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Editor Decision: Publish subject to revisions (further review by Editor and Referees) (20
Oct 2016) by Miriam Coenders-Gerrits

Comments to the Author:

The authors present a study where they test an ANN to upscale instantaneous remote sensing
observations (Rsi, RSITOA, RSATOA, theta_z, and L_D) to daily Rsd estimates from where
they estimate daily ET. These results are also compared to two other methods for converting
instantaneous observations to daily ET estimates. The paper is well written and easy to read.
Two reviewers were mainly positive, and the 3rd reviewer expressed some concerns on the
validity/usefulness of the method during (partly) overcast days. | think the authors correctly
replied to comments of the 3 reviewers and the proposed changes are OK. However, all 3
reviewers commented on the selection of the FLUXNET sites. How representative are the
sites for different climates, biomes and time of the year/seasonality?? Although the authors
replied to Reviewer #1 that they will elaborate on it, but that they already showed that it does
not influence the training of the ANN, I think the study will benefit from a proof of this claim.
Especially, since the main objective of the paper is to show the use of ANN for upscaling
from instantaneous to daily. Therefore, | agree with the suggestion of Reviewer #1 to do a

'sensitivity' analysis for the selection of the sites in place, time and biome.

Response: A sensitivity analysis is now performed to assess the applicability of the ANN-

based modeling framework to multiple biomes. The results are discussed in section 3.5.

Minor comments:

(1) P3L2 and L12: what is the need of using E_T and ETd? Are they not the same?

Response: By ET, we mean evapotranspiration, which is generic. ETq signifies daily ET and

ET; signifies instantaneous ET. This uniformity is maintained throughout the manuscript.
(2) P3L3: all symbols in text in italic (throughout manuscript)
Response: Done as suggested.

(3) P4L11: "... variables (e.g., dialy..." (add comma).
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Response: This sentence is modified as follows (p4, 115 to 119):

Although the EF,-based method produced comparable ET4 estimates as the Rs-based method,
however the dependence of EF, estimates on certain variables (e.g., daily net available
energy; ¢ and wind speed) and the difficulty to characterise them at the daily scale from single
acquisition of polar orbiting satellites (Tang et al., 2015) makes it a relatively less attractive

method.

(4) PAL11: theta is not explained.

Response: It is net available energy, explained now (p4, 117).

(5) P5L2: better: ".. predict Rsd based on Rsi satellite observations”
Response: Corrected (p5,131).

(6) P5L2-4: Objectives 2 and 3 are not really objectives of this paper (since this is already
done in the past). It's more that the results of the ANN are used to apply one method to
upscale instantaneous observations to ETd and that these outcomes are then compared to two

other upscaling techniques.

Response: Objective is now moved to the end of the introduction (p5 130 — 131; p6 11 — 13).
Obijectives are corrected as follows,

The objectives of the present study are: (1) using a ANN with Multilayer Perceptron (MLP)
architecture to predict Rsy based on Rg; satellite observations, (2) applying Rsq/Rsi ratio as a
scaling factor to upscale ET; to ETy under all sky conditions, and (3) comparing the
performance of proposed Rs-based ET; upscaling method with RsTOA and EF-based ET;

upscaling methods across a range of temporal scales, biomes and variable sky conditions.

(7) P6L7-10: What is the use of having ET with the units MJ/m2/d and Rsd in W/m2? Please

use one of the two for both.
Response: Necessary corrections are done (p6, 110 — 114).

(8) P7L12: add space between (Rye et al, 2012) and mainly.
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Response: Corrected (p8, 121).
(9) P7L18: What is PURELIN? Please briefly explain.
Response: Explained now (p8, 128 — 131).

(10) P8L23-25: | would link here to figure 1 and use the same letters for the 3 method. Thus
a=Rs-method, b= RsdTOA-method and c=EF-method.

Response: Necessary corrections are made (section 2.4, p10, 17 — 117).

(11) Eqg5: combine into 1 equation, Eq6: combine into 1 equation

Response: Now all the equations are numbered individually (section 2.4 and 2.5, p10, p11).
(12) P9L13-16: Use here the same order as the order of Eq8-12

Response: Corrected now (section 2.5, p11, 19 — 111).

(13) P10L10: Unclear/vague sentence. Please rewrite.

Response: Corrected now (p12, 117 —118).

(14) P10L13: suggestion: use time-of-day instead of time-of-daytime.

Response: Corrected throughout in the text.

(15) P11L2: The categories of Tau are not explained in the text. When is something belonging

to Tau_1 and when to Tau_4? (like explained in the caption of fig 5.)

Response: The categories of Tau is already explained in section 2.4 (p11, 12 — 15). For clarity,
we again explain it (p12, 129).

(16) Table 2: Maybe make it more clear that "Rs, RSTOA and EF" are the 3 methods and not

that e.g., the R2 refers to the performance of an estimation of Rs.
Response: This is now made explicit in the caption of Table 2.

(17) Table 1, 2,3: Maybe convert these tables into similar graphs like figure 11.
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Response: We would prefer to keep Table 1, 2, 3 as they are in the manuscript. Representing

all of them in figures similar to Fig. 11 might add monotony.
Fig 1: What is the difference between Rsd_pred and Rsd?

Response: RSd_pred is the predicted RSd from RSi. Here RSd is the generic symbol to
signify daily shortwave radiation. We made the necessary correction in caption of Figure 1

caption.

Fig 5-caption: "..between Rsd_obs versus Rsd pred...". Furthermore, also explain the

transmissivity classes in the main manuscript text.
Response: Corrected accordingly.
Fig 10: this figure is hard to read. Improve quality.

Response Corrected now.
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Reviewer 1 (R1):

1.

2.

Energy budget closure problem at FLUXNET. Energy budget imbalance has long been
identified at FLUXNET sites. The imbalance is about -40% - +20%, indicating latent
heat/sensible heat fluxes might be underestimated by up to 40%. Indeed, the energy
imbalance is an existing fact we have to accept, | guess there is little can be done to

overcome it in this particular study.

Response: Good point. We have now included an intercomparison of Rs-based ET;
upscaling results including both energy balance closure and non-closure in the revised

version of the manuscript (p20 [section 3.4], Table 4).

But my concerning is: if an ANN model is trained by FLUXNET data, how much
confidence do we have when we apply it to satellite retrieval? The energy budget close
problem affects the results in two ways: (1) the overall robustness of the proposed
upscaling method (Rs method); (2) comparison of Rs method with the evaporative
fraction based upscaling (EF method Eqgn. 5). However, the exo-atmospheric irradiance
method is not affected (Egn. 6). | guess the authors must be aware of this issue; it would

be better to literally discuss them in the results section.

Response: Regarding R1’s concern on the impact of surface energy balance closure on
the performance of ETy evaluation, it is important to mention that the implicit
assumption in remote sensing based ET; retrieval is the closure of surface energy
balance. Therefore, for the remote sensing retrievals, the energy balance closure problems
will not affect ET4 estimates in the current framework of ANN. However, for the
validation of remote sensing based ETg retrievals, surface energy balance fluxes from
eddy covariance measurements need to be closed. This is now mentioned in section
3.4 (p20 [section 3.4])

In the present study, the closure problem of surface energy balance will affect the
evaluation statistics of all the three methods, and therefore, we included an
intercomparison of Rs-based ET; upscaling results including both energy balance closure

and non-closure in the revised version (Table 4, section 3.4). As compared to the EF and

RsTOA approach, the Rs-based method is more robust with regards to ET scaling on
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a daily time frame since the method carries maximum information on the cloudiness,

which is a key limiting factor in upscaling of ET; to ETg.

With reference to Eq. (1), the network developed is intended to develop an operational
method to directly upscale ET; (estimated from polar orbiting satellites) to ET4 based on
the ratio of daily to instantaneous shortwave radiation (Rsq and Rs;). Given there is no
direct method to directly estimate Rsy from remote sensing satellite, we trained an ANN
with the FLUXNET observations of Rs; and Rsg, and validated the model to predict Rsy
over independent sites, followed by using Rs¢/Rs; ratio to convert ET; to ETq4. The datasets
used for the ANN development covers a wide range of biome, climate, and variable sky
conditions. Therefore, we assume the Rsy prediction from ANN to capture a broad
spectrum of radiative forcing, which is also reflected in the independent validation of Rgq
and ETq (Fig. 5, Fig. 7, Table 2). The performance of this model for satellite retrieval of
Rsq (from Rs;) is dependent on the accuracy of Rg; retrieval (Loew, Peng, & Borsche,
2016). We have discussed these in the conclusion section (p21, 110 — 126). Also, the

distribution of sites over the tropics, Africa, and SE Asia are poor, and more sites over
these regions are expected to make the ANN model more robust, which is mentioned in

the revised manuscript (p21, 124 — 126).

Regarding R1’s concern on the robustness of the approach, we have performed a
sensitivity analysis of Rs-based ANN performance by training ANN with data from
different biome combinations and compared ETy4 prediction statistics of the different

combinations (section 3.5, Figure 13).

Cloudy-sky issue. The biggest problem of the proposed upscaling method (Rs method) is
that the ANN model does not include any information about “cloudiness”. Therefore,
model performance under cloudy-sky condition (or low atmospheric transmissivity) is
much worse than clear-sky condition. One way to tackle it, is to use climatology
precipitation data. Rainfall (highly related to cloudiness) has seasonal pattern, at least for
some regions (e.g., tropical rainforest, savanna). Similarly, dry season-wet seasons could
provide ANN model with additional information about “possibility” of the “cloudy-sky
condition” during a certain time period. In Figure 7, the overestimation of ET under

cloudy sky condition is ‘“systematic”’, meaning there might be a simple way to
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“systematically” down regulate the ET as long as the ANN model knows it’s a cloudy
day.

Response: Good suggestion indeed. Following R1’s suggestion, we tested this hypothesis
by including the precipitation and soil moisture information with Rs and trained a new
ANN to evaluate if the inclusion of precipitation and soil moisture improved the
performance of ETy4 prediction under persistent cloudy-sky conditions. This shows
substantial improvement in ETy prediction under cloudy-sky cases [section 3.2 (p15, 11 —
127) (Figure 9)].

Including cloudiness as an input variable of the network during training process would
significantly enhance the performance of the network. Use of daily precipitation and soil
moisture as an indicator of cloudiness would have been the most appropriate approach in
this circumstance. However the cloud information available from alternative sources e.g.
from the Clouds and Earth’s Radiant Energy System (CERES), the International Satellite
Cloud Climatology Project—Flux Data (ISCCP-FD), and Global Energy and Water cycle
Experiment Surface Radiation Budget (GEWEX-SRB) are available at coarse spatial
resolution and there will be a scale mismatch. However, the precipitation data was not
consistently available for most of the sites and the data gaps were significant to alter the
sampling sizes. However for future studies, including cloudiness or daily precipitation as a
variable in the training of the ANN to predict Rsq is highly recommended. On the issue of
systematic errors as a result of cloud conditions, we certainly expect overestimation or

underestimation. The results are discussed in section 3.2 (p15, 116 — 127) (Figure 9).

FLUXNET site selection. It was stated that the partition of data into training and
validation was randomly selected. However, it’s not clear whether the selected training
sites are represent it cover a full range of (from dry to wet) rainfall regimes? For each
vegetation type, how much percentage of data is selected to train the model? FLUXNET
has more forest sites than grass/shrub sites. Are grass/shrub sites less represented in the
training dataset? Following question: is the ANN model sensitive the FLUXNET site
selection? This could be evaluated by doing e.g., 10 ensemble of random selection of
FLUXNET sites. And check the difference among the resultant 10 ANN models?
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Response: Since this analysis was based on FLUXNET sites distributed across 0-90
degrees latitude north and south, the training datasets covers substantial climatic and
vegetation variability. The percentage distribution of the training data according to
vegetation type was; 23% crops, 31% deciduous broadleaf forest, 10% evergreen
broadleaf forest, 20% evergreen need leaf forest, 8% grassland, 7% shrubs and 1% aquatic
as indicated in table S1. The number of grassland and shrubs as indicated were relatively
less as compared to the crops and forests sites. However, biome specific error statistics
(Fig. 11) indicated the absence of any systematic errors due to vegetation sampling
with the exception of EBF. Availability of more EBF sites in the training datasets is
expected to reduce the cloudy sky errors substantially. We have elaborated this

discussion in the revised manuscript.

