Groundwater recession coefficient 1/day
DDF Degree-day factor in the snow pack °Cm/day
Kcmn Minimum crop coefficient -

Table 2. TWSV, SMSV and GWSV estimated annual amplitude (A, cm) and phase (P,
month) in 4 different basins computed between April 2002 and December 2010. Areally
averaged values for the entire Hexi Corridor are also given.

Shiyang Heihe Desert Shule Areally-average

GRACE | A |205£031 1.49 £0.21 1.79+0.23 1.21% 0.27 1.43+ 0.18

P | 6.97£0.29 6.80 +0.27 6.49 + 0.24 8.61+ 0.42 7.05+ 0.24

EnoL A | 135%0.16 0.90 +0.07 0.66 + 0.07 0.37 + 0.06 0.70 + 0.06

S— P | 6.35+0.23 5.61 +0.14 5.80 +0.19 5.40 + 0.31 5.74 + 0.16
EnkE1p | A | 161£0.16 0.87 £0.10 1.05+0.11 0.40 + 0.11 0.80 + 0.09

P | 6.96+0.19 6.80 +0.22 6.47 £0.19 8.35+ 0.51 6.92 + 0.23

EnkFap | A | 149£013 0.80 +0.08 0.72 £0.07 0.26 + 0.09 0.72 + 0.07

P | 6.42+0.17 6.12 £0.19 6.40 £0.20 8.48 + 1.02 6.44 + 0.22

EnoL A | 1.03+0.11 0.70 +0.06 0.62+ 0.07 0.31+ 0.05 0.59 + 0.06

P | 5.77+0.20 5.60 +0.16 5.82+ 0.21 5.03 + 0.32 5.62 + 0.18

A | 0.88+0.09 0.75 +0.09 0.99 £0.11 0.36+ 0.10 0.67 + 0.08

SMSV | EnKFID | b | 655+0.01 7.01£0.22 7.08 £0.21 8.47 + 0.54 7.26+ 0.24
enkEap | A | 1:30£0.10 0.66 +0.07 0.71+ 0.08 0.12 + 0.08 0.55+ 0.07

P | 559+0.15 6.25 +0.20 6.44 + 0.20 8.19+ 0.37 6.32+ 0.22

EnoL A | 0.50 +0.08 0.19 +0.03 0.02 + 0.004 0.09 + 0.01 0.12 + 0.01

P | 7.84£0.29 7.13+0.26 5.43+ 0.34 6.91+ 0.29 7.22+ 0.21

A | 0.65%0.05 0.12 £0.03 0.01+ 0.01 0.05 + 0.01 0.10 + 0.01

CWSV | EnKF1D | 5 | 869+ 0.16 7.82£0.40 7.91+ 1.90 8.49 + 0.29 8.32+ 0.25
EnkEap | A | 070£0.06 0.11 +0.02 0.02+ 0.01 0.05 + 0.01 0.10 + 0.01

P | 852+0.16 7.50 +0.31 7.76 + 1.00 8.66 + 1.33 8.26 + 0.23

Table 3. Averaged values and standard deviations of precipitation and model parameters for 4

different basins.

Shiyang Heihe Desert Shule
Precipitation 21 +12 13+12 11+2 8+6
(mm/month)
SCup (M) 0.08 + 0.02 0.09 + 0.02 0.09 +0.01 0.08 + 0.01
SCiow (M) 0.33£0.08 0.37 £ 0.07 0.35+0.04 0.33£0.08

29




1065

1066
1067
1068

1069

1070
1071
1072

1073

1074
1075
1076
1077

1078

1079

1080

1081
1082
1083

Table 4. Statistical values of the GWSV computed from the in situ well measurement and
GRACE DA estimates between January 2007 and December 2010. The average values are
computed by averaging the estimated statistical values from all well locations.

w1 W2 W3 W4 W5 Average
value
Correlation | EnOL 0.74 0.17 -0.04 -0.05 -0.53 0.06
coefficient [- | EnKF 1D | 0.84 0.32 0.90 0.45 0.64 0.63
] EnKF 3D | 0.82 0.49 0.85 0.51 0.83 0.70
RMS EnOL 0.69 1.67 0.77 3.34 3.81 2.06
difference EnKF 1D | 0.58 1.63 0.40 2.56 2.58 1.55
[cm] EnKF 3D | 0.63 1.43 0.38 2.24 1.27 1.19

Table 5. Long-term trends and standard deviations of the in situ data and the DA estimates.
The RMS difference (RMSD) between the in situ data and the DA trend estimates are also

provided.

