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Abstract 1 

Upscaling instantaneous evapotranspiration retrieved at any specific time-of-day (ETi) to daily 2 

evapotranspiration (ETd) is a key challenge in mapping regional ET using polar orbiting 3 

sensors. Various studies have unanimously cited the short wave incoming radiation (RS) to be 4 

the most robust reference variable explaining the ratio between ETd and ETi. This study aims 5 

to contribute in ETi upscaling for global studies using the ratio between daily and 6 

instantaneous incoming short wave radiation (RSd/RSi) as a factor for converting ETi to ETd.  7 

This paper proposes an artificial neural network (ANN) machine learning algorithm first to 8 

predict RSd from RSi followed by using the RSd/RSi ratio to convert ETi to ETd across different 9 

terrestrial ecosystem. Using RSi and RSd observations from multiple sub-networks of 10 

FLUXNET database spread across different climates and biomes (to represent inputs that 11 

would typically be obtainable from remote sensors during the overpass time) in conjunction 12 

with some astronomical variables (e.g., solar zenith angle, day length, exoatmospheric 13 

shortwave radiation etc.), we developed ANN model for reproducing RSd and further used it to 14 

upscale ETi to ETd. The efficiency of the ANN is evaluated for different morning and 15 

afternoon time-of-day, under varying sky conditions, and also at different geographic 16 

locations. RS-based upscaled ETd produced a significant linear relation (R
2
 = 0.65 to 0.69), 17 

low bias (-0.31 to -0.56 MJ m
-2

 d
-1

) (appx. 4%), and good agreement (RMSE 1.55 to 1.86 MJ 18 

m
-2

 d
-1

) (appx. 10%) with the observed ETd, although a systematic overestimation of ETd was 19 

also noted under persistent cloudy sky conditions. Inclusion of soil moisture and rainfall 20 

information in ANN training reduced the systematic overestimation tendency in 21 

predominantly overcast days. An intercomparison with existing upscaling method at daily, 8-22 

day, monthly, and yearly temporal resolution revealed a robust performance of the ANN 23 

driven RS-based ETi upscaling method and was found to produce lowest RMSE under cloudy 24 

conditions. Sensitivity analysis revealed variable sensitivity of the method to biome selection 25 

and high ETd prediction errors in forest ecosystems are primarily associated with greater 26 

rainfall and clouds. The overall methodology appears to be promising and has substantial 27 

potential for upscaling ETi to ETd for field and regional scale evapotranspiration mapping 28 

studies using polar orbiting satellites.  29 
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1 Introduction 3 

Satellite-based mapping and monitoring of daily regional evapotranspiration (ET hereafter) 4 

(or latent heat flux, E) is considered as a key scientific concern for multitudes of applications 5 

including drought monitoring, water rights management, ecosystem water use efficiency 6 

assessment, distributed hydrological modelling, climate change studies, and numerical 7 

weather prediction (Anderson et al., 2015; Senay et al., 2015; Sepulcre-Canto et al., 2014). ET 8 

variability during the course of a day is influenced by changes in the radiative energy being 9 

received at the surface (Brutsaert & Sugita, 1992; Crago, 1996; Parlange & Katul, 1992), due 10 

to soil moisture variability particularly in the water deficit landscapes, and also due to the 11 

stomatal regulation by vegetation.  12 

One of the fundamental challenges in regional ET modelling using polar orbiting satellites 13 

involves the upscaling of instantaneous ET retrieved at any specific time-of-day (ETi 14 

hereafter) to daily ET (ETd hereafter). For example, ETi retrieved from LANDSAT, ASTER 15 

and MODIS sensors typically represent ETi at a single snapshot of 1000, 1030 and 1330 hrs 16 

local time, which needs to be upscaled to daily timescale for making this information usable 17 

to hydrologists and water managers (Cammalleri et al., 2014; Colaizzi et al.,  2006; Ryu et al., 18 

2012; Tang et al., 2013).  19 

In order to accommodate the temporal scaling challenges encountered by remote sensing 20 

based ET models, techniques have been proposed and applied by various researchers to 21 

upscale ETi to ETd. These include:  (1) the constant evaporative fraction (EF) approach which 22 

assumes a constant ratio between λE and net available energy ( = Rn – G, Rn is the net 23 

radiation and G is the ground heat flux) during daytime [EF = λE/(Rn – G)] (Gentine et al., 24 

2007; Shuttleworth et al., 1989), (2) constant reference evaporative fractions (EFr) method 25 

where the ratio of ETi between a reference crop (typically grass measuring a height of 0.12 m 26 

in an environment that is not water limited) and an actual surface is assumed to be constant 27 

during daytime, allowing ETd to be estimated from the daily EFr (Allen et al.,1998; Tang et 28 

al., 2013), (3) constant global shortwave radiation method (RS) where RS is the reference 29 

variable at the land surface and it is assumed that the ratio of daily to instantaneous shortwave 30 
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radiation (RSd and RSi) values (i.e., RSd/RSi) determines ETd to ETi ratio (Jackson et al., 1983; 1 

Cammalleri et al., 2014), and (4) constant extra-terrestrial radiation method where the exo-2 

atmospheric shortwave radiation (RSTOA) is the reference variable and the ratio of 3 

instantaneous to daily RSTOA (RSiTOA and RSdTOA) is assumed to determine the ratio of ETd 4 

to ETi (Ryu et al., 2012; Van Niel et al., 2012). These methods have been reviewed and 5 

compared in different studies with the view of identifying the most robust ETi to ETd 6 

upscaling approach based on different data sets, time integrals and varying sky conditions 7 

(Cammalleri et al., 2014; Ryu et al., 2012; Tang et al, 2013, 2015; Van Niel et al., 2012; Xu et 8 

al., 2015).  9 

Based on the previous studies, we find that the RSTOA approach performed consistently good 10 

at lower temporal resolution namely eight-day to monthly scales (Ryu et al., 2012; Van Niel 11 

et al., 2012) as well as under clear-sky conditions (Cammalleri et al., 2014), whereas the RS 12 

approach was identified as the most preferred method for ETi to ETd conversion at a higher 13 

temporal scale i.e. daily timescale in addition to under variable sky conditions (Cammalleri et 14 

al., 2014; Chávez et el.,  2008; Colaizzi, et al., 2006; Xu et al., 2015). Although the EFr-based 15 

method produced comparable ETd estimates as the RS-based method, however the dependence 16 

of EFr estimates on certain variables (e.g., daily net available energy;  and wind speed) and 17 

the difficulty to characterise them at the daily scale from single acquisition of polar orbiting 18 

satellites (Tang et al., 2015) makes it a relatively less attractive method. Furthermore the EF-19 

based method appeared to consistently underestimate ETd in all these studies.  20 

The motivation of the current work is built on the conclusions of Colaizzi et al. (2006), 21 

Chávez et al. (2008), Cammalleri et al. (2014), and Xu et al. (2015) that the ratio of the 22 

instantaneous to daily RS incident on land surface is the most robust reference variable 23 

explaining the ratio between ETd and ETi among all the tested methods. This work aims to 24 

contribute in ETi upscaling by first developing a method for estimating RSd from any specific 25 

time-of-day RS information (RSi) and further using RSd/RSi ratio as a factor for converting ETi 26 

to ETd. We develop an artificial neural network (ANN) machine learning algorithm 27 

(McCulloch & Pitts, 1943) for estimating RSd. Although net radiation (RN) is more closely 28 

associated with ET, but RS constitutes 80-85% of RN (Mallick et al., 2015). Also from remote 29 

sensing perspective, RSi is relatively easily retrievable irrespective of the sky conditions 30 

(Wang et al., 2015; Lopez and Batlles, 2014), and its relationship to RSd is primarily governed 31 
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by cloudiness (cloud fraction, cloud optical depth) and astronomical variables (e.g., solar 1 

zenith angle, day length, RSTOA etc.). Given the information of cloudiness is also obtainable 2 

from remote sensing, we consider RS to be a robust variable to explore ETi upscaling.  3 

