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Editor Decision: Publish subject to revisions (further review by Editor and Referees) (20 1 

Oct 2016) by Miriam Coenders-Gerrits 2 

Comments to the Author: 3 

The authors present a study where they test an ANN to upscale instantaneous remote sensing 4 

observations (Rsi, RsiTOA, RSdTOA, theta_z, and L_D) to daily Rsd estimates from where 5 

they estimate daily ET. These results are also compared to two other methods for converting 6 

instantaneous observations to daily ET estimates. The paper is well written and easy to read. 7 

Two reviewers were mainly positive, and the 3rd reviewer expressed some concerns on the 8 

validity/usefulness of the method during (partly) overcast days. I think the authors correctly 9 

replied to comments of the 3 reviewers and the proposed changes are OK. However, all 3 10 

reviewers commented on the selection of the FLUXNET sites. How representative are the 11 

sites for different climates, biomes and time of the year/seasonality?? Although the authors 12 

replied to Reviewer #1 that they will elaborate on it, but that they already showed that it does 13 

not influence the training of the ANN, I think the study will benefit from a proof of this claim. 14 

Especially, since the main objective of the paper is to show the use of ANN for upscaling 15 

from instantaneous to daily. Therefore, I agree with the suggestion of Reviewer #1 to do a 16 

'sensitivity' analysis for the selection of the sites in place, time and biome.  17 

Response: A sensitivity analysis is now performed to assess the applicability of the ANN-18 

based modeling framework to multiple biomes. The results are discussed in section 3.5. 19 

 20 

Minor comments: 21 

(1) P3L2 and L12: what is the need of using E_T and ETd? Are they not the same? 22 

Response: By ET, we mean evapotranspiration, which is generic. ETd signifies daily ET and 23 

ETi signifies instantaneous ET. This uniformity is maintained throughout the manuscript.  24 

(2) P3L3: all symbols in text in italic (throughout manuscript) 25 

Response: Done as suggested. 26 

(3) P4L11: "... variables (e.g., dialy..." (add comma). 27 
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Response: This sentence is modified as follows (p4, l15 to l19): 1 

Although the EFr-based method produced comparable ETd estimates as the RS-based method, 2 

however the dependence of EFr estimates on certain variables (e.g., daily net available 3 

energy;  and wind speed) and the difficulty to characterise them at the daily scale from single 4 

acquisition of polar orbiting satellites (Tang et al., 2015) makes it a relatively less attractive 5 

method. 6 

(4) P4L11: theta is not explained. 7 

Response: It is net available energy, explained now (p4, l17). 8 

(5) P5L2: better: ".. predict Rsd based on Rsi satellite observations" 9 

Response: Corrected (p5,l31). 10 

(6) P5L2-4: Objectives 2 and 3 are not really objectives of this paper (since this is already 11 

done in the past). It's more that the results of the ANN are used to apply one method to 12 

upscale instantaneous observations to ETd and that these outcomes are then compared to two 13 

other upscaling techniques. 14 

Response: Objective is now moved to the end of the introduction (p5 l30 – l31; p6 l1 – l3). 15 

Objectives are corrected as follows, 16 

The objectives of the present study are: (1) using a ANN with Multilayer Perceptron (MLP) 17 

architecture to predict RSd based on RSi satellite observations, (2) applying RSd/RSi ratio as a 18 

scaling factor to upscale ETi to ETd under all sky conditions, and (3) comparing the 19 

performance of proposed RS-based ETi upscaling method with RSTOA and EF-based ETi 20 

upscaling methods across a range of temporal scales, biomes and variable sky conditions. 21 

(7) P6L7-10: What is the use of having ET with the units MJ/m2/d and Rsd in W/m2? Please 22 

use one of the two for both. 23 

Response: Necessary corrections are done (p6, l10 – l14).  24 

(8) P7L12: add space between (Rye et al, 2012) and mainly. 25 
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Response: Corrected (p8, l21). 1 

(9) P7L18: What is PURELIN? Please briefly explain. 2 

Response: Explained now (p8, l28 – l31). 3 

(10) P8L23-25: I would link here to figure 1 and use the same letters for the 3 method. Thus 4 

a=Rs-method, b= RsdTOA-method and c=EF-method. 5 

Response: Necessary corrections are made (section 2.4, p10, l7 – l17). 6 

(11) Eq5: combine into 1 equation, Eq6: combine into 1 equation 7 

Response: Now all the equations are numbered individually (section 2.4 and 2.5, p10, p11). 8 

(12) P9L13-16: Use here the same order as the order of Eq8-12 9 

Response: Corrected now (section 2.5, p11, l9 – l11). 10 

(13) P10L10: Unclear/vague sentence. Please rewrite. 11 

Response: Corrected now (p12, l17 – l18).  12 

(14) P10L13: suggestion: use time-of-day instead of time-of-daytime. 13 

Response: Corrected throughout in the text. 14 

(15) P11L2: The categories of Tau are not explained in the text. When is something belonging 15 

to Tau_1 and when to Tau_4? (like explained in the caption of fig 5.) 16 

Response: The categories of Tau is already explained in section 2.4 (p11, l2 – l5). For clarity, 17 

we again explain it (p12, l29). 18 

(16) Table 2: Maybe make it more clear that "Rs, RsTOA and EF" are the 3 methods and not 19 

that e.g., the R2 refers to the performance of an estimation of Rs. 20 

Response: This is now made explicit in the caption of Table 2. 21 

(17) Table 1, 2,3: Maybe convert these tables into similar graphs like figure 11. 22 
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Response: We would prefer to keep Table 1, 2, 3 as they are in the manuscript. Representing 1 

all of them in figures similar to Fig. 11 might add monotony. 2 

Fig 1: What is the difference between Rsd_pred and Rsd? 3 

Response: RSd_pred is the predicted RSd from RSi. Here RSd is the generic symbol to 4 

signify daily shortwave radiation. We made the necessary correction in caption of Figure 1 5 

caption. 6 

Fig 5-caption: "..between Rsd_obs versus Rsd_pred...". Furthermore, also explain the 7 

transmissivity classes in the main manuscript text. 8 

Response: Corrected accordingly. 9 

Fig 10: this figure is hard to read. Improve quality. 10 

Response Corrected now. 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 

 22 
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Reviewer 1 (R1): 1 

1. Energy budget closure problem at FLUXNET. Energy budget imbalance has long been 2 

identified at FLUXNET sites. The imbalance is about -40% - +20%, indicating latent 3 

heat/sensible heat fluxes might be underestimated by up to 40%. Indeed, the energy 4 

imbalance is an existing fact we have to accept, I guess there is little can be done to 5 

overcome it in this particular study. 6 

Response: Good point. We have now included an intercomparison of RS-based ETi 7 

upscaling results including both energy balance closure and non-closure in the revised 8 

version of the manuscript (p20 [section 3.4], Table 4). 9 

2. But my concerning is: if an ANN model is trained by FLUXNET data, how much 10 

confidence do we have when we apply it to satellite retrieval? The energy budget close 11 

problem affects the results in two ways: (1) the overall robustness of the proposed 12 

upscaling method (Rs method); (2) comparison of Rs method with the evaporative 13 

fraction based upscaling (EF method Eqn. 5). However, the exo-atmospheric irradiance 14 

method is not affected (Eqn. 6). I guess the authors must be aware of this issue; it would 15 

be better to literally discuss them in the results section. 16 

Response: Regarding R1’s concern on the impact of surface energy balance closure on 17 

the performance of ETd evaluation, it is important to mention that the implicit 18 

assumption in remote sensing based ETi retrieval is the closure of surface energy 19 

balance. Therefore, for the remote sensing retrievals, the energy balance closure problems 20 

will not affect ETd estimates in the current framework of ANN. However, for the 21 

validation of remote sensing based ETd retrievals, surface energy balance fluxes from 22 

eddy covariance measurements need to be closed. This is now mentioned in section 23 

3.4 (p20 [section 3.4]) 24 

In the present study, the closure problem of surface energy balance will affect the 25 

evaluation statistics of all the three methods, and therefore, we included an 26 

intercomparison of RS-based ETi upscaling results including both energy balance closure 27 

and non-closure in the revised version (Table 4, section 3.4). As compared to the EF and 28 

RSTOA approach, the RS-based method is more robust with regards to ET scaling on 29 
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a daily time frame since the method carries maximum information on the cloudiness, 1 

which is a key limiting factor in upscaling of ETi to ETd. 2 

With reference to Eq. (1), the network developed is intended to develop an operational 3 

method to directly upscale ETi (estimated from polar orbiting satellites) to ETd based on 4 

the ratio of daily to instantaneous shortwave radiation (RSd and RSi). Given there is no 5 

direct method to directly estimate RSd from remote sensing satellite, we trained an ANN 6 

with the FLUXNET observations of RSi and RSd, and validated the model to predict RSd 7 

over independent sites, followed by using RSd/RSi ratio to convert ETi to ETd. The datasets 8 

used for the ANN development covers a wide range of biome, climate, and variable sky 9 

conditions. Therefore, we assume the RSd prediction from ANN to capture a broad 10 

spectrum of radiative forcing, which is also reflected in the independent validation of RSd 11 

and ETd (Fig. 5, Fig. 7, Table 2). The performance of this model for satellite retrieval of 12 

RSd (from RSi) is dependent on the accuracy of RSi retrieval (Loew, Peng, & Borsche, 13 

2016). We have discussed these in the conclusion section (p21, l10 – l26). Also, the 14 

distribution of sites over the tropics, Africa, and SE Asia are poor, and more sites over 15 

these regions are expected to make the ANN model more robust, which is mentioned in 16 

the revised manuscript (p21, l24 – l26).  17 

Regarding R1’s concern on the robustness of the approach, we have performed a 18 

sensitivity analysis of RS-based ANN performance by training ANN with data from 19 

different biome combinations and compared ETd prediction statistics of the different 20 

combinations (section 3.5, Figure 13).   21 

3. Cloudy-sky issue. The biggest problem of the proposed upscaling method (Rs method) is 22 

that the ANN model does not include any information about “cloudiness”. Therefore, 23 

model performance under cloudy-sky condition (or low atmospheric transmissivity) is 24 

much worse than clear-sky condition. One way to tackle it, is to use climatology 25 

precipitation data. Rainfall (highly related to cloudiness) has seasonal pattern, at least for 26 

some regions (e.g., tropical rainforest, savanna). Similarly, dry season-wet seasons could 27 

provide ANN model with additional information about “possibility” of the “cloudy-sky 28 

condition” during a certain time period. In Figure 7, the overestimation of ET under 29 

cloudy sky condition is “systematic”, meaning there might be a simple way to 30 
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“systematically” down regulate the ET as long as the ANN model knows it’s a cloudy 1 

day. 2 

Response: Good suggestion indeed. Following R1’s suggestion, we tested this hypothesis 3 

by including the precipitation and soil moisture information with RS and trained a new 4 

ANN to evaluate if the inclusion of precipitation and soil moisture improved the 5 

performance of ETd prediction under persistent cloudy-sky conditions. This shows 6 

substantial improvement in ETd prediction under cloudy-sky cases [section 3.2 (p15, l1 – 7 

l27) (Figure 9)]. 8 

Including cloudiness as an input variable of the network during training process would 9 

significantly enhance the performance of the network. Use of daily precipitation and soil 10 

moisture as an indicator of cloudiness would have been the most appropriate approach in 11 

this circumstance. However the cloud information available from alternative sources  e.g. 12 

from the Clouds and Earth’s Radiant Energy System (CERES), the International Satellite 13 

Cloud Climatology Project–Flux Data (ISCCP-FD), and Global Energy and Water cycle 14 

Experiment Surface Radiation Budget (GEWEX-SRB) are available at coarse spatial 15 

resolution and there will be a scale mismatch. However, the precipitation data was not 16 

consistently available for most of the sites and the data gaps were significant to alter the 17 

sampling sizes. However for future studies, including cloudiness or daily precipitation as a 18 

variable in the training of the ANN to predict RSd is highly recommended. On the issue of 19 

systematic errors as a result of cloud conditions, we certainly expect overestimation or 20 

underestimation. The results are discussed in section 3.2 (p15, l16 – l27) (Figure 9). 21 

4. FLUXNET site selection. It was stated that the partition of data into training and 22 

validation was randomly selected. However, it’s not clear whether the selected training 23 

sites are represent it cover a full range of (from dry to wet) rainfall regimes? For each 24 

vegetation type, how much percentage of data is selected to train the model? FLUXNET 25 

has more forest sites than grass/shrub sites. Are grass/shrub sites less represented in the 26 

training dataset? Following question: is the ANN model sensitive the FLUXNET site 27 

selection? This could be evaluated by doing e.g., 10 ensemble of random selection of 28 

FLUXNET sites. And check the difference among the resultant 10 ANN models? 29 
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Response: Since this analysis was based on FLUXNET sites distributed across 0-90 1 

degrees latitude north and south, the training datasets covers substantial climatic and 2 

vegetation variability. The percentage distribution of the training data according to 3 

vegetation type was; 23% crops, 31% deciduous broadleaf forest, 10% evergreen 4 

broadleaf forest, 20% evergreen need leaf forest, 8% grassland, 7% shrubs and 1% aquatic 5 

as indicated in table S1. The number of grassland and shrubs as indicated were relatively 6 

less as compared to the crops and forests sites. However, biome specific error statistics 7 

