Upscaling instantaneous to daily evapotranspiration using modelled daily shortwave radiation for remote sensing applications: an Artificial Neural Network approach

4	Loise Wandera ^{1,2} , Kaniska Mallick ¹ , Gerard Kiely ³ , Olivier Roupsard ⁴ , Matthias Peichl ⁵ ,										
5	Vincenzo Magliulo ⁶										
6 7	¹ Remote Sensing and Ecohydrological Modeling, Dept. ERIN, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg										
8	² Water Resources, Dept. ITC, University of Twente, Enschede, Netherlands										
9 10	³ Hydrology, Micrometeorology & Climate Investigations, HYDROMET Research Group, University College Cork, Ireland										
11	⁴ CIRAD, UMR Ecology and Soils, Montpellier, France										
12	⁵ Forest Landscape Biogeochemistry, Dept. Swedish University of Agricultural Sciences Umeå, Sweden										
13	⁶ Consiglio Nazionale delle Ricerche, ISAFOM, Ercolano, Napoli, Italy										
14											
15											
16	Correspondence to: Kaniska Mallick (Phone: +352 275888425; email:										
17	kaniska.mallick@gmail.com); Loise Wandera (email: loise.wandera@list.lu);										
18											

1 Abstract

Upscaling instantaneous evapotranspiration retrieved at any specific time-of-day (ET_i) to daily evapotranspiration (ET_d) is a key challenge in mapping regional *ET* using polar orbiting sensors. Various studies have unanimously cited the short wave incoming radiation (R_s) to be the most robust reference variable explaining the ratio between ET_d and ET_i . This study aims to contribute in ET_i upscaling for global studies using the ratio between daily and instantaneous incoming short wave radiation (R_{Sd}/R_{Si}) as a factor for converting ET_i to ET_d .

8 This paper proposes an artificial neural network (ANN) machine learning algorithm first to 9 predict R_{Sd} from R_{Si} followed by using the R_{Sd}/R_{Si} ratio to convert ET_i to ET_d across different 10 terrestrial ecosystem. Using R_{Si} and R_{Sd} observations from multiple sub-networks of FLUXNET database spread across different climates and biomes (to represent inputs that 11 12 would typically be obtainable from remote sensors during the overpass time) in conjunction 13 with some astronomical variables (e.g., solar zenith angle, day length, exoatmospheric 14 shortwave radiation etc.), we developed ANN model for reproducing R_{Sd} and further used it to 15 upscale ET_i to ET_d . The efficiency of the ANN is evaluated for different morning and afternoon time-of-day, under varying sky conditions, and also at different geographic 16 locations. R_s -based upscaled ET_d produced a significant linear relation ($R^2 = 0.65$ to 0.69), 17 low bias (-0.31 to -0.56 MJ $m^{-2} d^{-1}$) (appx. 4%), and good agreement (RMSE 1.55 to 1.86 MJ 18 $m^{-2} d^{-1}$ (appx. 10%) with the observed ET_d , although a systematic overestimation of ET_d was 19 20 also noted under persistent cloudy sky conditions. Inclusion of soil moisture and rainfall 21 information in ANN training reduced the systematic overestimation tendency in 22 predominantly overcast days. An intercomparison with existing upscaling method at daily, 8-23 day, monthly, and yearly temporal resolution revealed a robust performance of the ANN 24 driven R_S -based ET_i upscaling method and was found to produce lowest RMSE under cloudy 25 conditions. Sensitivity analysis revealed variable sensitivity of the method to biome selection 26 and high ET_d prediction errors in forest ecosystems are primarily associated with greater 27 rainfall and clouds. The overall methodology appears to be promising and has substantial 28 potential for upscaling ET_i to ET_d for field and regional scale evapotranspiration mapping 29 studies using polar orbiting satellites.

Key Words: Evapotranspiration, upscaling, artificial neural networks, short wave radiation,
 rainfall, soil moisture, FLUXNET

3 1 Introduction

4 Satellite-based mapping and monitoring of daily regional evapotranspiration (ET hereafter) 5 (or latent heat flux, λE) is considered as a key scientific concern for multitudes of applications 6 including drought monitoring, water rights management, ecosystem water use efficiency 7 assessment, distributed hydrological modelling, climate change studies, and numerical 8 weather prediction (Anderson et al., 2015; Senay et al., 2015; Sepulcre-Canto et al., 2014). ET 9 variability during the course of a day is influenced by changes in the radiative energy being 10 received at the surface (Brutsaert & Sugita, 1992; Crago, 1996; Parlange & Katul, 1992), due 11 to soil moisture variability particularly in the water deficit landscapes, and also due to the 12 stomatal regulation by vegetation.

One of the fundamental challenges in regional *ET* modelling using polar orbiting satellites involves the upscaling of instantaneous *ET* retrieved at any specific time-of-day (*ET_i*) hereafter) to daily *ET* (*ET_d* hereafter). For example, *ET_i* retrieved from LANDSAT, ASTER and MODIS sensors typically represent *ET_i* at a single snapshot of 1000, 1030 and 1330 hrs local time, which needs to be upscaled to daily timescale for making this information usable to hydrologists and water managers (Cammalleri et al., 2014; Colaizzi et al., 2006; Ryu et al., 2012; Tang et al., 2013).

20 In order to accommodate the temporal scaling challenges encountered by remote sensing 21 based ET models, techniques have been proposed and applied by various researchers to 22 upscale ET_i to ET_d . These include: (1) the constant evaporative fraction (EF) approach which 23 assumes a constant ratio between λE and net available energy ($\phi = R_n - G, R_n$ is the net radiation and G is the ground heat flux) during daytime $[EF = \lambda E/(R_n - G)]$ (Gentine et al., 24 25 2007; Shuttleworth et al., 1989), (2) constant reference evaporative fractions (EF_r) method 26 where the ratio of ET_i between a reference crop (typically grass measuring a height of 0.12 m 27 in an environment that is not water limited) and an actual surface is assumed to be constant 28 during daytime, allowing ET_d to be estimated from the daily EF_r (Allen et al., 1998; Tang et 29 al., 2013), (3) constant global shortwave radiation method (R_S) where R_S is the reference 30 variable at the land surface and it is assumed that the ratio of daily to instantaneous shortwave

1 radiation (R_{Sd} and R_{Si}) values (i.e., R_{Sd}/R_{Si}) determines ET_d to ET_i ratio (Jackson et al., 1983; 2 Cammalleri et al., 2014), and (4) constant extra-terrestrial radiation method where the exo-3 atmospheric shortwave radiation ($R_{\rm s}TOA$) is the reference variable and the ratio of instantaneous to daily R_STOA ($R_{Si}TOA$ and $R_{Sd}TOA$) is assumed to determine the ratio of ET_d 4 5 to ET_i (Ryu et al., 2012; Van Niel et al., 2012). These methods have been reviewed and compared in different studies with the view of identifying the most robust ET_i to ET_d 6 7 upscaling approach based on different data sets, time integrals and varying sky conditions 8 (Cammalleri et al., 2014; Ryu et al., 2012; Tang et al, 2013, 2015; Van Niel et al., 2012; Xu et 9 al., 2015).

Based on the previous studies, we find that the R_STOA approach performed consistently good 10 11 at lower temporal resolution namely eight-day to monthly scales (Ryu et al., 2012; Van Niel et al., 2012) as well as under clear-sky conditions (Cammalleri et al., 2014), whereas the R_S 12 approach was identified as the most preferred method for ET_i to ET_d conversion at a higher 13 14 temporal scale i.e. daily timescale in addition to under variable sky conditions (Cammalleri et 15 al., 2014; Chávez et el., 2008; Colaizzi, et al., 2006; Xu et al., 2015). Although the EF_r -based 16 method produced comparable ET_d estimates as the R_S -based method, however the dependence 17 of EF_r estimates on certain variables (e.g., daily net available energy; ϕ and wind speed) and 18 the difficulty to characterise them at the daily scale from single acquisition of polar orbiting 19 satellites (Tang et al., 2015) makes it a relatively less attractive method. Furthermore the EFbased method appeared to consistently underestimate ET_d in all these studies. 20

21 The motivation of the current work is built on the conclusions of Colaizzi et al. (2006), 22 Chávez et al. (2008), Cammalleri et al. (2014), and Xu et al. (2015) that the ratio of the 23 instantaneous to daily R_S incident on land surface is the most robust reference variable 24 explaining the ratio between ET_d and ET_i among all the tested methods. This work aims to 25 contribute in ET_i upscaling by first developing a method for estimating R_{Sd} from any specific 26 time-of-day R_S information (R_{Si}) and further using R_{Sd}/R_{Si} ratio as a factor for converting ET_i 27 to ET_d . We develop an artificial neural network (ANN) machine learning algorithm 28 (McCulloch & Pitts, 1943) for estimating R_{Sd} . Although net radiation (R_N) is more closely 29 associated with ET, but R_S constitutes 80-85% of R_N (Mallick et al., 2015). Also from remote 30 sensing perspective, R_{Si} is relatively easily retrievable irrespective of the sky conditions (Wang et al., 2015; Lopez and Batlles, 2014), and its relationship to R_{Sd} is primarily governed 31

by cloudiness (cloud fraction, cloud optical depth) and astronomical variables (e.g., solar zenith angle, day length, R_STOA etc.). Given the information of cloudiness is also obtainable from remote sensing, we consider R_S to be a robust variable to explore ET_i upscaling.

4 Even though this study is intended for remote sensing application, we tested the method using 5 meteorological and surface energy balance flux measurements from eddy covariance (EC) 6 system at the FLUXNET (Baldocchi et al., 2001) sites mainly for the purpose of temporal 7 consistency. However, we evaluate the performance in consideration with overpass time of 8 polar orbiting satellites commonly used in operational ET mapping namely MODIS and 9 LANDSAT. By choosing to use data distributed over different ecosystems and climates zones, we are faced with two problems : (1) changing cloud conditions across ecosystems, (2) 10 varying energy balance closure (EBC) requirements for the fluxes in different ecosystems 11 12 (Foken et al., 2006; Franssen et al., 2010; Mauder & Foken, 2006; Wilson et al., 2002). 13 Currently, information on cloudiness is obtainable from geostationary meteorological satellites, at hourly to 3-hourly time steps e.g., from the Clouds and Earth's Radiant Energy 14 15 System (CERES), the International Satellite Cloud Climatology Project-Flux Data (ISCCP-16 FD), and Global Energy and Water cycle Experiment Surface Radiation Budget (GEWEX-17 SRB). The CERES algorithm uses cloud information from MODIS onboard both Terra and 18 Aqua platforms and combines it with information from geostationary satellites to accurately capture the diurnal cycles of clouds. In this study, cloudiness is not included in the list of 19 20 variables used to estimate R_{Sd} due to inconsistency in spatial resolution of data to match with 21 the other predictive variables used. Including cloudiness holds a great potential in improving 22 the ANN R_{Sd} predications due to their direct relationship (Mallick et al., 2015). However, we 23 assess the performance of the ANN under cloudy sky conditions based on simple cloudiness 24 index computations as adopted from previous works (Baigorria et al., 2004). The EBC 25 problems have been reported to vary across landscapes due to management practices, climate, 26 seasons and plant functional type characteristics (Foken et al., 2006). In this study, in order to 27 test the robustness of the proposed method, we initially disregard the site specific EBC 28 problems and assume that the systematic bias of fluxes fall within the same range across 29 entire FLUXNET database used.

The objectives of the present study are: (1) using a ANN with Multilayer Perceptron (MLP) architecture to predict R_{Sd} based on R_{Si} satellite observations, (2) applying R_{Sd}/R_{Si} ratio as a 1 scaling factor to upscale ET_i to ET_d under all sky conditions, and (3) comparing the 2 performance of proposed R_S -based ET_i upscaling method with R_STOA and EF-based ET_i 3 upscaling methods across a range of temporal scales, biomes and variable sky conditions.

4 2 Methodology

5 2.1 Rationale

6 The presented method of *ET* upscaling from any specific time-of-day to daytime average
7 evaporative fluxes is based on the assumption of self-preservation of incoming solar energy
8 (i.e., shortwave radiation) as proposed by Jackson et al. (1983).

