Response to reviewer 1

The interactive modules for simulating water abstraction etc. with the PCR-GLOBWB model
are described in greater detail, but these did not be used in this study. Thus the model
description should focus on the considered process.

R1: We agree with reviewer and the model description will be modified to be more concise
in the revised manuscript.

The model parameterisation with respect to the soil hydraulic properties needs to be better
described.

R2: More description of the soil properties will be added to the revised manuscript (please
also see R40).

I suggest adding some plots showing the special distribution of simulated TWS for the
different DA scenarios.

R3: An illustration of the spatial distribution of both DA scenarios will be shown in Fig. 11.
The following discussion will also be added in the revised manuscript lines 644 — 653:

“It is also worth discussing the impact of GRACE DA on the spatial pattern of the water
storage estimates. To demonstrate this, the update term (AA in Eq. (7)) of October 2002 from
EnKF 1D and 3D cases is shown in Fig. 11. Only TWSV, SMSV, and GWSYV are presented,
since other components (snow, surface water, and interception) are small. As discussed
above, EnKF 3D shows smaller update in all components. Due to a greater amplitude of
GRACE-derived TWSV over northern and southern parts of the region (see Fig. 4), the
update is mostly seen there. Almost all update is limited to the soil moisture layer. Higher
precipitation is generally observed over the southern part, which leads to higher groundwater
recharge (and GWSV) over that region. As such, a GWSV update is clearly seen over the
southern part of the region.”

In the DA scheme only TWS is considered. It is no clear, how “added” or “subtracted” water
was distributed by DA to the different model storages (e.g. SM, GW, snow).

R4: As only TWSV is available from GRACE, TWSV is only used in the discussion in Sect.
6.1. However, the discussion of GRACE DA impact on individual stores are given Sect. 6.2
of the revised manuscript.

Compared to the model results the variations in GRACE determined TWS are much more
pronounced. Possible reasons should be discussed in greater (e.g. influence of the pattern
restauration procedure).

R5: This discussion will be added to the revised manuscript lines 509 — 515:

“It is seen that GRACE-derived TWSV has a greater annual amplitude compared to the
model estimated TWSV. This can likely be attributed to the poor quality of the model
parameter calibration and the accuracy of the meteorological input data over the data-sparse
regions. In the absence of observations, model parameters are difficult to determine and only
the best available knowledge (or guess) is generally used, leading to inaccurate model state
estimates. Updating the water storage estimates using GRACE DA showed a clear
improvement in this case.”

It is unclear if at all or how groundwater abstraction was considered in the modelling. If this
was considered, why was the groundwater abstraction not considered in the DA (e.g. by
updating the groundwater abstraction parameter)?



R6: In this study, the state vector only contains the water storage. Groundwater abstraction is
one of PCR-GLOBWAB’s model parameters, and it is not included in the state vector.
Therefore, the groundwater abstraction is not updated or separately estimated in this study,
but it is treated. Please also see R45 for more detail.

Title: The term ““semi-arid™ is not correct (see below)
R7: The “semi-arid” term is used based on Zhu et al. (2015). Please see also R10.

At times TWS variations are simply termed “TWS”. This is somewhat confusing. The terms
“TWS variations™ or short “TWSV”” should be always used.

R8: TWS variation will be changed to TWSV in the revised manuscript. Similarly, soil
moisture storage variation and groundwater storage variation will be abbreviated as SMSV
and GWSV.

L45: The groundwater well data should integrate of smaller areas than the catchment area of
the streamflow data. Therefore, I am not convinced that this is a problem of spatial
resolution.

R9: Reviewer statement is correct over a sufficiently large river basin. As GRACE spatial
resolution is ~250 km or larger, the TWSV signal of the smaller basin can be easily interfered
by the neighbouring basin. This is known as a leakage effect and such an effect is seen over
the Hexi Corridor. Therefore, the limited spatial resolution of GRACE plays a very important
role on the state estimates there.

L57-59: According to the Kdppen climate classification this region belongs to ““cold desert
climate” (BWK).

R10: The “semi-arid” term is used based on Zhu et al. (2015); however, we also realize that
much of the region has a cold desert climate, and this can be found in the submitted
manuscript (line 152):

“Located next to the Gobi Desert, most parts of the region have a cold desert climate, ...”

For clarity, we will include the references of both climate classifications (Zhu et al. (2015)
and Peel et al. (2007)) in section 2 of the revised manuscript.

L67-68: This depends largely on the measured variable. For instance, streamwater discharge
data provides integrated information for large catchment areas.

R11: We agree with reviewer. In the revised manuscript lines 68 — 70, this sentence will be
written as follows:

“While streamflow gauges provide integrated information for large catchment areas, point
observations of hydrometeorological variables and even groundwater levels can be very local
in scope.”

L81: In addition, hydrological models typically suffer from inadequate process
representations (model structure errors).

R12: The suggested statement will be added to the introduction section of the revised
manuscript lines 85 — 86.

L98: “jump”” of what?

R13: “jump” will be extended to “jump of the water storage estimates” in the revised
manuscript line 101.

L115: What is the size of the area?



R14: The size of the individual basin varies between 41,600 and 157,000 km?. This can be
found in lines 149 - 151 of the submitted manuscript:

“Shiyang River Basin (41,600 km2), the Heihe River Basin (143,000 km2), the Shule River
Basin (157,000 km2), and a Desert Region (152,445 km2)”

L115-118: How do you know (e.g. the watershed area of the Rhine river is much smaller than
the Hexi Corridor area)? Can you provide the SNR values for these different areas?

R15: The size of the individual basin of the Hexi Corridor is smaller than the mentioned
basins, Mississippi (3,202,230 km2), Rhine (185,000 km2), Mackenzie (1,743,058 km2). The
SNR values of the Hexi Corridor is approximately 2.5, compared to Mississippi (SNR = 11),
Rhine (SNR = 17), Mackenzie (SNR = 20).

L122: What is the difference between “surface water” and ““inundated water™?
R16: The “surface water” in PCR-GLOBWB consists of river/channels, as well as lake and
reservoir storages, while the term “inundated water” is conceptualized for the inundated

water above the paddy field during the growing season. The terms are clearly described in
PCR-GLOBWSB literature (see e.g. Wada et al., 2014).

L128-129: In which way are the results validated against remote sensing?

R17: The validation is qualitatively analysed in terms of the correlation coefficient, Nash-
Sutcliff coefficient, Root-Mean-Square different (RMSD). The statement will be added to the
revised manuscript lines 131 — 133.

L147: The term ““basin’ is not appropriate.
R18: The term “basin” will be changed to “region” in the revised manuscript line 145.
L181: “distributed hydrological model™

R19: The term “global hydrological model” will be changed to “global distributed
hydrological model” in the revised manuscript line 179.

L184-185: Also indicate the temporal resolution of the model.

R20: The statement “... and temporal resolution of 1 day” will be added to the revised
manuscript lines 183 — 184.

L185-193: It is unclear, how or if at all these interactive modules for simulating water
abstraction etc. have been used in this study. Clearly it was not the focus of this study. Thus |
suggest removing this section incl. Appendix A.

R21: The section, including Appendix A, will be removed from the manuscript.
L197: Delete “an”

R22: “an” will be removed from the manuscript.

L208: Change “*states” into “‘water storages”

R23: The term “states” will be changed to “water storage components” in the revised
manuscript line 198.

L219: This is rather a conceptual model.
R24: Reviewer is correct, like many numerical models, it is conceptual in nature.
L230: Explain *““complete to the degree and order 60



R25: The Earth gravity field is generally presented using a set of spherical harmonic
coefficients (SHC) to a certain degree and order. The GRACE CSR product is provided the
gravity model up to SHC degree and order 60. Therefore, we compute the TWS variation
using the SHC complete to the maximum degree and order 60 in this study.

L259: Does this increment correspond to the monthly change in TWS?

R26: The increment is not necessarily (or linearly) corresponding to the filtered TWS change.
The increment rather reflects the missing signal that was caused by the filter applied. In other
words, the spatial pattern of the restored TWS change (after signal restoration process
applied) is not necessarily similar to the filtered TWS change (see Fig. 4a compared to Fig.

41).
L261: Is this the general uncertainty of GRACE?

R27: Based on the previous GRACE literature (Wabhr et al., 2006; Klees et al., 2008; Dahle et
al., 2014), GRACE uncertainty averaged-globally is approximately 2 cm.

L263-264: By looking at Fig. 4 this procedure seems to have mainly intensified the already
existing pattern. To which extent are the temporal variations in TWS estimates influenced by
this procedure?

R28: The signal is generally damped after the filter is used, results in <4 cm of the TWSV
amplitude (please see Fig. 4a). The signal restoration process is used to restore the mitigated
signal that was caused by the filter applied. The process restores the signal back for each
iteration and the TWSV amplitude becomes ~7 cm after 6 iterations (see Fig. 4f). The spatial
pattern between Fig. 4a and Fig. 4f is also different (see the contour lines). As the signal
restoration process acts differently (e.g., number of iteration) for different month, the
temporal variations in TWSV estimates are also influenced by this procedure. Extensive
discussion of the signal restoration process can be found in the given reference (e.g.,
Tangdamrongsub et al., 2016).

L287-289: It is well-know that global precipitation products show considerable uncertainties,
which is also indicated by the low NS values. Since in-situ data is available, | suggest to
correct the TRMM data product using the approach suggested by Condom et al. (2011).

R29: We agree with reviewer that correcting TRMM using the method proposed by Condom
et al. (2011) is a good idea. However, since the in situ data over the Hexi Corridor is very
sparse and does not cover all model grid cells, further analysis is needed to investigate the
impact of the method on the spatial distribution. Particularly, the impact on higher frequency
(daily) of the precipitation data used in this study (compared to monthly of Condom et al.
(2001)). Also, there might be a chance of introducing artefacts into the TRMM data in the
grid cells if no in situ data is available. Therefore, we do not apply any correction to TRMM
data, and use the standard error the product provided to represent the data uncertainty.

L298: Actual or potential ET?

R30: “evapotranspiration” will be changed to “potential evapotranspiration” in the revised
manuscript line 287.

L327-329: Actually, more appropriate data is available from other gauging stations in the
Hexi Corridor for this study (see e.g. Zhang et al., 2015, 2016).

R31: We thank for reviewer’s information. However, we only had an access to limited
ground observations by the time this study is conducted. More ground observations will be
considered in future work.



L307-322: Because of this conversion method any comparison of groundwater storage
changes from in-situ and GRACE observations will not be independent. This needs to be
discussed in some detail. In addition, in the procedure described in Tangdamrongsub et al.
(2015) two parameter were used instead of one. Please comment on this difference.

R32: Due to the fact that the estimated scale factor values are in line with the specific yield
from the field observations (please also see R33), the bias of the estimated parameter from
our approach can be considered small over the Shiyang River Basin. However, we understand
reviewer’s concern, and therefore one additional paragraph will be added to the conclusion
section lines 809 — 815 as follows:

“The conversion approach between the groundwater head measurement and groundwater
storage is proven feasible over the Shiyang River Basin. The approach delivers comparable
ranges of scale factor estimates to the specific yield estimated from the field observation.
However, it is noted here that the results of the conducted validation might be over-
optimistic, since the well data processed with the adopted conversion procedure are not fully
independent of assimilated GRACE data. The specific yield from the field observation must
be used when available.”

Additionally, the difference between 1 and 2 parameters are only the bias (first parameter, “a”
parameter in Tangdamrongsub et al. (2015)) becomes very small (~1e-14) when the TWS
variation and head variation are considered. Therefore, Eq. (1,2) of Tangdamrongsub et al.
(2015) and Eq. (2,3) in the submitted manuscript provide the same result. However, for
consistency, we restore the bias term in the revised manuscript as

AGWS(GRACE—ASM) +e=b+ f - Ah (2)
AGWSip situ = b+ f -Ah 3
L317-318: Please provide a figure with the data and the regression.

R33: The figure of the regression analysis is shown below (Fig. R1). To reduce the
redundancy, we do not include Fig. R1 in the manuscript, but instead we will include a
discussion of the parameter estimation in the revised manuscript lines 658 — 667 as follows:

“Yang et al. (2001) showed that the specific yield values obtained from the field
measurements over the Shiyang River Basin was between 0.01 and 0.3. Although, the
measurement was not conducted at the well stations used in this study, the values obtained
can be used as a guidance of the specific yield of the Shiyang River Basin. In this study, the
head measurements were converted to storage unit with the approach described in Sect. 4.3.1.
The bias term in Eq. (3) was found to be very close to zero, as the variation (mean removed)
was used in the regression analysis. The estimated scale factor was 0.23, 0.04, 0.24, 0.25, and
0.32 at W1 — W5, respectively, which was in line with the values obtained from the field
measurement.”
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Figure R1. Regression analysis between GRACE-GLDAS and adjusted well measurements in
5 different locations.