(Fig. 11) indicated the absence of any systematic errors due to vegetation sampling 8 

with the exception of EBF. Availability of more EBF sites in the training datasets is 9 

expected to reduce the cloudy sky errors substantially. We have elaborated this 10 

discussion in the revised manuscript.  11 

We have also performed a sensitivity analysis of RS-based ANN performance by randomly 12 

training ANN with data from different biome combinations and compared ETd prediction 13 

statistics of the different combinations (section 2.6). The results are discussed in section 14 

3.5 (p20, l22 – l30 and p21, l1 – l8) (Figure 13).   15 

5. Crop ET. I think the proposed method might be only suitable for estimating natural 16 

terrestrial ecosystem ET. There is large bias of crop ET estimation (Figure 9). That could 17 

be due to irrigation? Land management? Those anthropogenic factors (largely alter land 18 

surface water budget) is not included in the ANN model and the ET estimation. 19 

Response: Figure 9 is now Figure 11.  20 

Both the current framework and RsTOA-based method of ETd estimation would be best 21 

suited for natural ecosystem as well for the rainfed agroecosystems. In the biome specific 22 

ETd error statistics (Fig. 11), relatively large bias in crop ET is propagated due to the 23 

inclusion of irrigated agroecosystems in the validation. Inclusion of daily soil moisture 24 

and rainfall in the ANN has shown to improve the RS-based ETd prediction only under 25 

persistent cloudy-sky conditions. In irrigated agroecosystems, day-to-day variation in soil 26 

moisture is not substantial and evapotranspiration is predominantly controlled by the net 27 

radiation. Therefore, the inclusion of soil moisture and rainfall in the current ANN 28 

framework had not made any improvement in the ETd prediction statistics in irrigated 29 

agroecosystems. Further, having many explanatory variables (e.g., land management, 30 
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irrigation statistics, anthropogenic factors) to train the ANN, we risk overfitting the model 1 

and hence introducing bias. There are now described in the revised manuscript (section 2 

3.3, p17, l10 – l24). 3 

6. Vegetation control on ET. The proposed upscaling method is based on the idea that 4 

higher available energy (Rs) lead to higher evapotranspiration (ET) (Eqn. 1). It basically 5 

assumes that the Bowen ratio does not change during the daytime, so that instantaneous 6 

ET/Rs is equal to daily ET/Rs. However, it ignores the important fact that ET is also 7 

mediated by vegetation via stomata control. For example, trees and grass have 8 

dramatically different stomata density, stomata size. Therefore, their stomata open/closure 9 

and its control on water vapor conductance are different.  10 

Response: This is indeed a very good point and is discussed in section 4 (p22, l10 – l24) 11 

of the manuscript. The proposed upscaling method is based on the idea that instantaneous 12 

ET/RS is equal to daily ET/RS, although it implicitly includes the stomatal controls on ET 13 

observations mediated by the vegetation. The cases where ETi is low due to water stress 14 

induced strong stomatal control; low magnitude of ET will also be reflected in upscaling 15 

ETi to ETd (according to eq. 1). However, to account any carry over effects of the stomatal 16 

control on ETd, inclusion of longwave radiation would likely to improve the scheme. 17 

Stomatal control is significantly dependent on the thermal longwave radiative 18 

components, and, therefore, the relative proportion of downwelling and upwelling 19 

longwave radiation is expected to be a stomatal constraint. However, the availability of 20 

longwave radiation measurement stations in the FLUXNET datasets is limited to 21 

formulate ANN and evaluate this hypothesis. In general, the stomatal and biophysical 22 

constraints are imposed in state-of-the-art thermal remote sensing based ETi retrieval 23 

schemes, and, therefore the ANN framework can be applied to upscale remote sensing 24 

based ETi to ETd. Also, relatively good performance of the model in semiarid shrubland 25 

also indicated the applicability of the method in water stressed ecosystems where stomatal 26 

controls are predominant.  27 

7. The question is: it is worthwhile to add biome type information in the ANN model? Is it 28 

possible to further improve the results (Figure 9) for forest sites by considering biome 29 

type information in the ANN model and ET estimates? 30 
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Response: It is not worthwhile to add biome type information in the ANN model. The 1 

performance of ANN is principally dependent on atmospheric radiative forcings and less 2 

on biome types. To test this hypothesis, we have also performed a sensitivity analysis of 3 

RS-based ANN performance by randomly training ANN with data from different biome 4 

combinations and compared ETd prediction statistics of the different combinations 5 

(section 2.6). The results are discussed in section 3.5 (p20, l22 – l30 and p21, l1 – l8) 6 

(Figure 13). 7 

Minor comments  8 

Page2 9 

8. L4. a key challenge in mapping regional ET using polar orbiting sensors 10 

Response: Necessary changes are incorporated (p2, l3 – l4). 11 

9. L6. On the terrestrial surface -> remove 12 

Response: Removed. 13 

10. L8. The approach relies on : : : -> remove 14 

Response: Removed. 15 

11. L16. derived from simple mathematical computation -> replace: e.g., solar zenith angle, 16 

day length 17 

Response: Changes are made as suggested (p2, l13 – l14). 18 

12. L20. Based on the measurements from 126 sites -> remove 19 

Response:  Removed. 20 

13. L20. Rs-based upscaling produced  21 

Response: Necessary changes are incorporated (p2, l17) 22 

 23 

 24 
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Page3 1 

14. L7. ET variability is influenced by (1) available energy received, (2) soil moisture supply 2 

and (3) vegetation mediation. I think the third one is missing here. To be complete, the 3 

three key factors should all be fairly discussed in the introduction 4 

Response: Good point. We included the vegetation controls on ET in the introduction (p3, 5 

l11 – l12).  6 

15. L9. “Therefore” is not appropriate here, there is no cause-effect relationship here. Better 7 

start a new paragraph and discuss the major challenges in Et upscaling 8 

Response: Done (p3, l13). 9 

Page4 10 

16. L19. Estimate Rsd form any specific time-of-day RSi information. But isn’t the value of 11 

this study is to predict Rsd based at satellite local crossing time (e.g., 10:30, 13:30)? 12 

Response: The aim of this study is to help develop an approach that would help in the 13 

upscaling of ETi (retrieved at satellite overpass time) to ETd. The value of this study 14 

consists of exploiting RSi information at satellite local crossing time to predict RSd which is 15 

not directly retrievable from any polar orbiting satellites, so that the ratio of RSd/RSi can be 16 

further used to upscale ETi to obtain daily ET (ETd) estimates (in the framework of eqn. 17 

1). Currently we are limited to demonstrating with MODIS overpass times (Terra and 18 

Aqua), however in case there are new missions in the future with different local overpass 19 

time, the method would still be applicable. This description is made explicit in the revised 20 

manuscript (section 2.1, p7, l16 – l22).  21 

17. L22. L22. In order -> remove 22 

Response:  Removed (p4, l28). 23 

18. L24. ANN is a non-linear model. Multi-layer perceptron (MLP) is.. These sentences 24 

belong to method section. 25 

Response: The description is now moved in the beginning of section 2.2 (p8, l2 – l10). 26 

Page5 27 
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19. L13. Cloudiness is a phenomenon. These sentences belong to discussion section. 1 

Response: This sentence is moved to section 3.5 (p21, l3 – l4). 2 

Page6 3 

20. L6. Two question: (1) Does Eqn. 1 assume the Bowen ratio is constant during daytime? 4 

(2) Does it ignore the night time ET, which could be large when surface wind speed is 5 

high? 6 

Response: According to eqn. 1, 7 

ETd/ETi  RSd/RSi 8 

and 9 

ETd/ETi = EFd(RN – G)d/EFi(RN-G)i 10 

Where EF is the evaporative fraction, RN is net radiation, and G is ground heat flux. 11 

Therefore, eqn. 1 is based on the assumption that shortwave radiation is the principal 12 

driver of evaporative flux. Although ET can be limited due to both radiation and water, 13 

but in the water limited ecosystems the magnitude of ETi will also be low due to low soil 14 

moisture availability and therefore and upscaling ETi to ETd in the framework of eqn. 1 15 

may not introduce significant error. The evidence is already seen in Fig. 9 where 16 

shrublands showed relatively lower RMSE (despite being water limited) as compared to 17 

the forests. We have added this discussion in the revised manuscript (section 2.1, p6, l14 – 18 

l24). 19 

 (2) The analysis is based on 24-hour period, meaning night time ET contribution is 20 

implicitly considered. However, studies have ready shown that the nighttime ET in semi-21 

arid regions contributes only 2 – 5% of the total season ET (Malek, 1992; Tolk, J, Howell, 22 

& Evett, 2006), and therefore does not appear to be significant. This is mentioned in 23 

section 2.1 (p7, l12 – l15). 24 

Page8 25 

21. L16. In a percentage ratio of 80:15:15. Is this right? Shouldn’t be 80:15:5 or 70:15:15? 26 
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Response: The ratio should be 80:15:5, corrections are made in the revised manuscript 1 

(p9, l20). 2 

Page10 3 

22. L9. We first evaluate the efficacy of the ANN method for predicting Rsd. 4 

Response: Necessary changes are incorporated (p12, l18). 5 

23. L12. As obtained following the methodology described in the section 2.1 -> remove 6 

Response: Necessary changes are incorporated (p12, l19) 7 

24. L13. Showing -> including 8 

Response: Necessary changes are incorporated (p12, l19) 9 

25. L14. From the analysis it is apparent that -> remove 10 

Response: Removed (p12, l20). 11 

Page 11  12 

26. L1. Figure 5 evaluates the Rsd_pred under different level of clear sky transmissivity 13 

Response: Necessary changes are incorporated in the revised manuscript (p12, l28). 14 

27. L3. What if the ANN model includes “clear sky transmissivity, would model performance 15 

under cloudy sky condition be improved? 16 

Response:  We do not think so, because including clear sky transmissivity could make the 17 

modeling framework biased towards clear sky cases only. 18 

28. L16. Using Rsd_pred/Rsi as a scaling factor following eq. 1 -> remove 19 

Response: Necessary changes are incorporated (p13). 20 

Page 12 21 

29. L1. Figure 7 compares ETd_pred against ETd_obs for different level of daily. The overall 22 

RMSE, MAPE  23 
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Response: Necessary changes are incorporated (p14, l1). 1 

30. L4. Given that the overestimation is a systematic, is it possible to eliminate it or reduce it? 2 

The overestimation was due to the fact that during the specific time slot of interest (e.g., 3 

11:30) the sky is clear while the sky is cloudy during other times. However, there could be 4 

another opposite case that sky is cloudy at e.g., 11:30 but clear at other times. It will 5 

probably lead to an underestimation of RSd_pred, and consequently underestimation of 6 

ETd_pred. I am wondering why the latter is not the case at least in Figure 7. 7 

Response: This is a very good argument. With the current framework of ANN, this 8 

systematic overestimation cannot be eliminated. However, as demonstrated in Fig 11, with 9 

the inclusion of daily rainfall and soil moisture in the ANN model, such overestimation 10 

tendency could be reduced (p15, l1 – l9).  11 

Regarding R1’s argument on finding underestimation of ETd from 1100 hr cloudy sky ETi 12 

upscaling in a predominant clear day, such cases were also found in 3 category (Fig. 7) 13 

where clouds of data points clearly falling significantly below the 1:1 line, thus showing 14 

substantial underestimation of ETd. We have included this discussion in the revised 15 

manuscript (p14, l11 – l15).  16 

31. L14.higher errors in ETd_pred can be expected. Is there a way to overcome this problem? 17 

Response: One of the probable ways to overcome the errors in cloudy sky is to 18 

incorporate daily rainfall and soil moisture or information of cloud cover in the ANN. 19 

This is now demonstrated in the revised manuscript and related discussions are included 20 

in (p15, l1 – l11). 21 

32. L24. Again, biome specific results are related to the clear-sky issue. Tropical evergreen 22 

broadleaf forests have high ET, water tends to re-cycle locally and generate rainfall. It’s 23 

reasonable to see that cloudy sky condition is more frequent at tropical evergreen 24 

broadleaf forest than e.g., at grass land. 25 

Response: Agreed. This point is added in the discussion of the revised manuscript. This 26 

discussion is now moved in section 3.3 (p16, l29 – l30; p17, l1 – l24). 27 
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33. L27. ET estimations at cropland were much worse than grass. It that because e.g., 1 

irrigation? Land management? Or any other anthropogenic factors that are not considered 2 

in the ANN model? Page 13. 3 

Response: Yes, the farm management practice especially irrigation might have impact on 4 

the output for example in a case where irrigation was carried out for three consecutive 5 

days yet the sky conditions were consistently cloudy would present a challenge. 6 

Necessary discussions are in section 3.3 (p17, l16 – l18). 7 

Page 13 8 

34. L20. Based on Table 2, Figure 11, RSTOA method seems successful. Under clear sky 9 

condition, it was even better than the proposed Rs method. Further, over longer time scale 10 

(annually), there is no big difference between RSTOA and Rs.  11 

Response: Agreed and discussed also in the manuscript. As shown in Table 2, relatively 12 

lower RMSE of RsTOA for atmospheric transmissivity class above 0.75 reveals that 13 

under pristine clear sky conditions RsTOA can be successfully used to upscale ETi. 14 

However, one of the main reasons for the differences in RMSE between Rs and RsTOA 15 

method for daily transmissivity above 0.75 could be due to the fact that if ETi upscaling is 16 

performed from a cloudy instance for a predominantly clear sky day, then such RMSE 17 

difference between the two different upscaling methods is expected. These results also 18 

showed the probability of a hybrid ETi upscaling method by combining Rs-method (for 19 

transmissivity between zero to 0.5) and RsTOA-method (for transmissivity greater than 20 