9
$$ET_d \approx ET_i \frac{R_{Sd}}{R_{Si}}$$
 (1)

Where, ET_d is the daily average evapotranspiration in W m⁻², ET_i is the instantaneous 10 evapotranspiration at any instance during daytime in W m⁻², R_{Si} and R_{Sd} are the values of 11 shortwave radiation recorded at any instance and the daily average having units W m⁻². Daily 12 total ET_d and R_{Sd} is expressed in MJ m⁻² d⁻¹ by using standard conversion from Watts to Mega 13 Joules. Following Jackson et al. (1983) and Cammalleri et al. (2014), we hypothesized that 14 the mean diurnal variation of ET for any particular day scales with the mean diurnal variation 15 of R_s . The justifications are: (a) R_s is the principal driver that controls sub-daily ET variability 16 17 unless there is substantial diurnal asymmetry in cloudiness or abrupt change in sub-daily soil 18 moisture between morning and afternoon. (b) Under thick cloudy conditions, ET scales with 19 R_S . Under clear sky conditions ET also scales with R_S and both are in phase if sufficient soil 20 moisture is available at the surface. (c) Phase difference between R_S and ET are commonly 21 found under soil moisture deficit conditions in clear-sky days. However, the magnitude of 22 clear-sky ET_i in water deficit conditions is also be very low, which will lead to substantially 23 low ET_i/R_{Si} ratio, and would unlikely to introduce any uncertainty in ET_i to ET_d upscaling in 24 the framework of eq. (1).

For any remote sensing studies using polar orbiting satellites, although the retrieval of ET_i and *R*_{Si} has been standardised (Tang et al., 2015; Huang et al., 2012; Polo et al., 2008; Laine et al., 1999), but, estimating R_{Sd} and ET_d from R_{Si} and ET_i are still challenging. Presently, upscaling *R*_{Si} to *R*_{Sd} is primarily based on the clear sky assumption, i.e., for the entire daytime

1 integration period, the sky remains cloud-free (Bisht et al., 2005; Jackson et al., 1983). 2 However, the clear-sky assumption is not always appropriate for upscaling remote sensing 3 based R_{Si} and hence ET_i because the sky conditions during a specific time-of-day may be clear 4 whereas the other part of the day might be cloudy. Under such conditions, the clear-sky 5 assumption of ET_i upscaling will lead to substantial overestimation of ET_d in cloudy 6 conditions. Hence reliable estimates of all-sky (i.e., both clear and cloudy) R_{Sd} would greatly 7 improve the ET_d estimates in the framework of eq. (1). Given the unavailability of a definite 8 method to directly estimate all-sky R_{Sd} from R_{Si} information, here we proposed a simple 9 method to upscale R_{Si} to R_{Sd} using ANN. This method uses the observations of both R_{Sd} and 10 R_{Si} from all the available FLUXNET sites in conjunction with some ancillary variables to 11 build the ANN as described in section 2.2. A schematic diagram of the ANN method is given 12 in Fig. 1. The analysis is based on 24-hour period, meaning night time ET contribution is 13 implicitly considered. However, studies have already shown that the nighttime ET in semi-14 arid and sub-humid regions contributes only 2-5% of the total season ET (Malek, 1992; Tolk 15 et al., 2006), and therefore does not appear to be significant.

The overarching aim of this study is to develop an approach that would help in the upscaling of ET_i (retrieved at satellite overpass time) to ET_d . Additional value of this study also consists of exploiting R_{Si} information at satellite local crossing time to predict R_{Sd} which is not directly retrievable from any polar orbiting satellites, so that the ratio of R_{Sd}/R_{Si} can be further used to upscale ET_i to obtain ET_d estimates. Currently we are limited to demonstrating with MODIS satellite overpass times (Terra and Aqua), however for the future missions with different local overpass time, the method would still be applicable.

23 In any natural ecosystem, R_S on a particular day is primarily influenced by the cloud 24 (especially cloud cover fraction and optical thickness) (Mallick et al., 2015; Hildebrandt et al., 25 2007), latitude, season, and time-of-day. Therefore, R_{Sd} on any specific day is expected to be a 26 function of R_{Si} (as a representative of R_S and cloudiness factors), solar zenith angle 27 (representing latitude, season, time-of-day), day length (representing latitude and season), and 28 $R_{s}TOA$ (representing latitude, season, time-of-day). Besides, atmospheric aerosols also 29 interact with R_S and absorb some of the radiation particularly in the urban areas. Considering 30 the applications of ET_i to ET_d modeling in the natural ecosystems, we include R_{Si} , $R_{Si}TOA$, 31 $R_{Sd}TOA$, solar zenith angle and day length for R_{Sd} (and subsequently ET_d) prediction.

1 **2.2 Development of Artificial Neural Network (ANN)**

2 ANN is a non-linear model which works by initially understanding the behaviour of a system 3 based on a combination of a given number of inputs and subsequently is able to simulate the system when fed with independent set of inputs of the same system. ANN approach has been 4 5 successfully used in estimating global solar radiation in many sectors and more so in the field 6 of renewable energy (Ahmad et al., 2015; Hasni et al., 2012; Lazzús et al., 2011). Multi-layer 7 perceptron (MLP) is one of the ANN architectures commonly used as opposed to other 8 statistical methods, makes no prior assumptions concerning the data distribution, has ability to 9 reasonably handle non-linear functions and reliably generalise independent data when 10 presented (Gardner & Dorling, 1998; Khatib, Mohamed, & Sopian, 2012; Wang, 2003). In the present study, MLP was chosen as it has been widely used in many similar studies and cited 11 12 to be a better alternative as compared to the conventional statistical methods (Ahmad et al., 13 2015; Chen et al., 2013; Dahmani et al., 2016; Mubiru & Banda, 2008). The MLP is composed of 5 neurons in the input layer, 1 output layer and 10 hidden layers (Fig. 2). The 14 15 input layer neurons are made up of instantaneous incoming short wave radiation (R_{Si}) , 16 instantaneous exo-atmospheric shortwave radiation ($R_{Si}TOA$), daily exo-atmospheric 17 shortwave radiation ($R_{Sd}TOA$), solar zenith angle (θ_Z), and day length (L_D) as the predictor 18 variables whose values are initially standardized to range between -1 to 1. The choice of the 19 inputs is intentionally limited to the variables that cannot only be acquired by measurements 20 from meteorological stations but also derived from simple astronomical computations (Ryu et 21 al., 2012) mainly to help minimize on the spatial distribution problem (as described earlier in 22 the introduction) that is often linked to ground weather stations. In the MLP processing, the 23 input layer directs the values of each input neuron x_i (i = 1, 2, 3..., n) into each neuron (j) of 24 the hidden layers. In the hidden layer, x_i is multiplied by a weight (w_{ij}) followed by a bias (b_i) 25 assigned for each hidden layer also is applied. The weighted sum (eq. (2)) is fed into a 26 transfer function. In this work a tangent sigmoid (TANSIG) function is used (eq. (3)) in the 27 hidden layer while in the output layer a PURELIN function is applied (eq. (4)) to give a single output value which is the predicted daily shortwave radiation (R_{Sd_pred}). PURELIN is a linear 28 29 neural transfer function used in backpropagation network. It calculates a layer's output from 30 its net input. The function generates outputs between zero and 1 as the neuron's net input goes 31 from negative to positive infinity. The training of the ANN is completed by a regression 1 analysis being performed internally by the algorithm between the target variable i.e. the

2 observed and predicted daily shortwave radiation (R_{Sd_obs} and R_{Sd_pred}).

$$\boldsymbol{x}_{j} = \int \left(\sum_{i=1}^{n} \boldsymbol{W}_{ij} \boldsymbol{y}_{i} \boldsymbol{b}_{j} \right)$$
(2)

$$y_{j} = \frac{2}{(1 + \exp(-2X_{i}) - 1)}$$
(3)

$$y_{j} = X_{i}(PURELIN)$$
⁽⁴⁾

Bayesian regularization algorithm was chosen for the optimization process because it is able
to handle noisy datasets by continuously applying adaptive weight minimization and can
reduce or eliminate the need for lengthy cross-validation that often leads to overtraining and
overfitting of models (Burden and Winkler, 2009).

7 2.3 Datasets

Baily and half-hourly data on R_S (W m⁻²), R_{STOA} , net radiation (R_n , W m⁻²), latent heat flux (λE , W m⁻²), sensible heat flux (H, W m⁻²) and ground heat flux (G, W m⁻²) measured by the FLUXNET (Baldocchi et al., 2001) eddy covariance network were used. A total of 126 sites from the years 1999 to 2006 distributed between latitude 0-90 degrees north and south of the equator were used for the present analysis. The data sites covered a broad spectrum of vegetation functional types and climatic conditions and a list of the sites are given in Table S1 in the supplementary section.

15 Among 126 sites, 85 sites were used for training and remaining 41 sites were used for validation. Partition of the data into training and validation was randomly selected regardless 16 17 of the year. These translated into 194 and 86 yearly data for the respective sample. A global 18 distribution of the data sites is shown in Fig. 3. From the training dataset, three samples were internally generated by the algorithm i.e., training datasets, validation datasets, and a testing 19 20 dataset in a percentage ratio of 80:15:5 respectively. The ANN algorithm is designed to validate its performance for any given training which in most cases should be sufficient for 21 22 validating the network. However to ensure the network is robust, we further test the generated 23 network with independent dataset. Considering the equatorial crossing time of different polar orbiting sensors like LANDSAT, ASTER, and MODIS Terra-Aqua, unique networks were generated for different time of day from morning to afternoon, and thus we had a total of 8 networks to represent potential satellite overpass times between 1030 to 1400 hours using 30 minutes interval as the closest reference time for each hour. The generated networks were then applied to an independent validation data set.

6 **2.4 Intercomparison of** *ET_i* upscaling methods

An intercomparison of three different ET_i upscaling methods is performed with the homogeneous datasets to assess their relative performance across a range of temporal scales and variable sky conditions. These are: (a) R_s -based upscaling method, where ANN predicted R_{sd} is used in conjunction with observed R_{si} to predict ET_d using eq. (1).

11 (b) The exo-atmospheric irradiance method (Ryu et al., 2012) where the reference variable is 12 R_STOA .

$$R_{Sd}TOA = S_{sc} \left[1 + 0.033 cos \left(\frac{2\pi t_d}{365} \right) \right] cos \theta_Z$$
⁽⁵⁾

$$SF_{RTOA} = \frac{R_{Sd}TOA}{R_{Si}TOA}$$
(6)

$$ET_d = ET_i SF_{RTOA} \tag{7}$$

Where S_{sc} is the solar constant (1360 W m⁻²), t_d is the day of year (DoY), and θ_Z is the solar zenith angle.

15 (c) *EF*-based method (Cammalleri et al., 2014), where reference variable is the net available 16 energy (ϕ) (i.e., $R_n - G$).

$$SF_{EF} = \frac{ET_i}{(R_n - G)_i}$$

$$ET_d = 1.1(R_n - G)_d SF_{EF}$$
(8)
(9)

17 Where SF_{EF} is the *EF*-based scaling factor, $(R_n - G)_i$ and $(R_n - G)_d$ are the instantaneous and 18 daily net available energy, respectively.

1 We tested the performance of the three upscaling algorithms for all possible sky conditions 2 assumed to be represented by daily atmospheric transmissivity (τ_d) (eq. 10) namely (i) 3 $0.25 \ge \tau \ge 0$ (τ_1 , hereafter), (ii) $0.5 \ge \tau \ge 0.25$ (τ_2 , hereafter) (iii) $0.75 \ge \tau \ge 0.5$ (τ_3 , hereafter), and (iv) 4 $1 \ge \tau \ge 0.75$ (τ_4 , hereafter), respectively. We use daily τ because it indicates the overall sky 5 condition throughout a day.

$$\tau_d = \frac{R_{Sd}}{R_{Sd}TOA} \tag{10}$$

6 R_{Sd} and $R_{Sd}TOA$ are daily shortwave radiation and the exo-atmospheric shortwave radiation in 7 MJ m⁻² d⁻¹ (converted from W m⁻²).