L320: Why are you using an averaged f value to calculate the groundwater storage for each
well? I would have thought that the variations in parameter f should represent local
variations in storage parameters of the aquifers. Please explain the reasoning behind this
procedure.

R34: The parameter is individually estimated and used for each well location. No average
parameter is used. For clarity, we will extend the statement in lines 313 — 314 as follows:

“... and AGWS(GRACE-ASM) at each individual location, a bias (b), a scale factor (f) ...”
L451: Please explain how you selected these parameters (e.g. did you use a sensitivity test?).

R35: We selected these parameters based on several previous PCR-GLOBWB studies (e.g.
Sutanudjaja et al., 2011, 2014), showing that these selected parameters are indeed the
sensitive ones to model simulation results. For clarity, the reference will be added to the
revised manuscript.

L526-527: Change into Figure 10
R36: “Fig. 9” will be changed to “Figure 10” in the revised manuscript.
L545: “on” instead of “of”



R37: “of” will be changed to “on” in the revised manuscript.
L549-550: Please provide information on the origin of these parameter values.

R38: The origin of the parameter values is given in Sutanudjaja et al. (2011, 2014), and the
reference will be given in the revised manuscript.

Further information related to the origin of parameter values were provided in Appendix A of
the submitted manuscript. However, they are removed based on reviewer suggestion (see
R21).

The model parameters of PCR-GLOBWAB are derived from several globally available
datasets that are listed as follows. The Global Land Cover Characteristics Data Base Version
2.0 (GLCC 2.0, http://edc2.usgs.gov/glcc/globe int.php) and and FAO soil maps (1995) were
used in order to parameterize the land cover and upper sub-surface properties. For mapping
aquifers and estimating the groundwater recession coefficient, the GLobal HYdrogeology
MaPS (GLHYMPS) global maps of permeability and porosity (Gleeson et al., 2014), as well
as available global digital elevation models (e.g. HydroSHEDS, Lehner et al., 2008) were
used. For further explanation about the PCR-GLOBWB model parameterization, the reader is
referred to the technical reports (e.g. van Beek and Bierkens, 2009; van Beek, 2008); and
other relevant publications (e.g. Sutanudjaja et al., 2011, 2014).

L543: How do you know that the groundwater store of the Desert Region is small.

R39: We realized that the statement is misleading and we change our statement in lines 552 —
553 as “ ...the small amplitude of the groundwater variation of this region ...”. Small GWSV
over the Desert Region is presented in Fig. 10k.

L553-554: Please explain in greater detail, why higher values of K_sat and lower values of J
have led to a smaller amount of water addition.

R40: We realize that the interpretation the amount of water storage in terms of K_sat and J
might be misleading as they do not have a linear relationship. Instead, soil water storage
capacity (SC, see Table 1) and forcing data have greater impact on the water storage estimate.
Note that greater SC value leads to greater amount of water stored in soil layer, and
consequently lesser water percolate to the groundwater store. Therefore, we remove the
statement related to K_sat and J, and change the analysis to:

“The impact of GRACE DA on different stores was influenced by both the model parameters
and the forcing data. The 4 basins have similar soil water storage capacities (see Table 3),
which indicates that the basins can store similar amounts of soil water and generate similar
amounts of groundwater recharge under the same rainfall conditions. However, the 4 basins
received different amounts of rainfall, which resulted in different SMSV and GWSV
estimates. For example, the Shiyang River Basin received the greatest amount of rainfall (~
twice of Heihe River Basin), which led to the greatest amount of the SMSV estimate (~1 cm
annual amplitude). Such a large amount was also sufficient to percolate into the groundwater
layer, resulting in GWSV of ~0.7 cm (see Fig. 10i and Table 2). In contrast, the Desert
Region received approximately 3 times less rainfall, which led to a somewhat smaller amount
of SMSV (~0.7 cm annual amplitude) and a much smaller amount of GWSV, ~0.2 cm (see
Fig. 10g, k).

The above paragraph will be added to the revised manuscript lines 557 — 571.

L599-600: | wonder whether the better agreement with the GRACE DA results is due to (or a
least partly due to) the scaling procedure of the piezometer data. Please add a discussion on
this.




R41: Due to the fact that the estimated scale factor values are in line with the specific yield
from the field observations (please also see R33), the bias of the estimated parameter from
our approach can be considered small over the Shiyang River Basin. However, we understand
reviewer’s concern, and therefore add one additional paragraph into the conclusion of the
revised manuscript lines 809 — 815 as follows:

“The conversion approach between the groundwater head measurement and groundwater
storage is proven feasible over the Shiyang River Basin. The scale factor estimates produced
with this approach are consistent with the specific yield estimated from the field observations.
However, it is noted here that the results of the conducted validation might be over-
optimistic, since the well data processed with the adopted conversion procedure are not fully
independent of the assimilated GRACE data. The specific yield from the field observation
must be used when available.”

L642: Clearly, predictions for G2 were improved to a lesser degree.

R42: We agree with reviewer. For clarity, the statement will be changed to “A lesser
improvement was observed at G2”, lines 713 in the revised manuscript.

L647-648: These are very low amounts of precipitation, indicating very local precipitation
events. It would be interesting to see the spatial distribution of these rainfall events and the
resulting modelled soil moisture distribution.

R43: The maps of rainfall and SM storage estimates of the discussed events (September
2007, 2008) are shown below (Fig. R2). However, this is beyond the scope of this study, and
therefore Fig. R2 is not presented in the manuscript.
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Figure R2. Monthly total precipitation (left) and SM storage estimates of September 2007 and
2008. Stream gauge location G2 is also shown.

L676-678: Why should the SM storage of the Desert Region decrease although precipitation
shows an increasing trend? Please discuss.

R44: The discussion will be added to the revised manuscript lines 749 — 755 as follows:

“In the Desert Region, in contrast to other basins, the minor decreasing TWS trend of -0.1
cm/yr was dominated by loss of SM storage. This was likely caused by inaccurate model
parameter calibration over the Desert Region (i.e., too large SC value). Separation of the
TWS into groundwater and soil moisture store was likely incorrect. As such, the annual



signal in GWS is much less than in SM there. Therefore, GRACE update was mostly
attributed to the SM component, so that a groundwater-pumping signature (Jiao et al., 2015)
was seen in the SM instead of the GWS layer.”

Further discussion of this (and related) issue is also included in the conclusion, lines 792 -
193:

“It should be emphasized that GRACE does not fix a technical problem of the hydrological
model, but it rather provides information which is not available otherwise.”

L712-714: Until now, there was no indication that groundwater abstraction was considered
in the modelling. Please add a description. Why was the groundwater abstraction not
considered in the DA?

R45: In this study, the state vector only contains the water storage. As the groundwater
abstraction is a parameter of PCR-GLOBWAB, it is not included in the state vector. Therefore,
the groundwater abstraction is not separately estimated in this study. However, the
information of groundwater abstraction is contained in GRACE observation. Once GRACE
DA is applied, such information is propagated into the state vector, particularly the
groundwater layer. This is clearly seen in the negative trend of updated groundwater
estimates. This discussion will be included in the conclusion of the revised manuscript lines
792 — 797 as follows.

“It should be emphasized that GRACE does not fix a technical problem of the hydrological
model, but rather it provides information, which is not available otherwise. Note that, in
principle, the model may predict any long-term behaviour of water storage, but that
information should be brought in by hand” (e.g., via the groundwater abstraction parameter).
As soon as that information is not available, reliable long-term predictions on the basis of
hydrological modelling alone are conceptually impossible.”

L734-735: See comment above. Would it be possible to update the groundwater abstraction
parameter?

R46: Yes, it is possible to update the model parameter together with the state vector. We will
consider reviewer’s suggestion in the future work.

L744: Please provide quantitative information on groundwater abstraction.

R47: As the groundwater abstraction is not estimated by our GRACE DA approach, we do
not quantify the amount of groundwater abstraction in this study. The groundwater
abstraction can be quantified when the parameter is estimated together with the state vector.
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Response to reviewer 2

Different GRACE gravity field models are available, CSR (this study, p6, 1227ff), GFZ, JPL,
CNES/GRGS (Sakumura et al 2014). Why was CSR selected and how are the differences
between the different GRACE processing models for the study region. | understand that the
focus of the article is on the added valued of the DA, however it would be interesting to see
whether GRACE is actually providing added value based on the variability in GRACE
processing models.

R1: Comparing to GFZ, JPL, and CNES/GRGS, the CSR product is the only product that
provides the error variance covariance matrix of the spherical harmonic coefficients
Therefore, it is selected in this study. Note here that the variance covariance matrix is the
only information that reflects the true GRACE error. As this information is not available from
GFZ, JPL, and CNES/GRGS, they are not considered in this study. We agree with reviewer
that it would be interesting to see whether GRACE is consistently improving the water
storage estimates based on different products used. The comparison can be conducted as soon
as the error information from other data centre is released.

Groundwater head data can be quite complex depending on the well depth and the aquifer
being pumped. So far the authors only use head data without information about the aquifer
systems. Different aquifer systems also result in individual specific yields. This needs to be
addressed. based on a quick literature search hydrogeologic studies (e.g. Ma et al. 2005) are
available for the region. Please, do provide information on whether the wells access the same
aquifer. Further, groundwater heads were converted to units of storage using a scale factor
(p.8, 1301ff) as specific yield data were not available. Ma et al. 2005 (and probably more
papers as well) provide aquifer properties for the Shiyang basin. Given that the wells are in
the same aquifer system, please, show how your units of storage compare to literature values
for the region.

R2: We thank reviewer 2 for this valuable information. Unfortunately, the data we used does
not come with the aquifer information, so we cannot guarantee whether the well accesses the
same aquifer as in Ma et al. (2005). As such, the specific yield is computed based on the best
hydrological knowledge (model) and observation. The estimated values are between 0.04 and
0.3, which is in line with the specific yield values Yang et al. (2001) determined from the
pumping tests, 0.01 — 0.3. Therefore, our estimate value can be considered sufficiently
accurate for the head conversion. For clarity, we add the additional statement to the revised
manuscript lines 658 — 667:

“Yang et al. (2001) showed that the specific yield values obtained from the field
measurements over the Shiyang River Basin was between 0.01 and 0.3. Although the
measurements were not collected at the well stations used in this study, the values obtained
can be used as a guidance of the specific yield of the Shiyang River Basin. In this study, the
head measurements were converted to storage unit with the approach described in Sect. 4.3.1.
The bias term in Eq. (3) was found to be very close to zero, as the variation (mean removed)
was used in the regression analysis. The estimated scale factor was 0.23, 0.04, 0.24, 0.25, and
0.32 at W1 — W5, respectively, which is in line with the values obtained from the field
measurement.”

Regarding the precipitation errors the RMS of TRMM was used (p12, 1440). As the authors
also compared TRMM to station data, was that error included as well?

R3: As the error of other precipitation products are not available, no error is included in the
analysis of Sect. 4.2 to avoid the inconsistency of the comparison.



The abstract is a bit too extensive, please, shorten.
R4: The abstract will be shortened in the revised manuscript.
p2, 157-59. Provide reference

R5: References (Gong et al., 2004; Zhu et al., 2015; Cui and Shao, 2005) will be given in the
revised manuscript line 59 and 61.

Fig. 1. Include all symbols in the figure caption (crosses). Since color is used, the river
networks could also be added (1b).

R6: The symbol will be added to Fig. 1 caption of the revised manuscript lines 1130 — 1131
as “ ...the locations of considered groundwater wells (x) and river stream gauges (+).” The
river network will also be added to Fig. 1b.

p6, 1208/209. Please, explain ‘the sum of different states’. What are e.g. ‘4 interception’
states?

R7: TWS variation is computed from the sum of 27 different water storage components
(layers), which are 8 soil moisture layers, 2 groundwater layers, 4 interception layers, 8 snow
layers, 4 inundated top water layers, and 1 surface water layer. For clarity, we revise the
statement in the revised manuscript lines 197 — 199 to:

“... the total water storage (TWS) is computed as the sum of 27 different water storage
components: 8 soil moisture layers, 2 groundwater layers, 4 interception layers, 8 snow
layers, 4 inundated top water layers, and 1 surface water layer.”.

p9, 1331ff. What exactly was done with the NDVI values? Was the growing season length
determined as the period above and below 0.27 If it was only used for visualization in Fig.
14, the section can be shortened to a couple of lines.

R8: NDVI and GWS variation were analysed together to determine if the growing season
was being extended beyond the limited rainy period through groundwater extraction for
irrigation. The reviewer is correct in that the growing season length is determined as the
period above ~0.2. In the revised manuscript, we remove a few statements in Sect. 4.4.3 to
make the section more concise.