0.5). However this hypothesis needs to be tested further. Discussions are included in 21 

section 3.3 (p18, l23 – l30, p19, l1 – l2) of the revised manuscript.  22 

Page 16 23 

35. L1. Briefly define what RsTOA-based method is, what is Rs method. 24 

Response: Rs-TOA-based method is the upscaling method based on RSTOA and RS 25 

method is the method based on Rs. The meaning RSTOA and Rs were earlier defined in 26 

the manuscript; please see Page 4 (l1 – l5). We have further expanded this in the 27 

conclusion section (p21).  28 
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36. L4. ETd_pred are defined early in the manuscript, consider the summary as an independent 1 

section. Better not to use these acronyms, or re-define it. 2 

Response: Agreed, necessary changes are made (p22, l4 – l5) 3 

37. L21-25. This paragraph belongs to results & discussion section. 4 

Response: This paragraph is now moved to section 3.3 (p19, l28 onwards) 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 

 21 
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Reviewer 2 (R2) 1 

1. How do you pick the training sites? Will the vegetation type and climate type (seasonal 2 

climate) have any effect on your trained ANN algorithm? Given that Fluxnet sites at least in 3 

N. America are mostly forest sites, will that have any potential impact on your trained ANN?’ 4 

Response: The training sites were randomly selected with a representative across latitude 0-5 

90 North and South at 10 degree interval. The potential impact of vegetation on ANN 6 

training is now described in section 3.5 (p21 – p22) through a sensitivity analysis of ANN 7 

performance to different training scenarios. 8 

2. I think a paragraph on Rs and factors affecting Rs is missing from the paper. This is necessary 9 

to justify your choice of inputs for your ANN. 10 

Response: Necessary discussions are incorporated in section 2.1 (p7, l23 – l31).  11 

3. Please include discussion on why the method performs poorly over cropland (Figure 9) 12 

Response: The probable reason of the poor ETd prediction in the croplands could be due to the 13 

effects of irrigation that is unaccounted in ETi upscaling. Since the upscaling factor is based 14 

on the ratio of instantaneous to daily shortwave radiation, the impacts due to irrigation cannot 15 

be capture, and higher errors can be expected. We have added this description in the revised 16 

manuscript (section 3.3, p17, l11 onwards). 17 

4. As discussed in lines 25-27, Rsd and cloudiness are directly related. ANN has no input related 18 

to cloudiness. However, you argue that you assess the performance of ANN under cloudy sky 19 

condition based on simple cloudiness index. Please elaborate on this and include discussion in 20 

the paper. Can you use Precipitation or the index of cloudiness as an input to your ANN? 21 

Response: The daily cloudiness index was estimated as the ratio between observed RSd and 22 

extraterrestrial shortwave radiation to assess the performance of the ANN under variable 23 

cloud conditions (p11, l1 – l7).  24 

The use of daily precipitation and soil moisture can be an improvement in the ANN model. 25 

To test this hypothesis, we have included an analysis using a subset of sites over which daily 26 

soil moisture and rainfall data were available. The results are shown in Figure 9. Necessary 27 

descriptions are added in section 3.2 (p15, l1 – l27).  28 
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5. Since vegetation plays an important role in Evapotranspiration, it would be interesting to 1 

compare different scaling methods against the type of vegetation as well (in graphs or figures) 2 

Response: We have added a comparison statistics of two different scaling methods (Rs-based 3 

and RsTOA-based) across different vegetation types (Fig. 11) and the results are explained in 4 

section 3.3 (p16, l29 – l30; p17, l1 – l10).  5 

 6 

 7 

 8 

 9 
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 21 
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Reviewer 3 (R3) 1 

R3 overall view on the manuscript 2 

(1) “I don’t see the point of upscaling ETi to ETd for days where instantaneous observations in 3 

the optical domain are not available from satellite platforms: instantaneous ETi estimates are 4 

usually produced with instantaneous data in the optical domain, typically Thermal Infrared 5 

data, and are therefore not computed for low transmissivities, airborne platforms excepted.  6 

Response: We disagree with R3 here. R3 should be aware that there are established ET 7 

modeling schemes that explicitly considers cloudy sky cases e.g., ALEXI model (Anderson et 8 

al., 2007). Also to overcome the cloudy sky ETi retrieval in optical domain, modeling 9 

schemes have been suggested to combine both optical and microwave remote sensing (Kustas 10 

et al., 1998). Therefore, R3’s argument on ignoring ETi computation for low atmospheric 11 

transmissivities is not substantiated. 12 

(2) Days with low instantaneous (10AM, 1:30PM) transmissivities should be left out of the 13 

study i.e. the study should restrict to clear sky conditions from either MODIS cloud mask or, 14 

better, geostationary information (the CERES algorithm mentioned here). I therefore doubt 15 

that there is any use of the method for "Remote sensing applications" as mentioned in the title, 16 

except for UAV applications.” 17 

Response: We do not agree for the reasons mentioned in the previous response. The bigger 18 

picture here is focussing on the conceptual development of a robust method for upscaling ETi 19 

to ETd from remote sensing platforms across variable sky conditions that can be used for 20 

operational purpose. For remote sensing applications, the greatest challenge is the ETi 21 

upscaling in cloudy conditions, which the proposed method is able to tackle relatively better 22 

as compared to RSTOA or EF based method (Table 2). R3’s inclination on clear sky cases and 23 

rejecting the present method could only be applicable in predominantly pristine clear sky. We 24 

have already demonstrated this fact in Table 3 that when the temporal frequency of the data is 25 

coarse (8-day to annual), there is practically no difference between Rs and RsTOA based 26 

upscaling. But this does not deviate from the central message that Rs-based method appears to 27 

perform better when atmospheric transmissivity is between zero to 0.5.  28 

 29 
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(3) Even for clear sky conditions the ANN method shows worse performances than the 1 

classical method based on the sole earth-sun geometrical parameters. 2 

Response: It is surprising to see R3’s constrained judgement on the ANN method. R3’s 3 

comment on worse performance appears to be an over-statement if we consider Table 2, 4 

where MAPD between Rs and RsTOA differs by only 2-3 percent at transmissivity level 5 

above 0.5. Contrarily, we see this as an opportunity for a hybrid modeling scheme to upscale 6 

ETi across variable sky conditions by using ANN for transmissivity level of zero to 0.5 and 7 

using RsTOA method for transmissivity level above 0.5. Also, as mentioned in the 8 

manuscript, if upscaling is done from cloudy instances for a predominantly clear day, the 9 

discrepancy between ANN and RsTOA method seems to be obvious. This problem can also 10 

be overcome by including daily rainfall and soil moisture in the ANN framework, which is 11 

now demonstrated in the revised manuscript (section 3.2, p15, l1 – l27). 12 

(4) ETR between 2 successive clear sky days is an interpolation problem (which could be also 13 

treated using ANN) which needs to be tackled also. 14 

Response: This manuscript discussed about a potential ETi upscaling strategy to convert 15 

satellite retrieved ETi to ETd. We do not foresee any interpolation problem that needs to be 16 

tackled. 17 

R3 main comments 18 

1. I also share the main concern with R1 about Energy Balance Closure: Lack of EBC 19 

should not be overlooked and is simple to correct for FLUXNET sites; it could explain the 20 

poor performance of the Evaporative Fraction method. Disregarding EBC is a major 21 

methodological flaw of the paper. 22 

Response: We have included an additional analysis on the performance of the proposed 23 

ETi upscaling method after closing the surface energy balance in the FLUXNET sites in 24 

section 3.4 (p20, l4 – l21). All the existing literatures have already demonstrated the poor 25 

performance of evaporative fraction based ET upscaling methods despite EBC closure. 26 

2. As criticized also by R1, Crops and semi-arid or even dry sub humid sites are 27 

underrepresented in the FLUXNET database; this should be more carefully commented. It 28 

adds up to my concern above about the practical application of the method: TIR based 29 
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daily ETR computation algorithms are particularly needed for water use monitoring in 1 

water depleted environments, much less for natural vegetation in temperate climates.’ 2 

Response: Under-representation of crops and semi-arid sites in the FLUXNET database does 3 

not necessarily limit the practical applications of this method. As already described in the 4 

response of R1 that the relatively high errors in ETd in croplands might be due to neglecting 5 

the irrigation effects in the ANN and inclusion of daily soil moisture and rainfall in the ANN 6 

might improve the predictive power of the modeling framework particularly over the irrigated 7 

agroecosystem. However, the performance of the method in the semi-arid shrublands appear 8 

to be promising (Fig. 11) and therefore the method seems to be credible under water-stressed 9 

environment also. This approach is equally important for natural systems e.g., in the Amazon 10 

basin or in the forest ecosystems where significant hydrological and climatological 11 

projections are emphasizing the role of ETd to understand the resilience of natural ecosystems 12 

in the spectre of hydro-climatological extremes (Harper et al., 2014; Kim et al., 2012). These 13 

are discussed in section 3.3 (P17, l7 – l31; p18, l1 – l3). 14 

3. Are the validation and the training datasets from different years? It seems to me that this is 15 

a requirement to use the method for future applications.’ 16 

Response: Yes, the training and validation datasets are from different years. The validation 17 

was performed over independent sites also which are clearly delineated in Fig. 3. 18 

4. What is the true added value of the ANN for future operational applications of the 19 

upscaling algorithm, say for an operational satellite product? This aspect, although the 20 

original motivation of the paper, is somewhat overlooked in the discussion section.’ 21 

Response: Yes, the true added value of the ANN is for an operational daily ETd 22 

product from polar satellites. Currently, the polar Earth orbiting satellites provide us with 23 

ETi only. However, for most hydrological and ecosystem modeling applications, ETd is 24 

needed.  Therefore, for studies that will opt to apply the Rs method as a scaling algorithm, 25 

Rsd will be easily available for any measurement of RSi by the satellite using the ANN. We 26 

have made this point explicit in the conclusion (section 4) of the revised manuscript (p22, 27 

l28 – l31; p23, l1).  28 
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5. For cloudy conditions the ETR upscaling method using instantaneous solar radiation as 1 

part of the training (even from another site) performs slightly better than that based on the 2 

sole TOA solar radiation: is it mostly due to the fact that the ANN adds information on 3 

actual incoming radiation obtained at a "nearby" FLUXNET location?’ 4 

Response: This is not true. From Table 2, it is clearly seen that the ET upscaling 5 

method based on shortwave radiation has outperformed the TOA-based method 6 

under cloudy to moderately clear sky conditions when atmospheric transmissivity is 7 

between zero to 0.5. However under the clearest sky, the shortwave radiation based 8 

method showed relatively higher RMSE than the RsTOA-based method. If the ANN 9 

adds information on actual incoming radiation obtained at a "nearby" FLUXNET location, 10 

then we would expect the ANN to produce lower RMSE for all the classes of atmospheric 11 

transmissivity. These statistics rather strengthens the fact that if upscaling is done from a 12 

cloudy instance for a predominant clear sky day, higher errors can be expected from the 13 

shortwave radiation based upscaling method. Discussions are already included in the 14 

revised manuscript (p18, l12 – l18; p19, l1 – l2). 15 

R3 Minor comments 16 

6. In introduction one should add a review of which upscaling support variables can be 17 

derived from remote sensing data directly, which can be obtained indirectly from either RS 18 

data or any other distributed routinely produced data and those not obtainable from remote 19 

sensing or other distributed operational datasets. 20 

Response: Good point. We have added necessary description in the introduction (p4, l28 – 21 

l31; p5, l1 – l3) and also in section 2.1 (p7, l23 – l31) of the revised manuscript. 22 

7. How do you manage night-time conditions?’ 23 

Response: The answer to this question is already provided in the response of R1 (p7, l12 – 24 

l15). 25 

8. Move P5L1-4 to the end of this section and precise the variables fed by ANN upfront 26 

there. 27 

Response: Agreed. The objectives are moved at the end of the introduction. 28 
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9. It is not clear, why there is a testing dataset and a separate validation dataset within the 1 

training dataset?’ 2 

Response: The ANN algorithm is designed to validate its performance for any given 3 

training which in most cases should be sufficient for validating the network. However to 4 

ensure the network is robust, we further test the generated network with independent 5 

dataset. We have mentioned this this in the revised manuscript (p9, l20 – l23). 6 

10. P9L5: ‘Why use transmissivity rather than the ration between actual and theoretical 7 

clearsky radiations to separate the various cloudiness bins? (in order at least to separate 8 

winter conditions with lower clear sky transmissivity from summer conditions). 9 

Response: We disagree. Transmissivity gives the actual sky conditions and should be used 10 

to classify differential cloudiness levels. The estimation of theoretical clear-sky radiation is 11 

based on the assumption of clear sky transmissivity (which is typically 0.75). Separating 12 

sky conditions based on actual and theoretical clear sky radiation might produce baffling 13 

results in cases when actual radiation is higher than the theoretical clear sky radiation. 14 

11. P14L10: “would likely”: this can be checked, is it the case?’ 15 

Response: Corrected (p18, l11). 16 

12. P13L12: “reasonable” > “reasonably” 17 

Response: Corrected (p16, l7). 18 
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Abstract 1 

Upscaling instantaneous evapotranspiration retrieved at any specific time-of-daytimetime-of-2 

day (ETi) to daily evapotranspiration (ETd) is a key challenge in mapping regional ET using 3 

polar orbiting sensors. a key challenge in regional scale vegetation water use mapping using 4 

polar orbiting sensors. Various studies have unanimously cited the short wave incoming 5 

radiation (RS) to be the most robust reference variable explaining the ratio between ETd and 6 