Even though this study is intended for remote sensing application, we tested the method using 4 

meteorological and surface energy balance flux measurements from eddy covariance (EC) 5 

system at the FLUXNET (Baldocchi et al., 2001) sites mainly for the purpose of temporal 6 

consistency. However, we evaluate the performance in consideration with overpass time of 7 

polar orbiting satellites commonly used in operational ET mapping namely MODIS and 8 

LANDSAT. By choosing to use data distributed over different ecosystems and climates 9 

zones, we are faced with two problems : (1) changing cloud conditions across ecosystems, (2) 10 

varying energy balance closure (EBC) requirements for the fluxes in different ecosystems 11 

(Foken et al., 2006; Franssen et al., 2010; Mauder & Foken, 2006; Wilson et al., 2002). 12 

Currently, information on cloudiness is obtainable from geostationary meteorological 13 

satellites, at hourly to 3-hourly time steps e.g., from the Clouds and Earth’s Radiant Energy 14 

System (CERES), the International Satellite Cloud Climatology Project–Flux Data (ISCCP-15 

FD), and Global Energy and Water cycle Experiment Surface Radiation Budget (GEWEX-16 

SRB). The CERES algorithm uses cloud information from MODIS onboard both Terra and 17 

Aqua platforms and combines it with information from geostationary satellites to accurately 18 

capture the diurnal cycles of clouds. In this study, cloudiness is not included in the list of 19 

variables used to estimate RSd due to inconsistency in spatial resolution of data to match with 20 

the other predictive variables used. Including cloudiness holds a great potential in improving 21 

the ANN RSd predications due to their direct relationship (Mallick et al., 2015). However, we 22 

assess the performance of the ANN under cloudy sky conditions based on simple cloudiness 23 

index computations as adopted from previous works (Baigorria et al., 2004). The EBC 24 

problems have been reported to vary across landscapes due to management practices, climate, 25 

seasons and plant functional type characteristics (Foken et al., 2006). In this study, in order to 26 

test the robustness of the proposed method, we initially disregard the site specific EBC 27 

problems and assume that the systematic bias of fluxes fall within the same range across 28 

entire FLUXNET database used. 29 

The objectives of the present study are: (1) using a ANN with Multilayer Perceptron (MLP) 30 

architecture to predict RSd based on RSi satellite observations, (2) applying RSd/RSi ratio as a 31 



 
6 

scaling factor to upscale ETi to ETd under all sky conditions, and (3) comparing the 1 

performance of proposed RS-based ETi upscaling method with RSTOA and EF-based ETi 2 

upscaling methods across a range of temporal scales, biomes and variable sky conditions. 3 

2 Methodology  4 

2.1 Rationale 5 

The presented method of ET upscaling from any specific time-of-day to daytime average 6 

evaporative fluxes is based on the assumption of self-preservation of incoming solar energy 7 

(i.e., shortwave radiation) as proposed by Jackson et al. (1983). 8 

𝐸𝑇𝑑 ≈ 𝐸𝑇𝑖
𝑅𝑆𝑑

𝑅𝑆𝑖
   (1) 9 

Where, ETd is the daily average evapotranspiration in W m
-2

, ETi is the instantaneous 10 

evapotranspiration at any instance during daytime in W m
-2

, RSi and RSd are the values of 11 

shortwave radiation recorded at any instance and the daily average having units W m
-2

. Daily 12 

total ETd and RSd is expressed in MJ m
-2

 d
-1

 by using standard conversion from Watts to Mega 13 

Joules. Following Jackson et al. (1983) and Cammalleri et al. (2014), we hypothesized that 14 

the mean diurnal variation of ET for any particular day scales with the mean diurnal variation 15 

of RS. The justifications are: (a) RS is the principal driver that controls sub-daily ET variability 16 

unless there is substantial diurnal asymmetry in cloudiness or abrupt change in sub-daily soil 17 

moisture between morning and afternoon. (b) Under thick cloudy conditions, ET scales with 18 

RS. Under clear sky conditions ET also scales with RS and both are in phase if sufficient soil 19 

moisture is available at the surface. (c) Phase difference between RS and ET are commonly 20 

found under soil moisture deficit conditions in clear-sky days. However, the magnitude of 21 

clear-sky ETi in water deficit conditions is also be very low, which will lead to substantially 22 

low ETi/RSi ratio, and would unlikely to introduce any uncertainty in ETi to ETd upscaling in 23 

the framework of eq. (1).  24 

For any remote sensing studies using polar orbiting satellites, although the retrieval of ETi and 25 

RSi has been standardised (Tang et al., 2015; Huang et al., 2012; Polo et al., 2008; Laine et al., 26 

1999), but, estimating RSd and ETd from RSi and ETi are still challenging. Presently, upscaling 27 

RSi to RSd is primarily based on the clear sky assumption, i.e., for the entire daytime 28 
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integration period, the sky remains cloud-free (Bisht et al., 2005; Jackson et al., 1983). 1 

However, the clear-sky assumption is not always appropriate for upscaling remote sensing 2 

based RSi and hence ETi because the sky conditions during a specific time-of-day may be clear 3 

whereas the other part of the day might be cloudy. Under such conditions, the clear-sky 4 

assumption of ETi upscaling will lead to substantial overestimation of ETd in cloudy 5 

conditions. Hence reliable estimates of all-sky (i.e., both clear and cloudy) RSd would greatly 6 

improve the ETd estimates in the framework of eq. (1). Given the unavailability of a definite 7 

method to directly estimate all-sky RSd from RSi information, here we proposed a simple 8 

method to upscale RSi to RSd using ANN. This method uses the observations of both RSd and 9 

RSi from all the available FLUXNET sites in conjunction with some ancillary variables to 10 

build the ANN as described in section 2.2. A schematic diagram of the ANN method is given 11 

in Fig. 1. The analysis is based on 24-hour period, meaning night time ET contribution is 12 

implicitly considered. However, studies have already shown that the nighttime ET in semi-13 

arid and sub-humid regions contributes only 2 – 5% of the total season ET (Malek, 1992; Tolk 14 

et al., 2006), and therefore does not appear to be significant. 15 

The overarching aim of this study is to develop an approach that would help in the upscaling 16 

of ETi (retrieved at satellite overpass time) to ETd. Additional value of this study also consists 17 

of exploiting RSi information at satellite local crossing time to predict RSd which is not directly 18 

retrievable from any polar orbiting satellites, so that the ratio of RSd/RSi can be further used to 19 

upscale ETi to obtain ETd estimates. Currently we are limited to demonstrating with MODIS 20 

satellite overpass times (Terra and Aqua), however for the future missions with different local 21 

overpass time, the method would still be applicable. 22 

In any natural ecosystem, RS on a particular day is primarily influenced by the cloud 23 

(especially cloud cover fraction and optical thickness) (Mallick et al., 2015; Hildebrandt et al., 24 

2007), latitude, season, and time-of-day. Therefore, RSd on any specific day is expected to be a 25 

function of RSi (as a representative of RS and cloudiness factors), solar zenith angle 26 

(representing latitude, season, time-of-day), day length (representing latitude and season), and 27 

RSTOA (representing latitude, season, time-of-day). Besides, atmospheric aerosols also 28 

interact with RS and absorb some of the radiation particularly in the urban areas. Considering 29 

the applications of ETi to ETd modeling in the natural ecosystems, we include RSi, RSiTOA, 30 

RSdTOA, solar zenith angle and day length for RSd (and subsequently ETd) prediction.    31 
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2.2 Development of Artificial Neural Network (ANN) 1 

ANN is a non-linear model which works by initially understanding the behaviour of a system 2 

based on a combination of a given number of inputs and subsequently is able to simulate the 3 

system when fed with independent set of inputs of the same system. ANN approach has been 4 

successfully used in estimating global solar radiation in many sectors and more so in the field 5 

of renewable energy (Ahmad et al., 2015; Hasni et al., 2012; Lazzús et al., 2011). Multi-layer 6 

perceptron (MLP) is one of the ANN architectures commonly used as opposed to other 7 

statistical methods, makes no prior assumptions concerning the data distribution, has ability to 8 

reasonably handle non-linear functions and reliably generalise independent data when 9 

presented (Gardner & Dorling, 1998; Khatib, Mohamed, & Sopian, 2012; Wang, 2003). In the 10 

present study, MLP was chosen as it has been widely used in many similar studies and cited 11 

to be a better alternative as compared to the conventional statistical methods (Ahmad et al., 12 