We have also performed a sensitivity analysis of Rs-based ANN performance by randomly
training ANN with data from different biome combinations and compared ETq4 prediction
statistics of the different combinations (section 2.6). The results are discussed in section
3.5 (p20, 122 — 130 and p21, |11 —I8) (Figure 13).

Crop ET. | think the proposed method might be only suitable for estimating natural
terrestrial ecosystem ET. There is large bias of crop ET estimation (Figure 9). That could
be due to irrigation? Land management? Those anthropogenic factors (largely alter land

surface water budget) is not included in the ANN model and the ET estimation.
Response: Figure 9 is now Figure 11.

Both the current framework and RsTOA-based method of ETy estimation would be best
suited for natural ecosystem as well for the rainfed agroecosystems. In the biome specific
ETq error statistics (Fig. 11), relatively large bias in crop ET is propagated due to the
inclusion of irrigated agroecosystems in the validation. Inclusion of daily soil moisture
and rainfall in the ANN has shown to improve the Rs-based ETq prediction only under
persistent cloudy-sky conditions. In irrigated agroecosystems, day-to-day variation in soil
moisture is not substantial and evapotranspiration is predominantly controlled by the net
radiation. Therefore, the inclusion of soil moisture and rainfall in the current ANN
framework had not made any improvement in the ET4 prediction statistics in irrigated

agroecosystems. Further, having many explanatory variables (e.g., land management,
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6.

irrigation statistics, anthropogenic factors) to train the ANN, we risk overfitting the model
and hence introducing bias. There are now described in the revised manuscript (section
3.3, p17, 110 — 124).

Vegetation control on ET. The proposed upscaling method is based on the idea that
higher available energy (Rs) lead to higher evapotranspiration (ET) (Eqgn. 1). It basically
assumes that the Bowen ratio does not change during the daytime, so that instantaneous
ET/Rs is equal to daily ET/Rs. However, it ignores the important fact that ET is also
mediated by vegetation via stomata control. For example, trees and grass have
dramatically different stomata density, stomata size. Therefore, their stomata open/closure
and its control on water vapor conductance are different.

Response: This is indeed a very good point and is discussed in section 4 (p22, 110 — 124)

of the manuscript. The proposed upscaling method is based on the idea that instantaneous
ET/Rs is equal to daily ET/Rs, although it implicitly includes the stomatal controls on ET
observations mediated by the vegetation. The cases where ET; is low due to water stress
induced strong stomatal control; low magnitude of ET will also be reflected in upscaling
ET; to ETq4 (according to eg. 1). However, to account any carry over effects of the stomatal
control on ETy, inclusion of longwave radiation would likely to improve the scheme.
Stomatal control is significantly dependent on the thermal longwave radiative
components, and, therefore, the relative proportion of downwelling and upwelling
longwave radiation is expected to be a stomatal constraint. However, the availability of
longwave radiation measurement stations in the FLUXNET datasets is limited to
formulate ANN and evaluate this hypothesis. In general, the stomatal and biophysical
constraints are imposed in state-of-the-art thermal remote sensing based ET; retrieval
schemes, and, therefore the ANN framework can be applied to upscale remote sensing
based ET; to ETq4. Also, relatively good performance of the model in semiarid shrubland
also indicated the applicability of the method in water stressed ecosystems where stomatal

controls are predominant.

The question is: it is worthwhile to add biome type information in the ANN model? Is it
possible to further improve the results (Figure 9) for forest sites by considering biome

type information in the ANN model and ET estimates?
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Response: It is not worthwhile to add biome type information in the ANN model. The
performance of ANN is principally dependent on atmospheric radiative forcings and less
on biome types. To test this hypothesis, we have also performed a sensitivity analysis of
Rs-based ANN performance by randomly training ANN with data from different biome
combinations and compared ETy4 prediction statistics of the different combinations
(section 2.6). The results are discussed in section 3.5 (p20, 122 — 130 and p21, 11 — I8)

(Figure 13).

Minor comments

Page2

8.

10.

11.

12.

13.

L4. a key challenge in mapping regional ET using polar orbiting sensors

Response: Necessary changes are incorporated (p2, 13 —14).

L6. On the terrestrial surface -> remove

Response: Removed.

L8. The approach relieson : : : -> remove

Response: Removed.

L16. derived from simple mathematical computation -> replace: e.g., solar zenith angle,

day length

Response: Changes are made as suggested (p2, 113 — 114).

L20. Based on the measurements from 126 sites -> remove

Response: Removed.

L20. Rs-based upscaling produced

Response: Necessary changes are incorporated (p2, 117)

10
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Page3

14.

15.

L7. ET variability is influenced by (1) available energy received, (2) soil moisture supply
and (3) vegetation mediation. | think the third one is missing here. To be complete, the

three key factors should all be fairly discussed in the introduction

Response: Good point. We included the vegetation controls on ET in the introduction (p3,
111 —112).

L9. “Therefore” is not appropriate here, there is no cause-effect relationship here. Better

start a new paragraph and discuss the major challenges in Et upscaling

Response: Done (p3, 113).

Page4

16.

17.

18.

L19. Estimate Rsy form any specific time-of-day Rs; information. But isn’t the value of

this study is to predict Ry based at satellite local crossing time (e.g., 10:30, 13:30)?

Response: The aim of this study is to help develop an approach that would help in the
upscaling of ET; (retrieved at satellite overpass time) to ET4. The value of this study
consists of exploiting Rs; information at satellite local crossing time to predict Rsq which is
not directly retrievable from any polar orbiting satellites, so that the ratio of Rsy/Rs; can be
further used to upscale ET; to obtain daily ET (ETy) estimates (in the framework of eqgn.
1). Currently we are limited to demonstrating with MODIS overpass times (Terra and
Agua), however in case there are new missions in the future with different local overpass
time, the method would still be applicable. This description is made explicit in the revised

manuscript (section 2.1, p7, 116 — 122).

L22. L22. In order -> remove

Response: Removed (p4, 128).

L24. ANN is a non-linear model. Multi-layer perceptron (MLP) is.. These sentences

belong to method section.

Response: The description is now moved in the beginning of section 2.2 (p8, 12 — 110).

Page5

11
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19. L13. Cloudiness is a phenomenon. These sentences belong to discussion section.

Response: This sentence is moved to section 3.5 (p21, 13 — 14).

Page6

20. L6. Two question: (1) Does Egn. 1 assume the Bowen ratio is constant during daytime?

(2) Does it ignore the night time ET, which could be large when surface wind speed is
high?

Response: According to egn. 1,

ET4/ETi = Rsd/Rs;

and

ET4/ET: = EF4(Rn — G)d/EFi(RN-G);

Where EF is the evaporative fraction, Ry is net radiation, and G is ground heat flux.

Therefore, eqn. 1 is based on the assumption that shortwave radiation is the principal
driver of evaporative flux. Although ET can be limited due to both radiation and water,
but in the water limited ecosystems the magnitude of ET; will also be low due to low soil
moisture availability and therefore and upscaling ET; to ET4 in the framework of eqgn. 1
may not introduce significant error. The evidence is already seen in Fig. 9 where
shrublands showed relatively lower RMSE (despite being water limited) as compared to
the forests. We have added this discussion in the revised manuscript (section 2.1, p6, 114 —
124).

(2) The analysis is based on 24-hour period, meaning night time ET contribution is
implicitly considered. However, studies have ready shown that the nighttime ET in semi-
arid regions contributes only 2 — 5% of the total season ET (Malek, 1992; Tolk, J, Howell,
& Evett, 2006), and therefore does not appear to be significant. This is mentioned in
section 2.1 (p7, 112 — 115).

Page8

21. L16. In a percentage ratio of 80:15:15. Is this right? Shouldn’t be 80:15:5 or 70:15:15?

12
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Response: The ratio should be 80:15:5, corrections are made in the revised manuscript

(p9, 120).

Pagel0

22. L9. We first evaluate the efficacy of the ANN method for predicting Rgy.

Response: Necessary changes are incorporated (pl12, 118).

23. L12. As obtained following the methodology described in the section 2.1 -> remove

Response: Necessary changes are incorporated (p12, 119)

24. L13. Showing -> including

Response: Necessary changes are incorporated (p12, 119)

25. L14. From the analysis it is apparent that -> remove
Response: Removed (p12, 120).

Page 11

26. L1. Figure 5 evaluates the Rsq_preq under different level of clear sky transmissivity

Response: Necessary changes are incorporated in the revised manuscript (p12, 128).

27. L3. What if the ANN model includes “clear sky transmissivity, would model performance

under cloudy sky condition be improved?

Response: We do not think so, because including clear sky transmissivity could make the

modeling framework biased towards clear sky cases only.

28. L16. Using Rsq pred/Rsi as a scaling factor following eq. 1 -> remove
Response: Necessary changes are incorporated (pl13).

Page 12

29. L1. Figure 7 compares ETq pred against ETqy ons for different level of daily. The overall
RMSE, MAPE

13
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31.

32.

Response: Necessary changes are incorporated (pl14, 11).

L4. Given that the overestimation is a systematic, is it possible to eliminate it or reduce it?
The overestimation was due to the fact that during the specific time slot of interest (e.g.,
11:30) the sky is clear while the sky is cloudy during other times. However, there could be
another opposite case that sky is cloudy at e.g., 11:30 but clear at other times. It will
probably lead to an underestimation of Rsq pred, and consequently underestimation of

ETd preda. | am wondering why the latter is not the case at least in Figure 7.

Response: This is a very good argument. With the current framework of ANN, this
systematic overestimation cannot be eliminated. However, as demonstrated in Fig 11, with
the inclusion of daily rainfall and soil moisture in the ANN model, such overestimation

tendency could be reduced (p15, 11 —19).

Regarding R1’s argument on finding underestimation of ET4 from 1100 hr cloudy sky ET;
upscaling in a predominant clear day, such cases were also found in t3 category (Fig. 7)
where clouds of data points clearly falling significantly below the 1:1 line, thus showing

substantial underestimation of ET4. We have included this discussion in the revised
manuscript (p14, 111 —115).

L14.higher errors in ETq preq Can be expected. Is there a way to overcome this problem?

Response: One of the probable ways to overcome the errors in cloudy sky is to
incorporate daily rainfall and soil moisture or information of cloud cover in the ANN.

This is now demonstrated in the revised manuscript and related discussions are included
in (p15, 11 —111).

L24. Again, biome specific results are related to the clear-sky issue. Tropical evergreen
broadleaf forests have high ET, water tends to re-cycle locally and generate rainfall. It’s

reasonable to see that cloudy sky condition is more frequent at tropical evergreen

broadleaf forest than e.g., at grass land.

Response: Agreed. This point is added in the discussion of the revised manuscript. This

discussion is now moved in section 3.3 (p16, 129 — 130; pl17, 11 — 124).

14
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33.L27. ET estimations at cropland were much worse than grass. It that because e.g.,

irrigation? Land management? Or any other anthropogenic factors that are not considered
in the ANN model? Page 13.

Response: Yes, the farm management practice especially irrigation might have impact on
the output for example in a case where irrigation was carried out for three consecutive
days yet the sky conditions were consistently cloudy would present a challenge.

Necessary discussions are in section 3.3 (p17, 116 — 118).

Page 13

34.1L.20. Based on Table 2, Figure 11, RsTOA method seems successful. Under clear sky

condition, it was even better than the proposed Rs method. Further, over longer time scale

(annually), there is no big difference between RsTOA and Rs.

Response: Agreed and discussed also in the manuscript. As shown in Table 2, relatively
lower RMSE of RSTOA for atmospheric transmissivity class above 0.75 reveals that
under pristine clear sky conditions RSTOA can be successfully used to upscale ET;.
However, one of the main reasons for the differences in RMSE between Rs and RSTOA
method for daily transmissivity above 0.75 could be due to the fact that if ET; upscaling is
performed from a cloudy instance for a predominantly clear sky day, then such RMSE
difference between the two different upscaling methods is expected. These results also
showed the probability of a hybrid ET; upscaling method by combining Rs-method (for
transmissivity between zero to 0.5) and RsSTOA-method (for transmissivity greater than
0.5). However this hypothesis needs to be tested further. Discussions are included in
section 3.3 (p18, 123 — 130, p19, 11 — 12) of the revised manuscript.