ETi on the terrestrial surfaces. This study aims to contribute in ETi upscaling for global studies 7 

using the ratio between daily and instantaneous incoming short wave radiation (RSd/RSi) as a 8 

factor for converting ETi to ETd. The approach relies on the availability of RSd measurements 9 

that in many cases is hindered if not by cost but due to the environmental conditions such as 10 

cloudiness.  11 

This paper proposes an artificial neural network (ANN) machine learning algorithm first to 12 

predict RSd from RSi followed by using the RSd/RSi ratio to convert ETi to ETd across different 13 

terrestrial ecosystem. Using RSi and RSd observations from multiple sub-networks of 14 

FLUXNET database spread across different climates and biomes (to represent inputs that 15 

would typically be obtainable from remote sensors during the overpass time) in conjunction 16 

with some astronomical variables (derived from simple mathematical computatione.g., solar 17 

zenith angle, day length, exoatmospheric shortwave radiation etc.), we developed ANN model 18 

for reproducing RSd and further used it to upscale ETi to ETd. The efficiency of the ANN is 19 

evaluated for different morning and afternoon time-of-daytimetime-of-day, under varying sky 20 

conditions, and also at different geographic locations. Based on the measurements from 126 21 

sites, we found RS-based upscaled ETd to produceproduced a significant linear relation (R
2
 = 22 

0.65 to 0.69), low bias (-0.31 to -0.56 MJ m
-2

 d
-1

) (appx. 4%), and good agreement (RMSE 23 

1.55 to 1.86 MJ m
-2

 d
-1

) (appx. 10%) with the observed ETd, although a systematic 24 

overestimation of ETd was also noted under persistent cloudy sky conditions. Inclusion of soil 25 

moisture and rainfall information in ANN training was found reduced the systematic 26 

overestimation tendency on overcast days. An intercomparison with existing upscaling 27 

method at daily, 8-day, monthly, and yearly temporal resolution revealed a robust 28 

performance of the ANN driven RS-based ETi upscaling method and was found to produce 29 

lowest RMSE under cloudy conditions. Sensitivity analysis revealed variable sensitivity of the 30 

method to biome selection and high ETd prediction errors in forest ecosystems are primarily 31 
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associated with greater rainfall and clouds. The overall methodology appears to be promising 1 

and has substantial potential for upscaling ETi to ETd for field and regional scale 2 

evapotranspiration mapping studies using polar orbiting satellites.  3 

Key Words: Evapotranspiration, upscaling, artificial neural networks, short wave radiation, 4 

rainfall, soil moisture, FLUXNET  5 

1 Introduction 6 

Satellite-based mapping and monitoring of daily regional evapotranspiration (ET hereafter) 7 

(or latent heat flux, E) is considered as a key scientific concern for multitudes of applications 8 

including drought monitoring, water rights management, ecosystem water use efficiency 9 

assessment, distributed hydrological modelling, climate change studies, and numerical 10 

weather prediction (Anderson et al., 2015; Senay et al., 2015; Sepulcre-Canto et al., 2014). ET 11 

variability during the course of a day is influenced by changes in the radiative energy being 12 

received at the surface (Brutsaert & Sugita, 1992; Crago, 1996; Parlange & Katul, 1992), and 13 

also due to soil moisture variability particularly in the water deficit landscapes, and also due 14 

to the stomatal regulation by vegetation.  15 

Therefore, oOne of the fundamental challenges in regional ET modelling using polar orbiting 16 

sensors satellites involves the upscaling of instantaneous ET retrieved at any specific time-of-17 

daytimetime-of-day (ETi hereafter) to daily ET (ETd hereafter). For example, ETi retrieved 18 

from LANDSAT, ASTER and MODIS sensors typically represent ETi at a single snapshot of 19 

1000, 1030 and 1330 hrs local times, which needs to be upscaled to daily timescales for 20 

making this information usable to hydrologists and water managers (Cammalleri et al., 2014; 21 

Colaizzi et al.,  2006; Ryu et al., 2012; Tang et al., 2013).  22 

In order to accommodate the temporal scaling challenges encountered by remote sensing 23 

based ET models, techniques have been proposed and applied by various researchers to 24 

upscale ETi to ETd. These include:  (1) the constant evaporative fraction (EF) approach which 25 

assumes a constant ratio between λE and net available energy ( = Rn – G, Rn is the net 26 

radiation and G is the ground heat flux) during daytime [EF = λE/(Rn – G)] (Gentine et al., 27 

2007; Shuttleworth et al., 1989), (2) constant reference evaporative fractions (EFr) method 28 

where the ratio of ETi between a reference crop (typically grass measuring a height of 0.12 m 29 
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in an environment that is not water limited) and an actual surface is assumed to be constant 1 

during daytime, allowing ETd to be estimated from the daily EFr (Allen et al.,1998; Tang et 2 

al., 2013), (3) constant global shortwave radiation method (RS) where RS is the reference 3 

variable at the land surface and it is assumed that the ratio of daily to instantaneous shortwave 4 

radiation (RSd and RSi) values (i.e., RSd/RSi) determines ETd to ETi ratio (Jackson et al., 1983; 5 

Cammalleri et al., 2014), and (4) constant extra-terrestrial radiation method where the exo-6 

atmospheric shortwave radiation (RSTOA) is the reference variable and the ratio of 7 

instantaneous to daily RSTOA (RSiTOA and RSdTOA) is assumed to determine the ratio of ETd 8 

to ETi (Ryu et al., 2012; Van Niel et al., 2012). These methods have been reviewed and 9 

compared in different studies with the view of identifying the most robust ETi to ETd 10 

upscaling approach based on different data sets, time integrals and varying sky conditions 11 

(Cammalleri et al., 2014; Ryu et al., 2012; Tang et al, 2013, 2015; Van Niel et al., 2012; Xu et 12 

al., 2015).  13 

Based on the previous studies, we find that the RSTOA approach performed consistently good 14 

at lower temporal resolution namely eight-day to monthly scales (Ryu et al., 2012; Van Niel 15 

et al., 2012) as well as under clear-sky conditions (Cammalleri et al., 2014), whereas the RS 16 

approach was identified as the most preferred method for ETi to ETd conversion at a higher 17 

temporal scale i.e. daily timescale in addition to under variable sky conditions (Cammalleri et 18 

al., 2014; Chávez et el.,  2008; Colaizzi, et al., 2006; Xu et al., 2015). Although the EFr-based 19 

method produced comparable ETd estimates as the RS-based method, however the dependence 20 

of EFr estimates on certain variables (e.g., daily net available energy;  and wind speed) and 21 

the difficulty to characterise them at the daily scale from single acquisition of polar orbiting 22 

satellites (Tang et al., 2015) makes it a relatively less attractive method. Furthermore the EF-23 

based method appeared to consistently underestimate ETd in all these studies.  24 

The motivation of the current work is built on the conclusions of Colaizzi et al. (2006), 25 

Chávez et al. (2008), Cammalleri et al. (2014), and Xu et al. (2015) that the ratio of the 26 

instantaneous to daily RS incident on land surface is the most robust reference variable 27 

explaining the ratio between ETd and ETi among all the tested methods. This work aims to 28 

contribute in ETi upscaling by first developing a method for estimating RSd from any specific 29 

time-of-day RS information (RSi) and further using RSd/RSi ratio as a factor for converting ETi 30 

to ETd. We develop an artificial neural network (ANN) machine learning algorithm 31 
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(McCulloch & Pitts, 1943) in order tofor estimate estimating RSd. Although net radiation (RN) 1 

is more closely associated with ET, but RS constitutes 80-85% of RN (Mallick et al., 2015). 2 

Also from remote sensing perspective, RSi is relatively easily retrievable irrespective of the 3 

sky conditions (Wang et al., 2015; Lopez and Batlles, 2014), and its relationship to RSd is 4 

primarily governed by cloudiness (cloud fraction, cloud optical depth) and astronomical 5 

variables (e.g., solar zenith angle, day length, RSTOA etc.). Given the information of 6 

cloudiness is also obtainable from remote sensing, we consider RS to be a robust variable to 7 

explore ETi upscaling. ANN is a non-linear model which works by initially understanding the 8 

behaviour of a system based on a combination of a given number of inputs and subsequently 9 

is able to simulate the system when fed with and independent set of inputs of the same 10 

system.ANN is an approach that has been successfully used in estimating global solar 11 

radiation in many sectors and more so in the field of renewable energy (Ahmad et al., 2015; 12 

Hasni et al., 2012; Lazzús et al., 2011). Multi-layer perceptron (MLP) is one of the ANN 13 

architectures commonly used as opposed to other statistical methods, makes no prior 14 

assumptions concerning the data distribution, has ability to reasonably handle non-linear 15 

functions and reliably generalise independent data when presented (Gardner & Dorling, 1998; 16 

Khatib, Mohamed, & Sopian, 2012; Wang, 2003).  17 

Even though this study is intended for remote sensing application, we tested the method using 18 

meteorological and surface energy balance flux measurements from eddy covariance (EC) 19 

system at the FLUXNET (Baldocchi et al., 2001) sites mainly for the purpose of temporal 20 

consistency. However, we evaluate the performance in consideration with overpass time of 21 

polar orbiting satellites commonly used in operational ET mapping namely MODIS and 22 

LANDSAT. By choosing to use data distributed over different ecosystems and climates 23 

zones, we are faced with two problems : (1) changing cloud conditions across ecosystems, (2) 24 

varying energy balance closure (EBC) requirements for the fluxes in different ecosystems 25 

(Foken et al., 2006; Franssen et al., 2010; Mauder & Foken, 2006; Wilson et al., 2002). 26 

Cloudiness is a phenomenon that significantly influences the reliability of a model to predict 27 

incoming solar radiation as they are directly related to each other. Currently, information on 28 

cloudiness is obtainable from geostationary meteorological satellites, at hourly to 3-hourly 29 

time steps e.g., from the Clouds and Earth’s Radiant Energy System (CERES), the 30 

International Satellite Cloud Climatology Project–Flux Data (ISCCP-FD), and Global Energy 31 
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and Water cycle Experiment Surface Radiation Budget (GEWEX-SRB). The CERES 1 

algorithm uses cloud information from MODIS onboard both Terra and Aqua platforms and 2 

combines it with information from geostationary satellites to accurately capture the diurnal 3 

cycles of clouds. In this study, cloudiness is not included in the list of variables used to 4 

estimate RSd due to inconsistency in spatial resolution of data to match with the other 5 

predictive variables used. Including cloudiness holds a great potential in improving the ANN 6 

RSd predications due to their direct relationship (Mallick et al., 2015). However, we assess the 7 

performance of the ANN under cloudy sky conditions based on simple cloudiness index 8 

computations as adopted from previous works (Baigorria et al., 2004). The EBC problems 9 

have been reported to vary across landscapes due to management practices, climate, seasons 10 

and plant functional type characteristics (Foken et al., 2006). In this study, in order to test the 11 

robustness of the proposed method, we initially disregard the site specific EBC problems and 12 

assume that the systematic bias of fluxes fall within the same range across entire FLUXNET 13 

database used. 14 

The objectives of the present study are: (1) using a ANN with Multilayer Perceptron (MLP) 15 

architecture to predict RSd based on RSi satellite observations, (2) applying RSd/RSi ratio as a 16 

scaling factor to upscale ETi to ETd based on RSd/RSi ratio under all sky conditions, and (3) 17 

comparing the performance of proposed RS-based ETi upscaling method with RSTOA and EF-18 

based ETi upscaling methods across a range of temporal scales, biomes and variable sky 19 

conditions. 20 

2 Methodology  21 

2.1 Rationale 22 

The presented method of ET upscaling from any specific time-of-daytimetime-of-day to 23 

daytime average evaporative fluxes is based on the assumption of self-preservation of 24 

incoming solar energy (i.e., shortwave radiation) as proposed by Jackson et al. (1983). 25 

𝐸𝑇𝑑 ≈ 𝐸𝑇𝑖
𝑅𝑆𝑑

𝑅𝑆𝑖
   (1) 26 

Where, ETd is the daily average evapotranspiration in W m
-2

MJ m
-2 

d
-1

, ETi is the 27 

instantaneous evapotranspiration at any instance during daytime in W m
-2

, RSi and RSd are the 28 
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values of shortwave radiation recorded at any instance and the daily average having units W 1 

m
-2

. Daily total ETd and RSd is expressed in MJ m
-2

 d
-1

 by using standard conversion from 2 

Watts to Mega Joules. Following Jackson et al. (1983) and Cammalleri et al. (2014), we 3 

hypothesized that the mean diurnal variation of ET for any particular day scales with the mean 4 

diurnal variation of RS. The justifications are: (a) RS is the principal driver that controls sub-5 

daily ET variability unless there is substantial diurnal asymmetry in cloudiness or abrupt 6 

change in sub-daily soil moisture between morning and afternoon. (b) Under thick cloudy 7 

conditions, ET scales with RS. Under clear sky conditions ET also scales with RS and both are 8 

in phase if sufficient soil moisture is available at the surface. (c) Phase difference between RS 9 

and ET are commonly found under soil moisture deficit conditions in clear-sky days. 10 

However, the magnitude of clear-sky ETi in water deficit conditions is also be very low, 11 

which will lead to substantially low ETi/RSi ratio, and would unlikely to introduce any 12 

uncertainty in ETi to ETd upscaling in the framework of eq. (1).  13 

For any remote sensing studies using polar orbiting satellites, although the retrieval of ETi and 14 