2015; Chen et al., 2013; Dahmani et al., 2016; Mubiru & Banda, 2008). The MLP is 13 

composed of 5 neurons in the input layer, 1 output layer and 10 hidden layers (Fig. 2). The 14 

input layer neurons are made up of instantaneous incoming short wave radiation (RSi), 15 

instantaneous exo-atmospheric shortwave radiation (RSiTOA), daily exo-atmospheric 16 

shortwave radiation (RSdTOA), solar zenith angle (Z), and day length (LD) as the predictor 17 

variables whose values are initially standardized to range between -1 to 1. The choice of the 18 

inputs is intentionally limited to the variables that cannot only be acquired by measurements 19 

from meteorological stations but also derived from simple astronomical computations (Ryu et 20 

al., 2012) mainly to help minimize on the spatial distribution problem (as described earlier in 21 

the introduction) that is often linked to ground weather stations. In the MLP processing, the 22 

input layer directs the values of each input neuron xi (i = 1, 2, 3…. n) into each neuron (j) of 23 

the hidden layers. In the hidden layer, xi is multiplied by a weight (wij) followed by a bias (bj) 24 

assigned for each hidden layer also is applied. The weighted sum (eq. (2)) is fed into a 25 

transfer function. In this work a tangent sigmoid (TANSIG) function is used (eq. (3)) in the 26 

hidden layer while in the output layer a PURELIN function is applied (eq. (4)) to give a single 27 

output value which is the predicted daily shortwave radiation (RSd_pred). PURELIN is a linear 28 

neural transfer function used in backpropagation network. It calculates a layer's output from 29 

its net input. The function generates outputs between zero and 1 as the neuron's net input goes 30 

from negative to positive infinity. The training of the ANN is completed by a regression 31 
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analysis being performed internally by the algorithm between the target variable i.e. the 1 

observed and predicted daily shortwave radiation (RSd_obs and RSd_pred). 2 
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i jiijj bywx 1
 (2) 
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2




ij X
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(3) 

 PURELINXy ij
  (4) 

Bayesian regularization algorithm was chosen for the optimization process because it is able 3 

to handle noisy datasets by continuously applying adaptive weight minimization and can 4 

reduce or eliminate the need for lengthy cross-validation that often leads to overtraining and 5 

overfitting of models (Burden and Winkler, 2009). 6 

2.3 Datasets 7 

Daily and half-hourly data on RS (W m
-2

), RSTOA, net radiation (Rn, W m
-2

), latent heat flux 8 

(λE, W m
-2

), sensible heat flux (H, W m
-2

) and ground heat flux (G, W m
-2

) measured by the 9 

FLUXNET (Baldocchi et al., 2001) eddy covariance network were used. A total of 126 sites 10 

from the years 1999 to 2006 distributed between latitude 0-90 degrees north and south of the 11 

equator were used for the present analysis. The data sites covered a broad spectrum of 12 

vegetation functional types and climatic conditions and a list of the sites are given in Table S1 13 

in the supplementary section. 14 

Among 126 sites, 85 sites were used for training and remaining 41 sites were used for 15 

validation. Partition of the data into training and validation was randomly selected regardless 16 

of the year. These translated into 194 and 86 yearly data for the respective sample. A global 17 

distribution of the data sites is shown in Fig. 3.  From the training dataset, three samples were 18 

internally generated by the algorithm i.e., training datasets, validation datasets, and a testing 19 

dataset in a percentage ratio of 80:15:5 respectively. The ANN algorithm is designed to 20 

validate its performance for any given training which in most cases should be sufficient for 21 

validating the network. However to ensure the network is robust, we further test the generated 22 

network with independent dataset. Considering the equatorial crossing time of different polar 23 
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orbiting sensors like LANDSAT, ASTER, and MODIS Terra-Aqua, unique networks were 1 

generated for different time of day from morning to afternoon, and thus we had a total of 8 2 

networks to represent potential satellite overpass times between 1030 to 1400 hours using 30 3 

minutes interval as the closest reference time for each hour. The generated networks were 4 

then applied to an independent validation data set. 5 

2.4 Intercomparison of ETi upscaling methods 6 

An intercomparison of three different ETi upscaling methods is performed with the 7 

homogeneous datasets to assess their relative performance across a range of temporal scales 8 

and variable sky conditions. These are: (a) RS-based upscaling method, where ANN predicted 9 

RSd is used in conjunction with observed RSi to predict ETd using eq. (1).  10 

(b) The exo-atmospheric irradiance method (Ryu et al., 2012) where the reference variable is 11 

RSTOA. 12 

𝑅𝑆𝑑𝑇𝑂𝐴 = 𝑆𝑠𝑐 [1 + 0.033𝑐𝑜𝑠 (
2𝜋𝑡𝑑

365
)] 𝑐𝑜𝑠𝜃𝑍 

(5) 

𝑆𝐹𝑅𝑇𝑂𝐴 =
𝑅𝑆𝑑𝑇𝑂𝐴

𝑅𝑆𝑖𝑇𝑂𝐴
 

(6) 

𝐸𝑇𝑑 = 𝐸𝑇𝑖𝑆𝐹𝑅𝑇𝑂𝐴 (7) 

Where Ssc is the solar constant (1360 W m
−2

), td is the day of year (DoY), and Z is the solar 13 

zenith angle.  14 

(c) EF-based method (Cammalleri et al., 2014), where reference variable is the net available 15 

energy () (i.e., Rn - G). 16 

𝑆𝐹𝐸𝐹 =  
𝐸𝑇𝑖

(𝑅𝑛 − 𝐺)𝑖
 

(8) 

𝐸𝑇𝑑 = 1.1(𝑅𝑛 − 𝐺)𝑑𝑆𝐹𝐸𝐹 (9) 

Where SFEF is the EF-based scaling factor, (Rn – G)i and (Rn – G)d are the instantaneous and 17 

daily net available energy, respectively. 18 
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We tested the performance of the three upscaling algorithms for all possible sky conditions 1 

assumed to be represented by daily atmospheric transmissivity (d) (eq. 10) namely (i) 2 

0.250 (1, hereafter), (ii) 0.50.25 (2, hereafter) (iii) 0.750.5 (3, hereafter), and (iv) 3 

10.75 (4, hereafter), respectively. We use daily  because it indicates the overall sky 4 

condition throughout a day. 5 

𝜏𝑑 =
𝑅𝑆𝑑

𝑅𝑆𝑑𝑇𝑂𝐴
 

(10) 

RSd and RSdTOA are daily shortwave radiation and the exo-atmospheric shortwave radiation in 6 

MJ m
-2

 d
-1

 (converted from W m
-2

). 7 

2.5 Statistical error analysis  8 

The relative performance of the ANN and three upscaling methods is evaluated using 9 

statistical indices generated namely: coefficient of determination (R
2
), root mean square error 10 

(RMSE), mean absolute percentage error (MAPE), index of agreement (IA), and bias. ETd 11 

estimates using the respective upscaling coefficients were compared with measured ETd. 12 
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Where, n is the number of data points; oi and pi are daily observed and estimated RSd or ETd, 1 

respectively. Ō was the mean value of observed RSd or ETd. 2 

2.6 Sensitivity of ANN training and validation 3 

Given the majority of the FLUXNET sites represent forest biomes and the distribution of EC 4 

sites over non-forest biomes are proportionately lower as compared to the forests, we 5 

performed a sensitivity analysis of the ANN-based approach by assessing the error statistics 6 