W1 w2 w3 w4 W5 RMSD
In situ -0.49 +0.03 0.01%0.06 -0.60+0.004 | 056+0.12 |-140£003 |0
EnOL -0.57 £0.01 -0.64+0.002 | -0.010.01 -169+001 |129+002 | 1.62
EnKF 1D -0.52 +0.02 -0.58 + 0.04 -0.74 £ 0.02 -133+0.08 |-199+013 | 0.93
EnKF 3D -0.83 £ 0.02 -0.51 +0.03 -0.38 +0.01 -0.44+008 |-118+0.06 | 0.54

Table 6. Statistical values of the streamflow computed from the river stream gauge
measurement and GRACE DA estimates between April 2002 and December 2010. The
average values are calculated by averaging the estimated statistical values from both gauge
locations.

Gl G2 Average value
Correlation EnOL 0.82 0.76 0.79
coefficient [-] EnKF 1D 0.84 0.77 0.81
EnKF 3D 0.84 0.78 0.81
NS coefficient [-] | EnOL 0.65 0.56 0.61
EnKF 1D 0.69 0.57 0.63
EnKF 3D 0.69 0.57 0.63
RMS difference EnOL 5.49 3.09 4.29
[cm] EnKF 1D 5.18 3.08 4.14
EnKF 3D 5.23 3.04 4.14

Table 7. TWSV, SMSV, GWSV, and precipitation estimated long-term trends in 4 different
basins computed between April 2002 and December 2010. Areally averaged values for the
entire Hexi Corridor are also given.
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Shiyang Heihe Desert Shule Avreally-average

GRACE -0.73+£0.04 -0.64 +0.03 -0.72 £0.03 -0.34 + 0.04 -0.59 + 0.03
TWSV | EnOL 0.30 £0.15 0.24 +0.09 0.20 + 0.04 0.18 + 0.06 0.22 + 0.07
(cm/yr) | EnKF 1D -0.72 £0.08 -0.41 £0.04 -0.33 £0.05 -0.34 £ 0.04 -0.39 £ 0.07

EnKF 3D -0.36 £ 0.02 -0.21 £0.02 -0.11 £0.03 -0.25+ 0.03 -0.20 £ 0.03
SMSV EnOL 0.38 £0.05 0.21£0.02 0.17 £0.03 0.14 + 0.02 0.19 + 0.02
(cmiyr) EnKF 1D -0.11 +£0.03 -0.20 £ 0.01 -0.29+0.04 -0.22 + 0.04 -0.23 + 0.03

EnKF 3D 0.10 £0.03 -0.12 +0.01 -0.12 + 0.02 -0.14 + 0.01 -0.11 + 0.004
GWSV EnOL -0.08 £0.12 0.03 +0.07 0.02 +0.007 0.04 £ 0.02 0.02 +0.04
(cmiyr) EnKF 1D -0.61 £0.01 -0.16 £ 0.004 -0.01 £ 0.005 -0.12 £ 0.02 -0.16 £0.02

EnKF 3D -0.39 £0.01 -0.09 + 0.003 0.01 + 0.004 -0.11 + 0.001 -0.11 + 0.002
Precipitation 0.04 £0.01 0.04 +0.01 0.05+0.01 0.02+0.01 0.04 £0.01
((cm/month)/yr)
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Figure 10. Monthly TWSV, SMSV, GWSV, snow water storage variation (SNSV), and
surface water storage variation (SFWYV) estimated between April 2002 and December 2010
from the EnOL, EnKF 1D, EnKF 3D, and GRACE observations over 4 basins.
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Figure 12. Monthly GWS variation estimates from the in situ well measurements, as well as
EnOL, EnKF 1D, and EnKF 3D results, between January 2007 and December 2010 at 5
groundwater well locations. The chosen period is based on the availability of the well data.
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1165  Figure 13. Monthly streamflow estimates from the in situ river gauge measurements, as well
1166  as EnOL, EnKF 1D, and EnKF 3D results, between April 2002 and December 2010 at 2 river
1167  gauge locations, G1 (a) and G2 (b).
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Figure 15. The monthly averaged groundwater head measurement (left), total precipitation
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