8 2.5 Statistical error analysis

17

9 The relative performance of the ANN and three upscaling methods is evaluated using 10 statistical indices generated namely: coefficient of determination (\mathbb{R}^2), root mean square error 11 (RMSE), mean absolute percentage error (MAPE), index of agreement (IA), and bias. ET_d 12 estimates using the respective upscaling coefficients were compared with measured ET_d .

13
$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (p_{i} - o_{i})^{2}}{\sum_{i=1}^{n} (o_{i})^{2}}$$
(11)

14
$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (o_{i} - p_{i})^{2}}{n}}$$
(12)

15
$$MAPE = \frac{1}{n} \sum_{i=1}^{n} \frac{|O_i - P_i|}{n} * 100$$
(13)

16
$$IA = \frac{\sum_{i}^{n} (p_{i} - o_{i})^{2}}{\sum_{i=1}^{n} (p_{i} - o_{i}| + |o_{i} - p_{i}|)^{2}}$$
(14)

$$Bias = \frac{\sum_{i=1}^{n} \left(p_i - O_i \right)}{n} \tag{15}$$

1 Where, *n* is the number of data points; o_i and p_i are daily observed and estimated R_{Sd} or ET_d , 2 respectively. \overline{O} was the mean value of observed R_{Sd} or ET_d .

3 2.6 Sensitivity of ANN training and validation

Given the majority of the FLUXNET sites represent forest biomes and the distribution of EC 4 5 sites over non-forest biomes are proportionately lower as compared to the forests, we performed a sensitivity analysis of the ANN-based approach by assessing the error statistics 6 (\mathbb{R}^2 and $\mathbb{R}MSE$) of predicted ET_d for different scenarios of ANN training. Three case studies 7 8 were generated: (a) Case1, where ANN was trained by including data randomly from the 9 forests and ET_d validation was done in non-forest biomes (i.e., grassland, crops and 10 shrublands); (b) Case2, where ANN was trained by including data randomly from the non-11 forest biomes and predicted ET_d was evaluated in forest biome; (c) ANN was trained by using 12 data randomly from equal proportions of forest and non-forest biomes, and ET_d validation was also done in forest and non-forest biomes. Each individual case was replicated 10 times and 13 14 an ensemble mean statistics of predicted ET_d is reported in section 3.5.

15 **3 Results and discussion**

16 **3.1 Testing the performance of predicted** *R*_{Sd}

17 Given that the performance of ET_d upscaling depends on the soundness of R_{Sd} estimation, we first evaluate the efficacy of the ANN method for predicting R_{sd} . Figure 4 summarises the 18 19 statistical results of predicted R_{Sd} (R_{Sd_pred} , hereafter) including all the site-year average R^2 , RMSE, IA, and MAPE values for eight different time-of-day upscaling time slots. The RMSE 20 of R_{Sd_pred} from forenoon upscaling varied between 1.81-1.85 MJ m⁻² d⁻¹, with MAPE, R², IA 21 varying between 20-21%, 0.76-0.77, and 0.79 and 0.80, respectively (Fig. 4). For the 22 afternoon, these statistics were almost similar and varied between 1.83–1.96 MJ m⁻² d⁻¹, 19-23 20%, 0.75–0.77, and 0.80–0.81 (Fig. 4). Given the minimal discrepancy in error statistics 24 25 from both forenoon and afternoon integration and considering the MODIS Terra-Aqua 26 average overpass time we have considered 1100 and 1330 hours of daytime for the detailed 27 follow up analysis.

Figure 5 (a, b) evaluates R_{Sd_pred} statistics under different level of atmospheric transmissivity (τ) (0.25 \geq τ \geq 0, 0.5 \geq τ \geq 0.25, 0.75 \geq τ \geq 0.5, and 1 \geq τ \geq 0.75) with an overall RMSE of 1.81 and

1.83 MJ m⁻² d⁻¹ for the forenoon and afternoon upscaling respectively. Table 1 and Fig. 5 1 2 clearly show an overestimation tendency of the current method under persistent cloudy sky 3 conditions (τ_1) , whereas the predictive capacity of the ANN model is reasonably strong with increasing atmospheric clearness. The RMSE of $R_{Sd \ pred}$ for different τ class from forenoon 4 upscaling varied between 0.62 to 2.45 MJ $m^{-2} d^{-1}$, with MAPE, R^2 and IA of 9.2 to 53%, 0.67 5 to 0.98, and 0.67 to 0.95, respectively (Table 1). For the afternoon upscaling these statistics 6 were 0.89 to 2.4 MJ m^{-2} d⁻¹ (RMSE), 2.4 to 52% (MAPE), 0.65 to 0.98 (R²), and 0.67 to 0.95 7 8 (IA) (Table 1).

9 The overestimation of R_{Sd_pred} at low values of τ is presumably associated with varying levels 10 of cloudiness during the daytime. Since R_{Sd_pred} depends on the magnitude of R_{Si} , L_D , θ_Z , 11 R_{SiTOA} , and R_{SdTOA} , there will be a tendency of overestimating R_{Sd_pred} on partly cloudy days if 12 R_{Si} at a specific time-of-day is not affected by the clouds (L_D , θ_Z , R_{SiTOA} , and R_{SdTOA} are not 13 influenced by the clouds).

14 **3.2 Evaluation of predicted** ET_d based on R_{Sd_pred}

15 Figure 6 summarises the statistical results of predicted ET_d (ET_d pred, hereafter) for eight different time-of-day slots. Upon statistical evaluation, all the cases showed significantly 16 linear relationship between ET_{d_pred} and observed ET_d (ET_{d_obs} , hereafter). The RMSE of 17 ET_{d_pred} from forenoon upscaling varied from 1.67–1.84 MJ m⁻² d⁻¹, with MAPE, R², IA 18 varying between 30%–34%, 0.62–0.68, and 0.77–0.80, respectively (Fig. 6). For the afternoon 19 upscaling, these statistics varied between $1.5-1.6 \text{ MJ m}^{-2} \text{ d}^{-1}$, 29%–30%, 0.67–0.71, and 0.80 20 (Fig. 6). These results also indicate that the error statistics were nearly uniform and the 21 22 accuracy of $ET_{d pred}$ varied only slightly when integration was done from different time-ofday hours between 1030 to 1400 h. These typical error characteristics can greatly benefit the 23 24 ET_d modelling using polar orbiting data with varying overpass times between 1030 to 1400 25 hours. This also opens up the possibility to use either forenoon satellite (e.g., MODIS Terra, LANDSAT, ASTER etc.) or afternoon satellite (i.e., MODIS Aqua) to upscale ET_i to ET_d . 26 Following R_{Sd} , here also we restricted our analysis to the two different time-of-day (1100h 27 28 and 1330h) representing Terra and Aqua overpass times.

1 Figure 7 (a and b) compares ET_{d_pred} against ET_{d_obs} for different level of daily τ . The overall RMSE, MAPE, and R^2 were 1.86 and 1.55 MJ m⁻² d⁻¹, 31% and 36%, 0.65 and 0.69 for the 2 3 forenoon and afternoon upscaling, respectively. As seen in Fig. 7, there is a systematic overestimation of $ET_{d \ pred}$ relative to the tower observed values for low range of τ (i.e., cloudy 4 5 sky). It is important to realise that, unlike ET_{d_obs} , ET_{d_pred} might be an outcome of ET_i 6 instances when the sky was not overcast, i.e., the sky conditions might be clear at specific 7 time-of-day but can be substantially overcast for the remainder of the daytime. As a result, 8 any bias in the daily shortwave radiation prediction (R_{Sd_pred}) will result in biased ET_{d_pred} 9 according to eq. 1, and the omission of non-clear sky conditions at any particular time of 10 daytime would tend to lead to $ET_{d pred} > ET_{d obs}$ for generally overcast days. However, there 11 could be another opposite case that sky is cloudy at e.g., 1100 hr but clear at other times. This 12 will probably lead to an underestimation of R_{Sd_pred} , and consequently underestimation of $ET_{d pred}$. Such cases were also found in τ_3 categories in Fig. 7 where clouds of data points 13 clearly falling significantly below the 1:1 line, thus showing substantial underestimation of 14 ET_{d_pred} . Since ET_{d_obs} are the integrations of multiple ET_i measurements, such conditions 15 could be conveniently captured in the observations which were not possible in the current 16 framework of ET_{d_pred} . Therefore, when upscaling was done under clear skies at nominal 17 acquisition time for generally overcast days, higher errors in ET_{d_pred} can be expected 18 (Cammalleri et al., 2014) and vice-versa. We examined this cloudy sky overestimation pattern 19 20 in greater detail by evaluating the error statistics in $ET_{d pred}$ for four different levels of daily τ 21 categories (Fig. 8).

Statistical evaluation of ET_{d_pred} for different classes of daily τ (estimated as the ratio between 22 daily observed R_{Sd} and $R_{Sd}TOA$) indicates the tendency of higher RMSE and low R² in 23 24 $ET_{d pred}$ under the persistent cloudy-sky conditions (τ_1), while the performance of $ET_{d pred}$ is 25 reasonably good with increasing atmospheric clearness (τ_2 , τ_3 , and τ_4) (Fig. 8). The RMSE of $ET_{d pred}$ for different τ class from forenoon upscaling varied between 1.09 to 2.96 MJ m⁻² d⁻¹, 26 with MAPE, R² and IA of 25 to 75%, 0.38 to 0.79, and 0.71 to 0.82, respectively. For the 27 afternoon upscaling, these statistics were 0.98 to 2.02 MJ m⁻² d⁻¹ (RMSE), 24 to 87% 28 (MAPE), 0.40 to 0.68 (R²), and 0.71 to 0.77 (IA). 29

1 To probe into detail of the high errors under persistent cloudiness conditions, a new ANN was 2 trained by introducing daily precipitation (P) and soil moisture (SM) information (along with R_S , R_STOA , θ_Z , and L_D) assuming that the inclusion of these two variables might improve the 3 predictive power of R_s -based ANN. In the new ANN, we used data from the sites where 4 5 coincident measurements of P and S_M were available along with R_S and ET, and validated ET_d predictions of the new ANN on independent sites. The analysis revealed 34% reduction in 6 RMSE (from 3.28 to 2.88 MJ $m^{-2} d^{-1}$), 16% reduction in MAPE (from 90 to 76%), and 49% 7 reduction in mean bias (0.76 to 0.39 MJ m⁻² d⁻¹) for persistent cloudy-sky cases (i.e., τ_1 8 scenarios) from 1100 hr upscaling. However, no significant improvements in $ET_{d pred}$ were 9 10 evident for τ_2 , τ_3 , and τ_4 and also for any of the τ classes from the afternoon (1330 hr) 11 upscaling (Fig. 9). ET_d is generally controlled by radiation and soil moisture availability. 12 Under the radiation controlled conditions, ET_d is generally not limited due to soil moisture 13 and 70 – 75% of the net radiation is contributed to ET_d . Therefore, R_s -based method of ET_i upscaling is expected to perform reasonably well unless the upscaling is performed from a 14 15 clear sky instance for a predominantly overcast or rainy day. However, from Fig. 9 is it 16 apparent that the inclusion of cloud information (cloud fraction, cloud optical thickness) in 17 R_{S} -based ANN would substantially reduce $ET_{d pred}$ errors when upscaling is performed from a 18 clear sky instance for a predominantly overcast day and vice-versa. Improvements of $ET_{d \ pred}$ 19 error statistics by including daily P and SM (as an indicator of cloudiness) is also suggestive 20 to the relevance of such approach as a future improvement of the current framework, which is 21 expected to reduce the systematic error under overcast conditions. However, the cloud information available from alternative sources e.g., from the Clouds and Earth's Radiant 22 23 Energy System (CERES), the International Satellite Cloud Climatology Project-Flux Data (ISCCP-FD), and Global Energy and Water cycle Experiment Surface Radiation Budget 24 (GEWEX-SRB) are available at coarse spatial resolution (100 km²) and combining these 25 information with EC tower measurements to train ANN could also introduce additional errors 26 27 due to the spatial scale mismatch, is therefore out of scope of the present study.