(R
2
 and RMSE) of predicted ETd for different scenarios of ANN training. Three case studies 7 

were generated: (a) Case1, where ANN was trained by including data randomly from the 8 

forests and ETd validation was done in non-forest biomes (i.e., grassland, crops and 9 

shrublands); (b) Case2, where ANN was trained by including data randomly from the non-10 

forest biomes and predicted ETd was evaluated in forest biome; (c) ANN was trained by using 11 

data randomly from equal proportions of forest and non-forest biomes, and ETd validation was 12 

also done in forest and non-forest biomes. Each individual case was replicated 10 times and 13 

an ensemble mean statistics of predicted ETd is reported in section 3.5. 14 

3 Results and discussion 15 

3.1 Testing the performance of predicted RSd  16 

Given that the performance of ETd upscaling depends on the soundness of RSd estimation, we 17 

first evaluate the efficacy of the ANN method for predicting Rsd. Figure 4 summarises the 18 

statistical results of predicted RSd (RSd_pred, hereafter) including all the site-year average R
2
, 19 

RMSE, IA, and MAPE values for eight different time-of-day upscaling time slots. The RMSE 20 

of RSd_pred from forenoon upscaling varied between 1.81-1.85 MJ m
-2

 d
-1

, with MAPE, R
2
, IA 21 

varying between 20–21%, 0.76–0.77, and 0.79 and 0.80, respectively (Fig. 4). For the 22 

afternoon, these statistics were almost similar and varied between 1.83–1.96 MJ m
-2

 d
-1

, 19-23 

20%, 0.75–0.77, and 0.80–0.81 (Fig. 4). Given the minimal discrepancy in error statistics 24 

from both forenoon and afternoon integration and considering the MODIS Terra-Aqua 25 

average overpass time we have considered 1100 and 1330 hours of daytime for the detailed 26 

follow up analysis. 27 

Figure 5 (a, b) evaluates RSd_pred statistics under different level of atmospheric transmissivity 28 

() (0.250, 0.50.25, 0.750.5, and 10.75) with an overall RMSE of 1.81 and 29 
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1.83 MJ m
-2 

d
-1 

for the forenoon and afternoon upscaling respectively. Table 1 and Fig. 5 1 

clearly show an overestimation tendency of the current method under persistent cloudy sky 2 

conditions (1), whereas the predictive capacity of the ANN model is reasonably strong with 3 

increasing atmospheric clearness. The RMSE of RSd_pred for different  class from forenoon 4 

upscaling varied between 0.62 to 2.45 MJ m
-2

 d
-1

, with MAPE, R
2
 and IA of 9.2 to 53%, 0.67 5 

to 0.98, and 0.67 to 0.95, respectively (Table 1). For the afternoon upscaling these statistics 6 

were 0.89 to 2.4 MJ m
-2

 d
-1

 (RMSE), 2.4 to 52% (MAPE), 0.65 to 0.98 (R
2
), and 0.67 to 0.95 7 

(IA) (Table 1). 8 

The overestimation of RSd_pred at low values of  is presumably associated with varying levels 9 

of cloudiness during the daytime. Since RSd_pred depends on the magnitude of RSi, LD, Z, 10 

RSiTOA, and RSdTOA, there will be a tendency of overestimating RSd_pred on partly cloudy days if 11 

RSi at a specific time-of-day is not affected by the clouds (LD, Z, RSiTOA, and RSdTOA are not 12 

influenced by the clouds).  13 

3.2 Evaluation of predicted ETd based on RSd_pred  14 

Figure 6 summarises the statistical results of predicted ETd (ETd_pred, hereafter) for eight 15 

different time-of-day slots. Upon statistical evaluation, all the cases showed significantly 16 

linear relationship between ETd_pred and observed ETd (ETd_obs, hereafter). The RMSE of 17 

ETd_pred from forenoon upscaling varied from 1.67–1.84 MJ m
-2

 d
-1

, with MAPE, R
2
, IA 18 

varying between 30%–34%, 0.62–0.68, and 0.77–0.80, respectively (Fig. 6). For the afternoon 19 

upscaling, these statistics varied between 1.5–1.6 MJ m
-2

 d
-1

, 29%–30%, 0.67–0.71, and 0.80 20 

(Fig. 6). These results also indicate that the error statistics were nearly uniform and the 21 

accuracy of ETd_pred varied only slightly when integration was done from different time-of-22 

day hours between 1030 to 1400 h. These typical error characteristics can greatly benefit the 23 

ETd modelling using polar orbiting data with varying overpass times between 1030 to 1400 24 

hours. This also opens up the possibility to use either forenoon satellite (e.g., MODIS Terra, 25 

LANDSAT, ASTER etc.) or afternoon satellite (i.e., MODIS Aqua) to upscale ETi to ETd. 26 

Following RSd, here also we restricted our analysis to the two different time-of-day (1100h 27 

and 1330h) representing Terra and Aqua overpass times. 28 
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Figure 7 (a and b) compares ETd_pred against ETd_obs for different level of daily . The overall 1 

RMSE, MAPE, and R
2
 were 1.86 and 1.55 MJ m

-2
 d

-1
, 31% and 36%, 0.65 and 0.69 for the 2 

forenoon and afternoon upscaling, respectively. As seen in Fig. 7, there is a systematic 3 

overestimation of ETd_pred relative to the tower observed values for low range of  (i.e., cloudy 4 

sky). It is important to realise that, unlike ETd_obs, ETd_pred might be an outcome of ETi 5 

instances when the sky was not overcast, i.e., the sky conditions might be clear at specific 6 

time-of-day but can be substantially overcast for the remainder of the daytime. As a result, 7 

any bias in the daily shortwave radiation prediction (RSd_pred) will result in biased ETd_pred 8 

according to eq. 1, and the omission of non-clear sky conditions at any particular time of 9 

daytime would tend to lead to ETd_pred>ETd_obs for generally overcast days. However, there 10 

could be another opposite case that sky is cloudy at e.g., 1100 hr but clear at other times. This 11 

will probably lead to an underestimation of RSd_pred, and consequently underestimation of 12 

ETd_pred. Such cases were also found in 3 categories in Fig. 7 where clouds of data points 13 

clearly falling significantly below the 1:1 line, thus showing substantial underestimation of 14 

ETd_pred. Since ETd_obs are the integrations of multiple ETi measurements, such conditions 15 

could be conveniently captured in the observations which were not possible in the current 16 

framework of ETd_pred. Therefore, when upscaling was done under clear skies at nominal 17 

acquisition time for generally overcast days, higher errors in ETd_pred can be expected 18 

(Cammalleri et al., 2014) and vice-versa. We examined this cloudy sky overestimation pattern 19 

in greater detail by evaluating the error statistics in ETd_pred for four different levels of daily  20 

categories (Fig. 8). 21 

Statistical evaluation of ETd_pred for different classes of daily  (estimated as the ratio between 22 

daily observed RSd and RSdTOA) indicates the tendency of higher RMSE and low R
2
 in 23 

ETd_pred under the persistent cloudy-sky conditions (1), while the performance of ETd_pred is 24 

reasonably good with increasing atmospheric clearness (2, 3, and 4) (Fig. 8). The RMSE of 25 

ETd_pred for different  class from forenoon upscaling varied between 1.09 to 2.96 MJ m
-2

 d
-1

, 26 

with MAPE, R
2
 and IA of 25 to 75%, 0.38 to 0.79, and 0.71 to 0.82, respectively. For the 27 

afternoon upscaling, these statistics were 0.98 to 2.02 MJ m
-2

 d
-1

 (RMSE), 24 to 87% 28 

(MAPE), 0.40 to 0.68 (R
2
), and 0.71 to 0.77 (IA). 29 
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To probe into detail of the high errors under persistent cloudiness conditions, a new ANN was 1 

trained by introducing daily precipitation (P) and soil moisture (SM) information (along with 2 

RS, RSTOA, Z, and LD) assuming that the inclusion of these two variables might improve the 3 

predictive power of RS-based ANN. In the new ANN, we used data from the sites where 4 

coincident measurements of P and SM were available along with RS and ET, and validated ETd 5 

predictions of the new ANN on independent sites. The analysis revealed 34% reduction in 6 

RMSE (from 3.28 to 2.88 MJ m
-2

 d
-1

), 16% reduction in MAPE (from 90 to 76%), and 49% 7 

reduction in mean bias (0.76 to 0.39 MJ m
-2

 d
-1

) for persistent cloudy-sky cases (i.e., 1 8 

scenarios) from 1100 hr upscaling. However, no significant improvements in ETd_pred were 9 

evident for 2, 3, and 4 and also for any of the  classes from the afternoon (1330 hr) 10 

upscaling (Fig. 9). ETd is generally controlled by radiation and soil moisture availability. 11 