RSi has been standardised (Tang et al., 2015; Huang et al., 2012; Polo et al., 2008; Laine et al., 15 

1999), but, estimating RSd and ETd from RSi and ETi are still challenging. Presently, upscaling 16 

RSi to RSd is primarily based on the clear sky assumption, i.e., for the entire daytime 17 

integration period, the sky remains cloud-free (Bisht et al., 2005; Jackson et al., 1983). 18 

However, the clear-sky assumption is not always appropriate for upscaling remote sensing 19 

based RSi and hence ETi because the sky conditions during a specific time-of-daytimetime-of-20 

day may be clear whereas the other part of the day might be cloudy. Under such conditions, 21 

the clear-sky assumption of ETi upscaling will lead to substantial overestimation of ETd in 22 

cloudy conditions. Hence reliable estimates of all-sky (i.e., both clear and cloudy) RSd would 23 

greatly improve the ETd estimates in the framework of eq. (1). Given the unavailability of a 24 

definite method to directly estimate all-sky RSd from RSi information, here we proposed a 25 

simple method to upscale RSi to RSd using ANN. This method uses the observations of both 26 

RSd and RSi from all the available FLUXNET sites in conjunction with some ancillary 27 

variables to build the ANN as described in section 2.2. A schematic diagram of the ANN 28 

method is given in Fig. 1. The analysis is based on 24-hour period, meaning night time ET 29 

contribution is implicitly considered. However, studies have already shown that the nighttime 30 



 
31 

ET in semi-arid and sub-humid regions contributes only 2 – 5% of the total season ET (Malek, 1 

1992; Tolk et al., 2006), and therefore does not appear to be significant. 2 

The overarching aim of this study is to develop an approach that would help in the upscaling 3 

of ETi (retrieved at satellite overpass time) to ETd. Additional value of this study also consists 4 

of exploiting RSi information at satellite local crossing time to predict RSd which is not directly 5 

retrievable from any polar orbiting satellites, so that the ratio of RSd/RSi can be further used to 6 

upscale ETi to obtain ETd estimates. Currently we are limited to demonstrating with MODIS 7 

satellite overpass times (Terra and Aqua), however for the future missions with different local 8 

overpass time, the method would still be applicable. 9 

In any natural ecosystem, RS on a particular day is primarily influenced by the cloud 10 

(especially cloud cover fraction and optical thickness) (Mallick et al., 2015; Hildebrandt et al., 11 

2007), latitude, season, and time-of-day. Therefore, RSd on any specific day is expected to be a 12 

function of RSi (as a representative of RS and cloudiness factors), solar zenith angle 13 

(representing latitude, season, time-of-day), day length (representing latitude and season), and 14 

RSTOA (representing latitude, season, time-of-day). Besides, atmospheric aerosols also 15 

interact with RS and absorb some of the radiation particularly in the urban areas. Considering 16 

the applications of ETi to ETd modeling in the natural ecosystems, we include RSi, RSiTOA, 17 

RSdTOA, solar zenith angle and day length for RSd (and subsequently ETd) prediction.    18 

2.2 Development of Artificial Neural Network (ANN) 19 

ANN is a non-linear model which works by initially understanding the behaviour of a system 20 

based on a combination of a given number of inputs and subsequently is able to simulate the 21 

system when fed with and independent set of inputs of the same system. ANN approach has 22 

been successfully used in estimating global solar radiation in many sectors and more so in the 23 

field of renewable energy (Ahmad et al., 2015; Hasni et al., 2012; Lazzús et al., 2011). Multi-24 

layer perceptron (MLP) is one of the ANN architectures commonly used as opposed to other 25 

statistical methods, makes no prior assumptions concerning the data distribution, has ability to 26 

reasonably handle non-linear functions and reliably generalise independent data when 27 

presented (Gardner & Dorling, 1998; Khatib, Mohamed, & Sopian, 2012; Wang, 2003). In the 28 

present study, MLP was chosen as it has been widely used in many similar studies and cited 29 

to be a better alternative as compared to the conventional statistical methods (Ahmad et al., 30 
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2015; Chen et al., 2013; Dahmani et al., 2016; Mubiru & Banda, 2008). The MLP is 1 

composed of 5 neurons in the input layer, 1 output layer and 10 hidden layers (Fig. 2). The 2 

input layer neurons are made up of instantaneous incoming short wave radiation (RSi), 3 

instantaneous exo-atmospheric shortwave radiation (RSiTOA), daily exo-atmospheric 4 

shortwave radiation (RSdTOA), solar zenith angle (Z), and day length (LD) as the predictor 5 

variables whose values are initially standardized to range between -1 to 1. The choice of the 6 

inputs is intentionally limited to the variables that cannot only be acquired by measurements 7 

from meteorological stations but also derived from simple astronomical computations (Ryu et 8 

al., 2012) mainly to help minimize on the spatial distribution problem (as described earlier in 9 

the introduction) that is often linked to ground weather stations. In the MLP processing, the 10 

input layer directs the values of each input neuron xi (i = 1, 2, 3…. n) into each neuron (j) of 11 

the hidden layers. In the hidden layer, xi is multiplied by a weight (wij) followed by a bias (bj) 12 

assigned for each hidden layer also is applied. The weighted sum (eq. (2)) is fed into a 13 

transfer function. In this work a tangent sigmoid (TANSIG) function is used (eq. (3)) in the 14 

hidden layer while in the output layer a PURELIN function is applied (eq. (4)) to give a single 15 

output value which is the predicted daily shortwave radiation (RSd_pred). PURELIN is a linear 16 

neural transfer function used in backpropagation network. It calculates a layer's output from 17 

its net input. The function generates outputs between zero and 1 as the neuron's net input goes 18 

from negative to positive infinity. The training of the ANN is completed by a regression 19 

analysis being performed internally by the algorithm between the target variable i.e. the 20 

observed and predicted daily shortwave radiation (RSd_obs and RSd_pred). 21 
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Bayesian regularization algorithm was chosen for the optimization process because it is able 22 

to handle noisy datasets by continuously applying adaptive weight minimization and can 23 

reduce or eliminate the need for lengthy cross-validation that often leads to overtraining and 24 

overfitting of models (Burden and Winkler, 2009). 25 
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2.3 Datasets 1 

Daily and half-hourly data on RS (W m
-2

), RSTOA, net radiation (Rn, W m
-2

), latent heat flux 2 

(λE, W m
-2

), sensible heat flux (H, W m
-2

) and ground heat flux (G, W m
-2

) measured by the 3 

FLUXNET (Baldocchi et al., 2001) eddy covariance network were used. A total of 126 sites 4 

from the years 1999 to 2006 distributed between latitude 0-90 degrees north and south of the 5 

equator were used for the present analysis. The data sites covered a broad spectrum of 6 

vegetation functional types and climatic conditions and a list of the sites are given in Table S1 7 

in the supplementary section. 8 

Among 126 sites, 85 sites were used for training and remaining 41 sites were used for 9 

validation. Partition of the data into training and validation was randomly selected regardless 10 

of the year. These translated into 194 and 86 yearly data for the respective sample. A global 11 

distribution of the data sites is shown in Fig. 3.  From the training dataset, three samples were 12 

internally generated by the algorithm i.e., training datasets, validation datasets, and a testing 13 

dataset in a percentage ratio of 80:15:15 5 respectively. The ANN algorithm is designed to 14 

validate its performance for any given training which in most cases should be sufficient for 15 

validating the network. However to ensure the network is robust, we further test the generated 16 

network with independent dataset. Considering the equatorial crossing time of different polar 17 

orbiting sensors like LANDSAT, ASTER, and MODIS Terra-Aqua, unique networks were 18 

generated for different time of day from morning to afternoon, and thus we had a total of 8 19 

networks to represent potential satellite overpass times between 1030 to 1400 hours using 30 20 

minutes interval as the closest reference time for each hour. The generated networks were 21 

then applied to an independent validation data set. 22 

2.4 Intercomparison of ETi upscaling methods 23 

An intercomparison of three different ETi upscaling methods is performed with the 24 

homogeneous datasets to assess their relative performance across a range of temporal scales 25 

and variable sky conditions. These are: (a) RS-based upscaling method, where ANN predicted 26 

RSd is used in conjunction with observed RSi to predict ETd using eq. (1).  27 

(b) The exo-atmospheric irradiance method (Ryu et al., 2012) where the reference variable is 28 

RSTOA. 29 
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𝑅𝑆𝑑𝑇𝑂𝐴 = 𝑆𝑠𝑐 [1 + 0.033𝑐𝑜𝑠 (
2𝜋𝑡𝑑

365
)] 𝑐𝑜𝑠𝜃𝑍 

(5) 

𝑆𝐹𝑅𝑇𝑂𝐴 =
𝑅𝑆𝑑𝑇𝑂𝐴

𝑅𝑆𝑖𝑇𝑂𝐴
 

(6) 

𝐸𝑇𝑑 = 𝐸𝑇𝑖𝑆𝐹𝑅𝑇𝑂𝐴 (7) 

Where Ssc is the solar constant (1360 W m
−2

), td is the day of year (DoY), and Z is the solar 1 

zenith angle. The performance of the RS method is also compared with two other existing ET 2 

upscaling methods:  3 

(ac) the EF-based method (Cammalleri et al., 2014), where reference variable is the net 4 

available energy () (i.e., Rn - G). 5 

𝑆𝐹𝐸𝐹 =  
𝜆𝐸

𝑅𝑛 − 𝐺
 

(8) 

𝐸𝑇𝑑 = 1.1(𝑅𝑛 − 𝐺)𝑑𝑆𝐹𝐸𝐹 (9) 

Where SFEF is the EF-based scaling factor, (Rn – G)d is the daily net available energy. 6 

(b) The exo-atmospheric irradiance method (Ryu et al., 2012) where the reference variable is 7 

RSTOA. 8 

𝑅𝑆𝑑𝑇𝑂𝐴 = 𝑆𝑠𝑐 [1 + 0.033𝑐𝑜𝑠 (
2𝜋𝑡𝑑

365
)] 𝑐𝑜𝑠𝛽 

(6) 

𝑆𝐹𝑅𝑇𝑂𝐴 =
𝑅𝑆𝑑𝑇𝑂𝐴

𝑅𝑆𝑖𝑇𝑂𝐴
 

 

𝐸𝑇𝑑 = 𝐸𝑇𝑖𝑆𝐹𝑅𝑇𝑂𝐴  

Where Ssc is the solar constant (1360 W m
−2

), td is the day of year, and β is computed solar 9 

zenith angle.   10 

We tested the performance of the three upscaling algorithms for all possible sky conditions 11 

assumed to be represented by daily atmospheric transmissivity (d) (eq. 710) namely (i) 12 
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0.250 (1, hereafter), (ii) 0.50.25 (2, hereafter) (iii) 0.750.5 (3, hereafter), and (iv) 1 

10.75 (4, hereafter), respectively. We use daily  because it indicates the overall sky 2 

condition throughout a day. 3 

𝜏𝑑 =
𝑅𝑆𝑑

𝑅𝑆𝑑𝑇𝑂𝐴
 

(710) 

RSd and RSdTOA are daily shortwave radiation and the exo-atmospheric shortwave radiation in 4 

MJ m
-2

 d
-1

 (converted from W m
-2

). 5 

2.5 Statistical error analysis  6 

The relative performance of the ANN and three upscaling methods is evaluated using 7 

statistical indices generated namely: coefficient of determination (R
2
), mean absolute 8 

percentage error (MAPE), root mean square error (RMSE), mean absolute percentage error 9 

(MAPE), coefficient of determination (R
2
), index of agreement (IA), and bias. ETd estimates 10 

using the respective upscaling coefficients were compared with measured ETd. 11 
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Where, n is the number of data points; oi and pi are daily observed and estimated RSd or ETd, 1 

respectively. Ō was the mean value of observed RSd or ETd. 2 

2.6 Sensitivity of ANN training and validation 3 

Given the majority of the FLUXNET sites represent forest biomes and the distribution of EC 4 

sites over non-forest biomes are proportionately lower as compared to the forests, we 5 

performed a sensitivity analysis of the ANN-based approach by assessing the error statistics 6 

(R
2
 and RMSE) of predicted ETd for different scenarios of ANN training. Three case studies 7 

were generated: (a) Case1, where ANN was trained by including data randomly from the 8 

forests and ETd validation was done in non-forest biomes (i.e., grassland, crops and 9 

shrublands); (b) Case2, where ANN was trained by including data randomly from the non-10 

forest biomes and predicted ETd was evaluated in forest biome; (c) ANN was trained by using 11 

data randomly from equal proportions of forest and non-forest biomes, and ETd validation was 12 

also done in forest and non-forest biomes. Each individual case was replicated 10 times and 13 

an ensemble mean statistics of predicted ETd is reported in section 3.5. 14 

3 Results and discussion 15 

3.1 Testing the performance of predicted RSd  16 

Given that the performance of ETd upscaling depends on the soundness of RSd estimation, we 17 

first evaluate the efficacy of the ANN method for predicting Rsd. feel some justification to 18 

demonstrate the efficacy of the ANN method for predicting RSd Figure 4 summarises the 19 

statistical results of predicted RSd (RSd_pred, hereafter) as obtained following the methodology 20 

described in the section 2.1, showing including all the site-year average R
2
, RMSE, IA, and 21 

