
Dear Editor, 
 
In response to the reviewers’ comments and your recommendations we have 
implemented numerous changes to the manuscript. The primary changes 
include:  
 

1) Additional climatological and physiographic information on study 
catchments, including a “periods of record” figure and an illustrative figure 
showing a typical study catchment flow regime.  

2) Enumeration of four primary research questions, introduced in the 
introduction, around which the methods, results, and discussion are 
organized.  

3) Two new conceptual figures designed to simplify comprehension of the 
numerous methods of analysis; one figure demonstrates the peak 
selection algorithm (figure 4), and the other presents a decision tree (figure 
3; old table 2 was removed) illustrating the 4 method choices and their 
consequences on recession extraction.  

4) Clarification edits to results figures (better labeling and organization), as 
well as a total redesign of the Mean Absolute Percent Error figure (new 
Figure 6), and the shared vs. unshared analysis (new Figure 9).  

5) Reorganization of the results and discussion sections to ensure discussion 
topics are not mixed with results.  

6) Addition of a fifth author, Andrew Veenstra of UC Berkeley, who has 
assisted with new analyses and with the development of recession 
analysis software, which is now linked in the acknowledgements.  

 
The reviewers’ comments certainly identified areas for improvement and have 
strengthened the paper, and we thank them for their input and suggestions. 
Please find below our responses to the reviewers’ comments, as well as the 
marked-up version of the revised manuscript. We look forward to your evaluation 
of this revision. 
 
Yours truly, 
 
David Dralle 
 



Response to reviewer 1 
 
We thank the reviewer for constructive feedback and positive comments.  
 
Response to major comments 
 
M1: We completely agree with the reviewer; more information should be given 
concerning catchment features, size, and climatology. A more detailed 
description of the study catchments has been added to Section 2.1. The abstract 
also highlights that results are relevant to watersheds that are relatively steep, 
forested, and rain-dominated. Additionally, a new figure has been added to 
illustrate a representative year of seasonally dry streamflow data, from the Elder 
Creek catchment: 

 

We also include the following figure to illustrate the periods of record of the study 
catchments:  

 



 

 
M2: The reviewer’s comment summarizes the purpose of our work.   
 
M3: We thank the reviewer for noticing this. Snow is an unimportant feature in 
our catchments, which are entirely rain dominated coastal watersheds. We have 
made this clearer in the revised manuscript, which includes more information on 
the features, climatology, and flow regime of the study catchments.   
 
Response to minor comments 
 
m1: The reviewer is correct. However, we included this citation because Ye et al. 
(2014) extract individual, contiguous periods of recession with constraints similar 
to those mentioned in many event-scale analyses. This is contrasted with 
Brutsaert and Nieber’s (1977) proto-typical “bulk” recession analysis method, 
which completely avoids the issue of extracting contiguous segments.  
 
m2: We are grateful for the reviewer’s attention to detail. We have reviewed our 
citations list and fixed these issues.  
 
Note: Please see response to Reviewer 2 for more details concerning 
manuscript re-organization, as well as new figures.  



Response to reviewer 2  
 
We thank the reviewer for an extremely thorough review and for numerous 
constructive suggestions. In the following, we have addressed the reviewer’s 
primary issues, which relate to the contextualization of the manuscript objectives 
and findings, manuscript ordering and organization, and visualization of data.  
 
Response to major comments 
 
M1: There are two major additions to the introduction: 

1) We have included brief descriptions of the four method choices in an 
enumerated list, providing more justification for these choices.  

 
On a related note, the start of Section 2.2. defends the four method 
choices as the most “fundamental” choices that one must make for event- 
scale analysis: 

 



2) We have introduced a list of four primary research questions, around 
which the Results and Discussion sections have been re-organized:  

 
 
M2: A more detailed description of the study catchments has been added to 
Section 2.1. The abstract also highlights that results are relevant to watersheds 
that are relatively steep, forested, and rain-dominated. Additionally, a new figure 
has been added to illustrate a representative year of seasonally dry streamflow 
data, from the Elder Creek catchment: 

 
 
M3: We have drastically changed figure presentation so that the MSCL coding is 
rarely referenced. In the one case that it is mentioned (Figure 8), we now include 
MSCL letters under the binary codes to help readers identify this 
correspondence. Please see m17 for figure details.  
 