Fig. 14a. Is the GW head relative to amsl? What is the depth to the surface?

R9: Yes, the measurement is relative to the mean sea level. For clarity, we will add an
additional statement to the revise manuscript line 295:

“... form of piezometric heads (relative to the mean sea level), ...”

The depth from to the surface is not available from the data provider, and therefore we cannot
provide the value here.
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Response to reviewer 3

I. 368 and matrix D in Eq. (7): Burgers et al. (1998) showed that it is necessary to consider
the observations as random variable, i.e. that not only an ensemble of predicted model states
but also an ensemble of observations has to be considered when calculating the update of
each model ensemble member. Perturbations for the observations can be drawn from the
error covariance matrix R. Otherwise, the error statistics of the updated model ensemble are
underestimated (i.e. not correctly treated). In a correct implementation, matrix D does not
contain N identical columns as described in l. 368. This should be fixed or at least discussed
by the authors.

R1: We implemented the EnKF as outlined by Evensen (2003). In our formulation, D
contains the perturbed observations, i.e. each column is a replicate of the observation but
perturbed with ~N(0,R). This was not articulated well in the previous version of the
manuscript. The text will be corrected to make this clearer in the revised manuscript lines 364
— 367 as follows:

“the GRACE observation vector is stored in the matrix D_{mxN}, in which each column is a
replicate of the observation but perturbed with random noise ~N(0,R). The analysis equation
can be expressed as (Evensen, 2003):

In addition, it is not possible to draw random errors from the full error covariance matrix of
GRACE TWS changes on a 0.5x0.5 degree grid, since the matrix has a rank deficiency. This
is a critical issue and should be addressed by the authors as well.

R2: In our study, the error variance-covariance matrix associated with the post-processed
GRACE data was used. We did not use the original error matrix since it did not represent the
filtered GRACE signal used in our study. In our covariance computation (described in Sect.
5.2.2), the localization function with correlation length similar to the Gaussian smoothing
used was applied. Although the main objective of the covariance localization is to reduce the
spurious correlation at long distance caused by the limited realization number, the
localization also affects the correlation at short distance, and a strong correlation at a short
distance becomes slightly weaker. As a result, the error variance-covariance matrix derived
based on our method has a full rank. Applying localization also improved the condition
number of the covariance matrix, e.g., from ~10%* to ~10? found in our study. Similar to
Eicker et al. (2014), the matrix rank and condition number were determined using Matlab
functions rank and cond, respectively. We thank reviewer for the advice. The clarification
regarding rank deficiency will be included in the revised manuscript lines 433 — 436.

I. 507-508: The standard deviations of the EnKF results are however underestimated, since
the observation vector was not treated as a random variable in Eq. (7). Therefore, the error
Statistics of the updated model states are not correct. This should be fixed or at least
discussed.

R3: Please see R1

I. 588-589: This might change after correctly estimating the updated model ensemble spread
by generating perturbations for the observations (revising Eq. (7)).

R4: Please see R1



Eq. (8): Since both error covariance matrices (from the model and the observations) have a
rank-defect due to (1) the fact that usually the number of model states is much larger than the
number of model ensemble members and (2) GRACE cannot actually resolve TWS changes
on a 0.5x0.5 degree grid, the inverse in Eq. (8) does not exist. This should be pointed out and
a reference to sections 5.2.1 and 5.2.2 might be provided that describe how the authors deal
with this issue.

R5: Please see R2

. 251: GRACE observations are highly correlated on such a fine spatial resolution (similar
to the above comment). Did the authors investigate this? Was this the reason to use a
maximum correlation length for the observation error covariance matrix?

R6: Reviewer is correct. In our covariance computation (described in Sect. 5.2.2), the
localization function with correlation length similar to the Gaussian smoothing used was
applied. The localization helps to improve the matrix stability and we investigated this by
checking the rank and condition number of the matrix as explained in R2.

I. 414-415: If | understand it correctly, the error correlation length is set to 250 km and TWS
changes outside of this radius are assumed to not be correlated to the center grid cell. Is this
reasonable? It would be helpful to investigate the correlations of points with longer distances
to verify this choice. Does the "local” error covariance matrix have a full rank?

R7: As the observation error variance-covariance matrix is derived based on the application
of 250 km filter radius, the correlation error at distance beyond 250 km (correlation length)
does not have a crucial impact on the result. In the submitted manuscript, we demonstrate the
error characteristic in Fig. 8b. From the figure, the correlation reduces significantly beyond
the correlation length. Additionally, the error variance-covariance matrix derived based on
our method has a full rank.

Fig. 7: In the main text (I. 414-415), it is explained that a correlation length of 250 km is used
(approx. four to five 0.5x0.5 degree (~50kmx50km at the equator) grid cells in each direction
from the center grid cell). In Fig. 7, it is shown that only the neighboring grid cells are
considered. Please clarify.

R8: Reviewer is correct. We realized that the figure caption was not explained clearly. To
clarify this, we add an additional description in the figure caption lines 1158 — 1160 as
follows:

“The graphic demonstrates the case of 1 pixel (0.5 degree) correlation distance. The boundary
stretches farther for larger correlation distance.”

I. 419: Since the neighboring 0.5x0.5 degree grid cells are highly correlated, it is not
reasonable - based on the GRACE error characteristics - to apply the EnKF without spatial
error correlations on such a fine scale. A statement would be helpful to the reader.

R9: We thank reviewer for the recommendation, the statement will be added to the revised
manuscript lines 399 — 400 as follows:

“Spatial correlations of model errors and observation errors were also taken into account in
view of the fact that the latter are highly correlated at neighbouring 0.5°x0.5° grid cells.”

I. 726-727: But: The authors do not use the full error covariance matrix as directly
calculated from the observations. Instead a maximum correlation length of 250 km is



assumed, and thus a part of the information within the full error covariance matrix is
neglected. Therefore, the statement might be misleading.

R10: We thank for reviewer comment. To clarify this, we will modify the statement in the
revised manuscript lines 830 — 832 as follows:

“...this is a reasonable price to pay as deriving the error variance-covariance matrix from the
full (and only full) error covariance matrix noticeably improves the results of GRACE data
assimilation.”

I. 90-91: That seems to be incorrect. Zaitchik et al. (2008) used an ensemble Kalman
smoother (EnKS) approach to partition the monthly update increment (based on comparing
monthly means of modeled and observed TWS changes) equally to each day of the month.
GRACE TWS changes are only assimilated once per month and not every 10 days.

R11: We thank for reviewer comment. The statement will be corrected in the revised
manuscript lines 197 — 199 as follows:

“...using a monthly observation value and distributing the update as daily increments
(Zaitchik et al., 2008; Forman et al., 2012; Girotto et al. 2016).”

I. 95: This work adapts the method as proposed in Zaitchik et al. (2008) to a snow-dominated
basin.

R12: Please see R11.

I. 98: Please also consider the disadvantage of computational costs: The method has some
computational drawback since the model has to be evaluated twice over the same month.

R13: We thank for reviewer suggestion. The additional sentence will be added in the revised
manuscript lines 102 — 103 as follows:

“The only price to pay is the additional computational cost of running the model twice for the
same month.”

I. 106: In Forman et al. (2013), the authors did not use correlated errors for the data
assimilation. They investigated for which spatial resolution errors of GRACE TWS changes
might be considered as uncorrelated. According to these investigations, they assumed white
noise for (sub-)basin averaged TWS changes from GRACE.

R14: We agree with reviewer. Forman et al. (2013) will be removed in this context to avoid
the confusion.

I. 89-95: In this work, the authors performed an analysis of introducing the update
increments completely at the beginning of a month, the end of a month or equally distributed
over all days of a month. This is worth to be mentioned along with the other citations.

R15: We thank for reviewer suggestion. Girotto et al. (2016) will be cited in the revised
manuscript.

1. 39-40 and I. 106-108: A first analysis of assessing the effect of considering or neglecting
spatial error correlations of GRACE TWS changes was performed in Schumacher et al.
(2016) in form of a synthetic experiment, for which one of the authors of this HESSD
manuscript was the editor and should therefore be very familiar with the work. It seems that
the paper is methodologically the closest related to the analysis presented here and,



therefore, should be cited and discussed. Findings should be compared to the findings in the
published paper.

R16: At the time this study was conducted, Schumacher et al. (2016) was not published,
therefore we conducted the analysis independently based on our method (proposed in this
HESSD paper). However, we thank reviewer for the recommendation, and Schumacher et al.
(2016) will be cited in the revised manuscript.

I. 577: This was also seen and discussed in Schumacher et al. (2016). The authors should
compare their results with the findings in this paper, since the objective of both papers is to
understand the effect of considering spatial error correlations of GRACE TWS changes on
hydrological data assimilation results.

R17: We thank for reviewer suggestion. The suggestion will be considered in the revised
manuscript.

I. 715-718: The authors should add something like "in agreement with the recommendation in
Schumacher et al. (2016)."

R18: We thank for reviewer suggestion. The statement will be given in the revised
manuscript lines 823 — 824.

|. 719-724: The findings in the HESSD manuscript allow for a clearer conclusion on
improvements when error correlations of GRACE TWS changes are taken into account. What
might be the reason for this? Differences in the study set up? Localization of model /
observation error covariance matrices?

R19: The improvement is mainly due to a better representation of GRACE information in the
EnKEF. Ignoring error correlations in the DA led to an over-fit of the results to the
observations, which led to less accurate state estimates. These explanation will be presented
in the revised manuscript lines 824 — 828 as follows:

“We explain this finding by the fact that GRACE errors at the neighbouring 0.5°x0.5° grid
cells are highly correlated. As such, the simultaneous consideration of GRACE data at
multiple neighbouring cells does not reduce data noise, as it would be the case if noise were
white. In other words, the white-noise assumption may severely overestimate the information
content of GRACE data.”

I. 729: A reference to Schumacher et al. (2016) would strengthen this statement, since the
HESSD manuscript is not the only study that concludes a benefit / more realistic GRACE
data assimilation approach if implementing GRACE error correlations.

R20: We thank for reviewer for the suggestion, Schumacher et al. (2016) will be cited in the
relevant context.

I. 752-753: Schumacher et al. (2016) should be added to the list of references.
R21: Schumacher et al. (2016) will be added to the list of references.

I. 755: Alternative methods have been investigated in Schumacher et al. (2016), namely a
square root analysis scheme (SQRA) and the singular evolutive interpolated Kalman filter
(SEIK). Especially the application of the SEIK filter showed promising results. A citation
would support the authors expectation that alternative methods, e.g. the particle filter, would
improve the data assimilation performance.



R22: We thank the review for the suggestion. We will consider this in the revision.

I. 583: "truth", i.e. to the independent measurements of individual water compartments. These
measurements are also subject to uncertainties and not “true" values.

R23: To avoid the confusion, the statement will be changed to “Validating against the in situ
groundwater and streamflow data will quantitatively reveal the performance of each
approach”. This is given in lines 630 — 631 of the revised manuscript.

I. 756: "true" -> better "full” (true is difficult since often unknown / poorly known)
R24: “true” will be changed to “realistic”.
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Abstract

An accurate estimation of water resources dynamics is crucial for proper management of both
agriculture and the local ecology, particularly in semi-arid regions. Imperfections in model
physics, uncertainties in model land parameters and meteorological data, as well as the human
impact on land changes often limit the accuracy of hydrological models in estimating water
storages. To mitigate this problem, this study investigated the assimilation of Terrestrial
Water Storage Variation (TWSV) estimates derived from the Gravity Recovery And Climate
Experiment (GRACE) data using an Ensemble Kalman Filter (EnKF) approach. The region
considered was the Hexi Corridor in Northern China. The hydrological model used for the
analysis was PCR-GLOBWAB, driven by satellite-based forcing data from April 2002 to
December 2010. The impact of the GRACE Data Assimilation (DA) scheme was evaluated in
terms of the TWSV, as well as the variation of individual hydrological storage estimates. The
capability of GRACE DA to adjust the storage level was apparent not only for the entire
TWSV but also for the groundwater component.

utilizing
he benefits of
by comparing the EnKF results with and without taking into account
error correlations in situ groundwater data from 5 well

sites. On average, the experiments showed that GRACE DA improved the accuracy of
groundwater storage estimates by as much as 25%. The inclusion of error correlations
provided an equal or greater improvement in the estimates.

o significant benefits of GRACE DA
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limited spatial and temporal resolution of GRACE observations.
esults GRACE DA study were used to assess the status of water resources
over the Hexi Corridor . Areally-averaged values
revealed that TWS, soil moisture, and groundwater storages over the region decreased with an
average rate of approximately 0.2, 0.1, and 0.1 cm/yr in terms of equivalent water heights,

respectively. A decline in TWS (approximately —0.4 cm/yr) was seen over
the Shiyang River Basin he reduction
mostly occurred in the groundwater layer. An investigation of the relationship between water
resources and agricultur suggested that groundwater consumption required to
maintain specific basin was likely the cause of the

groundwater depletion.