MAPE values for eight different time-of-daytimetime-of-day upscaling time slots. From the 22 

analysis it is apparent that tThe RMSE of RSd_pred from forenoon upscaling varied between 23 

1.81-1.85 MJ m
-2

 d
-1

, with MAPE, R
2
, IA varying between 20–21%, 0.76–0.77, and 0.79 and 24 

0.80, respectively (Fig. 4). For the afternoon, these statistics were almost similar and varied 25 

between 1.83–1.96 MJ m
-2

 d
-1

, 19-20%, 0.75–0.77, and 0.80–0.81 (Fig. 4). Given the minimal 26 

discrepancy in error statistics from both forenoon and afternoon integration and considering 27 

the MODIS Terra-Aqua average overpass time we have considered 1100 and 1330 hours of 28 

daytime for the detailed follow up analysis. 29 
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Figure 5 (a, b) evaluates RSd_pred statistics under different level of atmospheric transmissivity 1 

() (0.250, 0.50.25, 0.750.5, and 10.75) shows the two dimensional scatters 2 

between RSd_pred versus RSd_obs for different levels of  with an overall RMSE of 1.81 and 1.83 3 

MJ m
-2 

d
-1 

for the forenoon and afternoon upscaling respectively. Table 1 and Fig. 5 clearly 4 

show an overestimation tendency of the current method under persistent cloudy sky 5 

conditions (1), whereas the predictive capacity of the ANN model is reasonably strong with 6 

increasing atmospheric clearness. The RMSE of RSd_pred for different  class from forenoon 7 

upscaling varied between 0.62 to 2.45 MJ m
-2

 d
-1

, with MAPE, R
2
 and IA of 9.2 to 53%, 0.67 8 

to 0.98, and 0.67 to 0.95, respectively (Table 1). For the afternoon upscaling these statistics 9 

were 0.89 to 2.4 MJ m
-2

 d
-1

 (RMSE), 2.4 to 52% (MAPE), 0.65 to 0.98 (R
2
), and 0.67 to 0.95 10 

(IA) (Table 1). 11 

The overestimation of RSd_pred at low values of  is presumably associated with varying levels 12 

of cloudiness during the daytime. Since RSd_pred depends on the magnitude of RSi, LD, Z, 13 

RSiTOA, and RSdTOA, there will be a tendency of overestimating RSd_pred on partly cloudy days if 14 

RSi at a specific time-of-daytimetime-of-day is not affected by the clouds (LD, Z, RSiTOA, and 15 

RSdTOA are not influenced by the clouds).  16 

3.2 Evaluation of predicted ETd based on RSd_pred  17 

Figure 6 summarises the statistical results of predicted ETd (ETd_pred, hereafter) using 18 

RSd_pred/RSi as a scaling factor following eq. 1 for eight different time-of-daytimetime-of-day 19 

slots. Upon statistical evaluation, all the cases showed significantly linear relationship 20 

between ETd_pred and observed ETd (ETd_obs, hereafter). The RMSE of ETd_pred from forenoon 21 

upscaling varied from 1.67–1.84 MJ m
-2

 d
-1

, with MAPE, R
2
, IA varying between 30%–34%, 22 

0.62–0.68, and 0.77–0.80, respectively (Fig. 6). For the afternoon upscaling, these statistics 23 

varied between 1.5–1.6 MJ m
-2

 d
-1

, 29%–30%, 0.67–0.71, and 0.80 (Fig. 6). These results also 24 

indicate that the error statistics were nearly uniform and the accuracy of ETd_pred varied only 25 

slightly when integration was done from different time-of-daytimetime-of-day hours between 26 

1030 to 1400 h. These typical error characteristics can greatly benefit the ETd modelling using 27 

polar orbiting data with varying overpass times between 1030 to 1400 hours. This also opens 28 

up the possibility to use either forenoon satellite (e.g., MODIS Terra, LANDSAT, ASTER 29 

etc.) or afternoon satellite (i.e., MODIS Aqua) to upscale ETi to ETd. Following RSd, here also 30 
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we restricted our analysis to the two different time-of-daytimetime-of-day (1100h and 1330h) 1 

representing Terra and Aqua overpass times. 2 

Figure 7 (a and b) compares ETd_pred against ETd_obs for different level of dailyshows the two 3 

dimensional scatters between ETd_pred versus ETd_obs for different levels of daily . The with 4 

an overall RMSE, MAPE, and R
2
 of were 1.86 and 1.55 MJ m

-2
 d

-1
, 31% and 36%, 0.65 and 5 

0.69 for the forenoon and afternoon upscaling, respectively. As seen in Fig. 7, there is a 6 

systematic overestimation of ETd_pred relative to the tower observed values for low range of  7 

(i.e., cloudy sky). It is important to realise that, unlike ETd_obs, ETd_pred might be an outcome 8 

of ETi instances when the sky was not overcast, i.e., the sky conditions might be clear at 9 

specific time-of-daytimetime-of-day but can be substantially overcast for the remainder of the 10 

daytime. As a result, any bias in the daily shortwave radiation prediction (RSd_pred) will result 11 

in biased ETd_pred according to eq. 1, and the omission of non-clear sky conditions at any 12 

particular time of daytime would tend to lead to ETd_pred>ETd_obs for generally overcast days. 13 

However, there could be another opposite case that sky is cloudy at e.g., 1100 hr but clear at 14 

other times. This will probably lead to an underestimation of RSd_pred, and consequently 15 

underestimation of ETd_pred. Such cases were also found in 3 categories in Fig. 7 where 16 

clouds of data points clearly falling significantly below the 1:1 line, thus showing substantial 17 

underestimation of ETd_pred. Since ETd_obs are the integrations of multiple ETi measurements, 18 

such conditions could be conveniently captured in the observations which were not possible 19 

in the current framework of ETd_pred. Therefore, when upscaling was done under clear skies at 20 

nominal acquisition time for generally overcast days, higher errors in ETd_pred can be expected 21 

(Cammalleri et al., 2014) and vice-versa. We examined this cloudy sky overestimation pattern 22 

in greater detail by evaluating the error statistics in ETd_pred for four different levels of daily  23 

categories (Fig. 8). 24 

The sStatistical evaluation of ETd_pred for different classes of daily  (estimated as the ratio 25 

between daily observed RSd and RSdTOA) indicates the tendency of higher RMSE and low R
2
 26 

in ETd_pred under the persistent cloudy-sky conditions (1), while the performance of ETd_pred is 27 

reasonably good with increasing atmospheric clearness (2, 3, and 4) (Fig. 8). The RMSE of 28 

ETd_pred for different  class from forenoon upscaling varied between 1.09 to 2.96 MJ m
-2

 d
-1

, 29 

with MAPE, R
2
 and IA of 25 to 75%, 0.38 to 0.79, and 0.71 to 0.82, respectively. For the 30 
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afternoon upscaling, these statistics were 0.98 to 2.02 MJ m
-2

 d
-1

 (RMSE), 24 to 87% 1 

(MAPE), 0.40 to 0.68 (R
2
), and 0.71 to 0.77 (IA). 2 

To probe into detail of the high errors under persistent cloudiness conditions, a new ANN was 3 

trained by introducing daily precipitation (P) and soil moisture (SM) information (along with 4 

RS, RSTOA, Z, and LD) assuming that the inclusion of these two variables might improve the 5 

predictive power of RS-based ANN. In the new ANN, we used data from the sites where 6 

coincident measurements of P and SM were available along with RS and ET, and validated 7 

ETd predictions of the new ANN on independent sites. The analysis revealed 34% reduction 8 

in RMSE (from 3.28 to 2.88 MJ m
-2

 d
-1

), 16% reduction in MAPE (from 90 to 76%), and 49% 9 

reduction in mean bias (0.76 to 0.39 MJ m
-2

 d
-1

) for persistent cloudy-sky cases (i.e., 1 10 

scenarios) from 1100 hr upscaling. However, no significant improvements in ETd_pred were 11 

evident for 2, 3, and 4 and also for any of the  classes from the afternoon (1330 hr) 12 

upscaling (Fig. 9). ETd is generally controlled by radiation and soil moisture availability. 13 

Under the radiation controlled conditions, ETd is generally not limited due to soil moisture 14 

and 70 – 75% of the net radiation is contributed to ETd. Therefore, RS-based method of ETi 15 

upscaling is expected to perform reasonably well unless the upscaling is performed from a 16 

clear sky instance for a predominantly overcast or rainy day. However, from Fig. 9 is it 17 

apparent that the inclusion of cloud information (cloud fraction, cloud optical thickness) in 18 

RS-based ANN would substantially reduce ETd_pred errors when upscaling is performed from a 19 

clear sky instance for a predominantly overcast day and vice-versa. Improvements of ETd_pred 20 

error statistics by including daily P and SM (as an indicator of cloudiness) is also suggestive 21 

to the relevance of such approach as a future improvement of the current framework, which is 22 

expected to reduce the systematic error under overcast conditions. However, the cloud 23 

information available from alternative sources e.g., from the Clouds and Earth’s Radiant 24 

Energy System (CERES), the International Satellite Cloud Climatology Project–Flux Data 25 

(ISCCP-FD), and Global Energy and Water cycle Experiment Surface Radiation Budget 26 

(GEWEX-SRB) are available at coarse spatial resolution (100 km
2
) and combining these 27 

information with EC tower measurements to train ANN could also introduce additional errors 28 

due to the spatial scale mismatch, is therefore out of scope of the present study.    29 

Figure 10 shows the time series comparisons between observed ETd  and ETd_pred for four 30 

different stations representing different latitude bands of both the Northern (Sweden) and 31 
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Southern (Brazil, Australia, and South Africa) hemispheres. These reveal that the temporal 1 

dynamics of ETd is in general consistently captured by the proposed method throughout year. 2 

In Br_SP1, relatively less seasonality was found in both observed and predicted ETd. This is 3 

because SP1 is a tropical site having an annual rainfall of 850–1100 mm most of which is 4 

evenly distributed between March to end of September. The peaks in ETd values during the 5 

beginning of year and October onwards coincided with the periods of increased RS, and 6 

ETd_pred could reasonably capture the observed trends during both rainy and non-rainy 7 

periods. Similarly the low ETd pattern (0.1 to 2 MJ m
-2

 d
-1

) in the hot arid climate of South 8 

Africa (Za-Kru) could also be reasonable reasonably captured in ETd_pred (Fig. 10). ETd_pred in 9 

the other Southern hemisphere (AU-Tum) and Northern hemisphere (SE-Fla) sites have 10 

shown distinct seasonality (high summer and low winter ETd) coinciding with the observed 11 

ETd patterns. 12 

3.3 Comparison with existing ET upscaling methods 13 

ETd_pred from RS-based method was intercompared with two other upscaling schemes (RSTOA 14 

and EF) over 41 FLUXNET validation sites for two different time-of-daytimetime-of-day, 15 

1100h and 1330h, the statistics of which are given in Table 2. This comparison was also 16 

carried out according to different  classes as defined in section 2.2.3.  17 

From Table 2 it is apparent that the RS-based method has generally produced relatively low 18 

RMSE (1.21 to 1.99 MJ m
-2

 d
-1

) and MAPE (23 to 50%) as well as relatively high IA (0.72 to 19 

0.84) as compared to RSTOA and EF-based upscaling methods. The EF-based upscaling 20 

method appears to systematically underestimate ETd for both forenoon and afternoon as 21 

evident from high negative bias compared to the other two methods (Table 2). On comparing 22 

RS and RSTOA methods, RS-based method performed relatively better than the RSTOA scheme 23 

for low magnitude of  (i.e., under predominantly cloudy-sky). However, the results suggest 24 

comparable performance of RSTOA-based approach under clear sky conditions which are 25 

reflected in lowest RMSE (1.09 and 1.13 MJ m
-2

 d
-1

) in ETd_pred as compared to the other  26 

classes. In general, all the schemes performed relatively better from the afternoon upscaling as 27 

compared to the morning upscaling (as evidenced in higher R
2
 and lower bias) (Table 2) 28 

which is in agreement with the findings from Ryu et al. (2012). Due to their comparable error 29 
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statistics, an intercomparison of RS and RSTOA-based methods of ETi upscaling was also 1 

carried out across different biomes. 2 

Biome specific evaluation of RS-based ETd_pred (Fig. 11) revealed lowest RMSE and highest 3 

R
2
 both in the grassland (GRA) (0.68 to 1.14 MJ m

-2
 d

-1
; 0.53 to 0.79) and shrubland (SH) 4 

(0.66 to 1.76 MJ m
-2

 d
-1

; 0.60 to 0.82) whereas the RMSE was comparatively high over the 5 

tropical evergreen broadleaf forests (EBF) (1.41 to 2.02 MJ m
-2

 d
-1

) and deciduous broadleaf 6 

forests (DBF) (1.94 to 2.55 MJ m
-2

 d
-1

). Similar evaluation with RSTOA-based method 7 

revealed the lowest RMSE and highest R
2
 in the grassland (0.64 to 1.14 MJ m

-2
 d

-1
; 0.61 to 8 

0.84), and highest RMSE in EBF, DBF, and evergreen needleleaf forests (ENF) (1.57 to 2.05 9 

MJ m
-2

 d
-1

, 1.2 to 2.25 MJ m
-2

 d
-1 

and 0.93 to 4.02 MJ m
-2

 d
-1

) (Fig. 11c and 11d). Higher 10 

ETd_pred errors in forests are related to the predominant cloudy-sky issue as described earlier. 11 