Figure 10 shows the time series comparisons between observed ET_d and ET_{d_pred} for four different stations representing different latitude bands of both the Northern (Sweden) and Southern (Brazil, Australia, and South Africa) hemispheres. These reveal that the temporal dynamics of ET_d is in general consistently captured by the proposed method throughout year. 2 because SP1 is a tropical site having an annual rainfall of 850-1100 mm most of which is evenly distributed between March to end of September. The peaks in ET_d values during the 3 beginning of year and October onwards coincided with the periods of increased R_s , and 4 $ET_{d pred}$ could reasonably capture the observed trends during both rainy and non-rainy 5 periods. Similarly the low ET_d pattern (0.1 to 2 MJ m⁻² d⁻¹) in the hot arid climate of South 6 7 Africa (Za-Kru) could also be reasonably captured in $ET_{d \ pred}$ (Fig. 10). $ET_{d \ pred}$ in the other 8 Southern hemisphere (AU-Tum) and Northern hemisphere (SE-Fla) sites have shown distinct 9 seasonality (high summer and low winter ET_d) coinciding with the observed ET_d patterns.

In Br_SP1, relatively less seasonality was found in both observed and predicted ET_d . This is

10 **3.3 Comparison with existing** *ET* upscaling methods

11 ET_{d_pred} from R_s -based method was intercompared with two other upscaling schemes (R_sTOA

and EF) over 41 FLUXNET validation sites for two different time-of-day, 1100h and 1330h,

13 the statistics of which are given in Table 2. This comparison was also carried out according to

14 different τ classes as defined in section 2.2.3.

1

12

15 From Table 2 it is apparent that the R_{S} -based method has generally produced relatively low RMSE (1.21 to 1.99 MJ m⁻² d⁻¹) and MAPE (23 to 50%) as well as relatively high IA (0.72 to 16 (0.84) as compared to R_sTOA and EF-based upscaling methods. The EF-based upscaling 17 18 method appears to systematically underestimate ET_d for both forenoon and afternoon as 19 evident from high negative bias compared to the other two methods (Table 2). On comparing 20 R_S and R_STOA methods, R_S -based method performed relatively better than the R_STOA scheme 21 for low magnitude of τ (i.e., under predominantly cloudy-sky). However, the results suggest 22 comparable performance of R_STOA -based approach under clear sky conditions which are reflected in lowest RMSE (1.09 and 1.13 MJ m⁻² d⁻¹) in ET_{d_pred} as compared to the other τ 23 classes. In general, all the schemes performed relatively better from the afternoon upscaling as 24 compared to the morning upscaling (as evidenced in higher R^2 and lower bias) (Table 2) 25 which is in agreement with the findings from Ryu et al. (2012). Due to their comparable error 26 27 statistics, an intercomparison of R_S and R_STOA -based methods of ET_i upscaling was also 28 carried out across different biomes.

Biome specific evaluation of R_s -based ET_{d_pred} (Fig. 11) revealed lowest RMSE and highest R² both in the grassland (GRA) (0.68 to 1.14 MJ m⁻² d⁻¹; 0.53 to 0.79) and shrubland (SH)

 $(0.66 \text{ to } 1.76 \text{ MJ m}^{-2} \text{ d}^{-1}; 0.60 \text{ to } 0.82)$ whereas the RMSE was comparatively high over the 1 tropical evergreen broadleaf forests (EBF) (1.41 to 2.02 MJ m⁻² d⁻¹) and deciduous broadleaf 2 forests (DBF) (1.94 to 2.55 MJ m⁻² d⁻¹). Similar evaluation with R_sTOA -based method 3 revealed the lowest RMSE and highest R^2 in the grassland (0.64 to 1.14 MJ m⁻² d⁻¹; 0.61 to 4 0.84), and highest RMSE in EBF, DBF, and evergreen needleleaf forests (ENF) (1.57 to 2.05 5 MJ m⁻² d⁻¹, 1.2 to 2.25 MJ m⁻² d⁻¹ and 0.93 to 4.02 MJ m⁻² d⁻¹) (Fig. 11c and 11d). Higher 6 $ET_{d pred}$ errors in forests are related to the predominant cloudy-sky issue as described earlier. 7 8 Tropical evergreen broadleaf forests (and forests in general) have high ET, water tends to re-9 cycle locally and generate rainfall. Therefore, cloudy sky conditions are more frequent at 10 tropical evergreen broadleaf forest and other forests types than at grassland and shrublands. In 11 the biome specific $ET_{d pred}$ error statistics (Fig. 11), relatively large bias in crop $ET_{d pred}$ is 12 introduced due to the inclusion of irrigated agroecosystems in the validation. In irrigated agroecosystems, day-to-day variation in soil moisture is not substantial and ET_d is 13 predominantly controlled by the net radiation. Therefore, the inclusion of soil moisture in the 14 current ANN framework is unlikely to improve ET_{d_pred} statistics in the irrigated 15 agroecosystems. Further having many explanatory variables (e.g., land management, 16 17 irrigation statistics, anthropogenic factors) to train the ANN, we risk overfitting the model and 18 hence introducing bias. It is also evident that both Rs and RsTOA-based method of ET_d 19 estimation would be better suited for natural ecosystem e.g., in the Amazon basin or in the 20 forest ecosystems where significant hydrological and climatological projections are 21 emphasizing the role of ET_d to understand the resilience of natural ecosystems in the spectre 22 of hydro-climatological extremes (Harper et al., 2014; Kim et al., 2012). The performance of 23 the method in the semi-arid shrublands appear to be promising (Fig. 11) and therefore the 24 method seems to be credible under water-stressed environment also.

Given this analysis was based on FLUXNET sites distributed across 0-90 degrees latitude north and south, the training datasets covers substantial climatic and vegetation variability. The percentage distribution of the training data according to vegetation type was; 23% crops, deciduous broadleaf forest, 10% evergreen broadleaf forest, 20% evergreen need leaf forest, 8% grassland, 7% shrubs and 1% aquatic as indicated in table S1. The number of grassland and shrubs as indicated were relatively less as compared to the crops and forests sites. However, biome specific error statistics (Fig. 11) indicted the absence of any systematic 1 errors due to vegetation sampling with the exception of EBF. Availability of more EBF sites 2 in the training datasets is expected to reduce the cloudy-sky errors substantially, due to the 3 assimilation of more cloud information into the R_s -based ANN training.

4 The tendency of positive bias in ET_{d_pred} from both R_s and R_sTOA in clear skies from 5 afternoon upscaling is partly explained by the fact that, during the afternoon the values of 6 both R_S and R_STOA reached maximum limit and dominates their daily values (Jackson et al., 7 1983). The post afternoon rate of reduction in ET does not coincide with the shortwave 8 radiation due to stomatal controls on ET, and the total water flux from morning to afternoon 9 (0700h to 1300h) is generally greater than the total water flux from post afternoon (1500h onwards) till sunset. Therefore multiplying 1330h ET_i with high magnitude of R_{Sd}/R_{Si} or 10 $R_{Sd}TOA/R_{Si}TOA$ might lead to an overestimation of ET_{d_pred} in the clear sky days. 11

12 Since extraterrestrial shortwave radiation is not affected by the clouds, ET_{d_pred} from R_sTOA 13 performed comparably with the R_S -based ET_{d_pred} with increasing atmospheric clearness (i.e., 14 for the higher levels of daily τ). However, increased differences in the RMSE of $ET_{d pred}$ 15 between R_S and R_STOA upscaling in the predominantly cloudy days indicates that more deviations can be expected in ET_{d_pred} from these two different method of upscaling under 16 17 principally overcast conditions (Tang et al., 2013). This happens because the ratio of $R_{Sd}TOA$ 18 $/R_{Si}TOA$ is not impacted by the clouds and the magnitude of this ratio becomes markedly 19 different from R_{Sd}/R_{Si} ratio in the presence of clouds, which leads to the differences in ET_{d_pred} 20 between them. The R_S -based method is relatively efficient to discriminate the impacts on ET 21 by R_{Sd}/R_{Si} due to the clouds. The generally good performance of R_S -based method and 22 comparable error statistics with R_STOA -based ET_d estimates are consistent with the findings 23 of Cammalleri et al. (2014) and Van Niel et al. (2012). As shown in Table 2, relatively lower 24 RMSE of R_STOA -based ET_{d_pred} for atmospheric transmissivity class above 0.75 reveals that 25 under pristine clear sky conditions R_STOA can be successfully used to upscale ET_i . However, 26 one of the main reasons for the differences in RMSE between R_S and R_STOA method for daily 27 transmissivity above 0.75 could be due to the fact that if ET_i upscaling is performed from a 28 cloudy instance for a predominantly clear sky day, then such RMSE difference between the 29 two different upscaling methods is expected. These results also revealed the probability of a hybrid ET_i upscaling method by combining cloud information or SM and P in R_S -method (for 30

- 1 transmissivity between zero to 0.5) and R_STOA -method (for transmissivity greater than 0.5).
- 2 However this hypothesis needs to be tested further.

3 The systematic ET_d underestimation by EF-based upscaling method and nearly similar pattern 4 of bias from two different time-of-day upscaling (Table 2) further points to the fact that the 5 concave-up shape of EF during daytime (Hoedjes et al., 2008; Tang et al., 2013) will tend to 6 underestimate ET_d if EF is assumed to be conservative during the daytime. EF remains 7 conservative during the daytime under extremely dry conditions when ET_d is solely driven by 8 deep layer soil moisture. The systematic underestimation of ET_d from EF-based upscaling 9 method corroborates with the results reported by other researchers (Cammalleri et al., 2014; Delogu et al., 2012; Gentine et al., 2007; Hoedjes et al., 2008) which suggests that the self-10 preservation of EF is not generally achieved, and this systematic underestimation of ET_d can 11 12 be partially compensated if EF-based ET_i upscaling is done from morning 0900h or afternoon 13 1600h time-of-day.

14 We further resampled ET_d (both predicted and observed) from daily to 8-day, monthly, and annual scale, and statistical metrics from the three different upscaling methods at three 15 16 different temporal scales are shown in Fig. 12 and Table 3. Averaging ET_d at 8-day, monthly 17 and annual scale substantially reduced the RMSE to the order of 60 to 70% for all the three 18 upscaling methods. The R_S -based upscaled ET_d from morning and afternoon showed reduction in RMSE from 1.79 MJ to 0.57 MJ and 1.74 MJ to 0.51 MJ from daily to annual ET, 19 20 respectively. For the other two upscaling method these statistics varied from 1.85 and 1.89 MJ 21 to 0.62 and 0.53 MJ (R_STOA method), and 2.16 and 1.33 MJ to 2.20 and 1.31 MJ (EF 22 method) (Fig. 12 and Table 3). The impacts of daily cloud variability might have smoothed 23 out in 8-day, monthly and annual scale which led to reduced RMSE and higher correlation 24 between ET_{d_pred} and ET_{d_obs} . Nearly similar error statistics in ET_{d_pred} from both the morning 25 and afternoon upscaling also substantiates the findings of Ryu et al. (2012) and greatly 26 stimulate the use of either morning satellite (i.e., Terra) or after satellite (i.e., Aqua) to upscale 27 ET_i to ET_d or 8-day mean ET_d .

The principal limitation of the approach is the dependence of ET_d and R_{Sd} on single snapshot of ET_i and R_{Si} . Although hourly R_S data from geostationary satellite are becoming available; but these are available as sectorial products (i.e. for particular continents) instead of full global coverage. Ongoing efforts to develop geostationary based data by merging multiple
 geostationary satellites tend to overcome this limitation.