1. Introduction

The this study is the Hexi Corridor. It is located between the
Gansu province of China and Mongolia (Fig. 1). A semi-arid region can be broadly classified
as an area on the boundary of a larger desert, receiving just enough annual precipitation (300
mm or less) to sustain a limited amount of agriculture (Gong et al., 2004; Zhu et al., 2015).
Inefficient use of the limited amount of surface water can often lead to overuse of
groundwater resources and salinization of the soil (Cui and Shao, 2005). This can result in
desertification, which not only reduces the amount of production but also may have long-term
effects on the local ecology.

Improving the water resources management of regions requires accurate knowledge
of the hydrological processes involved. For small areas, this can be partially obtained through
a network of in-situ measurement systems, such as meteorological stations, river gauges,
groundwater wells, evaporation trays, etc. (Dahlgren & Possling, 2007; Huo et al., 2007;
Kang et al., 2004; Ma et al., 2005; Du et al., 2014). While streamflow gauges provide

information for large catchment areas, point observations of hydrometeorological
variables and even groundwater levels can be very local in scope. A sensor at a point several
kilometres away may record significantly different values. For large scales (> 10,000 km?),
such techniques are unlikely capable of delivering accurate results.

Two options for estimating the large-scale Terrestrial Water Storage Variation (TWSV) of a
particular region are using observations from the Gravity Recovery And Climate Experiment
satellite mission (GRACE, Tapley et al., 2004) or utilizing a regional or global hydrological
model. A number of prior studies have reported on the potential of GRACE in the estimation
of snow water equivalent (Niu et al., 2007), groundwater (DO4ll et al., 2014), and
evapotranspiration (Long et al., 2014) in terms of temporal and spatial variability. However,
GRACE only provides the total column of the water storage at a monthly time scale and large
spatial scales (> 300 km). It is not possible to identify the contribution of separate
hydrological components to the TWSV from GRACE data alone. On the other hand, a
hydrological model can be used to estimate the individual storage components at very high
spatial and temporal . The major drawback of the model is mainly the
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significant uncertainties influenced by the quality of the model parameter calibration and the
accuracy of the meteorological input data. _In addition, hydrological models suffer from
inadequate process representations (model structure errors).

Data Assimilation (DA) can be employed to combine the strengths of GRACE and
hydrological models while mitigating their respective weaknesses. A number of studies

that GRACE DA can be used to improve the estimation of groundwater and
streamflow (Zaitchik et al., 2008; Tangdamrongsub et al., 2015), snow water equivalent
(Forman et al., 2012; Su et al., 2012), and as well as for evaluation of drought events
(Houborg et al., 2012; Li et al., 2012). Different temporal and spatial resolution of GRACE
observations and hydrological models require proper design of the DA scheme. Several DA
schemes have been developed to distribute GRACE observations into the model, which
include using 5-day interpolated observations and updating the model every 5 days
(Tangdamrongsub et al., 2015); using a monthly observation value and applying the model
update only at the end of the month (Eicker et al., 2014); using a monthly value and
distributing the update as a daily increments (Zaitchik et al., 2008; Forman et al., 2012;
Girotto et al. 2016). Although all DA schemes are acceptable, the scheme proposed by
Forman et al. (2012) is advantageous because it does not require an interpolation of the
observations and can reduce the spurious jump of the water storage estimates caused by
applying the update at the end of the month only. T the additional
computational cost of running the model twice for the same month. A scheme similar to
(Forman et al., 2012) is used in this study. Spatial disaggregation is also needed to reconcile
the difference in horizontal resolution between the observations and the model. Recent studies
by Eicker et al. (2014) and Schumacher et al. (2016) suggested including the GRACE
variance-covariance error information in the spatial disaggregation step. Both studies
proposed using 500-km GRACE spatial resolution to mitigate the ill-posedeness of the error
covariance matrices in the spatial domain. In line with Eicker et al. (2014) and Schumacher et
al. (2016), the assimilation scheme in this study accounts for spatially correlated errors by
using full error variance-covariance matrices of GRACE data. This study will show that
considering the GRACE error correlations leads to an improvement of the state estimates.
Particularly, the Signal-to-Noise Ratio (SNR) of the TWSV is much lower than in the river
basins considered in the previous studies, e.g., Mississippi (Zaitchik et al., 2008), Rhine
(Tangdamrongsub et al., 2015), and Mackenzie (Forman et al., 2012).

GRACE observations are assimilated into the PCRaster Global
Water Balance (PCR-GLOBWAB; Van Beek et al., 2011; Sutanudjaja et al., 2014; Wada et al.,
2014) hydrological model over the Hexi Corridor. TWS is computed from PCR-GLOBWB as
the sum of all the hydrological components (soil moisture, groundwater, surface water,
inundated water, interception, and snow). The previous studies showed very
of PCR-GLOBWB based estimates with GRACE observations in several river basins (Wada
et al., 2014; Tangdamrongsub et al., 2016). However, the performance of PCR-GLOBWB has
not vet been evaluated over the Hexi Corridor. In addition, the model has not been
incorporated into any GRACE DA scheme, making this study the first attempt to do so.
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nvestigating the added value of GRACE DA in the Hexi Corridor

he results of the GRACE DA are validated with independent in-situ data. The
agreement is analysed in terms of the correlation coefficient, Nash-Sutcliff coefficient,
Root-Mean-Square (RMSD). The groundwater storage variation (GWSV) and
streamflow estimates are validated with the well and river stream gauge
measurements, respectively.

Finally, results from this GRACE DA study are used to assess the status of water resources
over the Hexi Corridor. The connections between the water storage groundwater
and agriculture in the area are also presented and discussed.
precipitation from the Tropical Rainfall Measuring Mission (TRMM; Huffman et al.,
2007) and the Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized
Difference Vegetation Index (NDVI; Huete et al., 2002)

2. Study region

The Hexi Corridor is a long and narrow area between the Qilian Mountain range and southern
Mongolia (Fig. 1a). The_region’s elevation ranges from 5,200 m in the southern upstream area
(Qilian Mountains) to 900 m in the northern downstream zone (Inner Mongolia) (Fig. 1b).
The region is comprised of four typical inland arid and semi-arid regions (Zhu et al., 2015):
the Shiyang River Basin (41,600 km?), the Heihe River Basin (143,000 km?), the Shule River
Basin (157,000 km?), and a Desert Region (152,445 km?) (Geng and Wardlaw, 2013; Zhu et
al., 2015). Located next to the Gobi Desert, most parts of the region have a cold desert climate
(Peel et al., 2007), where precipitation is relatively low to sustain vegetation or crops.
Approximately 60 to 80 % of the annual rainfall is concentrated during the timeframe from
June to September. The inland rivers mainly originate from the Qilian Mountains and
disappear after entering the midstream/downstream plains and oases. As such, the southern
part of the region is more favourable for agriculture.

The four basins have distinct characteristics. First, the smallest river basin, Shiyang, has 8
main river streams, including the Xida and Xiying Rivers (Fig. 1c). The annual rainfall and
the mean temperature are approximately 250 mm and 5 °C (Fig. 2a, b), respectively. The
Shiyang River Basin is considered the wettest basin compared to the others, with relatively
high mean total renewable annual water resources of approximately 1.66 billion m® (Zheng et
al., 2013). However, a highly developed economy and population growth in the past decade
have resulted in a severe water resources overexploitation problem (Zheng et al., 2013). The
Heihe River Basin has a semi-arid climate and the mean daily temperature of ~6 °C (Fig. 2d).
The average annual rainfall is ~150 mm (Fig. 2c) with high heterogeneity both in temporal
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and spatial distribution. The mean total annual available water resources are estimated at 3.7
billion m® (Hu, 2015). Similar to the Shiyang River Basin, increased water exploitation,
increasing population, and changing climate have aggravated the damage to the downstream
ecology. The Shule River Basin has an arid climate, the mean temperature there is around 4
°C (Fig. 2f), and the average annual rainfall is only approximately 98 mm (Fig. 2e).
Compared to the Shiyang River Basin, the Shule River Basin is approximately four times as
large in terms of surface area, but has similar mean total annual water resources, ~1.6 billion
m? (Hu, 2015). The district irrigation areas are mainly located in the middle of the Shule
River Basin. Agricultural water consumption accounts for more than 80% of the total water
use. Finally, the Desert Region has an extreme continental desert climate with an average
temperature of 8 °C, and the annual rainfall of ~130 mm. Extensive groundwater abstraction
was also observed over the region (Jiao et al., 2015).

3. Hydrology model

The global distributed hydrological model PCR-GLOBWB (van Beek et al., 2011;
Sutanudjaja et al., 2016) simulates spatial and temporal continuous fields of fluxes and
storages in various water storage components (soil moisture, groundwater, surface water,
inundated water, interception, and snow). The model version used here (Sutanudjaja et al.,
2016) has a spatial resolution of 30 arc minutes (approximately 50 km at the equator), and .
temporal resolution of 1 day. Figure 3 illustrates the structure of PCR-GLOBWB model. The
model includes 2 soil layers (SMupp, SMiow), an underlying hydrologically active and
replenishable groundwater (GWSactive) layer, a non-renewable groundwater (GW Stossit) layer,
as well as interception, surface water, and snow stores. The non-renewable groundwater is
available for abstraction to satisfy water demands once the overlying hydrologically active
groundwater storage is depleted. For soil, snow, inundated top water, and interception stores,
an individual grid cell is divided into sub-grids associated with different types of topography,
vegetation phenology, and soil properties, as well as land cover types. Specifically, there are 4
types of land covers defined: short natural vegetation, tall natural vegetation, irrigated non-
paddy field, and irrigated paddy field. Soil components include the upper layer (SMypp, 0 — 30
cm) and the lower layer (SMiow, 30 — 150 cm). The snow component includes snow water
equivalent (SWE), as well as snow free water (SFW) representing the storage of melted snow.
The water stored in the stream channels and lakes is also included in the TWS estimate. Based
on the structure of PCR-GLOBWAB, the total water storage (TWS) is computed as the sum of
27 different water storage components: 8 soil moisture layers, 2 groundwater layers, 4
interception layers, 8 snow layers, 4 inundated top water layers, and 1 surface water layer.

For each grid cell and for each daily time step, the model determines the water balance in two
vertically stacked soil layers and the groundwater store. The model also computes the vertical
water exchanges between the soil layers and between the inundated top water layer and the
atmosphere, i.e. rainfall and snowmelt, percolation and capillary rise, as well as evaporation
and transpiration fluxes. The active groundwater store underlies the soil, is fed by net
groundwater recharge, discharges to baseflow as a linear reservoir, and is exempt from the
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direct influence of evaporation and transpiration fluxes. However, capillary rise from the
active groundwater store can occur depending on the simulated groundwater storage, the soil
moisture deficit, and the unsaturated hydraulic conductivity. Fluxes are simulated according
to the different land cover types. The model includes a physically-based scheme for
infiltration and runoff, resulting in the direct runoff, interflow, as well as groundwater
baseflow and recharge. River discharge is calculated by accumulating and routing the specific
runoff along the drainage network. For further details, including model parameterization, the
reader is referred to the technical reports and other relevant publications (van Beek and
Bierkens, 2009; van Beek, 2008; Sutanudjaja et al., 2011, 2014).

4. Data and data processing
4.1 GRACE data

The GRACE gravity product release 5 (RLO5), generated by the University of Texas at
Austin’s Center for Space Research (CSR, Bettadpur, 2012), was used as input. The product
consists of monthly sets of spherical harmonic coefficients (SHC) complete to degree and
order 60. On this basis, TWSVs were obtained for the study period between April 2002 and
December 2010. The GRACE data were further processed in this study as follows:

e SHCs of degree 1 provided by Swenson et al. (2008) were restored, and all 5
coefficients of degree 2 were replaced by the values estimated from satellite laser
ranging (Cheng and Tapley, 2004).

e SHC variations were computed by removing the long-term mean (computed between
April 2002 and December 2010) from each monthly solution.

e A destriping filter (Swenson and Wahr, 2006) was applied to the SHC variations. The
filter used a 5™ degree polynomial (Savitsky-Golay) over a 5-point window to remove
the correlations; orders below 8 remained unchanged.

e An additional 250-km radius Gaussian smoothing (Jekeli, 1981) was applied to SHC
variations to suppress high-frequency noise, and the TWS variations (Ao [m]) were
then computed using (Wahr et al 1998)

S
—t
ae(21+1) pe

- 1
80 (0,$) = T2, Thoe o W, 22D LE A, 7,0, ), @

where 6, ¢ are co-latitude and longitude in spherical coordinates, AC,,, is the SHC
variations of degree [ and order m, Y;,,, is the normalized surface spherical harmonic,
W, is the Gaussian smoothing function, S; is a scaling factor used to convert
dimensionless coefficients to TWS in terms of Equivalent Water Heights (EWH), a,
is the semi-major axis of the reference ellipsoid, k; is the load love number of degree
[, p. and p,, are the average density of the Earth and water, respectively. In this study,
the TWS variations were computed at every 0.5°x0.5° grid cell. This cell size was
selected through trial and error as a balance between performance and resolution.