Tropical evergreen broadleaf forests (and forests in general) have high ET, water tends to re-12 

cycle locally and generate rainfall. Therefore, cloudy sky conditions are more frequent at 13 

tropical evergreen broadleaf forest and other forests types than at grassland and shrublands. In 14 

the biome specific ETd_pred error statistics (Fig. 11), relatively large bias in crop ETd_pred is 15 

introduced due to the inclusion of irrigated agroecosystems in the validation. In irrigated 16 

agroecosystems, day-to-day variation in soil moisture is not substantial and ETd is 17 

predominantly controlled by the net radiation. Therefore, the inclusion of soil moisture in the 18 

current ANN framework is unlikely to improve ETd_pred statistics in the irrigated 19 

agroecosystems. Further having many explanatory variables (e.g., land management, 20 

irrigation statistics, anthropogenic factors) to train the ANN, we risk overfitting the model and 21 

hence introducing bias. It is also evident that both Rs and RsTOA-based method of ETd 22 

estimation would be better suited for natural ecosystem e.g., in the Amazon basin or in the 23 

forest ecosystems where significant hydrological and climatological projections are 24 

emphasizing the role of ETd to understand the resilience of natural ecosystems in the spectre 25 

of hydro-climatological extremes (Harper et al., 2014; Kim et al., 2012). The performance of 26 

the method in the semi-arid shrublands appear to be promising (Fig. 11) and therefore the 27 

method seems to be credible under water-stressed environment also. 28 

Given this analysis was based on FLUXNET sites distributed across 0-90 degrees latitude 29 

north and south, the training datasets covers substantial climatic and vegetation variability. 30 

The percentage distribution of the training data according to vegetation type was; 23% crops, 31 
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31% deciduous broadleaf forest, 10% evergreen broadleaf forest, 20% evergreen need leaf 1 

forest, 8% grassland, 7% shrubs and 1% aquatic as indicated in table S1. The number of 2 

grassland and shrubs as indicated were relatively less as compared to the crops and forests 3 

sites. However, biome specific error statistics (Fig. 11) indicted the absence of any systematic 4 

errors due to vegetation sampling with the exception of EBF. Availability of more EBF sites 5 

in the training datasets is expected to reduce the cloudy-sky errors substantially, due to the 6 

assimilation of more cloud information into the Rs-based ANN training.  7 

The tendency of positive bias in ETd_pred from both RS and RSTOA in clear skies from 8 

afternoon upscaling is partly explained by the fact that, during the afternoon the values of 9 

both RS and RSTOA reached maximum limit and dominates their daily values (Jackson et al., 10 

1983). The post afternoon rate of reduction in ET does not coincide with the shortwave 11 

radiation due to stomatal controls on ET, and the total water flux from morning to afternoon 12 

(0700h to 1300h) is generally greater than the total water flux from post afternoon (1500h 13 

onwards) till sunset. Therefore multiplying 1330h ETi with high magnitude of RSd/RSi or 14 

RSdTOA/RSiTOA might would likely lead to an overestimation of ETd_pred in the clear sky days.  15 

Since extraterrestrial shortwave radiation is not affected by the clouds, ETd_pred from RSTOA 16 

performed comparably with the RS-based ETd_pred with increasing atmospheric clearness (i.e., 17 

for the higher levels of daily ). However, increased differences in the RMSE of ETd_pred 18 

between RS and RSTOA upscaling in the predominantly cloudy days indicates that more 19 

deviations can be expected in ETd_pred from these two different method of upscaling under 20 

principally overcast conditions (Tang et al., 2013). This happens because the ratio of RSdTOA 21 

/RSiTOA is not impacted by the clouds and the magnitude of this ratio becomes markedly 22 

different from RSd/RSi ratio in the presence of clouds, which leads to the differences in ETd_pred 23 

between them. The RS-based method is relatively efficient to discriminate the impacts on ET 24 

by RSd/RSi due to the clouds. The generally good performance of RS-based method and 25 

comparable error statistics with RSTOA-based ETd estimates are consistent with the findings 26 

of Cammalleri et al. (2014) and Van Niel et al. (2012). As shown in Table 2, relatively lower 27 

RMSE of RSTOA-based ETd_pred for atmospheric transmissivity class above 0.75 reveals that 28 

under pristine clear sky conditions RSTOA can be successfully used to upscale ETi. However, 29 

one of the main reasons for the differences in RMSE between RS and RSTOA method for daily 30 

transmissivity above 0.75 could be due to the fact that if ETi upscaling is performed from a 31 
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cloudy instance for a predominantly clear sky day, then such RMSE difference between the 1 

two different upscaling methods is expected. These results also revealed the probability of a 2 

hybrid ETi upscaling method by combining cloud information or SM and P in RS-method (for 3 

transmissivity between zero to 0.5) and RSTOA-method (for transmissivity greater than 0.5). 4 

However this hypothesis needs to be tested further. 5 

The systematic ETd underestimation by EF-based upscaling method and nearly similar pattern 6 

of bias from two different time-of-daytimetime-of-day upscaling (Table 2) further points to 7 

the fact that the concave-up shape of EF during daytime (Hoedjes et al., 2008; Tang et al., 8 

2013) will tend to underestimate ETd if EF is assumed to be conservative during the daytime. 9 

EF remains conservative during the daytime under extremely dry conditions when ETd is 10 

solely driven by deep layer soil moisture. The systematic underestimation of ETd from EF-11 

based upscaling method corroborates with the results reported by other researchers 12 

(Cammalleri et al., 2014; Delogu et al., 2012; Gentine et al., 2007; Hoedjes et al., 2008) 13 

which suggests that the self-preservation of EF is not generally achieved, and this systematic 14 

underestimation of ETd can be partially compensated if EF-based ETi upscaling is done from 15 

morning 0900h or afternoon 1600h time-of-daytimetime-of-day.  16 

We further resampled ETd (both predicted and observed) from daily to 8-day, monthly, and 17 

annual scale, and statistical metrics from the three different upscaling methods at three 18 

different temporal scales are shown in Fig. 12 and Table 3. Averaging ETd at 8-day, monthly 19 

and annual scale substantially reduced the RMSE to the order of 60 to 70% for all the three 20 

upscaling methods. The RS-based upscaled ETd from morning and afternoon showed reduction 21 

in RMSE from 1.79 MJ to 0.57 MJ and 1.74 MJ to 0.51 MJ from daily to annual ET, 22 

respectively. For the other two upscaling method these statistics varied from 1.85 and 1.89 MJ 23 

to 0.62 and 0.53 MJ (RSTOA method), and 2.16 and 1.33 MJ to 2.20 and 1.31 MJ (EF 24 

method) (Fig. 12 and Table 3). The impacts of daily cloud variability might have smoothed 25 

out in 8-day, monthly and annual scale which led to reduced RMSE and higher correlation 26 

between ETd_pred and ETd_obs. Nearly similar error statistics in ETd_pred from both the morning 27 

and afternoon upscaling also substantiates the findings of Ryu et al. (2012) and greatly 28 

stimulate the use of either morning satellite (i.e., Terra) or after satellite (i.e., Aqua) to upscale 29 

ETi to ETd or 8-day mean ETd. 30 
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The principal limitation of the approach is the dependence of ETd and RSd on single snapshot 1 

of ETi and RSi. Although hourly RS data from geostationary satellite are becoming available; 2 

but these are available as sectorial products (i.e. for particular continents) instead of full 3 

global coverage. Ongoing efforts to develop geostationary based data by merging multiple 4 

geostationary satellites tend to overcome this limitation. 5 

3.4 Impact of energy balance closure on ETd_pred  6 

FLUXNET EC sites have long been identified to be prone to surface energy budget 7 

imbalance, which might lead to (±20%) to (±40%) under measurement of latent heat fluxes. 8 

In order to assess the impacts of surface energy balance (SEB) closure on current ETd 9 

prediction, we further compared the error statistics of RS-based ETd_pred (Table 4) for both 10 

‘closed’ and ‘unclosed’ surface energy balance datasets. These are the subsets of the data 11 

where all the four SEB components (E, sensible heat flux, ground heat flux, and net 12 

radiation) were available and SEB was closed by the Bowen ratio closure method (Foken, 13 

2006). Table 4 revealed substantially low RMSE (10 to 60%), R
2
 (8 to 100%) and MAPE (1 14 

to 75%) in ETd_pred when ETi upscaling is done by ‘unclosed’ SEB. A consistently high 15 

positive mean bias (0.63 to 3.83) in ETd_pred with ‘closed’ SEB was also noted (Table 4). 16 

Although, various methods exist to close the surface energy balance, but, the impact of 17 

various SEB closure methods on ETd_pred statistics is beyond the scope of the current study. It 18 

is also important to mention that in the satellite based ETi retrieval, net available energy is 19 

partitioned into ET and sensible heat flux with the implicit assumption of SEB closure. 20 

Therefore, application of the current ANN framework is expected not to impact the remote 21 

sensing based ETi to ETd upscaling. However, for the validation of remote sensing based ETd 22 

retrievals, surface energy balance fluxes from eddy covariance measurements need to be 23 

closed.  24 

3.5 Sensitivity of ANN derived ETd_pred to biome selection 25 

A sensitivity analysis of ANN derived RS-based ETd_pred revealed variable sensitivity of the 26 

ANN framework to the biome selection. The coefficient of determination (R
2
) varied between 27 

0.71 to 0.84 and RMSE between 0.96 to 2.10 MJ m
-2

 d
-1

 across three different scenarios of 28 

ANN training and validation (Fig. 13). However, RMSE was found to be relatively high in 29 

forests in Case2, where ANN was trained by using the data from crops, grasslands and 30 
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shrublands only. For the Case1 and Case3, no substantial difference was noted (Fig. 13). This 1 

therefore revealed the fact that the inclusion of forests in ANN training leads to lower errors 2 

in ETd_pred over non-forest biomes, although the reverse scenario in not likely to be true. Since 3 

forests generally have high ET, water recycling tends to be more over the forests which 4 

produces substantial rainfall, variable atmospheric water vapor, associated cloudiness, and 5 

radiation. Cloudiness is a phenomenon that significantly influences the reliability of a model 6 

to predict incoming solar radiation as they are directly related to each other. Therefore, when 7 

RS-based ANN is trained with data from forests, the model assimilates information on a 8 

diverse range of radiative forcings which broaden their applicability in other biomes. This 9 

also emphasizes the fact that the performance of such ANN-based approach is primarily 10 

sensitive to their training over a broad spectrum of atmospheric conditions.    11 

4 Summary and Conclusions 12 

Given the significance of ETd in remote sensing based water resource management from polar 13 

orbiting satellites, this study developed and evaluated a temporal upscaling method for 14 

estimating ETd from different time-of-daytimetime-of-day instantaneous ET (ETi) 15 

measurements with the assumption that the ratio between daytime to instantaneous shortwave 16 

radiation (RSd/RSi) is the predominant factor governing ETd/ETi ratio. However, since RSd is 17 

not directly measurable from the polar orbiting satellites, we trained an ANN with the 18 

FLUXNET observations of RSi and RSd, and validated the model to predict RSd over 19 

independent sites, followed by using RSd/RSi ratio for converting ETi to ETd we first developed 20 

a robust ANN based method to upscale RSi to RSd followed by using the ratio of RSd/RSi to 21 

further upscale ETi to ETd. The overarching goal of this study is to provide an operational and 22 

robust ETi upscaling protocol for estimating ETd from any polar orbiting satellite. The datasets 23 

used for the ANN model development covers a wide range of biome, climate, and variable 24 

sky conditions. Therefore, we assume the RSd prediction from ANN to capture a broad 25 

spectrum of radiative forcing, which is also reflected in the independent validation of RSd and 26 

ETd (Fig. 5, Fig. 7, Table 2). However, the performance of this model for satellite retrieval of 27 

RSd (from RSi) is dependent on the accuracy of RSi retrieval (Loew et al., 2016). Also, the 28 

distribution of sites over the tropics, Africa, and South East Asia are poor, and more sites over 29 

these regions are expected to make the ANN model performance more robust. 30 
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Based on measurements from 126 flux tower sites, we found RS-based upscaled ETd to 1 

produce a significant linear relation (R
2
 = 0.65 to 0.69), little bias (-0.31 to -0.56 MJ m

-2
 d

-1
) 2 

(appx. 4%), and good agreement (RMSE 1.55 to 1.86 MJ m
-2

 d
-1

) (appx. 10%) with the 3 

observed ETd. While the exoatmospheric shortwave radiation driven ETi upscaling method 4 

(i.e., RSTOA-based) appeared to produce slightly lower RMSE (10% lower) under cloud-free 5 

conditions (Table 2), global shortwave radiation driven method (i.e., RS–based method) 6 

demonstrates more robust performance and was found to be better under cloudy conditions. 7 

Despite RS–based method yielded relatively better overall accuracy in ETd prediction (i.e., 8 

ETd_pred) statistics when compared with the RSTOA and evaporative fraction based (EF-based) 9 

method, statistical analysis of ETd_pred accuracy of different temporal upscaling methods (as 10 

discussed in section 3.3) suggests that RS and RSTOA to produce commensurate results under 11 

coarse temporal resolutions (Table 3). Therefore, at the coarse temporal scale (8-day and 12 

above), any of these two methods (RS and RSTOA) can be used for ETi to ETd upscaling.  13 

The proposed upscaling method is based on the idea that instantaneous ET/RS is equal to daily 14 

ET/RS, although it implicitly includes the stomatal controls on ET observations mediated by 15 

the vegetation. The cases where ETi is low due to water stress induced strong stomatal 16 

control; low magnitude of ET will also be reflected in upscaling ETi to ETd (according to eq. 17 