Page 16

35. L1. Briefly define what RsTOA-based method is, what is Rs method.

Response: Rs-TOA-based method is the upscaling method based on RsTOA and Rs

method is the method based on Rs. The meaning RsTOA and Rs were earlier defined in

the manuscript; please see Page 4 (11 — 15). We have further expanded this in the

conclusion section (p21).

15
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36. L4. ETq_preq are defined early in the manuscript, consider the summary as an independent

section. Better not to use these acronyms, or re-define it.

Response: Agreed, necessary changes are made (p22, 14 — 15)

37. L21-25. This paragraph belongs to results & discussion section.

Response: This paragraph is now moved to section 3.3 (p19, 128 onwards)

16
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Reviewer 2 (R2)

How do you pick the training sites? Will the vegetation type and climate type (seasonal
climate) have any effect on your trained ANN algorithm? Given that Fluxnet sites at least in

N. America are mostly forest sites, will that have any potential impact on your trained ANN?’

Response: The training sites were randomly selected with a representative across latitude 0O-
90° North and South at 10 degree interval. The potential impact of vegetation on ANN
training is now described in section 3.5 (p21 — p22) through a sensitivity analysis of ANN

performance to different training scenarios.

I think a paragraph on Rs and factors affecting Rs is missing from the paper. This is necessary
to justify your choice of inputs for your ANN.

Response: Necessary discussions are incorporated in section 2.1 (p7, 123 — 131).

Please include discussion on why the method performs poorly over cropland (Figure 9)

Response: The probable reason of the poor ETq4 prediction in the croplands could be due to the
effects of irrigation that is unaccounted in ET; upscaling. Since the upscaling factor is based
on the ratio of instantaneous to daily shortwave radiation, the impacts due to irrigation cannot
be capture, and higher errors can be expected. We have added this description in the revised

manuscript (section 3.3, p17, 111 onwards).

As discussed in lines 25-27, Rsg and cloudiness are directly related. ANN has no input related
to cloudiness. However, you argue that you assess the performance of ANN under cloudy sky
condition based on simple cloudiness index. Please elaborate on this and include discussion in

the paper. Can you use Precipitation or the index of cloudiness as an input to your ANN?

Response: The daily cloudiness index was estimated as the ratio between observed Rsq and
extraterrestrial shortwave radiation to assess the performance of the ANN under variable

cloud conditions (p11, 11 —17).

The use of daily precipitation and soil moisture can be an improvement in the ANN model.
To test this hypothesis, we have included an analysis using a subset of sites over which daily
soil moisture and rainfall data were available. The results are shown in Figure 9. Necessary

descriptions are added in section 3.2 (p15, 11 — 127).

17



15.

10

11

12

13

14

15

16

17

18

19

20

21

22

Since vegetation plays an important role in Evapotranspiration, it would be interesting to
compare different scaling methods against the type of vegetation as well (in graphs or figures)

Response: We have added a comparison statistics of two different scaling methods (Rs-based
and RsTOA-based) across different vegetation types (Fig. 11) and the results are explained in
section 3.3 (p16, 129 — 130; p17, 11 — 110).
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Reviewer 3 (R3)
R3 overall view on the manuscript

(1) “I don’t see the point of upscaling ET; to ET4 for days where instantaneous observations in
the optical domain are not available from satellite platforms: instantaneous ET; estimates are
usually produced with instantaneous data in the optical domain, typically Thermal Infrared
data, and are therefore not computed for low transmissivities, airborne platforms excepted.

Response: We disagree with R3 here. R3 should be aware that there are established ET
modeling schemes that explicitly considers cloudy sky cases e.g., ALEXI model (Anderson et
al., 2007). Also to overcome the cloudy sky ET; retrieval in optical domain, modeling
schemes have been suggested to combine both optical and microwave remote sensing (Kustas
et al., 1998). Therefore, R3’s argument on ignoring ET; computation for low atmospheric

transmissivities is not substantiated.

(2) Days with low instantaneous (10AM, 1:30PM) transmissivities should be left out of the
study i.e. the study should restrict to clear sky conditions from either MODIS cloud mask or,
better, geostationary information (the CERES algorithm mentioned here). | therefore doubt
that there is any use of the method for "Remote sensing applications" as mentioned in the title,

except for UAV applications.”

Response: We do not agree for the reasons mentioned in the previous response. The bigger
picture here is focussing on the conceptual development of a robust method for upscaling ET;
to ET4 from remote sensing platforms across variable sky conditions that can be used for
operational purpose. For remote sensing applications, the greatest challenge is the ET,;
upscaling in cloudy conditions, which the proposed method is able to tackle relatively better
as compared to RsTOA or EF based method (Table 2). R3’s inclination on clear sky cases and
rejecting the present method could only be applicable in predominantly pristine clear sky. We
have already demonstrated this fact in Table 3 that when the temporal frequency of the data is
coarse (8-day to annual), there is practically no difference between Rs and RSTOA based
upscaling. But this does not deviate from the central message that Rs-based method appears to

perform better when atmospheric transmissivity is between zero to 0.5.
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(3) Even for clear sky conditions the ANN method shows worse performances than the

classical method based on the sole earth-sun geometrical parameters.

Response: It is surprising to see R3’s constrained judgement on the ANN method. R3’s
comment on worse performance appears to be an over-statement if we consider Table 2,
where MAPD between Rs and RsTOA differs by only 2-3 percent at transmissivity level
above 0.5. Contrarily, we see this as an opportunity for a hybrid modeling scheme to upscale
ET,; across variable sky conditions by using ANN for transmissivity level of zero to 0.5 and
using RSTOA method for transmissivity level above 0.5. Also, as mentioned in the
manuscript, if upscaling is done from cloudy instances for a predominantly clear day, the
discrepancy between ANN and RsSTOA method seems to be obvious. This problem can also
be overcome by including daily rainfall and soil moisture in the ANN framework, which is

now demonstrated in the revised manuscript (section 3.2, p15, 11 — 127).

(4) ETR between 2 successive clear sky days is an interpolation problem (which could be also
treated using ANN) which needs to be tackled also.

Response: This manuscript discussed about a potential ET; upscaling strategy to convert
satellite retrieved ET; to ET4. We do not foresee any interpolation problem that needs to be
tackled.

R3 main comments

1. 1 also share the main concern with R1 about Energy Balance Closure: Lack of EBC
should not be overlooked and is simple to correct for FLUXNET sites; it could explain the
poor performance of the Evaporative Fraction method. Disregarding EBC is a major
methodological flaw of the paper.

Response: We have included an additional analysis on the performance of the proposed
ET; upscaling method after closing the surface energy balance in the FLUXNET sites in
section 3.4 (p20, 14 —121). All the existing literatures have already demonstrated the poor

performance of evaporative fraction based ET upscaling methods despite EBC closure.

2. As criticized also by R1, Crops and semi-arid or even dry sub humid sites are
underrepresented in the FLUXNET database; this should be more carefully commented. It
adds up to my concern above about the practical application of the method: TIR based
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daily ETR computation algorithms are particularly needed for water use monitoring in

water depleted environments, much less for natural vegetation in temperate climates.’

Response: Under-representation of crops and semi-arid sites in the FLUXNET database does
not necessarily limit the practical applications of this method. As already described in the
response of R1 that the relatively high errors in ET4 in croplands might be due to neglecting
the irrigation effects in the ANN and inclusion of daily soil moisture and rainfall in the ANN
might improve the predictive power of the modeling framework particularly over the irrigated
agroecosystem. However, the performance of the method in the semi-arid shrublands appear
to be promising (Fig. 11) and therefore the method seems to be credible under water-stressed
environment also. This approach is equally important for natural systems e.g., in the Amazon
basin or in the forest ecosystems where significant hydrological and climatological
projections are emphasizing the role of ET4 to understand the resilience of natural ecosystems
in the spectre of hydro-climatological extremes (Harper et al., 2014; Kim et al., 2012). These
are discussed in section 3.3 (P17, 17 —131; p18, 11 — 13).

3. Are the validation and the training datasets from different years? It seems to me that this is

a requirement to use the method for future applications.’

Response: Yes, the training and validation datasets are from different years. The validation
was performed over independent sites also which are clearly delineated in Fig. 3.

4. What is the true added value of the ANN for future operational applications of the
upscaling algorithm, say for an operational satellite product? This aspect, although the

original motivation of the paper, is somewhat overlooked in the discussion section.’

Response: Yes, the true added value of the ANN is for an operational daily ETyg
product from polar satellites. Currently, the polar Earth orbiting satellites provide us with
ET; only. However, for most hydrological and ecosystem modeling applications, ETq is
needed. Therefore, for studies that will opt to apply the Rs method as a scaling algorithm,
Rsg Will be easily available for any measurement of Rs; by the satellite using the ANN. We
have made this point explicit in the conclusion (section 4) of the revised manuscript (p22,
128 — 131; p23, I1).
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part of the training (even from another site) performs slightly better than that based on the
sole TOA solar radiation: is it mostly due to the fact that the ANN adds information on

actual incoming radiation obtained at a "nearby" FLUXNET location?’

Response: This is not true. From Table 2, it is clearly seen that the ET upscaling
method based on shortwave radiation has outperformed the TOA-based method
under cloudy to moderately clear sky conditions when atmospheric transmissivity is
between zero to 0.5. However under the clearest sky, the shortwave radiation based
method showed relatively higher RMSE than the RsTOA-based method. If the ANN
adds information on actual incoming radiation obtained at a "nearby” FLUXNET location,
then we would expect the ANN to produce lower RMSE for all the classes of atmospheric
transmissivity. These statistics rather strengthens the fact that if upscaling is done from a
cloudy instance for a predominant clear sky day, higher errors can be expected from the
shortwave radiation based upscaling method. Discussions are already included in the
revised manuscript (p18, 112 —118; p19, 11 —12).

R3 Minor comments

6.

In introduction one should add a review of which upscaling support variables can be
derived from remote sensing data directly, which can be obtained indirectly from either RS
data or any other distributed routinely produced data and those not obtainable from remote

sensing or other distributed operational datasets.

Response: Good point. We have added necessary description in the introduction (p4, 128 —
131; p5, 11 —13) and also in section 2.1 (p7, 123 — 131) of the revised manuscript.

How do you manage night-time conditions?’

Response: The answer to this question is already provided in the response of R1 (p7, 112 —
115).

Move P5L1-4 to the end of this section and precise the variables fed by ANN upfront
there.

Response: Agreed. The objectives are moved at the end of the introduction.
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training dataset?’

Response: The ANN algorithm is designed to validate its performance for any given
training which in most cases should be sufficient for validating the network. However to
ensure the network is robust, we further test the generated network with independent

dataset. We have mentioned this this in the revised manuscript (p9, 120 — 123).

POL5: ‘Why use transmissivity rather than the ration between actual and theoretical
clearsky radiations to separate the various cloudiness bins? (in order at least to separate

winter conditions with lower clear sky transmissivity from summer conditions).

Response: We disagree. Transmissivity gives the actual sky conditions and should be used
to classify differential cloudiness levels. The estimation of theoretical clear-sky radiation is
based on the assumption of clear sky transmissivity (which is typically 0.75). Separating
sky conditions based on actual and theoretical clear sky radiation might produce baffling
results in cases when actual radiation is higher than the theoretical clear sky radiation.

P14L10: “would likely”: this can be checked, is it the case?’

Response: Corrected (p18, 111).