6
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In general, filters suppress not only noise but also the genuine TWSV signal, and are a well-
known source of signal leakage. To address this, a signal restoration method (Chen et al.,
2014; Tangdamrongsub et al., 2016) was employed. The method iteratively determined the
possible signal reduction caused by the filter applied and added it back to the
filtered signals. The errors of the procedure grew with the number of iterations, requiring a
proper selection of the convergence criterion. In this study, the criterion was chosen
empirically: the signal restoration process was iteratively repeated until the increment in every
grid cell inside the Hexi Corridor became smaller than 0.5 cm. This value is 2-3 times smaller
than the GRACE uncertainty (Wahr et al., 2006; Klees et al., 2008; Dahle et al., 2014). Figure
4 demonstrates the signal restoration for October 2002. The convergence criterion was met
after approximately 6 iterations. The signal over the mountain range and Inner Mongolia
became apparent after the signal restoration was applied (see Fig. 4f).

4.2 Forcing data

The forcing data required by PCR-GLOBWB are precipitation, air temperature, and potential
evapotranspiration. Tangdamrongsub et al. (2015) showed that the use of high-quality
precipitation data might lead to better estimates of hydrological fluxes (e.g., TWSV and
streamflow). In principle, local precipitation and surface temperature measurements could be
obtained from the China Daily Ground Climate Dataset provided by the China Meteorological
Data Sharing Service System (http://cdc.cma.gov.cn/home.do). A total of 23 weather stations
were found over the Hexi Corridor (see Fig. 1b). However, the measurements were spatially
sparse and did not cover the entire region. Therefore, the global precipitation data were used
to achieve a better spatial coverage. Four global precipitation products were considered for
inclusion:

e The European Centre for Medium-range Weather Forecasts (ERA-Interim, spatial
resolution: 0.75°x0.75°% Dee et al., 2011)

e The Tropical Rainfall Measuring Mission (TRMM 3B42, spatial resolution: 0.25°
x0.25% Huffman et al., 2007; Kummerow et al., 1998)

e The Climate Research Unit dataset (CRU, spatial resolution: 0.5° x0.5°; Mitchell and
Jones, 2005; van Beek, 2008)

e The Princeton's Global Meteorological Forcing Dataset (Princeton, spatial resolution:
0.5° x0.5°%; Sheffield et al., 2005)

To select the best product, the global precipitation values were interpolated to the
weather station locations and then the correlation coefficient, Nash-Sutcliffe (NS) coefficient,
and RMSD between the interpolated and observed ground data were calculated. The mean
values of the statistical estimates are shown in Fig. 5a. Overall, TRMM provided the best data
quality, with the highest correlation (~0.85) and NS coefficients (~0.46), and an RMSD
approximately 2-3 mm lower than other products. The high spatial resolution of TRMM is
probably the reason for its better performance. Therefore, this product was chosen as the
precipitation input. The low NS coefficient in all 4 cases suggests that the coarse spatial
resolution of the global precipitation datasets prevents them from capturing all the local
precipitation events.
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A similar procedure was used to compare the air temperature data from ERA-Interim, CRU,
and Princeton. The statistical estimates are shown in Fig. 5b. Although the results from all
products were very similar, CRU provided the highest data quality in terms of correlation and
RMSD values, and therefore, it was used as the temperature input. As far as potential
evapotranspiration is concerned, few data are available for this region, so the data from (van
Beek, 2008) were used.

4.3 Validation data
4.3.1 Groundwater

Monthly groundwater well measurements at 5 locations (Fig. 1¢) were obtained from the
ground network maintained by the Shiyang River Basin Management Bureau, and Institute of
Water Resources and Hydropower of Gansu Province. The in situ data were provided in the
form of piezometric heads (relative to the mean sea level), which needed to be converted to
units of storage. For such a task, several parameters, e.g., storage coefficient and specific
yield are required, but they are not available over the Hexi Corridor. To solve that problem, a
scale factor computed using the information from GRACE and soil moisture (SM) from the
Global Land Data Assimilation System (GLDAS, Rodell et al., 2004) was used for the
conversion using the approach outlined by Tangdamrongsub et al. (2015). _As discussed in
Tangdamrongsub et al. (2015), it is ideally preferred to use the in-situ soil moisture data to
represent the SM term, but they are not available at the well locations. The soil moisture
estimated from remote sensing was also not appropriate due to the limitation of the
penetration depth. The use of SM from PCR-GLOBWB is avoided to reduce the bias when
compared the adjusted well measurements to the final DA result. Therefore, the GLDAS
derived SM was used.

The adjustment procedure was as follows. First, GLDAS-based soil moisture storage
variations (SMSV) were removed from GRACE-derived TWSV. Four variants of GLDAS
model (NOAH, CLM, MOSAIC, and VIC; see Rodell et al., 2004) were considered and the
average SMSV value was calculated. Taking into account that SMSV and groundwater
storage variations (GWSV) are the major contributions to TWS variations, this resulted in
GWSV (GWSV erace-smsvy). Then, by conducting a regression analysis between the monthly
time-series of piezometric head variation (Ah) and AGWScrace-smsv) at each individual
location, a bias (b) a scale factor (f) were estimated using the following

relationship:

AGWSGrace-smsv) + € = b + f - Ah, (2)
where e indicates the observation error. Finally, the estimated bias (b) and scale factor (f)

to convert groundwater storage variation
(GWSVm situ) as:
GWSVip situ = b + f + Ah. (3)
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4.3.2 Streamflow

Monthly river gauge data were obtained from the same data centre as the groundwater
measurements. Due to the coarse spatial resolution of PCR-GLOBWSB, it models only the
main river streams. Therefore, the gauge measurements of small river streams, as well as the
gauge measurements that contained many data gaps (i.e., more than 24 months), were
excluded. As a result, the measurements from only 2 gauges — at Xida and Xiying Rivers (see
Fig. 1c) — were used in this study.

4.4.3 Normalized Difference Vegetation Index (NDVI)

NDVI (Carlson and Ripley, 1997) is an indicator of vegetation health or “greenness”. In this
study, NDVI and GWS were analysed to determine if the growing season was being extended
beyond the limited rainy period through groundwater extraction for irrigation. NDVI was
computed from the MODIS 8-day, 500-m spatial resolution surface reflectance product
(Vermote et al., 2011) based on data from Aqua satellite (MYDO09AL product). Based on the
location of the in situ groundwater measurements, the MODIS tiles h25v05 and h26v05 were
selected. First, the data were quality controlled pixels with cloud cover. The 8-day
NDVI was then computed as (Huete et al., 2002)

NDVI = PNIR_PR (4)
PNIRTPR

where py;r and py are the surface reflectances in the near-infrared and red portions

of the electromagnetic spectrum . The monthly-averaged NDV1 was then

computed based on the derived 8-day NDV1 values.

5. Methodology and implementation
5.1 Ensemble Kalman Filter (EnKF)

The Ensemble Kalman Filter (EnKF; Evensen, 2003) is used to assimilate GRACE derived
TWSV into the PCR-GLOBWB model. The EnKF works in two steps, a forecast step and
analysis (update) step. The forecast step involves propagating the states forward in time using
the model (PCR-GLOBWB). Identical to how the EnKF is implemented by Forman et al.
(2012), the state vector (y in this study is an nm x 1 vector, where n = 27 is the number of
TWS-related states from PCR-GLOBWB (see Sect. 3), and m is the number of model grid
cells. The model estimates are related to the GRACE observations by

d = Hy + €, e~N(0,R), 5)

where d is an m x 1 vector containing the GRACE observations for the month of interest, and
H is a measurement operator which relates the PCR-GLOBWSB state 1 to the observation
vector d. Notice that the number of observations is equal to the number of grid cells because
the GRACE-based estimates are obtained for all the grid cells of the PCR-GLOBWB model
(see Sect. 4.1). The uncertainties in the observations are given in the random error €, which is
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assumed to have zero mean and covariance matrix R, .. As the sum of all state elements at
a given cell is equal to TWSV, the H matrix is defined as:

(111..10)54, 0 0

9 (111 Dixn 0 (6)

0 0 e (111 .. Dy

mxnm

the ensemble of the states be stored in a matrix A,;xy = (W1, P2, Y3, ..., Py),
the ensemble perturbation matrix is defined as
A’ = A — A, where Ais the mean
computed from all ensemble members. Similarly, the GRACE observation vector is stored in
the matrix D,xy = (dy, d3, ds, ..., dy), in which each column is a replicate of the
observation but perturbed with random noise ~N (0, R). The analysis equation can be
expressed as (Evensen, 2003)

A% = A+ AA = A+ K(D — HA) 7)
with
K =P, H"(HP,HT + R)" 1, (8)

where A%, .y is the updated model state, AA,,,,«y IS the update from Kalman filter, and
K, .mxm 1S the Kalman gain matrix. The model error covariance matriX (P,),;mxnm 1S
computed as

P, =A'(A)T/(N - D). (9)

The matrix R is the error variance-covariance matrix of GRACE data in the spatial domain,
is discussed in Sect. 5.2.2.

In the initialization phase, to obtain the initial states, the model was spun
up between 1 January 2000 and 31 December 2000 as a hot start. This time interval was
sufficient to reach the dynamic equilibrium. The initial state ¥

was perturbed N = 100 ensemble members ¢;,i = 1,2, 3, ..., N.
The N ensemble runs between 1 January 2001 and 31 March 2002 were then conducted
independently based on the perturbed initial states. This resulted in an ensemble spread of the
estimated states. The model was then propagated in time between 1 April 2002 and 31
December 2010 without assimilating any observation. This case is referred to hereafter as the
Ensemble Open Loop (EnOL). For the EnKF, the model was also propagated beginning from
1 April 2002, but the observations (when available) were assimilated.

The processing diagram is shown in Fig. 6, and follows the methodology introduced by
Forman et al. (2012). The state is first propagated in time from the first to the last day of the
month without applying DA, and the monthly averaged states are calculated from the daily
values. When the GRACE observation for that month is available, the DA routine is activated
therwise, the model continues propagating to the next month without applying DA). The

10
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DA routine update the TWS-related states, cf. Eq. (7).
The daily increment (DINC) of the update is then computed by dividing the monthly averaged
update by the total numbers of days in that month (humdaymonth). The model propagation is
then restarted (second run), using the last day of the previous month (month-1, numdaymonth-1)
as the initial state. In this second run, the DINC is added to the states every day up to
the last day of the month. The DA scheme is repeated to the end of the
study period.

Spatial correlations of model and observation errors were also taken into account

the fact that the neighbouring 0.5°x0.5° grid cells. De
Lannoy et al. (2009) proposed a so-called 3D-Fm (3-dimentional fine scale with multiple
observation) approach, which is called EnKF 3D in this paper. The approach only consider
the spatial correlations between the neighbouring grid cells. In this study, the neighbouring
grid cells were assumed to be the ones inside the Gaussian smoothing radius applied, i.e., 250
km. This reduced the computational cost, as only a small subset of cells pairs was considered
instead of all cells pairs. That approach was applied not only to observation errors, but also to
model errors in TWSV and TWS-related components in this study. The EnKF 3D scheme is
illustrated in Fig. 7. For a particular grid cell (centre grid cell), all TWS-related components
of the neighbouring grid cells and the centre grid cell are used to form the state (A%,.y) and
observation (D3, ) matrices, where p is the number of the considered grid cells. The matrix
notation with superscript s (e.g., A%) is only used to emphasize the cell-dependent version, and
it can be substituted into the original matrix notation (e.g., A) in Egs. (5-9). It is emphasized
here that EnKF 3D involves only p grid cells instead of all m grid cells. As such, the
measurement operator, model error covariance matrix, and observation error covariance
matrix become H3 . (P2)npxnp, and RS, respectively. The EnKF was then applied and
the states of the centre grid cell (only) were updated. The procedure was repeated through all
grid cells. To investigate the impact of including spatial correlations of errors, the EnKF 1D
was also considered. The EnKF 1D scheme is similar to EnKF 3D, but the spatial correlations
are omitted (i.e., the off-diagonal elements of the covariance matrices P; and R® are set to
zero).