3 **3.4 Impact of energy balance closure on** ET_{d_pred}

FLUXNET EC sites have long been identified to be prone to surface energy budget 4 5 imbalance, which might lead to $(\pm 20\%)$ to $(\pm 40\%)$ under measurement of latent heat fluxes. In order to assess the impacts of surface energy balance (SEB) closure on current ET_d 6 7 prediction, we further compared the error statistics of R_S -based ET_d pred (Table 4) for both 8 'closed' and 'unclosed' surface energy balance datasets. These are the subsets of the data 9 where all the four SEB components (λE , sensible heat flux, ground heat flux, and net 10 radiation) were available and SEB was closed by the residual SEB closure method (Foken, 2006). Table 4 revealed substantially low RMSE (10 to 60%), R^2 (8 to 100%) and MAPE (1 11 to 75%) in $ET_{d pred}$ when ET_i upscaling is done by 'unclosed' SEB. A consistently high 12 positive mean bias (0.63 to 3.83) in $ET_{d pred}$ with 'closed' SEB was also noted (Table 4). 13 Although, various methods exist to close the surface energy balance, but, the impact of 14 15 various SEB closure methods on $ET_{d pred}$ statistics is beyond the scope of the current study. It is also important to mention that in the satellite based ET_i retrieval, net available energy is 16 17 partitioned into ET and sensible heat flux with the implicit assumption of SEB closure. 18 Therefore, application of the current ANN framework is expected not to impact the remote 19 sensing based ET_i to ET_d upscaling. However, for the validation of remote sensing based ET_d 20 retrievals, surface energy balance fluxes from eddy covariance measurements need to be 21 closed.

22 **3.5** Sensitivity of ANN derived ET_{d_pred} to biome selection

A sensitivity analysis of ANN derived R_S -based $ET_{d pred}$ revealed variable sensitivity of the 23 ANN framework to the biome selection. The coefficient of determination (R^2) varied between 24 0.71 to 0.84 and RMSE between 0.96 to 2.10 MJ m⁻² d⁻¹ across three different scenarios of 25 ANN training and validation (Fig. 13). However, RMSE was found to be relatively high in 26 27 forests in Case2, where ANN was trained by using the data from crops, grasslands and 28 shrublands only. For the Case1 and Case3, no substantial difference was noted (Fig. 13). This 29 therefore revealed the fact that the inclusion of forests in ANN training leads to lower errors 30 in $ET_{d \ pred}$ over non-forest biomes, although the reverse scenario in not likely to be true. Since

1 forests generally have high ET, water recycling tends to be more over the forests which 2 produces substantial rainfall, variable atmospheric water vapor, associated cloudiness, and 3 radiation. Cloudiness is a phenomenon that significantly influences the reliability of a model 4 to predict incoming solar radiation as they are directly related to each other. Therefore, when 5 R_{S} -based ANN is trained with data from forests, the model assimilates information on a 6 diverse range of radiative forcings which broaden their applicability in other biomes. This 7 also emphasizes the fact that the performance of such ANN-based approach is primarily 8 sensitive to their training over a broad spectrum of atmospheric conditions.

9 4 Summary and Conclusions

10 Given the significance of ET_d in remote sensing based water resource management from polar orbiting satellites, this study developed and evaluated a temporal upscaling method for 11 12 estimating ET_d from different time-of-day instantaneous ET (ET_i) measurements with the assumption that the ratio between daytime to instantaneous shortwave radiation (R_{Sd}/R_{Si}) is the 13 14 predominant factor governing ET_d/ET_i ratio. However, since R_{Sd} is not directly measurable from the polar orbiting satellites, we trained an ANN with the FLUXNET observations of R_{Si} 15 16 and R_{Sd} , and validated the model to predict R_{Sd} over independent sites, followed by using 17 R_{Sd}/R_{Si} ratio for converting ET_i to ET_d . The overarching goal of this study is to provide an 18 operational and robust ET_i upscaling protocol for estimating ET_d from any polar orbiting 19 satellite. The datasets used for the ANN model development covers a wide range of biome, 20 climate, and variable sky conditions. Therefore, we assume the R_{Sd} prediction from ANN to 21 capture a broad spectrum of radiative forcing, which is also reflected in the independent 22 validation of R_{Sd} and ET_d (Fig. 5, Fig. 7, Table 2). However, the performance of this model 23 for satellite retrieval of R_{Sd} (from R_{Si}) is dependent on the accuracy of R_{Si} retrieval (Loew et 24 al., 2016). Also, the distribution of sites over the tropics, Africa, and South East Asia are poor, and more sites over these regions are expected to make the ANN model performance 25 26 more robust.

Based on measurements from 126 flux tower sites, we found R_s -based upscaled ET_d to produce a significant linear relation ($R^2 = 0.65$ to 0.69), little bias (-0.31 to -0.56 MJ m⁻² d⁻¹) (appx. 4%), and good agreement (RMSE 1.55 to 1.86 MJ m⁻² d⁻¹) (appx. 10%) with the observed ET_d . While the exoatmospheric shortwave radiation driven ET_i upscaling method

1 (i.e., R_STOA -based) appeared to produce slightly lower RMSE (10% lower) under cloud-free 2 conditions (Table 2), global shortwave radiation driven method (i.e., R_s -based method) 3 demonstrates more robust performance and was found to be better under cloudy conditions. Despite R_S -based method yielded relatively better overall accuracy in ET_d prediction (i.e., 4 5 $ET_{d pred}$) statistics when compared with the R_STOA and evaporative fraction based (EF-based) 6 method, statistical analysis of $ET_{d,pred}$ accuracy of different temporal upscaling methods (as 7 discussed in section 3.3) suggests that R_S and R_STOA to produce commensurate results under 8 coarse temporal resolutions (Table 3). Therefore, at the coarse temporal scale (8-day and 9 above), any of these two methods (R_S and R_STOA) can be used for ET_i to ET_d upscaling.

10 The proposed upscaling method is based on the idea that instantaneous ET/R_S approximates 11 daily ET/R_s , although it implicitly includes the stomatal controls on ET observations mediated 12 by the vegetation. The cases where ET_i is low due to water stress induced strong stomatal control; low magnitude of ET will also be reflected in upscaling ET_i to ET_d (according to eq. 13 14 1). However, to account for any carry over effects of the stomatal control on ET_d , inclusion of 15 longwave radiation would likely to improve the scheme. Stomatal control is significantly 16 dependent on the thermal longwave radiative components, and, therefore, the relative 17 proportion of downwelling and upwelling longwave radiation is expected to be a stomatal 18 constraint. However, the availability of longwave radiation measurement stations in the 19 FLUXNET datasets is limited to formulate ANN and evaluate this hypothesis. In general, the 20 stomatal and biophysical constraints are imposed in state-of-the-art thermal remote sensing 21 based ET_i retrieval schemes, and, therefore the ANN framework can be applied to upscale 22 remote sensing based ET_i to ET_d . Also, relatively good performance of the model in semiarid 23 shrubland also indicated the applicability of the method in water stressed ecosystems where 24 stomatal controls are predominant.

Among all the upscaling method tested, R_S -based method carries maximum information on the cloudiness and produced generally lowest RMSE, low bias (Table 3), and, therefore, overall the preferably robust scaling mechanism (at the daily scale) among all the other methods tested. The true added value of the ANN is for an operational ET_d product from polar satellites. Currently, the polar Earth orbiting satellites provide us with ET_i only. However, for most hydrological and ecosystem modeling applications, ET_d is needed. Therefore, for studies that will opt to apply R_S -based method as a scaling algorithm, R_{Sd} will be easily available for

1 any measurement of R_{Si} by the satellite using the ANN. However, upscaling large-area 2 satellite-based ET_i by using retrieved R_{Si} would require accurate R_{Si} retrieval techniques, 3 which are currently commonplace (Ahmad et al., 2015; Boulifa et al., 2015; Dahmani et al., 2016; Hasni et al., 2012; Li, Tang, Wu, & Liu, 2013) to support regional scale hydrological 4 5 applications. Of the two other upscaling methods, $R_{s}TOA$ could be easily applied over large 6 areas, had lower errors than EF, had second best RMSE, and overall lowest bias among the 7 two. We conclude that using modelled R_S to upscale ET_i at daily scale appears to be viable for 8 large-area hydrological remote sensing applications from polar orbiting satellites irrespective 9 of any sky conditions.

10 Acknowledgements

11 The authors thank HiWET (High resolution modelling and monitoring of water and energy 12 transfers in WETland ecosystems) project funded through the Belgian Science Policy (BELSPO) and FNR under the programme STEREOIII (INTER/STEREOIII/13/03/HiWET) 13 14 (CONTRACT NR SR/00/301). We thank entire FLUXNET site PIs for sharing the eddy 15 covariance data. This work used eddy covariance data acquired by the FLUXNET community 16 and in particular by the following networks: AmeriFlux (U.S. Department of Energy, 17 Biological and Environmental Research, Terrestrial Carbon Program (DE-FG02-04ER63917 and DE-FG02-04ER63911)), AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, 18 19 CarboMont, ChinaFlux, Fluxnet-Canada (supported by CFCAS, NSERC, BIOCAP, 20 Environment Canada, and NRCan), GreenGrass, KoFlux, LBA, NECC, OzFlux, TCOS-21 Siberia, USCCC. We acknowledge the financial support to the eddy covariance data 22 harmonization provided by CarboEuropeIP, FAO-GTOS-TCO, iLEAPS, Max Planck Institute 23 for Biogeochemistry, National Science Foundation, University of Tuscia, Université Laval, 24 Environment Canada and US Department of Energy and the database development and 25 technical support from Berkeley Water Center, Lawrence Berkeley National Laboratory, 26 Microsoft Research eScience, Oak Ridge National Laboratory, University of California-27 Berkeley and the University of Virginia. LW acknowledges the PhD supervision from Dr. 28 Wout Verhoef and Dr. Christian van der Tol from University of Twente, The Netherlands.

KM designed the analysis, LW performed the research, KM and LW developed the
 manuscript, and all the coauthors jointly contributed in editing the manuscript. The authors
 declare no conflict of interest.

1 References

- Ahmad, A., Anderson, T. N., and Lie, T. T.: Hourly global solar irradiation forecasting for
 New Zealand, Sol. Ener., 122, 1398–1408, doi:10.1016/j.solener.2015.10.055, 2015.
- Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration, Guidelines for
 computing crop water requirements, FAO Irrigation and drainage paper n. 56. 326 pp.,
 Rome, Italy, 1998.
- Anderson, R. G., Lo, M.-H., Swenson, S., Famiglietti, J. S., Tang, Q., Skaggs, T. H., Lin, Y.H., and Wu, R.-J.: Using satellite-based estimates of evapotranspiration and groundwater
 changes to determine anthropogenic water fluxes in land surface models, Geosci. Model
 Dev., 8, 3021-3031, doi:10.5194/gmd-8-3021-2015, 2015.
- Baigorria, G. A., Villegas, E. B., Trebejo, I., Carlos, J. F., and Quiroz, R.: Atmospheric
 transmissivity: distribution and empirical estimation around the central Andes, Int. J.
 Climatol., 24 (9), 1121–1136, doi:10.1002/joc.1060, 2004.
- Baldocchi, D.D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., et al.: Fluxnet: a
 new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide,
 water vapor, and energy flux densities, Bull. American Met. Soc., 82 (11), 2415–3434,
 doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2, 2001.
- Bisht, G., Venturini, V., Islam, S., and Jiang, L.: Estimation of the net radiation using MODIS
 (Moderate Resolution Imaging Spectroradiometer) data for clear sky days, Remote Sens.
 Environ., 97 (1), 52–67, doi:10.1016/j.rse.2005.03.014, 2005.
- Boulifa, M., Adane, A., Rezagui, A., and Ameur, et. Z.: Estimate of the Global Solar
 Radiation by Cloudy Sky Using HRV Images, Ener. Proc., 74, 1079–1089,
 doi:10.1016/j.egypro.2015.07.747, 2015.
- Brutsaert, W., and Sugita, M.: Application of self-preservation in the diurnal evolution of the
 surface energy budget to determine daily evaporation, J. Geophys. Res. Atmos., 97
 (D17), 18377–18382, doi: 10.1029/92JD00255, 1992.
- Burden, F., and Winkler, D.: Bayesian Regularization of Neural Networks. In D. Livingstone
 (Ed.), Artificial Neural Networks SE 3, 458, 23–42, Humana Press, doi:10.1007/978-160327-101-1_3, 2009.
- Cammalleri, C., Anderson, M. C., and Kustas, W. P.: Upscaling of evapotranspiration fluxes
 from instantaneous to daytime scales for thermal remote sensing applications, Hydrol.
 Earth Sys. Sci., 18 (5), 1885–1894, doi:10.5194/hess-18-1885-2014, 2014.
- Chávez, J. L., Neale, C. M. U., Prueger, J. H., and Kustas, W. P.: Daily evapotranspiration
 estimates from extrapolating instantaneous airborne remote sensing ET values, Irrig.
 Sci., 27 (1), 67–81, doi:10.1007/s00271-008-0122-3, 2008.
- 36 Chen, Z., Shi, R., and Zhang, S.: An artificial neural network approach to estimate