Under the radiation controlled conditions, ETd is generally not limited due to soil moisture 12 

and 70 – 75% of the net radiation is contributed to ETd. Therefore, RS-based method of ETi 13 

upscaling is expected to perform reasonably well unless the upscaling is performed from a 14 

clear sky instance for a predominantly overcast or rainy day. However, from Fig. 9 is it 15 

apparent that the inclusion of cloud information (cloud fraction, cloud optical thickness) in 16 

RS-based ANN would substantially reduce ETd_pred errors when upscaling is performed from a 17 

clear sky instance for a predominantly overcast day and vice-versa. Improvements of ETd_pred 18 

error statistics by including daily P and SM (as an indicator of cloudiness) is also suggestive 19 

to the relevance of such approach as a future improvement of the current framework, which is 20 

expected to reduce the systematic error under overcast conditions. However, the cloud 21 

information available from alternative sources e.g., from the Clouds and Earth’s Radiant 22 

Energy System (CERES), the International Satellite Cloud Climatology Project–Flux Data 23 

(ISCCP-FD), and Global Energy and Water cycle Experiment Surface Radiation Budget 24 

(GEWEX-SRB) are available at coarse spatial resolution (100 km
2
) and combining these 25 

information with EC tower measurements to train ANN could also introduce additional errors 26 

due to the spatial scale mismatch, is therefore out of scope of the present study.   27 

Figure 10 shows the time series comparisons between observed ETd and ETd_pred for four 28 

different stations representing different latitude bands of both the Northern (Sweden) and 29 

Southern (Brazil, Australia, and South Africa) hemispheres. These reveal that the temporal 30 

dynamics of ETd is in general consistently captured by the proposed method throughout year. 31 
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In Br_SP1, relatively less seasonality was found in both observed and predicted ETd. This is 1 

because SP1 is a tropical site having an annual rainfall of 850–1100 mm most of which is 2 

evenly distributed between March to end of September. The peaks in ETd values during the 3 

beginning of year and October onwards coincided with the periods of increased RS, and 4 

ETd_pred could reasonably capture the observed trends during both rainy and non-rainy 5 

periods. Similarly the low ETd pattern (0.1 to 2 MJ m
-2

 d
-1

) in the hot arid climate of South 6 

Africa (Za-Kru) could also be reasonably captured in ETd_pred (Fig. 10). ETd_pred in the other 7 

Southern hemisphere (AU-Tum) and Northern hemisphere (SE-Fla) sites have shown distinct 8 

seasonality (high summer and low winter ETd) coinciding with the observed ETd patterns. 9 

3.3 Comparison with existing ET upscaling methods 10 

ETd_pred from RS-based method was intercompared with two other upscaling schemes (RSTOA 11 

and EF) over 41 FLUXNET validation sites for two different time-of-day, 1100h and 1330h, 12 

the statistics of which are given in Table 2. This comparison was also carried out according to 13 

different  classes as defined in section 2.2.3.  14 

From Table 2 it is apparent that the RS-based method has generally produced relatively low 15 

RMSE (1.21 to 1.99 MJ m
-2

 d
-1

) and MAPE (23 to 50%) as well as relatively high IA (0.72 to 16 

0.84) as compared to RSTOA and EF-based upscaling methods. The EF-based upscaling 17 

method appears to systematically underestimate ETd for both forenoon and afternoon as 18 

evident from high negative bias compared to the other two methods (Table 2). On comparing 19 

RS and RSTOA methods, RS-based method performed relatively better than the RSTOA scheme 20 

for low magnitude of  (i.e., under predominantly cloudy-sky). However, the results suggest 21 

comparable performance of RSTOA-based approach under clear sky conditions which are 22 

reflected in lowest RMSE (1.09 and 1.13 MJ m
-2

 d
-1

) in ETd_pred as compared to the other  23 

classes. In general, all the schemes performed relatively better from the afternoon upscaling as 24 

compared to the morning upscaling (as evidenced in higher R
2
 and lower bias) (Table 2) 25 

which is in agreement with the findings from Ryu et al. (2012). Due to their comparable error 26 

statistics, an intercomparison of RS and RSTOA-based methods of ETi upscaling was also 27 

carried out across different biomes. 28 

Biome specific evaluation of RS-based ETd_pred (Fig. 11) revealed lowest RMSE and highest 29 

R
2
 both in the grassland (GRA) (0.68 to 1.14 MJ m

-2
 d

-1
; 0.53 to 0.79) and shrubland (SH) 30 
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(0.66 to 1.76 MJ m
-2

 d
-1

; 0.60 to 0.82) whereas the RMSE was comparatively high over the 1 

tropical evergreen broadleaf forests (EBF) (1.41 to 2.02 MJ m
-2

 d
-1

) and deciduous broadleaf 2 

forests (DBF) (1.94 to 2.55 MJ m
-2

 d
-1

). Similar evaluation with RSTOA-based method 3 

revealed the lowest RMSE and highest R
2
 in the grassland (0.64 to 1.14 MJ m

-2
 d

-1
; 0.61 to 4 

0.84), and highest RMSE in EBF, DBF, and evergreen needleleaf forests (ENF) (1.57 to 2.05 5 

MJ m
-2

 d
-1

, 1.2 to 2.25 MJ m
-2

 d
-1 

and 0.93 to 4.02 MJ m
-2

 d
-1

) (Fig. 11c and 11d). Higher 6 

ETd_pred errors in forests are related to the predominant cloudy-sky issue as described earlier. 7 

Tropical evergreen broadleaf forests (and forests in general) have high ET, water tends to re-8 

cycle locally and generate rainfall. Therefore, cloudy sky conditions are more frequent at 9 

tropical evergreen broadleaf forest and other forests types than at grassland and shrublands. In 10 

the biome specific ETd_pred error statistics (Fig. 11), relatively large bias in crop ETd_pred is 11 

introduced due to the inclusion of irrigated agroecosystems in the validation. In irrigated 12 

agroecosystems, day-to-day variation in soil moisture is not substantial and ETd is 13 

predominantly controlled by the net radiation. Therefore, the inclusion of soil moisture in the 14 

current ANN framework is unlikely to improve ETd_pred statistics in the irrigated 15 

agroecosystems. Further having many explanatory variables (e.g., land management, 16 

irrigation statistics, anthropogenic factors) to train the ANN, we risk overfitting the model and 17 

hence introducing bias. It is also evident that both Rs and RsTOA-based method of ETd 18 

estimation would be better suited for natural ecosystem e.g., in the Amazon basin or in the 19 

forest ecosystems where significant hydrological and climatological projections are 20 

emphasizing the role of ETd to understand the resilience of natural ecosystems in the spectre 21 

of hydro-climatological extremes (Harper et al., 2014; Kim et al., 2012). The performance of 22 

the method in the semi-arid shrublands appear to be promising (Fig. 11) and therefore the 23 

method seems to be credible under water-stressed environment also. 24 

Given this analysis was based on FLUXNET sites distributed across 0-90 degrees latitude 25 

north and south, the training datasets covers substantial climatic and vegetation variability. 26 

The percentage distribution of the training data according to vegetation type was; 23% crops, 27 

31% deciduous broadleaf forest, 10% evergreen broadleaf forest, 20% evergreen need leaf 28 

forest, 8% grassland, 7% shrubs and 1% aquatic as indicated in table S1. The number of 29 

grassland and shrubs as indicated were relatively less as compared to the crops and forests 30 

sites. However, biome specific error statistics (Fig. 11) indicted the absence of any systematic 31 



 
18 

errors due to vegetation sampling with the exception of EBF. Availability of more EBF sites 1 

in the training datasets is expected to reduce the cloudy-sky errors substantially, due to the 2 

assimilation of more cloud information into the RS-based ANN training.  3 

The tendency of positive bias in ETd_pred from both RS and RSTOA in clear skies from 4 

afternoon upscaling is partly explained by the fact that, during the afternoon the values of 5 

both RS and RSTOA reached maximum limit and dominates their daily values (Jackson et al., 6 