P13L12: “reasonable” > “reasonably”

Response: Corrected (p16, 17).
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Abstract

Upscaling instantaneous evapotranspiration retrieved at any specific tine-ef-daytimetime-of-

day (ET;) to daily evapotranspiration (ETg) is a key challenge in mapping regional ET using
polar orbiting sensors. a-key-challenge-in—regional-scale-vegetation-water-use-mapping-usin

polar—oerbiting—sensers: Various studies have unanimously cited the short wave incoming
radiation (Rs) to be the most robust reference variable explaining the ratio between ET4 and
ETi-entheterrestrial-surfaces. This study aims to contribute in ET; upscaling for global studies

using the ratio between daily and instantaneous incoming short wave radiation (Rs¢/Rsi) as a

factor for converting ET; to ETy. Fhe-approachrelies-on-the-avaabiity-of Rsy-measurements

This paper proposes an artificial neural network (ANN) machine learning algorithm first to
predict Rsg from Rg; followed by using the Rsq/Rs; ratio to convert ET; to ETq across different
terrestrial ecosystem. Using Rsi and Rsy observations from multiple sub-networks of
FLUXNET database spread across different climates and biomes (to represent inputs that
would typically be obtainable from remote sensors during the overpass time) in conjunction

with some astronomical variables (derived-from-simple-mathematical-computatione.q., solar

zenith angle, day length, exoatmospheric shortwave radiation etc.), we developed ANN model

for reproducing Rsq and further used it to upscale ET; to ETg4. The efficiency of the ANN is
evaluated for different morning and afternoon time-of-daytimetime-of-day, under varying sky
conditions, and also at different geographic locations. Based-on-the-measurementsfrom-126
sites-we-found Rs-based upscaled ET, to-produceproduced a significant linear relation (R? =
0.65 to 0.69), low bias (-0.31 to -0.56 MJ m™ d™) (appx. 4%), and good agreement (RMSE
1.55 to 1.86 MJ m? d') (appx. 10%) with the observed ETg, although a systematic

overestimation of ET4 was also noted under persistent cloudy sky conditions. Inclusion of soil

moisture and rainfall information in ANN training was found reduced the systematic

overestimation tendency on overcast days. An intercomparison with existing upscaling
method at daily, 8-day, monthly, and yearly temporal resolution revealed a robust

performance of the ANN driven Rs-based ET; upscaling method and was found to produce

lowest RMSE under cloudy conditions. Sensitivity analysis revealed variable sensitivity of the

method to biome selection and high ET,_prediction errors in forest ecosystems are primarily
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associated with greater rainfall and clouds. The overall methodology appears to be promising

and has substantial potential for upscaling ET; to ETy for field and regional scale

evapotranspiration mapping studies using polar orbiting satellites.

Key Words: Evapotranspiration, upscaling, artificial neural networks, short wave radiation,
rainfall, soil moisture, FLUXNET

1 Introduction

Satellite-based mapping and monitoring of daily regional evapotranspiration (ET hereafter)
(or latent heat flux, AE) is considered as a key scientific concern for multitudes of applications
including drought monitoring, water rights management, ecosystem water use efficiency
assessment, distributed hydrological modelling, climate change studies, and numerical
weather prediction (Anderson et al., 2015; Senay et al., 2015; Sepulcre-Canto et al., 2014). ET
variability during the course of a day is influenced by changes in the radiative energy being
received at the surface (Brutsaert & Sugita, 1992; Crago, 1996; Parlange & Katul, 1992), and
alse-due to soil moisture variability particularly in the water deficit landscapes, and also due

to the stomatal requlation by vegetation.

TFherefore-60ne of the fundamental challenges in regional ET modelling using polar orbiting
sensers-satellites involves the upscaling of instantaneous ET retrieved at any specific time-of-
daytimetime-of-day (ET; hereafter) to daily ET (ETq4 hereafter). For example, ET; retrieved
from LANDSAT, ASTER and MODIS sensors typically represent ET; at a single snapshot of
1000, 1030 and 1330 hrs local times, which needs to be upscaled to daily timescales for
making this information usable to hydrologists and water managers (Cammalleri et al., 2014;
Colaizzi et al., 2006; Ryu et al., 2012; Tang et al., 2013).

In order to accommodate the temporal scaling challenges encountered by remote sensing
based ET models, techniques have been proposed and applied by various researchers to
upscale ET; to ETq4. These include: (1) the constant evaporative fraction (EF) approach which
assumes a constant ratio between AE and net available energy (¢ = R, — G, R, is the net
radiation and G is the ground heat flux) during daytime [EF = AE/(R, — G)] (Gentine et al.,
2007; Shuttleworth et al., 1989), (2) constant reference evaporative fractions (EF,) method

where the ratio of ET; between a reference crop (typically grass measuring a height of 0.12 m
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in an environment that is not water limited) and an actual surface is assumed to be constant
during daytime, allowing ETq to be estimated from the daily EF; (Allen et al.,1998; Tang et
al., 2013), (3) constant global shortwave radiation method (Rs) where Rs is the reference
variable at the land surface and it is assumed that the ratio of daily to instantaneous shortwave
radiation (Rsq and Rs;) values (i.e., Rsq/Rsi) determines ET4 to ET; ratio (Jackson et al., 1983;
Cammalleri et al., 2014), and (4) constant extra-terrestrial radiation method where the exo-
atmospheric shortwave radiation (RsTOA) is the reference variable and the ratio of
instantaneous to daily RsTOA (RsiTOA and RsqTOA) is assumed to determine the ratio of ETy
to ET; (Ryu et al., 2012; Van Niel et al., 2012). These methods have been reviewed and
compared in different studies with the view of identifying the most robust ET; to ETq4
upscaling approach based on different data sets, time integrals and varying sky conditions
(Cammalleri et al., 2014; Ryu et al., 2012; Tang et al, 2013, 2015; Van Niel et al., 2012; Xu et
al., 2015).

Based on the previous studies, we find that the RsTOA approach performed consistently good
at lower temporal resolution namely eight-day to monthly scales (Ryu et al., 2012; Van Niel
et al., 2012) as well as under clear-sky conditions (Cammalleri et al., 2014), whereas the Rs
approach was identified as the most preferred method for ET; to ET4 conversion at a higher
temporal scale i.e. daily timescale in addition to under variable sky conditions (Cammalleri et
al., 2014; Chavez et el., 2008; Colaizzi, et al., 2006; Xu et al., 2015). Although the EF-based
method produced comparable ETq estimates as the Rs-based method, however the dependence

of EF, estimates on certain variables (e.g., daily net available energy; ¢ and wind speed) and

the difficulty to characterise them at the daily scale from single acquisition of polar orbiting
satellites (Tang et al., 2015) makes it a relatively less attractive method. Furthermore the EF-

based method appeared to consistently underestimate ETy in all these studies.

The motivation of the current work is built on the conclusions of Colaizzi et al. (2006),
Chavez et al. (2008), Cammalleri et al. (2014), and Xu et al. (2015) that the ratio of the
instantaneous to daily Rs incident on land surface is the most robust reference variable
explaining the ratio between ET4 and ET; among all the tested methods. This work aims to
contribute in ET; upscaling by first developing a method for estimating Rsq from any specific
time-of-day Rs information (Rs;) and further using Rsq/Rs; ratio as a factor for converting ET;

to ETq. We develop an artificial neural network (ANN) machine learning algorithm
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(McCulloch & Pitts, 1943) in-erdertefor estimate-estimating Rsg. Although net radiation (Ry)
is more closely associated with ET, but Rs constitutes 80-85% of Ry (Mallick et al., 2015).

Also from remote sensing perspective, Rs; is relatively easily retrievable irrespective of the

sky conditions (Wang et al., 2015; Lopez and Batlles, 2014), and its relationship to Rs4_is

primarily governed by cloudiness (cloud fraction, cloud optical depth) and astronomical

variables (e.g., solar zenith angle, day length, RsTOA etc.). Given the information of

cloudiness is also obtainable from remote sensing, we consider Rs to be a robust variable to

explore ET; upscaling. A

Even though this study is intended for remote sensing application, we tested the method using
meteorological and surface energy balance flux measurements from eddy covariance (EC)
system at the FLUXNET (Baldocchi et al., 2001) sites mainly for the purpose of temporal
consistency. However, we evaluate the performance in consideration with overpass time of
polar orbiting satellites commonly used in operational ET mapping namely MODIS and
LANDSAT. By choosing to use data distributed over different ecosystems and climates
zones, we are faced with two problems : (1) changing cloud conditions across ecosystems, (2)
varying energy balance closure (EBC) requirements for the fluxes in different ecosystems
(Foken et al., 2006; Franssen et al., 2010; Mauder & Foken, 2006; Wilson et al., 2002).

—Currently, information on

cloudiness is obtainable from geostationary meteorological satellites, at hourly to 3-hourly
time steps e.g., from the Clouds and Earth’s Radiant Energy System (CERES), the
International Satellite Cloud Climatology Project—Flux Data (ISCCP-FD), and Global Energy
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and Water cycle Experiment Surface Radiation Budget (GEWEX-SRB). The CERES
algorithm uses cloud information from MODIS onboard both Terra and Aqua platforms and
combines it with information from geostationary satellites to accurately capture the diurnal
cycles of clouds. In this study, cloudiness is not included in the list of variables used to
estimate Rsy due to inconsistency in spatial resolution of data to match with the other
predictive variables used. Including cloudiness holds a great potential in improving the ANN

Rsq predications due to their direct relationship_(Mallick et al., 2015). However, we assess the

performance of the ANN under cloudy sky conditions based on simple cloudiness index
computations as adopted from previous works (Baigorria et al., 2004). The EBC problems
have been reported to vary across landscapes due to management practices, climate, seasons
and plant functional type characteristics (Foken et al., 2006). In this study, in order to test the
robustness of the proposed method, we initially disregard the site specific EBC problems and
assume that the systematic bias of fluxes fall within the same range across entire FLUXNET
database used.

The objectives of the present study are: (1) using a ANN with Multilayer Perceptron (MLP)

architecture to predict Rsq_based on Rg; satellite observations, (2) applying Rs¢/Rsi ratio as a

scaling factor to upscale ET; to ETy based-en-RssfRsi—Fatie-under all sky conditions, and (3)
comparing the performance of proposed Rs-based ET; upscaling method with RsTOA and EF-

based ET; upscaling methods_across a range of temporal scales, biomes and variable sky

conditions.
2 Methodology
2.1 Rationale

The presented method of ET upscaling from any specific time-of-daytimetime-of-day to
daytime average evaporative fluxes is based on the assumption of self-preservation of

incoming solar energy (i.e., shortwave radiation) as proposed by Jackson et al. (1983).

ET, ~ ET; =2 1)
Si

Where, ETq is the daily average evapotranspiration in W m?Md—m~ &% ET; is the

instantaneous evapotranspiration at any instance during daytime in W m, Rg; and R are the
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values of shortwave radiation recorded at any instance and the daily average having units W

m™._Daily total ET4 and Rsq is expressed in MJ m™ d™ by using standard conversion from

Watts to Mega Joules. Following Jackson et al. (1983) and Cammalleri et al. (2014), we

hypothesized that the mean diurnal variation of ET for any particular day scales with the mean

diurnal variation of Rs. The justifications are: (a) Rs is the principal driver that controls sub-

daily ET variability unless there is substantial diurnal asymmetry in cloudiness or abrupt

change in sub-daily soil moisture between morning and afternoon. (b) Under thick cloudy

conditions, ET scales with Rs. Under clear sky conditions ET also scales with Rs and both are

in phase if sufficient soil moisture is available at the surface. (c) Phase difference between Rs

and ET are commonly found under soil moisture deficit conditions in clear-sky days.

However, the magnitude of clear-sky ET; in water deficit conditions is also be very low,

which will lead to substantially low ETi/Rs; ratio, and would unlikely to introduce any

uncertainty in ET; to ET4 upscaling in the framework of eq. (1).