- evapotranspiration from remote sensing and AmeriFlux data, Front. Earth Sci., 7 (1),
 103–111, doi:10.1007/s11707-012-0346-7, 2013.
- Colaizzi, P. D., Evett, S. R., Howell, T. A., and Tolk, J. A.: Comparison of five models to
 scale daily evapotranspiration from one-time-of-day measurements, Trans. ASAE, 49,
 1409–1417, doi: 10.13031/2013.22056, 2006.
- 6 Crago, R. D.: Conservation and variability of the evaporative fraction during the daytime, J.
 7 Hydrol., 180 (1–4), 173–194, doi:10.1016/0022-1694(95)02903-6, 1996.
- Bahmani, K., Notton, G., Voyant, C., Dizene, R., Nivet, M. L., Paoli, C., and Tamas, W.:
 Multilayer Perceptron approach for estimating 5-min and hourly horizontal global
 irradiation from exogenous meteorological data in locations without solar measurements,
 Ren. Ener., 90, 267–282. doi:10.1016/j.renene.2016.01.013, 2016.
- Delogu, E., Boulet, G., Olioso, A., Coudert, B., et al.: Reconstruction of temporal variations
 of evapotranspiration using instantaneous estimates at the time of satellite overpass,
 Hydrol. Earth Syst. Sci., 16 (8), 2995–3010, doi:10.5194/hess-16-2995-2012, 2012.
- Foken, T., Wimmer, F., Mauder, M., Thomas, C., and Liebethal, C.: Some aspects of the
 energy balance closure problem, Atm. Chem. Phys., 6 (12), 4395–4402,
 doi:10.5194/acp-6-4395-2006, 2006.
- Franssen, H. J. H., Stöckli, R., Lehner, I., Rotenberg, E., and Seneviratne, S. I.: Energy
 balance closure of eddy-covariance data: A multisite analysis for European FLUXNET
 stations, Agric. For. Meteorol., 150 (12), 1553–1567,
 doi:10.1016/j.agrformet.2010.08.005, 2010.
- Gardner, M. W., and Dorling, S. R.: Artificial neural networks (the multilayer perceptron)—a
 review of applications in the atmospheric sciences, Atmos. Environ., 32 (14–15), 2627–
 2636, doi:10.1016/S1352-2310(97)00447-0, 1998.
- Gentine, P., Entekhabi, D., Chehbouni, A., Boulet, G., and Duchemin, B.: Analysis of
 evaporative fraction diurnal behaviour, Agric. For. Meteorol., 143 (1–2), 13–29,
 doi:10.1016/j.agrformet.2006.11.002, 2007.
- Harper, A., Baker, I. T., Denning, A. S., Randall, D. A., Dazlich, D., and Branson, M.: Impact
 of Evapotranspiration on Dry Season Climate in the Amazon Forest, J. Clim., 27 (2),
 574–591, doi: 10.1175/JCLI-D-13-00074.1, 2014.
- Hasni, A., Sehli, A., Draoui, B., Bassou, A., and Amieur, B.: Estimating Global Solar
 Radiation Using Artificial Neural Network and Climate Data in the South-western
 Region of Algeria, Energy Proc., 18, 531–537, doi:10.1016/j.egypro.2012.05.064, 2012.
- Hildebrandt, A., Aufi, M. A., Amerjeed, M., Shammas, M., and Eltahir, E. A. B.:
 Ecohydrology of a seasonal cloud forest in Dhofar: 1. Field experiment, Water Resour.
 Res., 43, W10411, doi:10.1029/2006WR005261, 2007.
- 37 Hoedjes, J. C. B., Chehbouni, A., Jacob, F., Ezzahar, J., and Boulet, G.: Deriving daily

- evapotranspiration from remotely sensed instantaneous evaporative fraction over olive
 orchard in semi-arid Morocco, J. Hydrol., 354 (1-4), 53-64,
 doi:10.1016/j.jhydrol.2008.02.016, 2008.
- Huang, G., Liu, S., and Liang, S.: Estimation of net surface shortwave radiation from MODIS
 data, Int. J. Remote Sens., 33 (3), 804–825, doi:10.1080/01431161.2011.577834, 2012.
- Jackson, R. D., Hatfield, J. L., Reginato, R. J., Idso, S. B., and Pinter, P. J. Jr.: Estimation of
 daily evapotranspiration from one time-of-day measurements, Agric. Wat. Man., 7 (1–3),
 351–362, doi:10.1016/0378-3774(83)90095-1, 1983.
- 9 Khatib, T., Mohamed, A., and Sopian, K.: A review of solar energy modeling techniques,
 10 Ren. Sust. Energy Rev., 16 (5), 2864–2869, doi: 10.1016/j.rser.2012.01.064, 2012.
- Kim, Y., Knox, R. G., Longo, M., Medvigy, D., Hutyra, L. R., Pyle, E. H., Wofsy, S. C.,
 Bras, R. L., and Moorcroft, P. R.: Seasonal carbon dynamics and water fluxes in an
 Amazon rainforest, Global Change Biol., 18 (4), 1322–1334, doi: 10.1111/j.13652486.2011.02629.x, 2012.
- Laine, V., Venäläinen, A., Heikinheimo, M., and Hyvärinen, O.: Estimation of Surface Solar
 Global Radiation from NOAA AVHRR Data in High Latitudes, J. Appl. Meteorol., 38
 (12), 1706–1719, doi:10.1175/1520-0450(1999)038<1706:EOSSGR>2.0.CO;2, 1999.
- Lazzús, J. A., Pérez Ponce, A. A., and Marin, J.: Estimation of global solar radiation over the
 city of La Serena (Chile) using a neural network, Appl. Sol. Ener., 47 (1), 66–73, doi:
 10.3103/S0003701X11010099, 2011.
- Li, M.-F., Tang, X.-P., Wu, W., and Liu, H.-B.: General models for estimating daily global
 solar radiation for different solar radiation zones in mainland China, Energy Conv.
 Manag., 70, 139–148, doi: 10.1016/j.enconman.2013.03.004, 2013.
- Loew, A., Peng, J., and Borsche, M.: High-resolution land surface fluxes from satellite and
 reanalysis data (HOLAPS~v1.0): evaluation and uncertainty assessment, Geosci. Model
 Dev., 9 (7), 2499–2532, doi:10.5194/gmd-9-2499-2016, 2016.
- Lopez, G., and Batlles, F. J.,: Estimating solar radiation from MODIS data, Enrgy Proc., 49,
 2362 2369, 2014, doi:10.1016/j.egypro.2014.03.250.
- Malek, E.: Night-time evapotranspiration vs. daytime and 24h evapotranspiration, J. Hydrol.,
 138(1), 119–129, doi:10.1016/0022-1694(92)90159-S, 1992.
- Mallick, K., Jarvis, A., Wohlfahrt, G., Kiely, G., Hirano, T., Miyata, A., Yamamoto, S., and
 Hoffmann, L.: Components of near-surface energy balance derived from satellite
 soundings Part 1: Noontime net available energy, Biogeosciences, 12, 433-451,
 doi:10.5194/bg-12-433-2015, 2015.
- Mauder, M., and Foken, T.: Impact of post-field data processing on eddy covariance flux
 estimates and energy balance closure, Meteorolog. Zeit., 15 (6), 597-609, doi:
 10.1127/0941-2948/2006/0167 2006.

- McCulloch, W. S., and Pitts, W.: A logical calculus of the ideas immanent in nervous activity,
 The Bull. Math. Biophys., 5 (4), 115–133, doi: 10.1007/BF02478259, 1943.
- Mubiru, J., and Banda, E. J. K. B.: Estimation of monthly average daily global solar
 irradiation using artificial neural networks, Sol. Ener., 82 (2), 181–187, doi:
 10.1016/j.solener.2007.06.003, 2008.
- Parlange, M. B., and Katul, G. G.: Estimation of the diurnal variation of potential evaporation
 from a wet bare soil surface, J. Hydrol., 132 (1-4), 71–89, doi: 10.1016/00221694(92)90173-S, 1992.
- Polo, J., Zarzalejo, L., and Ramírez, L.: Solar Radiation Derived from Satellite Images, In V.
 Badescu (Ed.), Modeling Solar Radiation at the Earth's Surface SE 18, 449–462,
 Springer Berlin Heidelberg, doi: 10.1007/978-3-540-77455-6_18, 2008.
- Ryu, Y., Baldocchi, D. D., Black, T. A., Detto, M., et al.: On the temporal upscaling of
 evapotranspiration from instantaneous remote sensing measurements to 8-day mean
 daily-sums, Agric. For. Meteorol., 152, 212–222, doi: 10.1016/j.agrformet.2011.09.010,
 2012.
- Senay, G. B., Velpuri, N. M., Bohms, S., Budde, M., et al.: Drought Monitoring and
 Assessment: Remote Sensing and Modeling Approaches for the Famine Early Warning
 Systems Network, In: Hydro-Meteorological Hazards, Risks, and Disasters, 233 262,
 doi: 10.1016/B978-0-12-394846-5.00009-6, 2015.
- Sepulcre-Canto, G., Vogt, J., Arboleda, A., and Antofie, T.: Assessment of the EUMETSAT
 LSA-SAF evapotranspiration product for drought monitoring in Europe, Int. J. Appl.
 Earth Obs. Geoinf., 30, 190–202, doi: 10.1016/j.jag.2014.01.021, 2014.
- Shamshirband, S., Mohammadi, K., Tong, C. W., Zamani, M., et al.: A hybrid SVM-FFA
 method for prediction of monthly mean global solar radiation, Theor. Appl. Climatol., 1–
 13, doi: 10.1007/s00704-015-1482-2, 2015.
- Shuttleworth, W. J., Gurney, R. J., Hsu, A. Y., and Ormsby, J. P.: FIFE: the variation in energy partition at surface flux sites, IAHS Publ., 186, 67–74, 1989.
- Tang, R., Li, Z.-L., and Sun, X.: Temporal upscaling of instantaneous evapotranspiration: An
 intercomparison of four methods using eddy covariance measurements and MODIS data,
 Remote Sens. Environ., 138, 102–118, doi: 10.1016/j.rse.2013.07.001, 2013.
- Tang, R., Tang, B., Wu, H., Li, Z. L.: On the feasibility of temporally upscaling instantaneous
 evapotranspiration using weather forecast information, Int. J. Remote Sens., 36 (19-20),
 doi: 10.1080/01431161.2015.1029597, 2015.
- Tolk, J, A., Howell, T. A., and Evett, S. R.: Nighttime evapotranspiration from alfalfa and
 cotton in a semiarid climate, Agron. J., 98(3), 730 736, doi:10.2134/agronj2005.0276
 2006.
- 37 Van Niel, T. G., McVicar, T. R., Roderick, M. L., van Dijk, A. I. J. M., et al.: Upscaling latent

- heat flux for thermal remote sensing studies: Comparison of alternative approaches and
 correction of bias, J. Hydrol., 468–469, 35–46, doi: 10.1016/j.jhydrol.2012.08.005, 2012.
- Wang, S.-C.: Artificial Neural Network. In: Interdisciplinary Computing in Java
 Programming SE 5, 743, 81–100, Springer US, doi: 10.1007/978-1-4615-0377-4_5,
 2003.
- Wang, D., Liang, S., He, T., Cao, Y., and Jiang, B.: Surface Shortwave Net Radiation
 Estimation from FengYun-3 MERSI Data, Remote Sens., 7, 6224-6239,
 doi:10.3390/rs70506224, 2015
- Wilson, K., Goldstein, A., Falge, E., Aubinet, M., et al.: Energy balance closure at FLUXNET
 sites, Agric. For. Meteorol., 113 (1–4), 223–243, doi: 10.1016/S0168-1923(02)00109-0,
 2002.
- Xu, T., Liu, S., Xu, L., Chen, Y., Jia, Z., Xu, Z., & Nielson, J.: Temporal Upscaling and
 Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration, Remote
 Sens., 7 (3), 3400, doi: 10.3390/rs70303400, 2015.