1983). The post afternoon rate of reduction in ET does not coincide with the shortwave 7 

radiation due to stomatal controls on ET, and the total water flux from morning to afternoon 8 

(0700h to 1300h) is generally greater than the total water flux from post afternoon (1500h 9 

onwards) till sunset. Therefore multiplying 1330h ETi with high magnitude of RSd/RSi or 10 

RSdTOA/RSiTOA might lead to an overestimation of ETd_pred in the clear sky days.  11 

Since extraterrestrial shortwave radiation is not affected by the clouds, ETd_pred from RSTOA 12 

performed comparably with the RS-based ETd_pred with increasing atmospheric clearness (i.e., 13 

for the higher levels of daily ). However, increased differences in the RMSE of ETd_pred 14 

between RS and RSTOA upscaling in the predominantly cloudy days indicates that more 15 

deviations can be expected in ETd_pred from these two different method of upscaling under 16 

principally overcast conditions (Tang et al., 2013). This happens because the ratio of RSdTOA 17 

/RSiTOA is not impacted by the clouds and the magnitude of this ratio becomes markedly 18 

different from RSd/RSi ratio in the presence of clouds, which leads to the differences in ETd_pred 19 

between them. The RS-based method is relatively efficient to discriminate the impacts on ET 20 

by RSd/RSi due to the clouds. The generally good performance of RS-based method and 21 

comparable error statistics with RSTOA-based ETd estimates are consistent with the findings 22 

of Cammalleri et al. (2014) and Van Niel et al. (2012). As shown in Table 2, relatively lower 23 

RMSE of RSTOA-based ETd_pred for atmospheric transmissivity class above 0.75 reveals that 24 

under pristine clear sky conditions RSTOA can be successfully used to upscale ETi. However, 25 

one of the main reasons for the differences in RMSE between RS and RSTOA method for daily 26 

transmissivity above 0.75 could be due to the fact that if ETi upscaling is performed from a 27 

cloudy instance for a predominantly clear sky day, then such RMSE difference between the 28 

two different upscaling methods is expected. These results also revealed the probability of a 29 

hybrid ETi upscaling method by combining cloud information or SM and P in RS-method (for 30 
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transmissivity between zero to 0.5) and RSTOA-method (for transmissivity greater than 0.5). 1 

However this hypothesis needs to be tested further. 2 

The systematic ETd underestimation by EF-based upscaling method and nearly similar pattern 3 

of bias from two different time-of-day upscaling (Table 2) further points to the fact that the 4 

concave-up shape of EF during daytime (Hoedjes et al., 2008; Tang et al., 2013) will tend to 5 

underestimate ETd if EF is assumed to be conservative during the daytime. EF remains 6 

conservative during the daytime under extremely dry conditions when ETd is solely driven by 7 

deep layer soil moisture. The systematic underestimation of ETd from EF-based upscaling 8 

method corroborates with the results reported by other researchers (Cammalleri et al., 2014; 9 

Delogu et al., 2012; Gentine et al., 2007; Hoedjes et al., 2008) which suggests that the self-10 

preservation of EF is not generally achieved, and this systematic underestimation of ETd can 11 

be partially compensated if EF-based ETi upscaling is done from morning 0900h or afternoon 12 

1600h time-of-day.  13 

We further resampled ETd (both predicted and observed) from daily to 8-day, monthly, and 14 

annual scale, and statistical metrics from the three different upscaling methods at three 15 

different temporal scales are shown in Fig. 12 and Table 3. Averaging ETd at 8-day, monthly 16 

and annual scale substantially reduced the RMSE to the order of 60 to 70% for all the three 17 

upscaling methods. The RS-based upscaled ETd from morning and afternoon showed reduction 18 

in RMSE from 1.79 MJ to 0.57 MJ and 1.74 MJ to 0.51 MJ from daily to annual ET, 19 

respectively. For the other two upscaling method these statistics varied from 1.85 and 1.89 MJ 20 

to 0.62 and 0.53 MJ (RSTOA method), and 2.16 and 1.33 MJ to 2.20 and 1.31 MJ (EF 21 

method) (Fig. 12 and Table 3). The impacts of daily cloud variability might have smoothed 22 

out in 8-day, monthly and annual scale which led to reduced RMSE and higher correlation 23 

between ETd_pred and ETd_obs. Nearly similar error statistics in ETd_pred from both the morning 24 

and afternoon upscaling also substantiates the findings of Ryu et al. (2012) and greatly 25 

stimulate the use of either morning satellite (i.e., Terra) or after satellite (i.e., Aqua) to upscale 26 

ETi to ETd or 8-day mean ETd. 27 

The principal limitation of the approach is the dependence of ETd and RSd on single snapshot 28 

of ETi and RSi. Although hourly RS data from geostationary satellite are becoming available; 29 

but these are available as sectorial products (i.e. for particular continents) instead of full 30 
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global coverage. Ongoing efforts to develop geostationary based data by merging multiple 1 

geostationary satellites tend to overcome this limitation. 2 

3.4 Impact of energy balance closure on ETd_pred  3 

FLUXNET EC sites have long been identified to be prone to surface energy budget 4 

imbalance, which might lead to (±20%) to (±40%) under measurement of latent heat fluxes. 5 

In order to assess the impacts of surface energy balance (SEB) closure on current ETd 6 

prediction, we further compared the error statistics of RS-based ETd_pred (Table 4) for both 7 

‘closed’ and ‘unclosed’ surface energy balance datasets. These are the subsets of the data 8 

where all the four SEB components (E, sensible heat flux, ground heat flux, and net 9 

radiation) were available and SEB was closed by the residual SEB closure method (Foken, 10 

2006). Table 4 revealed substantially low RMSE (10 to 60%), R
2
 (8 to 100%) and MAPE (1 11 

to 75%) in ETd_pred when ETi upscaling is done by ‘unclosed’ SEB. A consistently high 12 

positive mean bias (0.63 to 3.83) in ETd_pred with ‘closed’ SEB was also noted (Table 4). 13 

Although, various methods exist to close the surface energy balance, but, the impact of 14 

various SEB closure methods on ETd_pred statistics is beyond the scope of the current study. It 15 

is also important to mention that in the satellite based ETi retrieval, net available energy is 16 

partitioned into ET and sensible heat flux with the implicit assumption of SEB closure. 17 

Therefore, application of the current ANN framework is expected not to impact the remote 18 

sensing based ETi to ETd upscaling. However, for the validation of remote sensing based ETd 19 

retrievals, surface energy balance fluxes from eddy covariance measurements need to be 20 

closed.  21 

3.5 Sensitivity of ANN derived ETd_pred to biome selection 22 

A sensitivity analysis of ANN derived RS-based ETd_pred revealed variable sensitivity of the 23 

ANN framework to the biome selection. The coefficient of determination (R
2
) varied between 24 

0.71 to 0.84 and RMSE between 0.96 to 2.10 MJ m
-2

 d
-1

 across three different scenarios of 25 

ANN training and validation (Fig. 13). However, RMSE was found to be relatively high in 26 

forests in Case2, where ANN was trained by using the data from crops, grasslands and 27 

shrublands only. For the Case1 and Case3, no substantial difference was noted (Fig. 13). This 28 

therefore revealed the fact that the inclusion of forests in ANN training leads to lower errors 29 

in ETd_pred over non-forest biomes, although the reverse scenario in not likely to be true. Since 30 
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forests generally have high ET, water recycling tends to be more over the forests which 1 

produces substantial rainfall, variable atmospheric water vapor, associated cloudiness, and 2 

radiation. Cloudiness is a phenomenon that significantly influences the reliability of a model 3 

to predict incoming solar radiation as they are directly related to each other. Therefore, when 4 

RS-based ANN is trained with data from forests, the model assimilates information on a 5 

diverse range of radiative forcings which broaden their applicability in other biomes. This 6 

also emphasizes the fact that the performance of such ANN-based approach is primarily 7 

sensitive to their training over a broad spectrum of atmospheric conditions.    8 