Furthermore, sampling errors caused by finite ensemble size might lead to spurious
correlations in the estimated model error covariance matrices (Hamill et al., 2001). To reduce
such an effect, a distance-dependent localization function is applied to P; (pair-wise). In this
study, the Gaussian function (c(a)) (Jekeli, 1981) was used

e bli-cos(aj, jp/ae)]

c(ay, ,) = T (10)

In(2)

with b = TcosL/ay)’

1)

where a;_ ;, is the distance on the Earth’s surface between two grid cells (j; and j,), and L is
the correlation distance. The variogram analysis was used to derive the TWSV correlation
distance (L) of PCR-GLOBWB, assuming that it is similar to the correlation distance of
model errors. It was found to be approximately equal to 110 km over the Hexi Corridor. For

11
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GRACE observations, to ensure that the spurious error correlations at distances greater than

the Gaussian smoothing distance, 250 km, insignificant, the localization applied to R® was
based on L = 250 km. The localization also the correlations at short distances slightly
weaker. As a result, the condition number of the covariance matrix

from ~10 to ~10?

5.2 Errors of PCR-GLOBWAB model and errors in GRACE observations
5.2.1 Model errors

The two primary sources of considered errors in the PCR-GLOBWB model are the
meteorological forcing data and the model parameters. For forcing data, the precipitation
uncertainties were quantified as the RMS error provided by the TRMM product (Huffman,
1997). The uncertainties of temperature and potential evapotranspiration were not provided as
parts of the corresponding products, and therefore errors of 2°C, and 30% of the nominal
potential evapotranspiration value were assumed, respectively. The error levels were chosen
through trial-and-error, mainly to allow the ensemble to grow between updates. The
precipitation and potential evapotranspiration were perturbed with additive lognormal noise
while the temperature was perturbed with additive Gaussian noise. The forcing data
uncertainties were assumed to be spatially correlated, which was accounted for using an
exponential decay function. Based on a variogram analysis, the correlation distances of
precipitation, temperature and potential evapotranspiration were found to be approximately
150 km, 450 km, and 450 km, respectively.

As far as model parameters are concerned, a total of 15 TWS-related parameters (see Table 1,
Sutanudjaja et al., 2011, 2014) were perturbed using additive Gaussian noise without spatial
correlations. The standard deviation of the perturbations of the parameters was set to 20% of
the range of the nominal values.

5.2.2 GRACE observation errors

Spatial correlations of GRACE observation errors were also taken into account in the DA
scheme. The uncertainties in the GRACE-derived TWSV over the Hexi Corridor were
computed using the monthly calibrated error variance-covariance matrix of the SHCs (%)
provided by the CSR. Recalling the replacement of the low degree SHCs (see Sect. 4.1), the
error (co-)variances of SHCs degree 2 were not provided by Cheng and Tapley (2004), and
therefore the values obtained from the CSR were used. As for SHCs of degree 1, the error (co-
) variances were not available from (Swenson et al., 2008) either and were set to zero. Note
that X only reflects the error of the original GRACE data, i.e. before the GRACE processing
described in Sect. 4.1 was applied. To obtain the error variance-covariance matrix associated
with the post-processed GRACE data, an ensemble of SHC noise realizations Q¢ was first
generated based on X as follows:

12
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Q= @i, 12

where Q¥ = (g7, 9Y, 4%, ..., qy) contains a set of white noise realizations and has the
dimension of s X N, where s = 1891 is the number of SHCs, and N = 100 is the number of
realizations. The matrix Q¢ = (g5, g5, g5, ---, q5) has the same dimension as Q" and contains
an ensemble of correlated noise realizations in SHCs. Then, each noise realization (i.e.,
column of Q¢) was post-processed in the same way as the GRACE data (Sect. 4.1), which
resulted in Q¢ = (g5, g5, 45, ..., §5). The post-processing included applying the destriping and
Gaussian smoothing filters, as well as the signal restoration using the same number of
iterations as was used in the GRACE data post-processing. The error variance-covariance
matrix  associated with the SHCs after post-processing was then computed as

- ~ . ra\T

= [QC(QC) ]/(N ~1). (13)
Recalling Eq. (1), the TWSV over the Hexi Corridor can be computed as

Ao = YSx, (24)

where Ao is the vector composed of the computed TWSV at grid cells, Y is the matrix of
spherical harmonic synthesis (cf. Eg. (1)), S is the matrix containing the scaling factors S;, and
x is the vector composed of the dimensionless SHC variations after GRACE data post-
processing described in Sect. 4.1. Then, the error covariance matrix R of the GRACE-based
TWSV over the Hexi Corridor was computed with the error propagation law as

R =YSZ (YS)”. (15)

Some statistics of GRACE TWSV errors over the Hexi Corridor are shown in Fig. 8. The
error standard deviation in Oct. 2002 varied with location (Fig. 8a), whereas the error
correlation showed a distance-decay pattern in all directions (Fig. 8b). The areally-averaged
standard deviations over 4 basins stayed in most of the months at a similar level of
approximately 1 cm (Fig. 8c). The large uncertainty in September 2004 was likely caused by
the near-repeat orbit of GRACE satellites during that month.

6. Results and discussion

The structure of this section is as follows. First, the impact of assimilation using EnKF 3D on
the TWSV is considered in Sect. 6.1. Then, the impact of the EnKF 3D on the estimates of the
individual stores is investigated in Sect. 6.2. The of the EnKF 1D and EnKF 3D
schemes are compared in Sect. 6.3 in terms of TWSV and the individual stores.
Finally, in Sect. 6.
the assimilation results are used together with ancillary remote sensing data to study
water resources in the Hexi Corridor.
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6.1 of GRACE DA

To demonstrate the impact of DA, Fig. 9 shows the daily TWSV estimates over the Shiyang
River Basin between 1 April 2002 and 31 December 2003. Several features associated with
the EnKF can be observed. Firstly, when a GRACE observation is available, the EnKF moves
the estimated TWSV towards it. As a result, the estimated TWSV lies between the EnOL
estimate and the GRACE observation most of the time._It is seen that GRACE-derived TWSV
has a greater annual amplitude compared to the model estimated TWSV. This can likely be
attributed to the poor quality of the model parameter calibration and the accuracy of the
meteorological input data over the data-sparse regions. In the absence of observations, model
parameters are difficult to determine and only the best available knowledge (or guess) is
generally used, leading to inaccurate model state estimates. Updating the water storage
estimates using GRACE DA showed a clear improvement in this case. Secondly, the standard
deviation across the EnKF ensemble of TWSV values is smaller than that of the EnOL and
smaller than the GRACE observation error. Thirdly, at the first month (April 2002) the
TWSV estimates of the EnOL and EnKF were similar at the forecast step (as the initial states
were the same ), but became different when the daily increment was
applied to the EnKF. Finally, discontinuities in the time-series before the update were
observed at the end of the month e.g., in November and December 2002 (point (b) and (c)),
and February 2003 (point (d)). Applying the daily increment (see Sect. 5.3) served as a
smoother, and these stepwise changes were reduced.

Similar features were also seen in the EnKF 1D TWSV estimates (not shown).

6.2 Impact of GRACE DA on individual stores

The monthly-averaged values of the TWSV and individual stores in each of the 4 basins are
presented in Fig. 10. Overall, TWSV estimates over the Hexi Corridor mostly reflect SMSV
and GWSV components, while snow water storage variation (SNSV) and surface water
storage variation (SFWV) are minor contributors, constituting less than 5% in most basins.
Clear seasonal variations in TWSV were seen in all basins for GRACE, EnOL and GRACE
DA (both EnKF 1D and EnKF 3D) (Fig. 10 a,b,c,d). As observed in Fig. 10, the
GRACE DA estimated TWSVs are generally between the GRACE observations and the
EnOL estimates. As a result of assimilating GRACE data, both the EnKF 1D and EnKF 3D
added water to all basins between 2002 and 2005 and reduced it from the basins between
2006 and 2010. This is also seen in the time-series of SMSV (Fig. 12 e,f,g,h ) and GWSV
(Fig. 12 1,j,k,I). Additionally, the annual amplitudes and phases of GRACE DA estimated
TWSV were also found mostly in between the values computed from the GRACE
observations and the EnOL results (see Table 2). In particular, the GRACE-DA estimated
TWSV’s phase was always closer to the GRACE observation. The phase shifts of
approximately 1 month were seen in both GRACE DA estimated TWS and GRACE
observations compared to the EnOL results. Similar phase differences of approximately 1
month were also observed in SMSV and GWSV components.

14
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Differences in the long-term trends were also detected between the TWSV estimates from the
model alone (EnOL) and the GRACE DA. The GRACE DA results showed decreasing
TWSV trends to the GRACE data, while the EnOL showed increasing trends (Fig.
10 a,b,c,d, see also Table 7). This change in TWSV trend was clearly a result of assimilating
GRACE observations. The negative trends were also observed after DA in the GWSV
component in most basins (Fig. 10 i,j,1). This indicates the potential of GRACE DA in
adjusting GWSV. In this way, one can reveal continued groundwater consumption to support
local agricultural activities (Li et al., 2013). Unlike over other basins, the negative trend of
GWSV estimates was not clearly present over the Desert Region (Fig.10k). This could be due
to the small amplitude of the groundwater variation of this region (see also below), and most
of the update took place in the SM component. As a result, a relatively large negative trend
was seen in SMSV rather than GWSV after GRACE DA (see also Table 7). Further
discussions on the trends are given in Sect. 6.4.

The impact of GRACE DA on different stores was influenced by both the model parameters
and the forcing data. The 4 basins have similar soil water storage capacities (see Table 3),
which indicates that the basins can store similar amounts of soil water and generate similar
amounts of groundwater recharge under the same rainfall conditions. However, the 4 basins
received different amounts of rainfall resulted in different SMSV and GWSV
estimates. For example, the Shiyang River Basin received the greatest amount of rainfall (~
twice of Heihe River Basin), which led to the greatest amount of the SMSV estimate (~1 cm
annual amplitude). Such a large amount was also sufficient to percolate into the groundwater
layer, resulting in GWSV of ~0.7 cm (see Fig. 10i and Table 2). In contrast, the Desert
Region received approximately 3 times less rainfall, which led to a somewhat smaller amount
of SMSV (~0.7 cm annual amplitude) and a much smaller amount of GWSV, ~0.2 cm (see
Fig. 10q, k). As the uncertainty of the water storage variation is associated with signal
amplitude, the greater (smaller) water storage variation leads to greater (smaller) uncertainty,
resulting_in greater (smaller) update from GRACE DA. As such, a greater update

GWSV) is seen over the Shiyang River Basin, as compared to other basins.

Snow estimates (SWE plus SFW) were very small (less than 0.2 cm) over the Hexi Corridor
and therefore were only slightly updated by GRACE DA. Note that the large

amount of snow seen as the sharp peaks (e.g., in January 2008) was caused by the
precipitation and temperature variability. In January 2008, the precipitation records were 159
% higher than the January average value while the temperature was 2 — 3°C lower. Such a
condition resulted in a large amount of snow. Finally, GRACE DA influences the surface
water, but the amplitude is still lower than that of the GRACE uncertainties. VValidation of the
surface water estimates in terms of river streamflow is given in Sect. 6.4.2.

6.3 Impact of taking spatial correlations of errors into account

he impact of accounting for the error correlations was clearly seen in the TWSV estimates
(Fig. 10 a,b,c,d). When the error correlations were ignored (EnKF 1D), the TWSV estimate
received a larger update from GRACE, particularly between 2002 and 2005. Hence, the
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estimate was drawn significantly closer to the observation. The presence of error correlations
effectively reduces the amount of information in the GRACE data, since spatial averaging of
such data mitigates noise to a much less extent than averaging of data with uncorrelated
errors. Therefore, the impact of GRACE data in the EnKF 3D case is reduced. As such, the
EnKF 3D estimated TWSV was always between the EnOL and EnKF 1D results. Validating
against the in situ groundwater and streamflow data will guantitatively reveal the performance
of each approach (Sect. 6.4).

Taking error correlations into account also has a clear impact on the SMSV and GWSV
components. For SMSV, similarly to TWSV, the EnKF 1D vyielded a larger update between
2002 and 2005 compared to the EnKF 3D (Fig. 10 e,f,g,h). The difference between EnKF 1D
and 3D results became smaller after 2005. This can be attributed to the fact that the ensemble
spread in the soil moisture component becomes smaller after several years of updates. After
2005, the ensemble spread of SMS was lower than the GRACE uncertainty, and therefore
taking the error correlations into account did not have a significant impact on the SMS
estimates. For GWS, the impact of taking error correlations into account was even clearer,
especially in terms of the long-term trend (Fig. 10, i,j,k,1). With the exception of the Desert
Region, the EnKF 1D showed a steeper decreasing trend in all basins. For snow and surface
water, the impact of considering error correlations was not significant due to the fact that the
stores are small, as compared to SMS and GWS.