Time-of-day (h)	τ	\mathbf{R}^2	RMSE (MJ $m^{-2} d^{-1}$)	IA	MAPE	Bias (MJ $m^{-2} d^{-1}$)
	$ au_1$	0.67	1.84	0.67	53.56	1.12
1100	τ_2	0.79	2.45	0.80	16.69	0.59
1100	τ_3	0.88	2.30	0.82	9.17	-0.74
	$ au_4$	0.98	0.63	0.95	1.69	0.08
	τ_1	0.65	1.77	0.67	51.50	1.06
1220	τ_2	0.81	2.44	0.81	16.83	0.69
1330	τ_3	0.89	2.23	0.83	8.94	-0.85
	τ_4	0.98	0.89	0.95	2.40	-0.46

1	Table 2: A summary of	f ET_d error statistics b	by comparing the	performance of R_S -based,	$R_{S}TOA$ -based and EF -based ET_{i}
---	-----------------------	-----------------------------	------------------	------------------------------	--

upscaling methods with regard to different sky conditions. Here τ_1 represents low atmospheric transmissivity due to high

cloudiness while τ_4 represents high transmissivity under clear sky conditions.

Time- of-day				\mathbf{R}^2		RMS	SE (MJ m ⁻²	$^{2} d^{-1}$)		IA			MAPE		Bia	as (MJ m ⁻²	d ⁻¹)
(h)	τ	R_S	<i>R_STOA</i>	EF	R_S	<i>R_STOA</i>	EF	R_S	<i>R_STOA</i>	EF	R_S	<i>R_STOA</i>	EF	R_S	<i>R_STOA</i>	EF	
	τ_1	0.49	0.32	0.32	1.34	1.65	2.07	0.72	0.67	0.71	50.14	66.70	64.19	-0.13	-0.04	0.05	
1100	τ_2	0.72	0.70	0.69	1.73	1.81	1.93	0.81	0.78	0.69	26.47	32.41	36.42	-0.21	-0.19	-0.95	
1100	τ3	0.72	0.73	0.79	1.99	1.94	2.38	0.81	0.79	0.59	24.69	25.66	40.37	-0.24	-0.37	-1.78	
	τ4	0.77	0.81	0.68	1.32	1.13	2.00	0.84	0.81	0.49	32.17	30.02	55.43	0.05	-0.19	-1.34	
	τ_1	0.52	0.34	0.29	1.21	1.68	2.34	0.73	0.69	0.71	48.29	66.09	68.14	-0.11	0.08	0.12	
1330	τ ₂	0.73	0.72	0.71	1.71	1.93	1.86	0.82	0.79	0.71	26.12	33.71	35.33	-0.01	0.24	-0.88	
1350	τ ₃	0.75	0.75	0.76	1.89	1.96	2.43	0.82	0.82	0.61	23.17	25.82	41.65	0.09	0.14	-1.75	
	τ ₄	0.79	0.86	0.80	1.32	1.09	1.86	0.84	0.86	0.49	29.54	26.59	53.91	0.10	0.11	-1.38	

Time- of-day	Temporal scale	\mathbb{R}^2			$RMSE (MJ m^{-2} d^{-1})$			IA			MAPE			Bias (MJ m ⁻² d ⁻¹)		
(h)		R_S	<i>R_STOA</i>	EF	R_S	<i>R_STOA</i>	EF	R_S	<i>R_STOA</i>	EF	R_S	<i>R_STOA</i>	EF	R_S	<i>R_STOA</i>	EF
1100	Daily	0.71	0.72	0.71	1.79	1.85	2.16	0.82	0.80	0.67	28.80	32.98	57.00	0.19	0.22	1.21
	8-days	0.86	0.84	0.85	1.17	1.22	1.65	0.87	0.86	0.67	18.50	20.63	46.96	0.19	0.22	1.16
	Monthly	0.89	0.88	0.88	0.99	1.04	1.61	0.89	0.67	0.67	15.52	17.22	49.72	0.19	0.22	1.16
	Annually	0.92	0.91	0.93	0.57	0.62	1.33	0.87	0.84	0.54	11.12	12.54	45.88	0.19	0.22	1.21
1330	Daily	0.75	0.74	0.69	1.74	1.89	2.2	0.83	0.82	0.67	26.59	29.89	56.45	-0.04	0.17	-1.18
	8-days	0.87	0.86	0.84	1.11	1.21	1.7	0.88	0.88	0.68	16.80	17.97	50.36	-0.04	0.17	-1.18
	Monthly	0.90	0.90	0.87	0.93	1.00	1.59	0.90	0.89	0.68	13.69	14.85	48.08	-0.04	0.17	-1.18
	Annually	0.93	0.93	0.92	0.51	0.53	1.31	0.88	0.88	0.54	9.00	9.70	44.13	-0.04	0.17	-1.18

1	Table 3: Error statistics of ET_{d_pred} at four different temporal scales from three ET_i upscaling methods.

3

1 **Table 4:** Evaluation of the R_s -based ANN predicted $ET_d (ET_{d_pred})$ error statistics based on 'closed' (EBC) and unclosed' (EBO) surface energy balance 2 under varying sky conditions represented by four different classes of daily atmospheric transmissivity (τ). Here τ_1 represents low atmospheric

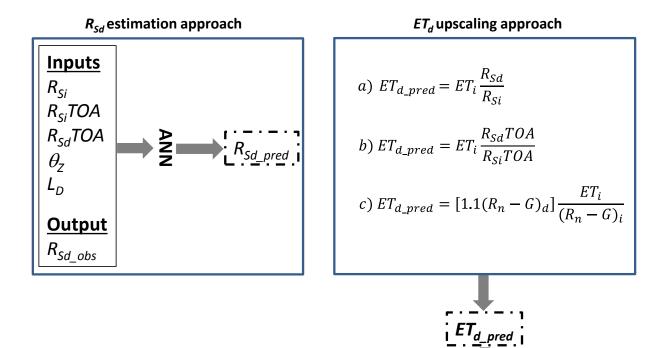
transmissivity due to high cloudiness while τ_4 represents high transmissivity under clear sky conditions. The statistical metrics of ET_{d_pred} for two

4 different upscaling hours (1100 and 1330 h) are presented.

Time-of- day (h)	τ	τ R ²		RMSE (MJ m-2 d-1)		L	A	MA	\PE	Bias (MJ m-2 d-1)		
		EBO	EBC	EBO	EBC	EBO	EBC	EBO	EBC	EBO	EBC	
	$ au_1$	0.37	0.17	2.96	3.31	0.71	0.57	87.21	86.49	0.66	1.12	
1100	τ_2	0.68	0.54	1.64	2.94	0.78	0.68	28.66	38.01	-0.10	0.65	
	τ_3	0.75	0.61	1.77	3.20	0.76	0.66	25.31	37.82	-0.67	1.34	
	τ_4	0.66	0.61	1.09	3.40	0.71	0.30	21.77	85.80	-0.31	3.83	
	$ au_1$	0.35	0.25	2.02	2.70	0.71	0.60	69.78	78.18	0.37	0.87	
1330	τ_2	0.76	0.5	1.54	3.27	0.81	0.69	27.56	40.98	0.23	0.63	
	τ_3	0.77	0.59	1.66	3.18	0.80	0.70	23.16	34.17	-0.46	0.76	
	τ_4	0.84	0.64	0.98	2.46	0.76	0.66	23.30	43.89	-0.56	1.23	

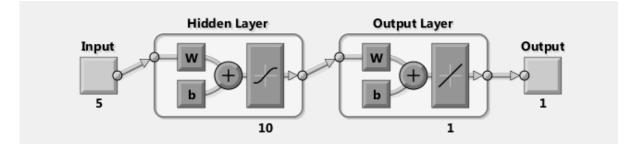
5

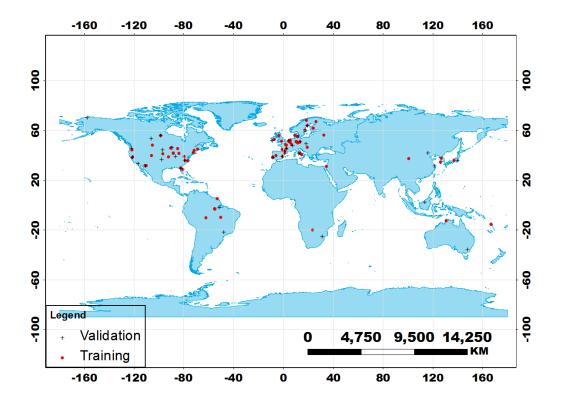
Figure 1. A conceptual diagram of the methodology. On the left side is a representation of predicting daily incoming short wave radiation (R_{Sd_pred}). The ANN is trained to learn the system response to a combination of explanatory variables i.e. instantaneous incoming short wave radiation (R_{Si}), instantaneous exo-atmospheric shortwave radiation ($R_{Si}TOA$), daily exo-atmospheric shortwave radiation (R_{Sd_TOA}), solar zenith angle (θ_Z), and day length (L_D), by being fed with a sample data of observed daily incoming short wave radiation (R_{Sd_obs}) which is the dependant variable. On the right side are methods of upscaling instantaneous (ET_i) to daily ET (ET_d) using our R_S -based method (a) and other two approaches (b, c) are the R_{STOA} and EF-based methods respectively used which are used for comparison.



Validation against $ET_{d obs}$

Figure 2. Schematic representation of a simple artificial network model. The artificial neuron has five input variables, for the intended output. These inputs are then assigned weights (*W*) and bias (b), and the sum of all these products (Σ) is fed to an activation function (*f*). The activation function alters the signal accordingly and passes the signal to the next neuron(s) until the output of the model is reached (Mathworks, 2015).





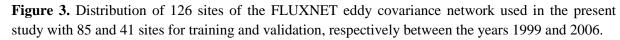


Figure 4. Statistical metric of R_{Sd_pred} by ANN for different time-of-day. As the study is intended for remote sensing application, we demonstrate the potential of the method for future research in the case where satellite will be used and as such we pick MODIS overpass time as an example to highlight on the predictive ability of the ANN at the specific overpass times.

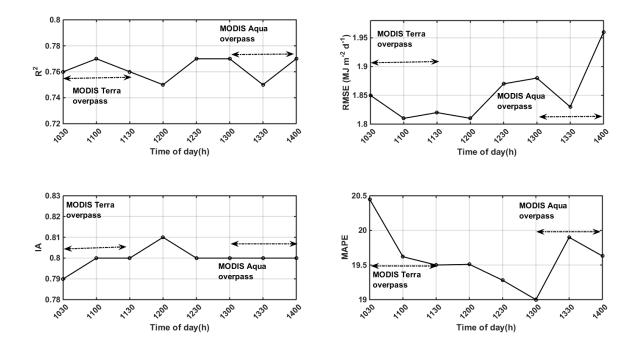


Figure 5. Scatter plots between R_{Sd_obs} versus R_{Sd_pred} for different levels of daily atmospheric transmissivity classes (τ) from (a) 1100 and (b) 1330 hours upscaling. Here $\tau_1 - \tau_4$ represent daily atmospheric transmissivity of four different class, $0.25 \ge \tau \ge 0$, $0.50 \ge \tau \ge 0.25$, $0.75 \ge \tau \ge 0.50$, and $1 \ge \tau \ge 0.75$, respectively, with τ_1 signifying high degree of cloudiness (or overcast skies) whereas τ_4 indicates clear skies.