4 Summary and Conclusions 9 

Given the significance of ETd in remote sensing based water resource management from polar 10 

orbiting satellites, this study developed and evaluated a temporal upscaling method for 11 

estimating ETd from different time-of-day instantaneous ET (ETi) measurements with the 12 

assumption that the ratio between daytime to instantaneous shortwave radiation (RSd/RSi) is the 13 

predominant factor governing ETd/ETi ratio. However, since RSd is not directly measurable 14 

from the polar orbiting satellites, we trained an ANN with the FLUXNET observations of RSi 15 

and RSd, and validated the model to predict RSd over independent sites, followed by using 16 

RSd/RSi ratio for converting ETi to ETd. The overarching goal of this study is to provide an 17 

operational and robust ETi upscaling protocol for estimating ETd from any polar orbiting 18 

satellite. The datasets used for the ANN model development covers a wide range of biome, 19 

climate, and variable sky conditions. Therefore, we assume the RSd prediction from ANN to 20 

capture a broad spectrum of radiative forcing, which is also reflected in the independent 21 

validation of RSd and ETd (Fig. 5, Fig. 7, Table 2). However, the performance of this model 22 

for satellite retrieval of RSd (from RSi) is dependent on the accuracy of RSi retrieval (Loew et 23 

al., 2016). Also, the distribution of sites over the tropics, Africa, and South East Asia are 24 

poor, and more sites over these regions are expected to make the ANN model performance 25 

more robust. 26 

Based on measurements from 126 flux tower sites, we found RS-based upscaled ETd to 27 

produce a significant linear relation (R
2
 = 0.65 to 0.69), little bias (-0.31 to -0.56 MJ m

-2
 d

-1
) 28 

(appx. 4%), and good agreement (RMSE 1.55 to 1.86 MJ m
-2

 d
-1

) (appx. 10%) with the 29 

observed ETd. While the exoatmospheric shortwave radiation driven ETi upscaling method 30 
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(i.e., RSTOA-based) appeared to produce slightly lower RMSE (10% lower) under cloud-free 1 

conditions (Table 2), global shortwave radiation driven method (i.e., RS–based method) 2 

demonstrates more robust performance and was found to be better under cloudy conditions. 3 

Despite RS–based method yielded relatively better overall accuracy in ETd prediction (i.e., 4 

ETd_pred) statistics when compared with the RSTOA and evaporative fraction based (EF-based) 5 

method, statistical analysis of ETd_pred accuracy of different temporal upscaling methods (as 6 

discussed in section 3.3) suggests that RS and RSTOA to produce commensurate results under 7 

coarse temporal resolutions (Table 3). Therefore, at the coarse temporal scale (8-day and 8 

above), any of these two methods (RS and RSTOA) can be used for ETi to ETd upscaling.  9 

The proposed upscaling method is based on the idea that instantaneous ET/RS approximates 10 

daily ET/RS, although it implicitly includes the stomatal controls on ET observations mediated 11 

by the vegetation. The cases where ETi is low due to water stress induced strong stomatal 12 

control; low magnitude of ET will also be reflected in upscaling ETi to ETd (according to eq. 13 

1). However, to account for any carry over effects of the stomatal control on ETd, inclusion of 14 

longwave radiation would likely to improve the scheme. Stomatal control is significantly 15 

dependent on the thermal longwave radiative components, and, therefore, the relative 16 

proportion of downwelling and upwelling longwave radiation is expected to be a stomatal 17 

constraint. However, the availability of longwave radiation measurement stations in the 18 

FLUXNET datasets is limited to formulate ANN and evaluate this hypothesis. In general, the 19 

stomatal and biophysical constraints are imposed in state-of-the-art thermal remote sensing 20 

based ETi retrieval schemes, and, therefore the ANN framework can be applied to upscale 21 

remote sensing based ETi to ETd. Also, relatively good performance of the model in semiarid 22 

shrubland also indicated the applicability of the method in water stressed ecosystems where 23 

stomatal controls are predominant.  24 

Among all the upscaling method tested, RS–based method carries maximum information on 25 

the cloudiness and produced generally lowest RMSE, low bias (Table 3), and, therefore, 26 

overall the preferably robust scaling mechanism (at the daily scale) among all the other 27 

methods tested. The true added value of the ANN is for an operational ETd product from polar 28 

satellites. Currently, the polar Earth orbiting satellites provide us with ETi only. However, for 29 

most hydrological and ecosystem modeling applications, ETd is needed. Therefore, for studies 30 

that will opt to apply RS–based method as a scaling algorithm, RSd will be easily available for 31 
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any measurement of RSi by the satellite using the ANN. However, upscaling large-area 1 

satellite-based ETi by using retrieved RSi would require accurate RSi retrieval techniques, 2 

which are currently commonplace (Ahmad et al., 2015; Boulifa et al., 2015; Dahmani et al., 3 

2016; Hasni et al., 2012; Li, Tang, Wu, & Liu, 2013) to support regional scale hydrological 4 

applications. Of the two other upscaling methods, RSTOA could be easily applied over large 5 

areas, had lower errors than EF, had second best RMSE, and overall lowest bias among the 6 

two. We conclude that using modelled RS to upscale ETi at daily scale appears to be viable for 7 

large-area hydrological remote sensing applications from polar orbiting satellites irrespective 8 

of any sky conditions.  9 
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Table 1: Statistical analysis of the performance of ANN in predicting RSd under varying sky 1 

conditions represented by four different classes of daily atmospheric transmissivity (). Here the 2 

statistical metrics of RSd_pred for two different upscaling hours (1100 and 1330 h) are presented. 3 

Time-of-day (h)  R
2
 RMSE (MJ m

-2
 d

-1
) IA MAPE Bias (MJ m

-2
 d

-1
) 

1100 

1 0.67 1.84 0.67 53.56 1.12 

2 0.79 2.45 0.80 16.69 0.59 

3 0.88 2.30 0.82 9.17 -0.74 

4 0.98 0.63 0.95 1.69 0.08 

1330 

1 0.65 1.77 0.67 51.50 1.06 

2 0.81 2.44 0.81 16.83 0.69 

3 0.89 2.23 0.83 8.94 -0.85 

4 0.98 0.89 0.95 2.40 -0.46 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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Table 2: A summary of ETd error statistics by comparing the performance of RS-based, RSTOA-based and EF-based ETi 1 

upscaling methods with regard to different sky conditions. Here  represents low atmospheric transmissivity due to high 2 

cloudiness while 4 represents high transmissivity under clear sky conditions.  3 

Time-

of-day 

(h) 
 

R
2
 RMSE (MJ m

-2
 d

-1
) IA MAPE Bias (MJ m

-2
 d

-1
) 

RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF 

1100 

 0.49 0.32 0.32 1.34 1.65 2.07 0.72 0.67 0.71 50.14 66.70 64.19 -0.13 -0.04 0.05 

 0.72 0.70 0.69 1.73 1.81 1.93 0.81 0.78 0.69 26.47 32.41 36.42 -0.21 -0.19 -0.95 

 0.72 0.73 0.79 1.99 1.94 2.38 0.81 0.79 0.59 24.69 25.66 40.37 -0.24 -0.37 -1.78 

 0.77 0.81 0.68 1.32 1.13 2.00 0.84 0.81 0.49 32.17 30.02 55.43 0.05 -0.19 -1.34 

1330 

 0.52 0.34 0.29 1.21 1.68 2.34 0.73 0.69 0.71 48.29 66.09 68.14 -0.11 0.08 0.12 

 0.73 0.72 0.71 1.71 1.93 1.86 0.82 0.79 0.71 26.12 33.71 35.33 -0.01 0.24 -0.88 

 0.75 0.75 0.76 1.89 1.96 2.43 0.82 0.82 0.61 23.17 25.82 41.65 0.09 0.14 -1.75 

 0.79 0.86 0.80 1.32 1.09 1.86 0.84 0.86 0.49 29.54 26.59 53.91 0.10 0.11 -1.38 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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Table 3: Error statistics of ETd_pred at four different temporal scales from three ETi upscaling methods. 1 

Time-

of-day 

(h) 