It is also worth discussing the impact of GRACE DA on the spatial pattern of the water
storage estimates. To demonstrate this, the update term (AA in Eq. (7)) of October 2002 from
EnKF 1D and 3D cases is shown in Fig. 11. Only TWSV, SMSV, and GWSV are .
since other components (snow, surface water, and interception) are small. As discussed above,

EnKF 3D shows smaller update in all components. Due to a greater amplitude of GRACE-
derived TWSV over northern and southern parts of the region (see Fig. 4), the update is
mostly seen there. Almost all update is limited to the soil moisture layer. Higher precipitation
is generally observed over the southern part, which leads to higher groundwater recharge (and
GWSV) over that region. As such, a GWSV update is clearly seen over the southern part of

the region.

1 Validation of groundwater estimates

The GWSs estimated from GRACE DA were validated against the well measurements at 5
locations shown in Fig. 1c. Yang et al. (2001) showed that the specific yield values obtained
from the field measurements over the Shiyang River Basin was between 0.01 and 0.3.
Although the measurements were not ted at the well stations used in this study, the
values obtained can be used as a guidance of the specific yield of the Shiyang River Basin. In
this study, the head measurements were converted to storage unit with the approach described
in Sect. 4.3.1. The bias term in Eg. (3) was found to be very close to zero, as the variation
(mean removed) was used in the regression analysis. The estimated scale factor was 0.23,
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0.04, 0.24, 0.25, and 0.32 at W1 — W5, respectively, which is in line with the values obtained
from the field measurement.

The GWSV estimate at each well location is shown in Fig. 12. Compared to the EnOL results,
GRACE DA results were visually closer to the well measurements at all 5 locations. The
EnKF 1D and EnKF 3D showed a noticeable difference at each location. The updated GWSV
estimates were evaluated in terms of the correlation coefficient, RMSD, and long-term trend
(Table 4, 5). Overall, the EnOL resulted in relatively poor correlation coefficients at most
stations (except station W1), with the average value of only 0.06. Clear improvements were
seen after GRACE DA was applied. The average correlation coefficient increased to
approximately 0.6 — 0.7. Although the EnKF 1D introduced a greater update than the EnKF
3D, it only showed higher correlation coefficients at stations W1 and W3. Applying the EnKF
3D led to correlation coefficients greater than 0.45 in all stations, and on average it improved
the correlation coefficient by approximately 0.1 over EnKF 1D. In terms of RMSD, applying
GRACE DA reduced the difference by approximately 15 — 25% compared to the EnOL.
Compared to EnKF 1D, the EnKF 3D significantly improved the RMSD in most stations. The
EnKF 1D only performed better than EnKF 3D at station W1, where it reduced the RMSD by
approximately 16 % compared to 8% reduction by the EnKF 3D. The noticeably low GWSV
observed by the well data at station W2 in the summers of 2007 and 2008 (Fig. 12b) was
probably caused by significant groundwater abstraction. These local features could not be
reproduced due to a limited spatial resolution. As a
result, neither of the EnKF algorithms could improve the GWSYV estimates at the W2 location
during those periods.

The long-term trend estimated between 2007 and 2010 was also used to evaluate the impact of

taking the error correlations into account (Table 5). The EnOL
trend estimates were considered poor as they showed the largest RMSD respected to the in
situ data. In fact, they were the least consistent with the in situ estimates at each individual
station. Similar to the results in terms of correlation coefficient and RMSD (see Table 4), the
EnKF 3D led to the largest improvement in the trend estimates (RMSD=0.54 compared to
0.93 after EnKF 1D). However, while the EnKF 3D showed closer long-term trends to the in
situ measurements at stations W2, W4, W5, the EnKF 1D produced better estimates at station
W1 and Wa3.

Thus, both EnKF 1D and 3D led to the improvement of the GWSV estimates in terms of all
metrics. In terms of the average results and at the majority of well locations, the EnKF 3D
provided more improvement than the EnKF 1D.

6.4.2 Validation of streamflow estimates

The streamflow estimates were validated against the river gauge measurements at locations
G1 and G2 (Fig 1c). Results are shown in Figure 13 and Table 6. Only modest improvements
in the streamflow estimates observed in terms of the correlation coefficient, NS
coefficient, and RMSD. This behaviour is similar to what was observed previously for

17



[706
707
708
709
710
711
712
713

714
715
716
717
718
719
720
721
722
723
724

725
726

727
728
729
730
731
732
733
734
735
736
737
738

739
740
741
742
743
744
745
746

Rhine River Basin, when a different hydrology model and input data were used
(Tangdamrongsub et al., 2015). Figure 13 shows that taking error correlations into account
had little impact, i.e. similar streamflow estimates were seen for EnKF 1D and 3D results. At
location G1 (Fig. 13a), GRACE DA added more water to the stream channel between 2002
and 2006 and reduced it between 2008 and 2010. This behaviour is consistent with the TWSV
estimates discussed in Sect. 6.2. GRACE DA increased the correlation coefficient from 0.82
to 0.84, increased the NS coefficient from 0.65 to 0.69, and reduced the RMSD by
approximately 5 % (Table 6). A lesser improvement was observed at G2.

Comparing to the gauge measurements, both the EnOL and GRACE DA overestimated the
streamflow in September 2007 and September 2008 at G2. The sudden surge in

streamflow resulted from heavy rainfall while the soil was
saturated (Fig. 14). For example, in September 2007, the
second highest amount of SM storage in the record (~19.5 cm) was when the third
largest amount of rainfall (~90 mm/month) . Similarly, in September 2008, large
SM storage (~20 cm) and the heaviest rainfall (~100 mm/day) forced PCR-GLOBWB to
generate a large amount of streamflow significantly

exceeded the actual one observed at G2. Inaccurate precipitation data and model calibration
led to these discrepancies. GRACE DA was unable to reduce these spurious peaks due
to the limited spatial (~250 km) and temporal (1 month) resolution

6.5 Declining water storages in the Hexi Corridor

The water resources situation over the Hexi Corridor was assessed using long-term trends
estimated from the 9-year EnKF 3D results. This DA variant is primarily discussed here as it
provided better agreement with observations than the EnKF 1D (see Sect. 6.4.1). For
completeness, however, the values estimated from GRACE, EnOL, EnKF 1D, and
precipitation are also provided. The trends in the TWSV, SMSV and GWSV for the 4 basins,
as well as the areally-averaged values for the entire Hexi Corridor, are given in Table 7. The
average EnKF 3D trends are all negative: approximately —0.2, 0.1, and 0.1 cm/yr for
TWSV, SMSV, and GWSYV, respectively. This reduction in the water storages is observed
despite the increased amount of rainfall, which shows a positive trend of about 0.4
(mm/month)/yr. The water storage reductions can likely be attributed to the extraction of
groundwater to meet irrigation demands. In Sect. 6.6, it will be shown that groundwater
extractions are essential for that purpose in the Hexi Corridor.

Focusing on individual river basins provides additional insight into the water storage issue, as
the influence of the large desert area is removed. The water storage losses in the individual
basins are even more pronounced, particularly in the Shiyang River Basin.
This basin had the greatest TWS loss (approximately 0.4 cm/yr), which was entirely caused
by the reduction of GWS. This can be explained by groundwater abstraction to meet the
irrigation demand in the region. The Heihe and Shule River Basins also experienced a TWS
loss of ~0.2 cm/yr, which came from a reduction of both soil moisture and groundwater
storages. Again, the negative GWS trend was likely caused by significant pumping of
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groundwater to maintain crop production. This is consistent with the extreme water stress
over the Heihe River basin between 2001 and 2010, which was documented in Table 11.7 of
the study by Chen et al. (2014). In the Desert Region, in contrast to other basins, the minor
decreasing TWS trend of -0.1 cm/yr was dominated by loss of SM storage. This was likely
caused by inaccurate model parameter calibration over the Desert Region (i.e., too large SC
value). Separation of the TWS into groundwater and soil moisture store was likely incorrect.
As such, the annual signal in GWS is much less than in SM there. Therefore, GRACE update
was mostly attributed to the SM component, so that a groundwater-pumping signature (Jiao et
al., 2015) was seen in the SM instead of the GWS layer.

6.6 Connection to agriculture activity

Figure 15 shows the monthly averaged groundwater head measurements at wells W1 to W5 in
the Shiyang River Basin (Fig. 1c). Monthly averaged precipitation and NDV1 values are
shown as well. Since extracted water can be used to support agriculture not only at the well
location but also in the nearby area, precipitation and NDV1 are reported as the average values
within a circular area of the 10-km radius. These data will be used to ascertain if groundwater
extractions to support agriculture might be the source of the negative GWS trends observed in
Fig. 12 and Table 6. From Fig. 14, it is noticed that the growing period is approximately
between May and October, where the amount of rainfall is higher than 15 mm/month and the
NDVI is typically greater than 0.2. By observing well measurements, precipitation, and NDVI
together, some groundwater extraction signatures can be explained by the extension of the
growing period over the dry season. For example, at station W1, the groundwater in 2010 was
lower than the average, showing a gradual decrease in summer (Fig. 15a). One may attribute
this to the shortage of rainfall in July and August 2010, which was lower than the average
(Fig. 15b). However, the NDVI value was higher than the average during summer 2010 (Fig.
15c¢), which implies that water from other sources than precipitation was probably used to
maintain the growing period. This additional water was likely extracted from the ground, and
such an activity led to a decreased groundwater table during summer 2010. A similar
explanation can be applied to station W2, where low groundwater head, low rainfall, and high
NDVI1 were observed in summer 2007 and summer 2008 (Fig. 15 d,e,f). At station W3, the
behaviour is similar to station W1: the extension of the growing period was observed in
summer 2010, where the GWS and precipitation were lower than the average, while NDV I
was significantly higher (Fig. 15 g,h,i). Groundwater pumping signatures were not present at
stations W4 and W5.

7. Conclusions

This study S the estimation of water resources dynamics in the Hexi Corridor by
assimilating GRACE-derived TWSV into the PCR-GLOBWB hydrological model.

Furthermore, GRACE DA estimates
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revealed the reduction of water storages between 2002 and 2010. The Shiyang River Basin —
the southeaster part of the Hexi Corridor area — suffered the most from the water loss, which
was likely caused by the overuse of the groundwater for irrigation. Due to inaccurate
groundwater abstraction information, PCR-GLOBWAB alone could not properly capture the
downward trend of water storages. This highlights the value of the GRACE DA in this
situation. It should be emphasized that GRACE does not fix a technical problem of the
hydrological model, but rather it provides information, which is not available otherwise. Note
that, in principle, the model may predict any long-term behaviour of water storage, but that
information should be brought in "by hand" (e.qg., via the groundwater abstraction parameter).
As soon as that information is not available, reliable long-term predictions on the basis of
hydrological modelling alone are conceptually impossible. GRACE DA acts as a provider of a
missing puzzle piece here. Of course, the performance of GRACE DA needs to be further
investigated in other geographical locations and with different hydrological models to confirm
its benefits.

A substantial decrease in the water storage in the Hexi Corridor between 2002 and 2010,
particularly over the Shiyang River Basin, took place in spite of the increased precipitation.
The amount of water from rainfall was likely insufficient to support irrigation water
requirements. Irrigation water demands increased significantly to maintain the crop
production and, as a result, the region was under extreme water stress. Water consumption
from all available sources was essential for bridging the deficit, including a sizeable amount
of groundwater extraction. This study illustrates how ground observations and remote sensing
data may reveal the connection between groundwater pumping and agricultural activity.

The conversion approach between the groundwater head measurement and groundwater
storage is proven feasible over the Shiyang River Basin. The scale factor estimates produced
with this approach are consistent with the specific yield estimated from the field observations.
However, it is noted here that the results of the conducted validation might be over-optimistic,
since the well data processed with the adopted conversion procedure are not fully independent
of the assimilated GRACE data. The specific yield from the field observation must be used
when available.