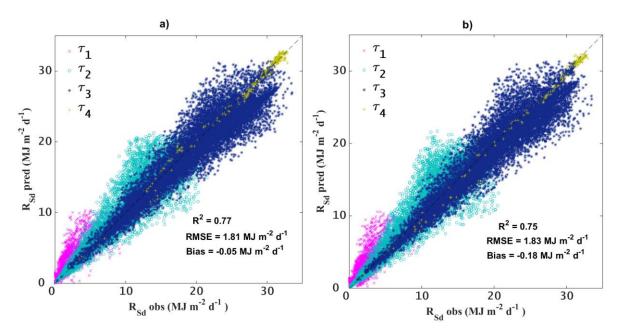
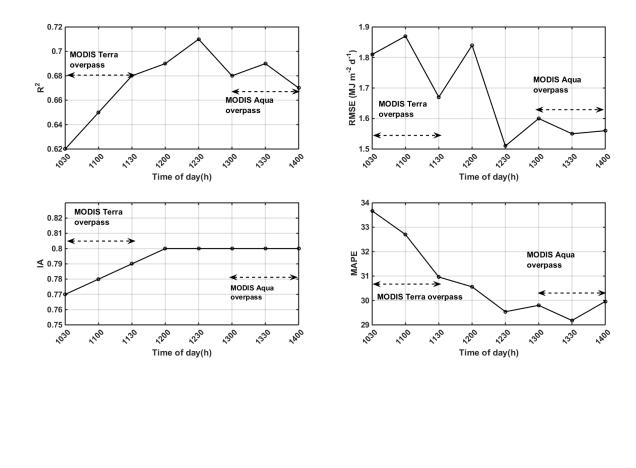


Figure 6. Statistical summary of ET_{d_pred} for different time-of-day using Eq. (1) based on R_{Si} and R_{Sd_pred} . As the study is intended for remote sensing application, we once again demonstrate the potential of the method for future research in the case where satellite will be used and as such we pick MODIS Terra-Aqua overpass time.



-

Figure 7. ET_{d_pred} obtained through eq. (1) versus ET_{d_obs} for different levels of τ from both forenoon (a) and afternoon (b) upscaling (1100 and 1300 h daytime hours).

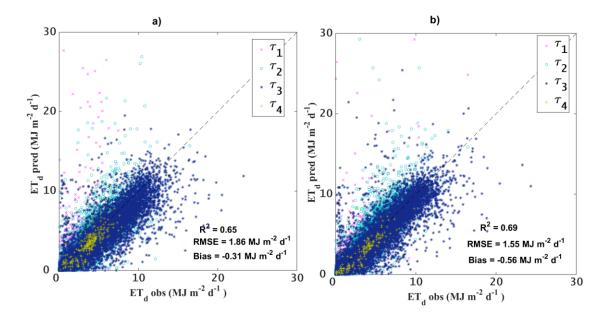


Figure 8. Assessing the statistical metrics of ET_{d_pred} (using eq.1) for different levels of daily atmospheric transmissivity classes (representing cloudy to clear skies) for both 1100h and 1330h time-of-day ET_i scaling.

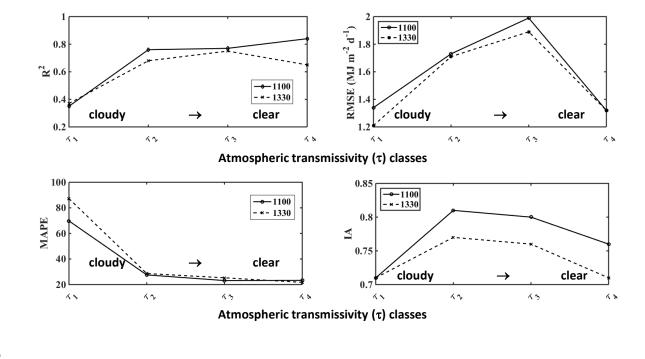


Figure 9. An intercomparison of ET_{d_pred} error statistics (RMSE and MAPE) for different levels of atmospheric transmissivity classes based on two different ANN training (ANN trained with shortwave radiation and astronomical variables only; and ANN trained with radiation, astronomical variables, soil moisture and rainfall) based on 1100h and 1330h time-of-day ET_i scaling.

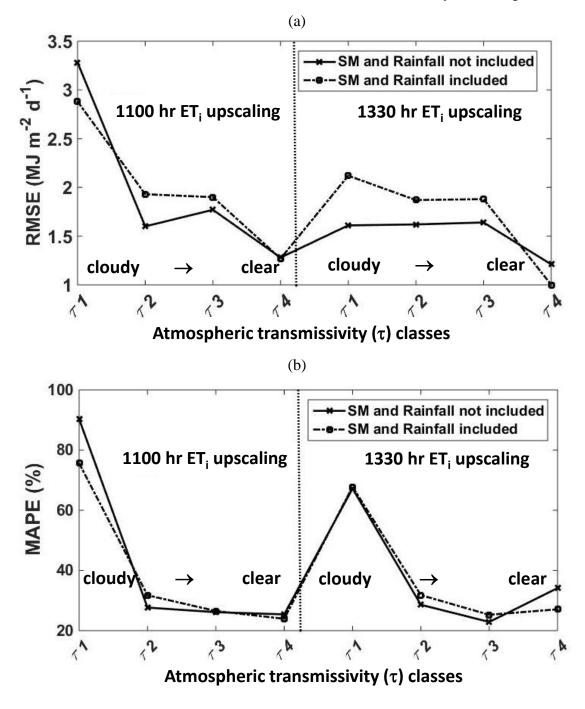


Figure 10. Time series comparison between observed and predicted ET_d for four representative sites located in Australia, Brazil, South Africa and Sweden.

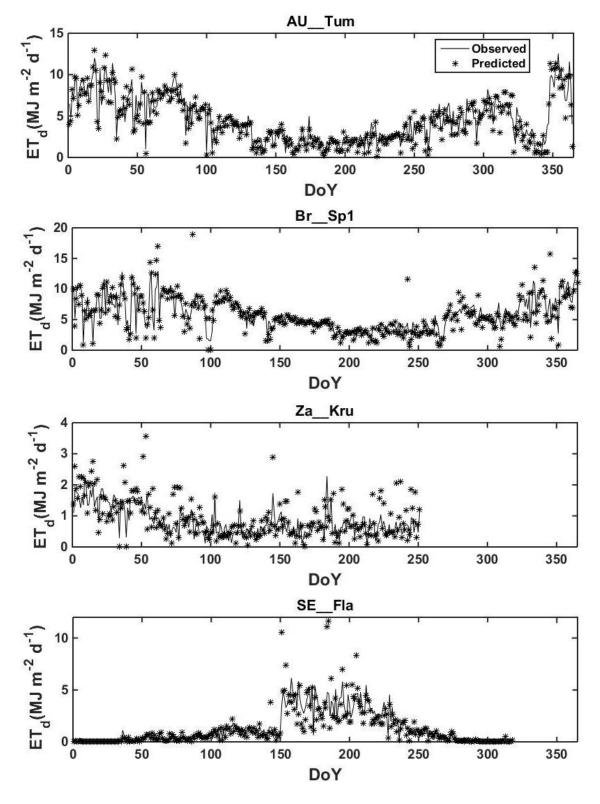


Figure 11. Biome specific error characteristics of ET_{d_pred} displaying the box plots of RMSE and coefficient of determination (R²) from both R_s -based and R_sTOA -based ET_i upscaling. The biome classes are evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF), shrubland (SH), cropland (CRO), and grassland (GRA), respectively.

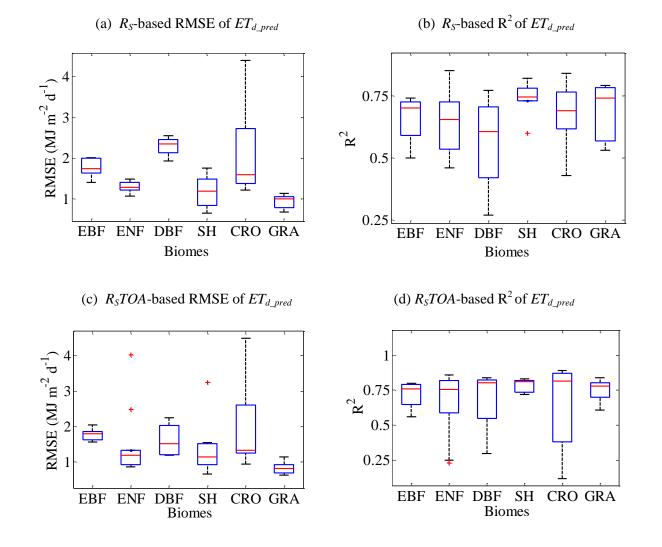


Figure 12. Statistical metrics of ET_{d_pred} from three different ET_i upscaling approaches [shortwave incoming radiation (R_s), exo-atmospheric shortwave radiation (R_sTOA) and evaporative fraction (EF)] at different temporal scales based on ET_i measurements at (a) 1100h and (b) 1330h time-of-day.

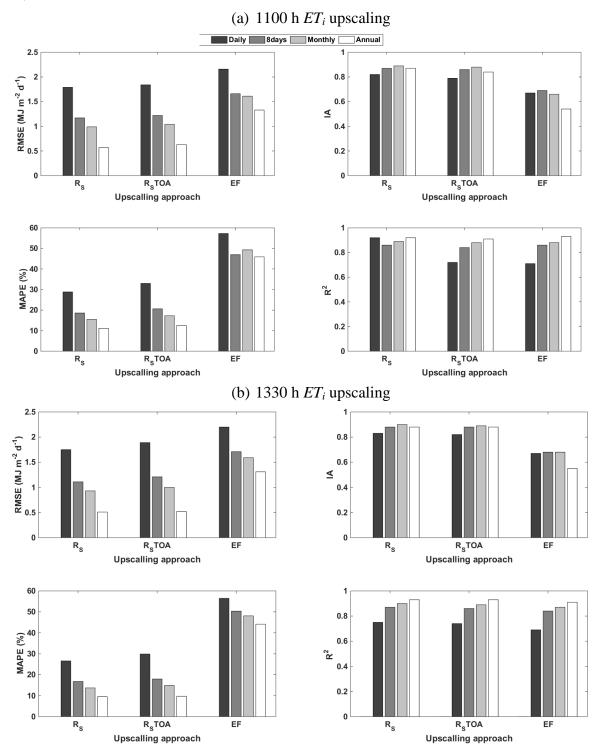
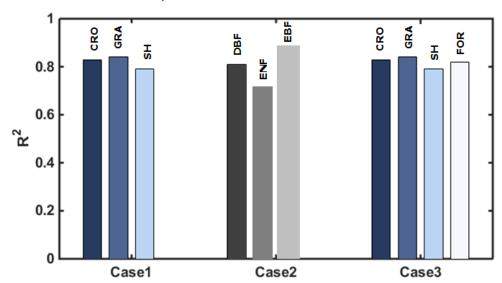


Figure 13. Illustrative examples of the sensitivity of ET_{d_pred} error statistics (R² and RMSE) to the different biome type scenarios of ANN training. Here, Case1 consist of training the ANN with forest (FOR) datasets and evaluating ANN predicted ET_d statistics on non-forest biomes, Case2 consist of training the ANN with non-forest datasets and evaluating ANN predicted ET_d statistics on forest biomes, Case3 consist of training the ANN with both forests and non-forest datasets and evaluating ANN predicted ET_d statistics on evaluating ANN predicted ET_d statistics on forest biomes, Case3 consist of training the ANN with both forests and non-forest datasets and evaluating ANN predicted ET_d statistics on all the biomes.



(a) R^2 of ET_{d_pred} for three different ANN training scenarios