For any remote sensing studies using polar orbiting satellites, although the retrieval of ET; and
Rsi has been standardised (Tang et al., 2015; Huang et al., 2012; Polo et al., 2008; Laine et al.,
1999), but, estimating Rsq and ET4 from Rs; and ET; are still challenging. Presently, upscaling
Rsi t0 Rsq is primarily based on the clear sky assumption, i.e., for the entire daytime
integration period, the sky remains cloud-free (Bisht et al., 2005; Jackson et al., 1983).
However, the clear-sky assumption is not always appropriate for upscaling remote sensing
based Rs; and hence ET; because the sky conditions during a specific time-of-daytimetime-of-
day may be clear whereas the other part of the day might be cloudy. Under such conditions,
the clear-sky assumption of ET; upscaling will lead to substantial overestimation of ETq4 in
cloudy conditions. Hence reliable estimates of all-sky (i.e., both clear and cloudy) Rsq would
greatly improve the ET4 estimates in the framework of eq. (1). Given the unavailability of a
definite method to directly estimate all-sky Rsqy from Rg; information, here we proposed a
simple method to upscale Rs; to Rsq using ANN. This method uses the observations of both
Rs¢ and Rsi from all the available FLUXNET sites in conjunction with some ancillary
variables to build the ANN as described in section 2.2. A schematic diagram of the ANN

method is given in Fig. 1._The analysis is based on 24-hour period, meaning night time ET

contribution is implicitly considered. However, studies have already shown that the nighttime
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ET in semi-arid and sub-humid regions contributes only 2 — 5% of the total season ET (Malek,

1992: Tolk et al., 2006), and therefore does not appear to be significant.

The overarching aim of this study is to develop an approach that would help in the upscaling

of ET; (retrieved at satellite overpass time) to ET4. Additional value of this study also consists

of exploiting Rs; information at satellite local crossing time to predict Rsq which is not directly

retrievable from any polar orbiting satellites, so that the ratio of Rsq/Rsi can be further used to

upscale ET; to obtain ET4 estimates. Currently we are limited to demonstrating with MODIS

satellite overpass times (Terra and Aqua), however for the future missions with different local

overpass time, the method would still be applicable.

In_any natural ecosystem, Rs on a particular day is primarily influenced by the cloud

(especially cloud cover fraction and optical thickness) (Mallick et al., 2015; Hildebrandt et al.,

2007), latitude, season, and time-of-day. Therefore, Rsq 0n any specific day is expected to be a

function of Rs (as a representative of Rs and cloudiness factors), solar zenith angle

(representing latitude, season, time-of-day), day length (representing latitude and season), and

RsTOA (representing latitude, season, time-of-day). Besides, atmospheric aerosols also

interact with Rs and absorb some of the radiation particularly in the urban areas. Considering

the applications of ET; to ET4_ modeling in the natural ecosystems, we include Rsi, RsiTOA,

RsqTOA, solar zenith angle and day length for Rsy (and subsequently ETq) prediction.

2.2 Development of Artificial Neural Network (ANN)

ANN is a non-linear model which works by initially understanding the behaviour of a system
based on a combination of a given number of inputs and subsequently is able to simulate the
system when fed with and-independent set of inputs of the same system. ANN approach has

been successfully used in estimating global solar radiation in many sectors and more so in the
Ahmad et al., 2015; Hasni et al., 2012; LazzUs et al., 2011). Multi-

laver perceptron (MLP) is one of the ANN architectures commonly used as opposed to other

statistical methods, makes no prior assumptions concerning the data distribution, has ability to
reasonably handle non-linear functions and reliably generalise independent data when
presented (Gardner & Dorling, 1998; Khatib, Mohamed, & Sopian, 2012; Wang, 2003). In the

present study, MLP was chosen as it has been widely used in many similar studies and cited

field of renewable ener

to be a better alternative as compared to the conventional statistical methods (Ahmad et al.,
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2015; Chen et al., 2013; Dahmani et al., 2016; Mubiru & Banda, 2008). The MLP is
composed of 5 neurons in the input layer, 1 output layer and 10 hidden layers (Fig. 2). The
input layer neurons are made up of instantaneous incoming short wave radiation (Rs;),
instantaneous exo-atmospheric shortwave radiation (RsiTOA), daily exo-atmospheric
shortwave radiation (RsgTOA), solar zenith angle (&), and day length (Lp) as the predictor
variables whose values are initially standardized to range between -1 to 1. The choice of the
inputs is intentionally limited to the variables that cannot only be acquired by measurements
from meteorological stations but also derived from simple astronomical computations (Ryu et
al., 2012) mainly to help minimize on the spatial distribution problem (as described earlier in
the introduction) that is often linked to ground weather stations. In the MLP processing, the
input layer directs the values of each input neuron x; (i = 1, 2, 3.... n) into each neuron (j) of
the hidden layers. In the hidden layer, x; is multiplied by a weight (w;;) followed by a bias (b;)
assigned for each hidden layer also is applied. The weighted sum (eq. (2)) is fed into a
transfer function. In this work a tangent sigmoid (TANSIG) function is used (eg. (3)) in the
hidden layer while in the output layer a PURELIN function is applied (eg. (4)) to give a single
output value which is the predicted daily shortwave radiation (Rsg preq). PURELIN is a linear

neural transfer function used in backpropagation network. It calculates a layer's output from

its net input. The function generates outputs between zero and 1 as the neuron's net input goes

from negative to positive infinity. The training of the ANN is completed by a regression

analysis being performed internally by the algorithm between the target variable i.e. the

observed and predicted daily shortwave radiation (Rsq_obs @nd Rsq pred)-

x,=[>0.w, ¥ b) @)

_ 2 ©)
Y= (1+exp(—2Xi)-1)

y = X, (PURELIN) (4)

Bayesian regularization algorithm was chosen for the optimization process because it is able
to handle noisy datasets by continuously applying adaptive weight minimization and can
reduce or eliminate the need for lengthy cross-validation that often leads to overtraining and
overfitting of models (Burden and Winkler, 2009).
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2.3 Datasets

Daily and half-hourly data on Rs (W m™), Rstoa, net radiation (R,, W m™), latent heat flux
(ZE, W m™), sensible heat flux (H, W m™) and ground heat flux (G, W m™) measured by the
FLUXNET (Baldocchi et al., 2001) eddy covariance network were used. A total of 126 sites
from the years 1999 to 2006 distributed between latitude 0-90 degrees north and south of the
equator were used for the present analysis. The data sites covered a broad spectrum of
vegetation functional types and climatic conditions and a list of the sites are given in Table S1

in the supplementary section.

Among 126 sites, 85 sites were used for training and remaining 41 sites were used for
validation. Partition of the data into training and validation was randomly selected regardless
of the year. These translated into 194 and 86 yearly data for the respective sample. A global
distribution of the data sites is shown in Fig. 3. From the training dataset, three samples were

internally generated by the algorithm i.e., training datasets, validation datasets, and a testing

dataset in a percentage ratio of 80:15:15-5 respectively. The ANN algorithm is designed to

validate its performance for any given training which in most cases should be sufficient for

validating the network. However to ensure the network is robust, we further test the generated

network with independent dataset. Considering the equatorial crossing time of different polar
orbiting sensors like LANDSAT, ASTER, and MODIS Terra-Aqua, unique networks were
generated for different time of day from morning to afternoon, and thus we had a total of 8
networks to represent potential satellite overpass times between 1030 to 1400 hours using 30
minutes interval as the closest reference time for each hour. The generated networks were

then applied to an independent validation data set.
2.4 Intercomparison of ET; upscaling methods

An_intercomparison of three different ET; upscaling methods is performed_with the

homogeneous datasets to assess their relative performance across a range of temporal scales

and variable sky conditions. These are: (a) Rs-based upscaling method, where ANN predicted

Rsq_is used in conjunction with observed Rs; to predict ETq4 using eq. (1).

(b) The exo-atmospheric irradiance method (Ryu et al., 2012) where the reference variable is
RsTOA.
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Rg4TOA (6)
SFrroa = —RS-TOA
2

ETy = ET;SFrroa (0]

Where Sq. is the solar constant (1360 W m ), t, is the day of year (DoY), and & is the solar

zenith angle. Fheperformance-of the Rs-methed-is-alse-compared-with-twe-other-existing-Ex

(ac) the-EF-based method (Cammalleri et al., 2014), where reference variable is the net

available energy (¢) (i.e., Ry - G).

AE (8)

SFgr =
EF R,—G

ET; = 1.1(R, — G)4SFzr ©

Where SFgr is the EF-based scaling factor, (R, — G)q is the daily net available energy.

_ 2Rty {6)
¢ 365
N _ 54
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Err=E S prox
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We tested the performance of the three upscaling algorithms for all possible sky conditions

assumed to be represented by daily atmospheric transmissivity (tq) (eq. #10) namely (i)
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0.25>1>0 (11, hereafter), (ii) 0.5>1t>0.25 (1, hereafter) (iii) 0.75>t>0.5 (t3, hereafter), and (iv)
1>t>0.75 (t4, hereafter), respectively. We use daily t because it indicates the overall sky

condition throughout a day.

__Rsa (710)
Ry, TOA

Ta

Rsq and RsgTOA are daily shortwave radiation and the exo-atmospheric shortwave radiation in

MJ m?2d* (converted from W m™).
2.5 Statistical error analysis

The relative performance of the ANN and three upscaling methods is evaluated using
statistical indices generated namely: coefficient of determination (R?), mean—abselite

pereentage—error-{MAPRE)-root mean square error (RMSE), mean absolute percentage error
(MAPE), eoefficientof determination{R*)-index of agreement (1A), and bias. ETy estimates

using the respective upscaling coefficients were compared with measured ETj.

> (p-of
> of

RMSE ﬂ/ M (912)

R'=1- (811)

MAPE = %iw*mo (4613)
i=1

Z.n(p. _Oi)2
ZLQ P.- Oi‘ + ‘Oi - P,

1A= 2 (1119)
]

Bias =

Zinzl(pi _Oi)

(3215)
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Where, n is the number of data points; o; and p; are daily observed and estimated Rsq or ETg,
respectively. O was the mean value of observed Rsqor ETg.

2.6 Sensitivity of ANN training and validation

Given the majority of the FLUXNET sites represent forest biomes and the distribution of EC

sites over non-forest biomes are proportionately lower as compared to the forests, we

performed a sensitivity analysis of the ANN-based approach by assessing the error statistics

(R? and RMSE) of predicted ETy4 for different scenarios of ANN training. Three case studies

were generated: (a) Casel, where ANN was trained by including data randomly from the

forests and ETy validation was done in non-forest biomes (i.e., grassland, crops and

shrublands); (b) Case2, where ANN was trained by including data randomly from the non-

forest biomes and predicted ET4 was evaluated in forest biome; (c) ANN was trained by using

data randomly from equal proportions of forest and non-forest biomes, and ET4 validation was

also done in forest and non-forest biomes. Each individual case was replicated 10 times and

an ensemble mean statistics of predicted ETj_is reported in section 3.5.
3 Results and discussion
3.1 Testing the performance of predicted Rsq

Given that the performance of ET4 upscaling depends on the soundness of Rsq estimation, we
first evaluate the efficacy of the ANN method for predicting Ryy. feel-seme-justification-to
demonstrate-—the—efficacy—of-the-ANN-methodforpredicting-Rsq Figure 4 summarises the
statistical results of predicted Rsq (Rsq pred, hereafter) as-obtained-foHowing-the-methodelogy
deseribed-in-the-section-2.1-shewing including all the site-year average R?, RMSE, IA, and
MAPE values for eight different time-ef-daytimetime-of-day upscaling time slots. From-the
analysistis-apparent-that-tThe RMSE of Rsq preq from forenoon upscaling varied between
1.81-1.85 MJ m? d, with MAPE, R?, 1A varying between 20-21%, 0.76-0.77, and 0.79 and
0.80, respectively (Fig. 4). For the afternoon, these statistics were almost similar and varied
between 1.83-1.96 MJ m? d*, 19-20%, 0.75-0.77, and 0.80-0.81 (Fig. 4). Given the minimal

discrepancy in error statistics from both forenoon and afternoon integration and considering

the MODIS Terra-Aqua average overpass time we have considered 1100 and 1330 hours of

daytime for the detailed follow up analysis.
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Figure 5 (a, b) evaluates Rsy preq Statistics under different level of atmospheric_transmissivity
(t) (0.25>1>0, 0.5>1>0.25, 0.75>t>0.5, and 1>t>0.75) shews-thetwo-dimensional-scatters
between Ry pres-VersusRsy ops-for-differentlevels-of+=with an overall RMSE of 1.81 and 1.83

MJ m? d™ for the forenoon and afternoon upscaling respectively. Table 1 and Fig. 5 clearly

show an overestimation tendency of the current method under persistent cloudy sky
conditions (t1), whereas the predictive capacity of the ANN model is reasonably strong with
increasing atmospheric clearness. The RMSE of Rsq preq for different t class from forenoon
upscaling varied between 0.62 to 2.45 MJ m™ d™*, with MAPE, R? and IA of 9.2 to 53%, 0.67
to 0.98, and 0.67 to 0.95, respectively (Table 1). For the afternoon upscaling these statistics
were 0.89 to 2.4 MJ m™? d™* (RMSE), 2.4 to 52% (MAPE), 0.65 to 0.98 (R?), and 0.67 to 0.95
(IA) (Table 1).