Temporal 

scale 

R
2
 RMSE (MJ m

-2
 d

-1
) IA MAPE Bias (MJ m

-2
 d

-1
) 

RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF 

1100 Daily 0.71 0.72 0.71 1.79 1.85 2.16 0.82 0.80 0.67 28.80 32.98 57.00 0.19 0.22 1.21 

8-days 0.86 0.84 0.85 1.17 1.22 1.65 0.87 0.86 0.67 18.50 20.63 46.96 0.19 0.22 1.16 

Monthly 0.89 0.88 0.88 0.99 1.04 1.61 0.89 0.67 0.67 15.52 17.22 49.72 0.19 0.22 1.16 

Annually 0.92 0.91 0.93 0.57 0.62 1.33 0.87 0.84 0.54 11.12 12.54 45.88 0.19 0.22 1.21 

1330 Daily 0.75 0.74 0.69 1.74 1.89 2.2 0.83 0.82 0.67 26.59 29.89 56.45 -0.04 0.17 -1.18 

8-days 0.87 0.86 0.84 1.11 1.21 1.7 0.88 0.88 0.68 16.80 17.97 50.36 -0.04 0.17 -1.18 

Monthly 0.90 0.90 0.87 0.93 1.00 1.59 0.90 0.89 0.68 13.69 14.85 48.08 -0.04 0.17 -1.18 

Annually 0.93 0.93 0.92 0.51 0.53 1.31 0.88 0.88 0.54 9.00 9.70 44.13 -0.04 0.17 -1.18 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 
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Table 4: Evaluation of the RS-based ANN predicted ETd (ETd_pred) error statistics based on ‘closed’ (EBC) and unclosed’ (EBO) surface energy balance 1 

under varying sky conditions represented by four different classes of daily atmospheric transmissivity (). Here  represents low atmospheric 2 

transmissivity due to high cloudiness while 4 represents high transmissivity under clear sky conditions. The statistical metrics of ETd_pred for two 3 

different upscaling hours (1100 and 1330 h) are presented. 4 

Time-of-

day (h)  

R2 RMSE (MJ m-2 d-1) IA 
 

MAPE 

 

 
Bias (MJ m-2 d-1) 

 

EBO EBC EBO EBC EBO EBC EBO EBC EBO EBC 

1100 

 

 0.37 0.17 2.96 3.31 0.71 0.57 87.21 86.49 0.66 1.12 

 0.68 0.54 1.64 2.94 0.78 0.68 28.66 38.01 -0.10 0.65 

 0.75 0.61 1.77 3.20 0.76 0.66 25.31 37.82 -0.67 1.34 

 0.66 0.61 1.09 3.40 0.71 0.30 21.77 85.80 -0.31 3.83 

1330 

 

 0.35 0.25 2.02 2.70 0.71 0.60 69.78 78.18 0.37 0.87 

 0.76 0.5 1.54 3.27 0.81 0.69 27.56 40.98 0.23 0.63 

 0.77 0.59 1.66 3.18 0.80 0.70 23.16 34.17 -0.46 0.76 

 0.84 0.64 0.98 2.46 0.76 0.66 23.30 43.89 -0.56 1.23 

 5 

 6 



 
34 

 1 

Figure 1. A conceptual diagram of the methodology. On the left side is a representation of predicting 

daily incoming short wave radiation (RSd_pred). The ANN is trained to learn the system response to a 

combination of explanatory variables i.e. instantaneous incoming short wave radiation (RSi), 

instantaneous exo-atmospheric shortwave radiation (RSiTOA), daily exo-atmospheric shortwave 

radiation (RSdTOA), solar zenith angle (Z), and day length (LD), by being fed with a sample data of 

observed daily incoming short wave radiation (RSd_obs) which is the dependant variable. On the right 

side are methods of upscaling instantaneous (ETi) to daily ET (ETd) using our RS–based method (a) and 

other two approaches (b, c) are the RSTOA and EF-based methods respectively used which are used for 

comparison. 
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 1 

Figure 2.  Schematic representation of a simple artificial network model. The artificial neuron has 

five input variables, for the intended output. These inputs are then assigned weights (W) and bias (b), 
and the sum of all these products (∑) is fed to an activation function (ƒ). The activation function 

alters the signal accordingly and passes the signal to the next neuron(s) until the output of the model 

is reached (Mathworks, 2015). 
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 1 

Figure 3. Distribution of 126 sites of the FLUXNET eddy covariance network used in the present 

study with 85 and 41 sites for training and validation, respectively between the years 1999 and 2006. 
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 1 

Figure 4. Statistical metric of RSd_pred by ANN for different time-of-day. As the study is intended 

for remote sensing application, we demonstrate the potential of the method for future research in 

the case where satellite will be used and as such we pick MODIS overpass time as an example to 

highlight on the predictive ability of the ANN at the specific overpass times. 
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 1 

Figure 5. Scatter plots between RSd_obs versus RSd_pred for different levels of daily atmospheric 

transmissivity classes () from (a) 1100 and (b) 1330 hours upscaling. Here 1–4 represent daily 

atmospheric transmissivity of four different class, 0.250, 0.500.25, 0.750.50, and 10.75, 

respectively, with 1 signifying high degree of cloudiness (or overcast skies) whereas 4 indicates clear 

skies. 
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Figure 6. Statistical summary of ETd_pred for different time-of-day using Eq. (1) based on RSi and 

RSd_pred. As the study is intended for remote sensing application, we once again demonstrate the 

potential of the method for future research in the case where satellite will be used and as such we 

pick MODIS Terra-Aqua overpass time. 

 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 



 
40 

 1 

Figure 7. ETd_pred obtained through eq. (1) versus ETd_obs for different levels of  from both 

forenoon (a) and afternoon (b) upscaling (1100 and 1300 h daytime hours). 
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Figure 8. Assessing the statistical metrics of ETd_pred (using eq.1) for different levels of daily 

atmospheric transmissivity classes (representing cloudy to clear skies) for both 1100h and 1330h 

time-of-day ETi scaling. 
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Figure 9. An intercomparison of ETd_pred error statistics (RMSE and MAPE) for different levels of 

atmospheric transmissivity classes based on two different ANN training (ANN trained with 

shortwave radiation and astronomical variables only; and ANN trained with radiation, astronomical 

variables, soil moisture and rainfall) based on 1100h and 1330h time-of-day ETi scaling. 
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Figure 10. Time series comparison between observed and predicted ETd for four representative sites 

located in Australia, Brazil, South Africa and Sweden. 
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Figure 11. Biome specific error characteristics of ETd_pred displaying the box plots of RMSE and 

coefficient of determination (R
2
) from both RS-based and RSTOA-based ETi upscaling. The biome 

classes are evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf 

forest (DBF), shrubland (SH), cropland (CRO), and grassland (GRA), respectively. 

(a) RS-based RMSE of ETd_pred 

 

(b) RS-based R
2 
of ETd_pred 

 

(c) RSTOA-based RMSE of ETd_pred 

 

 

(d) RSTOA-based R
2 
of ETd_pred 
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Figure 12. Statistical metrics of ETd_pred from three different ETi upscaling approaches [shortwave 

incoming radiation (RS), exo-atmospheric shortwave radiation (RSTOA) and evaporative fraction 

(EF)] at different temporal scales based on ETi measurements at (a) 1100h and (b) 1330h time-of-

day. 

(a) 1100 h ETi upscaling 

 
(b) 1330 h ETi upscaling 
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Figure 13. Illustrative examples of the sensitivity of ETd_pred error statistics (R
2
 and RMSE) to the 

different biome type scenarios of ANN training. Here, Case1 consist of training the ANN with 

forest (FOR) datasets and evaluating ANN predicted ETd statistics on non-forest biomes, Case2 

consist of training the ANN with non-forest datasets and evaluating ANN predicted ETd statistics 

on forest biomes, Case3 consist of training the ANN with both forests and non-forest datasets and 

evaluating ANN predicted ETd statistics on all the biomes.  

(a) R2
 of ETd_pred for three different ANN training scenarios 

 

 

(b) RMSE of ETd_pred for three different ANN training scenarios 
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