Furthermore, we demonstrate how the error covariance matrix R of GRACE-derived TWSV
can be obtained from the error covariance matrix of GRACE SHCs (which is currently
provided together with the SHCs themselves). This study shows that it is necessary to use the
R matrix in order to properly take into account the error correlations in the DA scheme. To
come to that conclusion, we considered 2 variants of the error variance-covariance matrix in
the data assimilation: excluding and including error correlations. Validating against well data
showed that ignoring error correlations in DA tended to over-fit results to the observations,
and in many cases led to less accurate state estimates. This finding is in agreement with the
recommendation in Schumacher et al. (2016). \We explain this finding by the fact that
GRACE errors at the neighbouring 0.5°x0.5° grid cells are highly correlated. As such, the
simultaneous consideration of GRACE data at multiple neighbouring cells does not reduce
data noise, as it would be the case if noise were white. In other words, the white-noise
assumption may severely overestimate the information content of GRACE data. We recognize
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that the derivation of GRACE-derived TWSV error variance-covariance matrices is very
computationally demanding. Still, we believe that this is a reasonable price to pay as deriving
the error variance-covariance matrix from the full (and only full) error covariance matrix

To further improve the DA performance, an extended or an alternative DA framework can be
considered. One of the points of attention is only a minor improvement in streamflow
estimates, which is caused by an insufficient temporal and spatial resolution of GRACE data.
A promising way to go is to improve the runoff scheme at a conceptual level, e.g., by
extending GRACE DA with a simultaneous parameter calibration. To that end, the state
vector should be extended to include selected model parameters (Eicker et al., 2014;
Wanders et al., 2014). This allows for the adjustment of the storage size and might lead to a
more accurate estimate of model states, including streamflow (Wanders et al., 2014).
Alternative ensemble-based DA approaches, such as particle filters (Weerts and EIl Serafy,
2006), can also be considered. Particle filters estimate a sample from the realistic posteriori
distribution, which is not necessarily Gaussian, like in the EnKF. The approach has been
shown very effective for the parameter calibration (Dong et al., 2015).

Finally, the usage of improved gravity solutions the
GRACE Follow-on (Flechtner et al., 2014) will probably further increase the
accuracy of the GRACE DA estimates.
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Table 1. PCR-GLOBWB model parameters related to the TWS estimate. Parameters are
functions of spatial coordinates, except DDF which is a constant.

Parameter Description unit
Ksat,up Saturated hydraulic conductivity of the upper soil storage | m/day
Ksat,low Saturated hydraulic conductivity of the lower soil storage | m/day
SCup Storage capacity of the upper soil m
SCliow Storage capacity of the lower soil m
fgml'n, fmi", Minimgm so?l depth fraction of grgsslgnd (9), forest (f), -
fpmin’ ngu'n paddy irrigation (p), non-paddy irrigation (np)

fa %, £, | Maximum soil depth fraction of grassland (g), forest (f), -
fymax | fmax paddy irrigation (p), non-paddy irrigation (np)

J Groundwater recession coefficient 1/day
DDF Degree-day factor in the snow pack °Cm/day
Kcmn Minimum crop coefficient -

Table 2. TWSV, SMSV and GWSV estimated annual amplitude (A, cm) and phase (P,
month) in 4 different basins computed between April 2002 and December 2010. Areally
averaged values for the entire Hexi Corridor are also given.

Shiyang Heihe Desert Shule Areally-average

GRACE | A |205%031 1.49 £0.21 1.79+0.23 1.21% 0.27 1.43+ 0.18

P | 6.97£0.29 6.80 +0.27 6.49 + 0.24 8.61+ 0.42 7.05+ 0.24

EnoL A | 135+0.16 0.90 +0.07 0.66 + 0.07 0.37 + 0.06 0.70 + 0.06

S— P | 6.35+0.23 5.61 +0.14 5.80 +0.19 5.40 + 0.31 5.74 + 0.16
EnkE1p | A | 161£0.16 0.87 £0.10 1.05+0.11 0.40 + 0.11 0.80 + 0.09

P | 6.96+0.19 6.80 +0.22 6.47 £0.19 8.35+ 0.51 6.92 + 0.23

EnkFap | A | 149£013 0.80 +0.08 0.72 £0.07 0.26 + 0.09 0.72 + 0.07

P | 6.42+0.17 6.12 £0.19 6.40 £0.20 8.48 + 1.02 6.44 + 0.22

EnoL A | 1.03+0.11 0.70 +0.06 0.62+ 0.07 0.31+ 0.05 0.59 + 0.06

P | 5.77+0.20 5.60 +0.16 5.82+ 0.21 5.03 + 0.32 5.62 + 0.18

A | 0.88+0.09 0.75 +0.09 0.99 £0.11 0.36+ 0.10 0.67 + 0.08

SMSV | EnKFID | b | 655+0.01 7.01£0.22 7.08 £0.21 8.47 + 0.54 7.26+ 0.24
enkEap | A | 1:30£0.10 0.66 +0.07 0.71+ 0.08 0.12 + 0.08 0.55+ 0.07

P | 559+0.15 6.25 +0.20 6.44 + 0.20 8.19+ 0.37 6.32+ 0.22

EnoL A | 0.50 +0.08 0.19 +0.03 0.02 + 0.004 0.09 + 0.01 0.12 + 0.01

P | 7.84£0.29 7.13+0.26 5.43+ 0.34 6.91+ 0.29 7.22+ 0.21

A | 0.65%0.05 0.12 £0.03 0.01+ 0.01 0.05 + 0.01 0.10 + 0.01

CWSV | EnKF1D | 5 | 869+ 0.16 7.82£0.40 7.91+ 1.90 8.49 + 0.29 8.32+ 0.25
EnkEap | A | 070£0.06 0.11 +0.02 0.02+ 0.01 0.05 + 0.01 0.10 + 0.01

P | 852+0.16 7.50 +0.31 7.76 + 1.00 8.66 + 1.33 8.26 + 0.23

Table 3. Averaged values and standard deviations of precipitation and model parameters for 4

different basins.

Shiyang Heihe Desert Shule
Precipitation 21 +12 13+12 11+2 8+6
(mm/month)
SCup (M) 0.08 + 0.02 0.09 + 0.02 0.09 +0.01 0.08 + 0.01
SCiow (M) 0.33£0.08 0.37 £ 0.07 0.35+0.04 0.33£0.08
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Table 4. Statistical values of the GWSV computed from the in situ well measurement and
GRACE DA estimates between January 2007 and December 2010. The average values are
computed by averaging the estimated statistical values from all well locations.

w1 W2 W3 W4 W5 Average
value
Correlation | EnOL 0.74 0.17 -0.04 -0.05 -0.53 0.06
coefficient [- | EnKF 1D | 0.84 0.32 0.90 0.45 0.64 0.63
] EnKF 3D | 0.82 0.49 0.85 0.51 0.83 0.70
RMS EnOL 0.69 1.67 0.77 3.34 3.81 2.06
difference EnKF 1D | 0.58 1.63 0.40 2.56 2.58 1.55
[cm] EnKF 3D | 0.63 1.43 0.38 2.24 1.27 1.19

Table 5. Long-term trends and standard deviations of the in situ data and the DA estimates.
The RMS difference (RMSD) between the in situ data and the DA trend estimates are also

provided.

W1 w2 w3 w4 W5 RMSD
In situ -0.49 +0.03 0.01%0.06 -0.60+0.004 | 056+0.12 |-140£003 |0
EnOL -0.57 £0.01 -0.64+0.002 | -0.010.01 -169+001 |129+002 | 1.62
EnKF 1D -0.52 +0.02 -0.58 + 0.04 -0.74 £ 0.02 -133+0.08 |-199+013 | 0.93
EnKF 3D -0.83 £ 0.02 -0.51 +0.03 -0.38 +0.01 -0.44+008 |-118+0.06 | 0.54

Table 6. Statistical values of the streamflow computed from the river stream gauge
measurement and GRACE DA estimates between April 2002 and December 2010. The
average values are calculated by averaging the estimated statistical values from both gauge
locations.

Gl G2 Average value
Correlation EnOL 0.82 0.76 0.79
coefficient [-] EnKF 1D 0.84 0.77 0.81
EnKF 3D 0.84 0.78 0.81
NS coefficient [-] | EnOL 0.65 0.56 0.61
EnKF 1D 0.69 0.57 0.63
EnKF 3D 0.69 0.57 0.63
RMS difference EnOL 5.49 3.09 4.29
[cm] EnKF 1D 5.18 3.08 4.14
EnKF 3D 5.23 3.04 4.14

Table 7. TWSV, SMSV, GWSV, and precipitation estimated long-term trends in 4 different
basins computed between April 2002 and December 2010. Areally averaged values for the
entire Hexi Corridor are also given.
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Shiyang Heihe Desert Shule Avreally-average

GRACE -0.73+£0.04 -0.64 +0.03 -0.72 £0.03 -0.34 + 0.04 -0.59 + 0.03
TWSV | EnOL 0.30£0.15 0.24 +0.09 0.20+0.04 0.18 + 0.06 0.22 + 0.07
(cm/yr) | EnKF 1D -0.72 £0.08 -0.41 £0.04 -0.33 £0.05 -0.34 £ 0.04 -0.39 £ 0.07

EnKF 3D -0.36 £ 0.02 -0.21 £0.02 -0.11 £0.03 -0.25+ 0.03 -0.20 £ 0.03
SMSV EnOL 0.38 £0.05 0.21+0.02 0.17 £0.03 0.14 + 0.02 0.19+ 0.02
(cmiyr) EnKF 1D -0.11 +£0.03 -0.20 £ 0.01 -0.29+0.04 -0.22 + 0.04 -0.23 + 0.03

EnKF 3D 0.10 £0.03 -0.12 +0.01 -0.12 + 0.02 -0.14 + 0.01 -0.11 + 0.004
GWSV EnOL -0.08 £0.12 0.03 +0.07 0.02 +0.007 0.04 +0.02 0.02 +0.04
(cmiyr) EnKF 1D -0.61 £0.01 -0.16 £ 0.004 -0.01 £ 0.005 -0.12 £ 0.02 -0.16 £0.02

EnKF 3D -0.39 £0.01 -0.09 + 0.003 0.01 + 0.004 -0.11 + 0.001 -0.11 + 0.002
Precipitation 0.04 £0.01 0.04 +0.01 0.05+0.01 0.02+0.01 0.04 £0.01
((cm/month)/yr)
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1152  Figure 6. DA diagram representing the disaggregation of monthly averaged TWS from
1153  GRACE into the daily PCR-GLOBWB state estimates.
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Figure 7. Demonstration of EnKF 3D scheme, accounting for the spatially-correlated errors.
For a centre grid cell, the state and observation matrices contain all TWS-related components
of the neighbouring grid cells and the centre grid cell (left). The graphic demonstrates the case
of one pixel (0.5 degree) correlation distance. The boundary stretches farther for larger
correlation distance. The covariance matrices Pe and R are computed based on the data from
these grid cells. Then, the EnKF is applied and the states of the centre grid cell are updated
(right). The procedure is repeated through all grid cells.
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1175  Figure 8. Some statistics of errors in GRACE-derived TWS variation over the Hexi Corridor.
1176  The standard deviation (a) and the correlation coefficient with respect to the green point (b)
1177  for a sample month, October 2002, are shown in the top. The time-series of averaged standard
]1178 deviation computed over four different basins are shown in the bottom plot (c).
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Figure 9. Daily TWS variations estimated between 1 April 2002 and 31 December 2003,
averaged over Shiyang River Basin. The mean value of the ensemble is given as the solid line,
and the standard deviation is shown as the shaded envelope. The TWS estimates from model
only (EnOL), GRACE DA forecast (EnKF before the update), GRACE DA update (EnKF
after update), and GRACE observations are shown. The x-axis labels represent the first day of
the month. Some features of the DA scheme regarding the identical TWS estimate seen at the
beginning of the update (point a) and the observed spurious jumps (point b,c,d) are also
shown.
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Figure 10. Monthly TWSV, SMSV, GWSV, snow water storage variation (SNSV), and
surface water storage variation (SFWYV) estimated between April 2002 and December 2010
from the EnOL, EnKF 1D, EnKF 3D, and GRACE observations over 4 basins.
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Figure 11. TWSV, SMSV, and GWSYV updates of October 2002 without the correlation error
applied (EnKF 1D) and with the correlation error applied (EnKF 3D).
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Figure 12. Monthly GWS variation estimates from the in situ well measurements, as well as
EnOL, EnKF 1D, and EnKF 3D results, between January 2007 and December 2010 at 5
groundwater well locations. The chosen period is based on the availability of the well data.
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1206  Figure 13. Monthly streamflow estimates from the in situ river gauge measurements, as well
1207  as EnOL, EnKF 1D, and EnKF 3D results, between April 2002 and December 2010 at 2 river
1208  gauge locations, G1 (a) and G2 (b).
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1211 Figure 14. Monthly total precipitation (mm/month) and SM storage estimates (cm) from
1212 EnKF 1D and EnKF 3D results at river gauge G2 location.
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Figure 15. The monthly averaged groundwater head measurement (left), total precipitation
(middle) and NDVI (right) for five groundwater well locations. Precipitation and NDVI data
are reported as the average values within the circular areas of the 10-km radius. The long-term
average values between January 2007 and December 2010 are shown in the grey shed, and the
values in 2007, 2008, 2009, and 2010 are shown as blue, green, red, and black lines,
respectively. The period is chosen based on the availability of the well data.
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