The overestimation of Rsq pred at low values of t is presumably associated with varying levels
of cloudiness during the daytime. Since Rsq preq depends on the magnitude of Rsi, Lp, &,
Rsitoa, and Rsqroa, there will be a tendency of overestimating Rsq pres ON partly cloudy days if

Rsi at a specific time-ef-daytimetime-of-day is not affected by the clouds (Lp, &, Rsitoa, and
Rsqtoa are not influenced by the clouds).

3.2 Evaluation of predicted ETy based on Rsg_ pred

Figure 6 summarises the statistical results of predicted ETq (ETq pred, hereafter) using
Rsy preafRsi-as-a-sealing-factor folowing-eg—t-for eight different time-of-daytimetime-of-day
slots. Upon statistical evaluation, all the cases showed significantly linear relationship
between ETg pres and observed ETqy (ETq_obs, hereafter). The RMSE of ETy preq from forenoon
upscaling varied from 1.67-1.84 MJ m? d*, with MAPE, R?, IA varying between 30%-34%,
0.62-0.68, and 0.77-0.80, respectively (Fig. 6). For the afternoon upscaling, these statistics
varied between 1.5-1.6 MJ m? d™*, 29%-30%, 0.67-0.71, and 0.80 (Fig. 6). These results also
indicate that the error statistics were nearly uniform and the accuracy of ETqy preq Varied only
slightly when integration was done from different time-ef-daytimetime-of-day hours between
1030 to 1400 h. These typical error characteristics can greatly benefit the ET4 modelling using
polar orbiting data with varying overpass times between 1030 to 1400 hours. This also opens
up the possibility to use either forenoon satellite (e.g., MODIS Terra, LANDSAT, ASTER
etc.) or afternoon satellite (i.e., MODIS Aqua) to upscale ET; to ET4. Following Rsg, here also
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we restricted our analysis to the two different time-of-daytimetime-of-day (1100h and 1330h)
representing Terra and Aqua overpass times.

Figure 7 (a and b) compares ETy preq a0ainst ETy ops for different level of dailyshews-the-tweo
dimenstonal-seatters-hetween-ET. . —versusET, . fordifferentlovels-at-dathyt. The wwith
an-overall RMSE, MAPE, and R? ef-were 1.86 and 1.55 MJ m™ d™, 31% and 36%, 0.65 and

0.69 for the forenoon and afternoon upscaling, respectively. As seen in Fig. 7, there is a

systematic overestimation of ETq yreq relative to the tower observed values for low range of t
(i.e., cloudy sky). It is important to realise that, unlike ETq ops, ET4 pred Mmight be an outcome
of ET; instances when the sky was not overcast, i.e., the sky conditions might be clear at
specific time-of-daytimetime-of-day but can be substantially overcast for the remainder of the
daytime. As a result, any bias in the daily shortwave radiation prediction (Rsq pred) Will result
in biased ETg4 pred according to eq. 1, and the omission of non-clear sky conditions at any
particular time of daytime would tend to lead to ET4 yrea™>ETq ons fOr generally overcast days.

However, there could be another opposite case that sky is cloudy at e.q., 1100 hr but clear at

other times. This will probably lead to an underestimation of Rsq preq, and consequently

underestimation of ETy preq. Such cases were also found in t3 categories in Fig. 7 where

clouds of data points clearly falling significantly below the 1:1 line, thus showing substantial

underestimation of ETq pred. Since ET4 ons are the integrations of multiple ET; measurements,

such conditions could be conveniently captured in the observations which were not possible
in the current framework of ETg preq. Therefore, when upscaling was done under clear skies at
nominal acquisition time for generally overcast days, higher errors in ETg yred Can be expected
(Cammalleri et al., 2014) and vice-versa. We examined this cloudy sky overestimation pattern
in greater detail by evaluating the error statistics in ETq preq for four different levels of daily t

categories (Fig. 8).

TFhe-sStatistical evaluation of ETy preq for different classes of daily t (estimated as the ratio

between daily observed Rsq and RssTOA) indicates the tendency of higher RMSE and low R?

in ETy pred Under the persistent cloudy-sky conditions (1), while the performance of ETy preq IS
reasonably good with increasing atmospheric clearness (1, t3, and t4) (Fig. 8). The RMSE of
ETq prea for different t class from forenoon upscaling varied between 1.09 to 2.96 MJ m? d*,
with MAPE, R? and IA of 25 to 75%, 0.38 to 0.79, and 0.71 to 0.82, respectively. For the
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afternoon upscaling, these statistics were 0.98 to 2.02 MJ m? d* (RMSE), 24 to 87%
(MAPE), 0.40 to 0.68 (R%), and 0.71 to 0.77 (1A).

To probe into detail of the high errors under persistent cloudiness conditions, a new ANN was

trained by introducing daily precipitation (P) and soil moisture (SM) information (along with

Rs, RsTOA, &, and Lp) assuming that the inclusion of these two variables might improve the

predictive power of Rs-based ANN. In the new ANN, we used data from the sites where

coincident measurements of P and SM were available along with Rs and ET, and validated

ETq_predictions of the new ANN on independent sites. The analysis revealed 34% reduction
in RMSE (from 3.28 to 2.88 MJ m™2 d™), 16% reduction in MAPE (from 90 to 76%), and 49%

reduction in mean bias (0.76 to 0.39 MJ m™ d™) for persistent cloudy-sky cases (i.e., 7,

scenarios) from 1100 hr upscaling. However, no significant improvements in ETy preq Were

evident for 1, 13, and t4 and also for any of the t classes from the afternoon (1330 hr)

upscaling (Fig. 9). ET4 is generally controlled by radiation and soil moisture availability.

Under the radiation controlled conditions, ETy is generally not limited due to soil moisture
and 70 — 75% of the net radiation is contributed to ET4. Therefore, Rs-based method of ET;

upscaling is expected to perform reasonably well unless the upscaling is performed from a

clear sky instance for a predominantly overcast or rainy day. However, from Fig. 9 is it

apparent that the inclusion of cloud information (cloud fraction, cloud optical thickness) in

Rs-based ANN would substantially reduce ET4 preq €rrors when upscaling is performed from a

clear sky instance for a predominantly overcast day and vice-versa. Improvements of ETy preq

error statistics by including daily P and SM (as an indicator of cloudiness) is also suggestive

to the relevance of such approach as a future improvement of the current framework, which is

expected to reduce the systematic error under overcast conditions. However, the cloud

information available from alternative sources e.g., from the Clouds and Earth’s Radiant

Energy System (CERES), the International Satellite Cloud Climatology Project—Flux Data

(ISCCP-FD), and Global Energy and Water cycle Experiment Surface Radiation Budget

(GEWEX-SRB) are available at coarse spatial resolution (100 km? and combining these

information with EC tower measurements to train ANN could also introduce additional errors

due to the spatial scale mismatch, is therefore out of scope of the present study.

Figure 10 shows the time series comparisons between observed ETq and ETq preq for four
different stations representing different latitude bands of both the Northern (Sweden) and
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Southern (Brazil, Australia, and South Africa) hemispheres. These reveal that the temporal
dynamics of ETyq is in general consistently captured by the proposed method throughout year.
In Br_SP1, relatively less seasonality was found in both observed and predicted ET4. This is
because SP1 is a tropical site having an annual rainfall of 850-1100 mm most of which is
evenly distributed between March to end of September. The peaks in ETq4 values during the
beginning of year and October onwards coincided with the periods of increased Rs, and
ETd prea Could reasonably capture the observed trends during both rainy and non-rainy
periods. Similarly the low ETq pattern (0.1 to 2 MJ m™ d™) in the hot arid climate of South
Africa (Za-Kru) could also be reasenable-reasonably captured in ETq pred (Fig. 10). ETq_preq in
the other Southern hemisphere (AU-Tum) and Northern hemisphere (SE-Fla) sites have
shown distinct seasonality (high summer and low winter ET4) coinciding with the observed

ETq patterns.
3.3 Comparison with existing ET upscaling methods

ET4 pred from Rs-based method was intercompared with two other upscaling schemes (RsTOA
and EF) over 41 FLUXNET validation sites for two different thme-ef-daytimetime-of-day,
1100h and 1330h, the statistics of which are given in Table 2. This comparison was also

carried out according to different t classes as defined in section 2.2.3.

From Table 2 it is apparent that the Rs-based method has generally produced relatively low
RMSE (1.21 to 1.99 MJ m? d™*) and MAPE (23 to 50%) as well as relatively high IA (0.72 to
0.84) as compared to RsTOA and EF-based upscaling methods. The EF-based upscaling
method appears to systematically underestimate ET4 for both forenoon and afternoon as
evident from high negative bias compared to the other two methods (Table 2). On comparing
Rs and RsTOA methods, Rs-based method performed relatively better than the RsTOA scheme
for low magnitude of 7 (i.e., under predominantly cloudy-sky). However, the results suggest
comparable performance of RsTOA-based approach under clear sky conditions which are
reflected in lowest RMSE (1.09 and 1.13 MJ m® d™) in ETy_preq as compared to the other ¢
classes. In general, all the schemes performed relatively better from the afternoon upscaling as
compared to the morning upscaling (as evidenced in higher R? and lower bias) (Table 2)

which is in agreement with the findings from Ryu et al. (2012). Due to their comparable error
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statistics, an intercomparison of Rs and RsTOA-based methods of ET; upscaling was also

carried out across different biomes.

Biome specific evaluation of Rs-based ETy preq (Fig. 11) revealed lowest RMSE and highest
R? both in the grassland (GRA) (0.68 to 1.14 MJ m™? d*; 0.53 to 0.79) and shrubland (SH)
(0.66 to 1.76 MJ m* d*; 0.60 to 0.82) whereas the RMSE was comparatively high over the
tropical evergreen broadleaf forests (EBF) (1.41 to 2.02 MJ m™ d™*) and deciduous broadleaf
forests (DBF) (1.94 to 2.55 MJ m™ d). Similar evaluation with RsTOA-based method
revealed the lowest RMSE and highest R? in the grassland (0.64 to 1.14 MJ m? d™; 0.61 to
0.84), and highest RMSE in EBF, DBF, and evergreen needleleaf forests (ENF) (1.57 to 2.05
MJ m?d* 1.2 to 2.25 MJ m? d™ and 0.93 to 4.02 MJ m? d™) (Fig. 11c and 11d). Higher

ETyq preq_errors in forests are related to the predominant cloudy-sky issue as described earlier.

Tropical evergreen broadleaf forests (and forests in general) have high ET, water tends to re-

cycle locally and generate rainfall. Therefore, cloudy sky conditions are more frequent at

tropical evergreen broadleaf forest and other forests types than at grassland and shrublands. In

the biome specific ETy preq_error statistics (Fig. 11), relatively large bias in crop ETy preq IS

introduced due to the inclusion of irrigated agroecosystems in the validation. In irrigated

agroecosystems, day-to-day variation in soil moisture is not substantial and ETy is

predominantly controlled by the net radiation. Therefore, the inclusion of soil moisture in the

current ANN framework is unlikely to improve ETy preq  Statistics in the irrigated

agroecosystems. Further having many explanatory variables (e.g., land management,

irrigation statistics, anthropogenic factors) to train the ANN, we risk overfitting the model and

hence introducing bias. It is also evident that both Rs and RsTOA-based method of ETy

estimation would be better suited for natural ecosystem e.g., in the Amazon basin or in the

forest ecosystems where significant hydrological and climatological projections are

emphasizing the role of ETq4 to understand the resilience of natural ecosystems in the spectre

of hydro-climatological extremes (Harper et al., 2014; Kim et al., 2012). The performance of

the method in the semi-arid shrublands appear to be promising (Fig. 11) and therefore the

method seems to be credible under water-stressed environment also.