1). However, to account for any carry over effects of the stomatal control on ETd, inclusion of 18 

longwave radiation would likely to improve the scheme. Stomatal control is significantly 19 

dependent on the thermal longwave radiative components, and, therefore, the relative 20 

proportion of downwelling and upwelling longwave radiation is expected to be a stomatal 21 

constraint. However, the availability of longwave radiation measurement stations in the 22 

FLUXNET datasets is limited to formulate ANN and evaluate this hypothesis. In general, the 23 

stomatal and biophysical constraints are imposed in state-of-the-art thermal remote sensing 24 

based ETi retrieval schemes, and, therefore the ANN framework can be applied to upscale 25 

remote sensing based ETi to ETd. Also, relatively good performance of the model in semiarid 26 

shrubland also indicated the applicability of the method in water stressed ecosystems where 27 

stomatal controls are predominant.  28 

Among all the upscaling method tested, RS–based method carries maximum information on 29 

the cloudiness and produced generally lowest RMSE, low bias (Table 3), and, therefore, 30 

overall the preferably robust scaling mechanism (at the daily scale) among all the other 31 
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methods tested. The true added value of the ANN is for an operational ETd product from polar 1 

satellites. Currently, the polar Earth orbiting satellites provide us with ETi only. However, for 2 

most hydrological and ecosystem modeling applications, ETd is needed. Therefore, for studies 3 

that will opt to apply RS–based method as a scaling algorithm, RSd will be easily available for 4 

any measurement of RSi by the satellite using the ANN. However, upscaling large-area 5 

satellite-based ETi by using retrieved RSi would require accurate RSi retrieval techniques, 6 

which are currently commonplace (Ahmad et al., 2015; Boulifa et al., 2015; Dahmani et al., 7 

2016; Hasni et al., 2012; Li, Tang, Wu, & Liu, 2013) to support regional scale hydrological 8 

applications. Of the two other upscaling methods, RSTOA could be easily applied over large 9 

areas, had lower errors than EF, had second best RMSE, and overall lowest bias among the 10 

two. We conclude that using modelled RS to upscale ETi at daily scale appears to be viable for 11 

large-area hydrological remote sensing applications from polar orbiting satellites irrespective 12 

of any sky conditions.  13 

The principal limitation of the approach is the dependence of ETd and RSd on single snapshot 14 

of ETi and RSi. Although hourly RS data from geostationary satellite are becoming available; 15 

but these are available as sectorial products (i.e. for particular continents) instead of full 16 

global coverage. Ongoing efforts to develop geostationary based data by merging multiple 17 

geostationary satellites tend to overcome this limitation.  18 
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Table 1: Statistical analysis of the performance of ANN in predicting RSd under varying sky 1 

conditions represented by four different classes of daily atmospheric transmissivity (). Here the 2 

statistical metrics of RSd_pred for two different upscaling hours (1100 and 1330 h) are presented. 3 

Time-of-

daytimeTime-

of-day (h) 
 R

2
 RMSE (MJ m

-2
 d

-1
) IA MAPE Bias (MJ m

-2
 d

-1
) 

1100 

1 0.67 1.84 0.67 53.56 1.12 

2 0.79 2.45 0.80 16.69 0.59 

3 0.88 2.30 0.82 9.17 -0.74 

4 0.98 0.63 0.95 1.69 0.08 

1330 

1 0.65 1.77 0.67 51.50 1.06 

2 0.81 2.44 0.81 16.83 0.69 

3 0.89 2.23 0.83 8.94 -0.85 

4 0.98 0.89 0.95 2.40 -0.46 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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Table 2: A summary of ETd error statistics by comparing the performance of RS-based, RSTOA-based and EF-based ETi 1 

upscaling methods with regard to different sky conditions. Here  represents low atmospheric transmissivity due to high 2 

cloudiness while 4 represents high transmissivity under clear sky conditions.  3 

Time-of-

daytimeTime-

of-day (h) 
 

R
2
 RMSE (MJ m

-2
 d

-1
) IA MAPE Bias (MJ m

-2
 d

-1
) 

RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF 

1100 

 0.49 0.32 0.32 1.34 1.65 2.07 0.72 0.67 0.71 50.14 66.70 64.19 -0.13 -0.04 0.05 

 0.72 0.70 0.69 1.73 1.81 1.93 0.81 0.78 0.69 26.47 32.41 36.42 -0.21 -0.19 -0.95 

 0.72 0.73 0.79 1.99 1.94 2.38 0.81 0.79 0.59 24.69 25.66 40.37 -0.24 -0.37 -1.78 

 0.77 0.81 0.68 1.32 1.13 2.00 0.84 0.81 0.49 32.17 30.02 55.43 0.05 -0.19 -1.34 

1330 

 0.52 0.34 0.29 1.21 1.68 2.34 0.73 0.69 0.71 48.29 66.09 68.14 -0.11 0.08 0.12 

 0.73 0.72 0.71 1.71 1.93 1.86 0.82 0.79 0.71 26.12 33.71 35.33 -0.01 0.24 -0.88 

 0.75 0.75 0.76 1.89 1.96 2.43 0.82 0.82 0.61 23.17 25.82 41.65 0.09 0.14 -1.75 

 0.79 0.86 0.80 1.32 1.09 1.86 0.84 0.86 0.49 29.54 26.59 53.91 0.10 0.11 -1.38 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 
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Table 3: Error statistics of ETd_pred at four different temporal scales from three ETi upscaling methods. 1 

Time-

of-

daytime

Time-

of-day 

(h) 

Temporal 

scale 

R
2
 RMSE (MJ m

-2
 d

-1
) IA MAPE Bias (MJ m

-2
 d

-1
) 

RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF RS RSTOA EF 

1100 Daily 0.71 0.72 0.71 1.79 1.85 2.16 0.82 0.80 0.67 28.80 32.98 57.00 0.19 0.22 1.21 

8-days 0.86 0.84 0.85 1.17 1.22 1.65 0.87 0.86 0.67 18.50 20.63 46.96 0.19 0.22 1.16 

Monthly 0.89 0.88 0.88 0.99 1.04 1.61 0.89 0.67 0.67 15.52 17.22 49.72 0.19 0.22 1.16 

Annually 0.92 0.91 0.93 0.57 0.62 1.33 0.87 0.84 0.54 11.12 12.54 45.88 0.19 0.22 1.21 

1330 Daily 0.75 0.74 0.69 1.74 1.89 2.2 0.83 0.82 0.67 26.59 29.89 56.45 -0.04 0.17 -1.18 

8-days 0.87 0.86 0.84 1.11 1.21 1.7 0.88 0.88 0.68 16.80 17.97 50.36 -0.04 0.17 -1.18 

Monthly 0.90 0.90 0.87 0.93 1.00 1.59 0.90 0.89 0.68 13.69 14.85 48.08 -0.04 0.17 -1.18 

Annually 0.93 0.93 0.92 0.51 0.53 1.31 0.88 0.88 0.54 9.00 9.70 44.13 -0.04 0.17 -1.18 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 
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Table 4: Evaluation of the RS-based ANN predicted ETd (ETd_pred) error statistics based on ‘closed’ (EBC) and unclosed’ (EBO) surface energy balance 1 

under varying sky conditions represented by four different classes of daily atmospheric transmissivity (). Here  represents low atmospheric 2 

transmissivity due to high cloudiness while 4 represents high transmissivity under clear sky conditions. The statistical metrics of ETd_pred for two 3 

different upscaling hours (1100 and 1330 h) are presented. 4 

Time-of-

day (h)  

R2 RMSE (MJ m-2 d-1) IA 
 

MAPE 

 

 
Bias (MJ m-2 d-1) 

 

EBO EBC EBO EBC EBO EBC EBO EBC EBO EBC 

1100 

 

 0.37 0.17 2.96 3.31 0.71 0.57 87.21 86.49 0.66 1.12 

 0.68 0.54 1.64 2.94 0.78 0.68 28.66 38.01 -0.10 0.65 

 0.75 0.61 1.77 3.20 0.76 0.66 25.31 37.82 -0.67 1.34 

 0.66 0.61 1.09 3.40 0.71 0.30 21.77 85.80 -0.31 3.83 

1330 

 

 0.35 0.25 2.02 2.70 0.71 0.60 69.78 78.18 0.37 0.87 

 0.76 0.5 1.54 3.27 0.81 0.69 27.56 40.98 0.23 0.63 

 0.77 0.59 1.66 3.18 0.80 0.70 23.16 34.17 -0.46 0.76 

 0.84 0.64 0.98 2.46 0.76 0.66 23.30 43.89 -0.56 1.23 

 5 

 6 
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 1 

Figure 1. A conceptual diagram of the methodology. On the left side is a representation of predicting 

daily incoming short wave radiation (RSd_pred). The ANN is trained to learn the system response to a 

combination of explanatory variables i.e. instantaneous incoming short wave radiation (RSi), 

instantaneous exo-atmospheric shortwave radiation (RSiTOA), daily exo-atmospheric shortwave 

radiation (RSdTOA), solar zenith angle (Z), and day length (LD), by being fed with a sample data of 

observed daily incoming short wave radiation (RSd_obs) which is the dependant variable. On the right 

side are methods of upscaling instantaneous (ETi) to daily ET (ETd) using our RS–based method (a) 

and other two approaches (b, c) are the RSTOA and EF-based methods respectively used which are used 

for comparison. 
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 1 

Figure 2.  Schematic representation of a simple artificial network model. The artificial neuron has 

five input variables, for the intended output. These inputs are then assigned weights (W) and bias (b), 
and the sum of all these products (∑) is fed to an activation function (ƒ). The activation function 

alters the signal accordingly and passes the signal to the next neuron(s) until the output of the model 

is reached (Mathworks, 2015). 
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 1 

Figure 3. Distribution of 126 sites of the FLUXNET eddy covariance network used in the present 

study with 85 and 41 sites for training and validation, respectively between the years 1999 and 2006. 
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 1 

Figure 4. Statistical metric of RSd_pred by ANN for different time-of-daytimetime-of-day. As the 

study is intended for remote sensing application, we demonstrate the potential of the method for 

future research in the case where satellite will be used and as such we pick MODIS overpass time 

as an example to highlight on the predictive ability of the ANN at the specific overpass times. 
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 1 

Figure 5. Scatter plots between RSd_obs versus RSd_pred versus RSd_obs for different levels of daily 

atmospheric transmissivity classes () from (a) 1100 and (b) 1330 hours upscaling. Here 1–4 

represent daily atmospheric transmissivity of four different class, 0.250, 0.500.25, 

0.750.50, and 10.75, respectively, with 1 signifying high degree of cloudiness (or overcast 

skies) whereas 4 indicates clear skies. 
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Figure 6. Statistical summary of ETd_pred for different time-of-daytimetime-of-day using Eq. (1) 

based on RSi and RSd_pred. As the study is intended for remote sensing application, we once again 

demonstrate the potential of the method for future research in the case where satellite will be used 

and as such we pick MODIS Terra-Aqua overpass time. 
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Figure 7. ETd_pred obtained through eq. (1) versus ETd_obs for different levels of  from both 

forenoon (a) and afternoon (b) upscaling (1100 and 1300 h daytime hours). 
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 1 

Figure 8. Assessing the statistical metrics of ETd_pred (using eq.1) for different levels of daily 

atmospheric transmissivity classes (representing cloudy to clear skies) for both 1100h and 1330h 

time-of-daytimetime-of-day ETi scaling. 
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Figure 9. An intercomparison of ETd_pred error statistics (RMSE and MAPE) for different levels of 

atmospheric transmissivity classes based on two different ANN training (ANN trained with 

shortwave radiation and astronomical variables only; and ANN trained with radiation, astronomical 

variables, soil moisture and rainfall) based on 1100h and 1330h time-of-day ETi scaling. 

(a) 

 
(b) 
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Figure 10. Time series comparison between observed and predicted ETd for four representative sites 

located in Australia, Brazil, South Africa and Sweden. 
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Figure 11. Biome specific error characteristics of ETd_pred displaying the box plots of RMSE and 

coefficient of determination (R
2
) from both RS-based and RSTOA-based ETi upscaling. The biome 

classes are evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf 

forest (DBF), shrubland (SH), cropland (CRO), and grassland (GRA), respectively. 

(a) RS-based RMSE of ETd_pred 

 

(b) RS-based R
2 
of ETd_pred 
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Figure 12. Statistical metrics of ETd_pred from three different ETi upscaling approaches [shortwave 

incoming radiation (RS), exo-atmospheric shortwave radiation (RSTOA) and evaporative fraction 

(EF)] at different temporal scales based on ETi measurements at (a) 1100h and (b) 1330h time-of-

daytimetime-of-day. 

(a) 1100 h ETi upscaling 

 
(b) 1330 h ETi upscaling 
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Figure 13. Illustrative examples of the sensitivity of ETd_pred error statistics (R
2
 and RMSE) to the 

different biome type scenarios of ANN training. Here, Case1 consist of training the ANN with 

forest (FOR) datasets and evaluating ANN predicted ETd statistics on non-forest biomes, Case2 

consist of training the ANN with non-forest datasets and evaluating ANN predicted ETd statistics 

on forest biomes, Case3 consist of training the ANN with both forests and non-forest datasets and 

evaluating ANN predicted ETd statistics on all the biomes.  

(a) R2
 of ETd_pred for three different ANN training scenarios 

 

(b) RMSE of ETd_pred for three different ANN training scenarios 
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