Given this analysis was based on FLUXNET sites distributed across 0-90 degrees latitude

north and south, the training datasets covers substantial climatic and vegetation variability.

The percentage distribution of the training data according to vegetation type was; 23% crops,
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31% deciduous broadleaf forest, 10% evergreen broadleaf forest, 20% evergreen need leaf

forest, 8% qrassland, 7% shrubs and 1% aquatic as indicated in table S1. The number of

grassland and shrubs as indicated were relatively less as compared to the crops and forests

sites. However, biome specific error statistics (Fig. 11) indicted the absence of any systematic

errors due to vegetation sampling with the exception of EBF. Availability of more EBF sites

in the training datasets is expected to reduce the cloudy-sky errors substantially, due to the

assimilation of more cloud information into the Rs-based ANN training.

The tendency of positive bias in ETy pred from both Rs and RsTOA in clear skies from
afternoon upscaling is partly explained by the fact that, during the afternoon the values of
both Rs and RsTOA reached maximum limit and dominates their daily values (Jackson et al.,
1983). The post afternoon rate of reduction in ET does not coincide with the shortwave
radiation due to stomatal controls on ET, and the total water flux from morning to afternoon
(0700h to 1300h) is generally greater than the total water flux from post afternoon (1500h
onwards) till sunset. Therefore multiplying 1330h ET; with high magnitude of Rsq4/Rs; or
RsaTOA/RsiTOA might weuld-tikehy-lead to an overestimation of ETy preq in the clear sky days.

Since extraterrestrial shortwave radiation is not affected by the clouds, ETy pred from RsTOA
performed comparably with the Rs-based ETq preq With increasing atmospheric clearness (i.e.,
for the higher levels of daily 7). However, increased differences in the RMSE of ETg pred
between Rs and RsTOA upscaling in the predominantly cloudy days indicates that more
deviations can be expected in ETq preq from these two different method of upscaling under
principally overcast conditions (Tang et al., 2013). This happens because the ratio of Rs4TOA
IRsiTOA is not impacted by the clouds and the magnitude of this ratio becomes markedly
different from Rsq/Rs; ratio in the presence of clouds, which leads to the differences in ETq_pred
between them. The Rs-based method is relatively efficient to discriminate the impacts on ET
by Rsg/Rsi due to the clouds. The generally good performance of Rs-based method and
comparable error statistics with RsTOA-based ETq4 estimates are consistent with the findings

of Cammalleri et al. (2014) and Van Niel et al. (2012). As shown in Table 2, relatively lower

RMSE of RsTOA-based ETy preq_fOr atmospheric transmissivity class above 0.75 reveals that

under pristine clear sky conditions RsTOA can be successfully used to upscale ET;. However,

one of the main reasons for the differences in RMSE between Rs and RsTOA method for daily

transmissivity above 0.75 could be due to the fact that if ET; upscaling is performed from a
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cloudy instance for a predominantly clear sky day, then such RMSE difference between the

two different upscaling methods is expected. These results also revealed the probability of a

hybrid ET; upscaling method by combining cloud information or SM and P in Rs-method (for

transmissivity between zero to 0.5) and RsTOA-method (for transmissivity greater than 0.5).

However this hypothesis needs to be tested further.

The systematic ET4 underestimation by EF-based upscaling method and nearly similar pattern
of bias from two different time-of-daytimetime-of-day upscaling (Table 2) further points to
the fact that the concave-up shape of EF during daytime (Hoedjes et al., 2008; Tang et al.,
2013) will tend to underestimate ETq if EF is assumed to be conservative during the daytime.
EF remains conservative during the daytime under extremely dry conditions when ETjy is
solely driven by deep layer soil moisture. The systematic underestimation of ET4 from EF-
based upscaling method corroborates with the results reported by other researchers
(Cammalleri et al., 2014; Delogu et al., 2012; Gentine et al., 2007; Hoedjes et al., 2008)
which suggests that the self-preservation of EF is not generally achieved, and this systematic

underestimation of ET4 can be partially compensated if EF-based ET; upscaling is done from
morning 0900h or afternoon 1600h time-of-daytimetime-of-day.

We further resampled ETy (both predicted and observed) from daily to 8-day, monthly, and
annual scale, and statistical metrics from the three different upscaling methods at three
different temporal scales are shown in Fig. 12 and Table 3. Averaging ETq at 8-day, monthly
and annual scale substantially reduced the RMSE to the order of 60 to 70% for all the three
upscaling methods. The Rs-based upscaled ET4 from morning and afternoon showed reduction
in RMSE from 1.79 MJ to 0.57 MJ and 1.74 MJ to 0.51 MJ from daily to annual ET,
respectively. For the other two upscaling method these statistics varied from 1.85 and 1.89 MJ
to 0.62 and 0.53 MJ (RsTOA method), and 2.16 and 1.33 MJ to 2.20 and 1.31 MJ (EF
method) (Fig. 12 and Table 3). The impacts of daily cloud variability might have smoothed
out in 8-day, monthly and annual scale which led to reduced RMSE and higher correlation
between ETqy preq and ETy ons. Nearly similar error statistics in ETq preq from both the morning
and afternoon upscaling also substantiates the findings of Ryu et al. (2012) and greatly
stimulate the use of either morning satellite (i.e., Terra) or after satellite (i.e., Aqua) to upscale
ET; to ET4 or 8-day mean ETg.
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The principal limitation of the approach is the dependence of ET4 and Rsq_on single snapshot

of ET; and Rs;i. Although hourly Rs data from geostationary satellite are becoming available;
but these are available as sectorial products (i.e. for particular continents) instead of full
global coverage. Ongoing efforts to develop geostationary based data by merging multiple
geostationary satellites tend to overcome this limitation.

3.4 Impact of energy balance closure on ETy pred

FLUXNET EC sites have long been identified to be prone to surface energy budget

imbalance, which might lead to (£20%) to (+40%) under measurement of latent heat fluxes.

In order to assess the impacts of surface energy balance (SEB) closure on current ETy

prediction, we further compared the error statistics of Rs-based ETg yreq (Table 4) for both

‘closed’ and ‘unclosed’ surface energy balance datasets. These are the subsets of the data

where all the four SEB components (AE, sensible heat flux, ground heat flux, and net

radiation) were available and SEB was closed by the Bowen ratio closure method (Foken,
2006). Table 4 revealed substantially low RMSE (10 to 60%), R? (8 to 100%) and MAPE (1

to 75%) in ETy pres_ When ET; upscaling is done by ‘unclosed’ SEB. A consistently high

positive mean bias (0.63 to 3.83) in ETy preq with ‘closed” SEB was also noted (Table 4).

Although, various methods exist to close the surface energy balance, but, the impact of

various SEB closure methods on ETy preq Statistics is beyond the scope of the current study. It

is also important to mention that in the satellite based ET; retrieval, net available energy is

partitioned into ET and sensible heat flux with the implicit assumption of SEB closure.

Therefore, application of the current ANN framework is expected not to impact the remote

sensing based ET; to ET4 upscaling. However, for the validation of remote sensing based ETy4

retrievals, surface energy balance fluxes from eddy covariance measurements need to be

closed.

3.5 Sensitivity of ANN derived ETy preq to biome selection

A sensitivity analysis of ANN derived Rs-based ETq preq_revealed variable sensitivity of the

ANN framework to the biome selection. The coefficient of determination (R?) varied between
0.71 to 0.84 and RMSE between 0.96 to 2.10 MJ m™ d* across three different scenarios of
ANN training and validation (Fig. 13). However, RMSE was found to be relatively high in

forests in Case2, where ANN was trained by using the data from crops, grasslands and
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shrublands only. For the Casel and Case3, no substantial difference was noted (Fig. 13). This

therefore revealed the fact that the inclusion of forests in ANN training leads to lower errors

in ETqy preq OVer non-forest biomes, although the reverse scenario in not likely to be true. Since

forests generally have high ET, water recycling tends to be more over the forests which

produces substantial rainfall, variable atmospheric water vapor, associated cloudiness, and

radiation. Cloudiness is a phenomenon that significantly influences the reliability of a model

to predict incoming solar radiation as they are directly related to each other. Therefore, when
Rs-based ANN is trained with data from forests, the model assimilates information on a

diverse range of radiative forcings which broaden their applicability in other biomes. This

also emphasizes the fact that the performance of such ANN-based approach is primarily

sensitive to their training over a broad spectrum of atmospheric conditions.

4 Summary and Conclusions

Given the significance of ET4 in remote sensing based water resource management from polar
orbiting satellites, this study developed and evaluated a temporal upscaling method for
estimating ETyq from different time-of-daytimetime-of-day instantaneous ET (ET))
measurements with the assumption that the ratio between daytime to instantaneous shortwave
radiation (Rsa/Rs;j) is the predominant factor governing ET4/ET; ratio. However, since Rsq IS
not directly measurable from the polar orbiting satellites, we trained an ANN with the

FLUXNET observations of Rsi and Rsy, and validated the model to predict Rsy over
independent sites, followed by using Rs¢/Rs; ratio for converting ET; to ET, we-first-developed
a-robust-ANN-based-method-to-upseale R, -to-R —folowed-by-using-the-ratto-of Re /R i-to
further-upseale ET-to-EF4. The overarching goal of this study is to provide an operational and

robust ET; upscaling protocol for estimating ET4 from any polar orbiting satellite. The datasets

used for the ANN model development covers a wide range of biome, climate, and variable

sky conditions. Therefore, we assume the Rsq prediction from ANN to capture a broad

spectrum of radiative forcing, which is also reflected in the independent validation of Rsq and

ETqy (Fig. 5, Fig. 7, Table 2). However, the performance of this model for satellite retrieval of

Rsq_(from Rsj) is dependent on the accuracy of Rs; retrieval (Loew et al., 2016). Also, the

distribution of sites over the tropics, Africa, and South East Asia are poor, and more sites over

these reqgions are expected to make the ANN model performance more robust.
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Based on measurements from 126 flux tower sites, we found Rs-based upscaled ETy to
produce a significant linear relation (R? = 0.65 to 0.69), little bias (-0.31 to -0.56 MJ m™ d™)
(appx. 4%), and good agreement (RMSE 1.55 to 1.86 MJ m™ d™) (appx. 10%) with the

observed ET4. While the exoatmospheric shortwave radiation driven ET; upscaling method

(i.e., RsTOA-based) appeared to produce slightly lower RMSE (10% lower) under cloud-free

conditions (Table 2), global shortwave radiation driven method (i.e., Rs—based method)

demonstrates more robust performance and was found to be better under cloudy conditions.

Despite Rs—based method yielded relatively better overall accuracy in ETq4 prediction (i.e.,

ET4 pred) Statistics when compared with the RsTOA and evaporative fraction based (EF-based)

method, statistical analysis of ETq preq accuracy of different temporal upscaling methods (as
discussed in section 3.3) suggests that Rs and RsTOA to produce commensurate results under
coarse temporal resolutions (Table 3). Therefore, at the coarse temporal scale (8-day and

above), any of these two methods (Rs and RsTOA) can be used for ET; to ET4 upscaling.

The proposed upscaling method is based on the idea that instantaneous ET/Rs is equal to daily

ET/Rs, although it implicitly includes the stomatal controls on ET observations mediated by

the vegetation. The cases where ET; is low due to water stress induced strong stomatal

control; low magnitude of ET will also be reflected in upscaling ET; to ET4 (according to eq.

1). However, to account for any carry over effects of the stomatal control on ETy, inclusion of

longwave radiation would likely to improve the scheme. Stomatal control is significantly

dependent on the thermal longwave radiative components, and, therefore, the relative

proportion of downwelling and upwelling longwave radiation is expected to be a stomatal

constraint. However, the availability of longwave radiation measurement stations in the

FLUXNET datasets is limited to formulate ANN and evaluate this hypothesis. In general, the

stomatal and biophysical constraints are imposed in state-of-the-art thermal remote sensing

based ET; retrieval schemes, and, therefore the ANN framework can be applied to upscale

remote sensing based ET; to ETy4. Also, relatively good performance of the model in semiarid

shrubland also indicated the applicability of the method in water stressed ecosystems where

stomatal controls are predominant.

Among all the upscaling method tested, Rs—based method carries maximum information on
the cloudiness and produced generally lowest RMSE, low bias (Table 3), and, therefore,

overall the preferably robust scaling mechanism (at the daily scale) among all the other
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methods tested. The true added value of the ANN is for an operational ET4 product from polar

satellites. Currently, the polar Earth orbiting satellites provide us with ET; only. However, for

most hydrological and ecosystem modeling applications, ETq is needed. Therefore, for studies

that will opt to apply Rs—based method as a scaling algorithm, Rsq will be easily available for

any measurement of Rs; by the satellite using the ANN. However, upscaling large-area

satellite-based ET; by using retrieved Rsi would require accurate Rs; retrieval technigues,
which are currently commonplace (Ahmad et al., 2015; Boulifa et al., 2015; Dahmani et al.,
2016; Hasni et al., 2012; Li, Tang, Wu, & Liu, 2013) to support regional scale hydrological
applications. Of the two other upscaling methods, RsTOA could be easily applied over large
areas, had lower errors than EF, had second best RMSE, and overall lowest bias among the
two. We conclude that using modelled Rs to upscale ET; at daily scale appears to be viable for

large-area hydrological remote sensing applications from polar orbiting satellites irrespective

of any sky conditions.
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Table 1: Statistical analysis of the performance of ANN in predicting Rsy under varying sky
conditions represented by four different classes of daily atmospheric transmissivity (t). Here the
statistical metrics of Rsy preq fOr two different upscaling hours (1100 and 1330 h) are presented.

Fime-of-
daytimeTime- T R? | RMSE (MIm?d™") | IA | MAPE | Bias (MJm?d™)
of-day (h)
T 0.67 1.84 0.67 | 53.56 1.12
T 0.79 2.45 0.80 | 16.69 0.59
1100
T3 0.88 2.30 0.82 9.17 -0.74
T 0.98 0.63 0.95 | 1.69 0.08
T 0.65 1.77 0.67 | 51.50 1.06
T 0.81 2.44 081 | 16.83 0.69
1330
T3 0.89 2.23 0.83 8.94 -0.85
T4 0.98 0.89 0.95 2.40 -0.46
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Table 2: A summary of ETy error statistics by comparing the performance of Rs-based, RsTOA-based and EF-based ET;
upscaling methods with regard to different sky conditions. Here t, represents low atmospheric transmissivity due to high
cloudiness while t, represents high transmissivity under clear sky conditions.

Fime-of- R? RMSE (MJ m?d™?) IA MAPE Bias (MJ m?d™)
daytimeTime- | <
of-day (h) Rs | RsTOA | EF | Rs | R;TOA | EF | Rs | RsTOA | EF Rs | RsTOA | EF Rs | RsTOA | EF
tu | 049 | 032 | 032 | 134 | 165 | 207 | 072 | 067 | 071 | 5014 | 6670 | 6419 | -0.13 | -0.04 | 0.05
n, | 072 | 070 | 069 | 173 | 181 | 1.93 | 081 | 078 | 0.69 | 2647 | 3241 | 3642 | -021 | -019 | -0.95
He | 072 | 073 | 079 | 199 | 194 | 238 | 081 | 079 | 059 | 2469 | 2566 | 4037 | -024 | -037 | -1.78
t, | 077 | 081 | 068 | 132 | 113 | 200 | 084 | 081 | 049 | 3217 | 3002 | 5543 | 005 | -019 | -1.34
| 052 | 034 | 0290 | 121 | 168 | 234 | 073 | 069 | 071 | 4829 | 66.09 | 68.14 | -0.11 | 008 | 0.12
n | 073 | 072 | o071 | 171 | 193 | 186 | 082 | 079 | 071 | 2612 | 3371 | 3533 | -001 | 024 | -0.88
o T3 0.75 0.75 0.76 1.89 1.96 2.43 0.82 0.82 0.61 23.17 25.82 41.65 0.09 0.14 -1.75
T4 0.79 0.86 0.80 1.32 1.09 1.86 0.84 0.86 0.49 29.54 26.59 53.91 0.10 0.11 -1.38
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Table 3: Error statistics of ETq ,req at four different temporal scales from three ET; upscaling methods.

Fime- R RMSE (MJ m?d™) IA MAPE Bias (MJ m?d™)
o
daytime Temporal
Time- scale
of-day Rs RsTOA EF Rg RsTOA EF Rs RsTOA EF Rs RsTOA EF Rs RsTOA EF
(h)
1100 Daily 0.71 0.72 0.71 1.79 1.85 2.16 0.82 0.80 0.67 28.80 32.98 57.00 0.19 0.22 121
8-days 0.86 0.84 0.85 117 1.22 1.65 0.87 0.86 0.67 18.50 20.63 46.96 0.19 0.22 1.16
Monthly 0.89 0.88 0.88 0.99 1.04 1.61 0.89 0.67 0.67 15.52 17.22 49.72 0.19 0.22 1.16
Annually 0.92 0.91 0.93 0.57 0.62 1.33 0.87 0.84 0.54 11.12 12.54 45.88 0.19 0.22 121
1330 Daily 0.75 0.74 0.69 1.74 1.89 2.2 0.83 0.82 0.67 26.59 29.89 56.45 -0.04 0.17 -1.18
8-days 0.87 0.86 0.84 111 121 17 0.88 0.88 0.68 16.80 17.97 50.36 -0.04 0.17 -1.18
Monthly 0.90 0.90 0.87 0.93 1.00 1.59 0.90 0.89 0.68 13.69 14.85 48.08 -0.04 0.17 -1.18
Annually 0.93 0.93 0.92 0.51 0.53 131 0.88 0.88 0.54 9.00 9.70 44.13 -0.04 0.17 -1.18
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Table 4: Evaluation of the Rs-based ANN predicted ETy (ETy preq) €rror statistics based on ‘closed’ (EBC) and unclosed’ (EBO) surface energy balance
under varying sky conditions represented by four different classes of daily atmospheric transmissivity (t). Here t, represents low atmospheric
transmissivity due to high cloudiness while t, represents high transmissivity under clear sky conditions. The statistical metrics of ETy yreq for two
different upscaling hours (1100 and 1330 h) are presented.

Time-of- R RMSE (MJ m-2 d-1) 1A MAPE Bias (MJ m-2 d-1)
day () C

EBO EBC EBO EBC EBO EBC EBO EBC EBO EBC

ul} 0.37 0.17 2.96 331 0.71 0.57 87.21 86.49 0.66 112

1100 3 0.68 0.54 1.64 2.94 0.78 0.68 28.66 38.01 -0.10 0.65

T 0.75 0.61 177 3.20 0.76 0.66 25.31 37.82 067 134

T4 0.66 061 109 340 071 0.30 21.77 85.80 -0.31 3.83

T 035 0.25 202 270 071 0.60 69.78 78.18 037 087

1330 ) 0.76 0.5 154 3.27 0.81 0.69 27.56 40.98 0.23 0.63

T 0.77 0.59 1.66 3.18 0.80 0.70 23.16 34.17 -0.46 0.76

Ts 0.84 0.64 0.98 2.46 0.76 0.66 23.30 43.89 -0.56 123
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Figure 1. A conceptual diagram of the methodology. On the left side is a representation of predicting
daily incoming short wave radiation (Rsq preq). The ANN is trained to learn the system response to a
combination of explanatory variables i.e. instantaneous incoming short wave radiation (Rsg),
instantaneous exo-atmospheric shortwave radiation (Rs;TOA), daily exo-atmospheric shortwave
radiation (RssTOA), solar zenith angle (&), and day length (Lp), by being fed with a sample data of
observed daily incoming short wave radiation (Rsq ons) Which is the dependant variable. On the right
side are methods of upscaling instantaneous (ET;) to daily ET (ETg4) using our Rs—based method (a)
and other two approaches (b, ¢) are the Rstoa and EF-based methods respectively used which are used

for comparison.
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Figure 2. Schematic representation of a simple artificial network model. The artificial neuron has
five input variables, for the intended output. These inputs are then assigned weights (W) and bias (b),
and the sum of all these products () is fed to an activation function (f). The activation function
alters the signal accordingly and passes the signal to the next neuron(s) until the output of the model

is reached (Mathworks, 2015).

Hidden Layer

Input '
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Figure 3. Distribution of 126 sites of the FLUXNET eddy covariance network used in the present
study with 85 and 41 sites for training and validation, respectively between the years 1999 and 2006.
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Figure 4. Statistical metric of Rsq pres by ANN for different time-of-daytimetime-of-day. As the
study is intended for remote sensing application, we demonstrate the potential of the method for
future research in the case where satellite will be used and as such we pick MODIS overpass time
as an example to highlight on the predictive ability of the ANN at the specific overpass times.
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Figure 5. Scatter plots between Rsy ons VEISUS Rsg preq ¥ersus—Rsq—oss—for different levels of daily
atmospheric transmissivity classes (t) from (a) 1100 and (b) 1330 hours upscaling. Here t;—74
represent daily atmospheric transmissivity of four different class, 0.25>1t>0, 0.50>t>0.25,
0.75>1>0.50, and 1>1>0.75, respectively, with 1, signifying high degree of cloudiness (or overcast
skies) whereas 1, indicates clear skies.
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Figure 6. Statistical summary of ETqy preq for different time-ef-daytimetime-of-day using Eq. (1)
based on Rs;i and Rsq preg- AS the study is intended for remote sensing application, we once again
demonstrate the potential of the method for future research in the case where satellite will be used
and as such we pick MODIS Terra-Aqua overpass time.
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Figure 7. ETy_preq Obtained through eq. (1) versus ETy o for different levels of t from both
forenoon (a) and afternoon (b) upscaling (1100 and 1300 h daytime hours).
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Figure 8. Assessing the statistical metrics of ETy peq (Using eq.1) for different levels of daily
atmospheric transmissivity classes (representing cloudy to clear skies) for both 1100h and 1330h

time-of-daytimetime-of-day ET,; scaling.
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Figure 9. An intercomparison of ETg_preq error statistics (RMSE and MAPE) for different levels of
atmospheric transmissivity classes based on two different ANN training (ANN trained with
shortwave radiation and astronomical variables only; and ANN trained with radiation, astronomical
variables, soil moisture and rainfall) based on 1100h and 1330h time-of-day ET; scaling.
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Figure 10. Time series comparison between observed and predicted ET, for four representative sites
located in Australia, Brazil, South Africa and Sweden.
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Figure 11. Biome specific error characteristics of ETg yreq displaying the box plots of RMSE and
coefficient of determination (R?) from both Rs-based and RsTOA-based ET; upscaling. The biome
classes are evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), deciduous broadleaf
forest (DBF), shrubland (SH), cropland (CRO), and grassland (GRA), respectively.
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Figure 12. Statistical metrics of ETy_preq from three different ET; upscaling approaches [shortwave
incoming radiation (Rs), exo-atmospheric shortwave radiation (RsTOA) and evaporative fraction
(EF)] at different temporal scales based on ET; measurements at (a) 1100h and (b) 1330h time-of-
daytimetime-of-day.
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Figure 13. lllustrative examples of the sensitivity of ETq preq €rror statistics (R? and RMSE) to the
different biome type scenarios of ANN training. Here, Casel consist of training the ANN with
forest (FOR) datasets and evaluating ANN predicted ETj statistics on non-forest biomes, Case2
consist of training the ANN with non-forest datasets and evaluating ANN predicted ET, statistics
on forest biomes, Case3 consist of training the ANN with both forests and non-forest datasets and
evaluating ANN predicted ETj statistics on all the biomes.

(a) R? of ETq_prea for three different ANN training scenarios
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