 
 
 
 
 
 
 
 



M4: We agree with the reviewer; the approach could be more clearly illustrated. 
We have included a new figure, which corresponds to the text description:  

 
The “concavity” and “decreasing” recession-end concepts are also illustrated in 
the new decision tree (Figure 3), detailed below in M7. 
 
M5: The reviewer makes a good point. The edited manuscript now includes an 
outline of these research questions in the introduction. A fourth research question 
(addressing the antecedent wetness exercise) has been added as well; see 
comment m15.  
 
M6: This is a good question. Instead of single values for a, b, and Tr, our 
analyses provide populations of these variables for each catchment. However, to 
rank catchments, we needed single number descriptors of the population. 
Obvious choices could include the mean and median for measures of central 
tendency, and standard deviation or the inter-quartile range for variability. We did 
not want the occasional erroneous fit confounding our rankings, and so we chose 
to use the median and inter-quartile range, which are robust against biasing 
effect of outlier fits. We have added language in the manuscript explaining this 
choice.  
 
 
 
 
 



M7: We agree with the reviewer; the paper could benefit from some sort of 
summary figure detailing the steps of analysis. We now include a “decision tree” 
(Figure 3) illustrating the four method choices, along with their consequences:   
 

 
 
The shared vs. unshared analysis is still illustrated in Figure 5. Please see 
comment m17 for an updated figure that more clearly illustrates the connection 
between the shared vs. unshared comparisons and the Mann Whitney U test.  
 
M8: We thank the reviewer for this observation. We have thoroughly re-
organized the methods/results/discussion to clarify the content of these three 
sections. Additionally, the sections are now more tightly organized around the 
research questions introduced in the introduction.  
 
 
 
 
 
 
 
 



M9: We agree with the reviewer. To address this comment, we have first 
introduced a new figure showing the period of record of all catchments:  

 
 
 Additionally, we performed some very basic stationarity tests to ensure results 
are not sensitive to the period of record. The following text has been introduced 
to the start of the Results section:  
 

 
 
M10: We agree that the numerous box plots may be somewhat un-inspired. For 
full details on numerous figure changes, see m17.  
 
Response to minor comments 
 
m1: The edited abstract includes recommendations, and limitations based on 
study catchment features.    



 
m2: This has been changed.  
 
m3: We thank the reviewer for mentioning this important citation; it has been 
added.   
 
m4: Thank you, this would be useful to include. We have included new text 
addressing motivations of event-scale analysis:  
 

 
 
m5: Howe (1966) has been cited as an older example of a manuscript which 
includes a 10 day minimum recession length. We also point out that most lumped 
recession analyses do not choose minimum recession lengths, owing to the 
derivative based method of Brutsaert and Nieber (1977).  
 

 
 
m6: The fitting procedures have been more thoroughly described:  

 
 
 
 
 
 
 
 



 
 
m7: The scale correction procedure has been more thoroughly described:  
 

 
 
m8: We have clarified this.  
 
m9: We have clarified this.  
 
m10: We agree with the reviewer and have removed all but the last two 
sentences of the first paragraph in Section 3. The description of the Spearman 
rank has been relegated to the methods section.  
 
m11: New figures have been added. See m17 for an overview.   
 
m12: We clearly label figures that present Elder Creek results. 
 
m13: We have clarified this reference.   
 
m14: The reference to Figure 4 has been removed. The important results here 
are that some measures (e.g. a ) were found to be considerably more robust with 
respect to ranked analysis than others (e.g. Tr). This has implications for 
comparative recession analyses, where the relative values of recession 
measures are used to classify or contrast catchments. We have made this 
clearer in the discussion.   
 
m15: We have transferred this analysis to the methods section; it is now used to 
address the “fourth” research question added to the introduction. 
 
m16: Contributions have been added.  
 
 
 



m17: We agree with the reviewer; most plots could be re-arranged to better 
facilitate and match the discussion section. The following new/updated figures 
have been added:  
 

1) New Figure 6 (MAPE plot): Now lumped by concavity and linearity (as the 
reviewer suggested), the two important method choices highlighted in the 
discussion. Given that the other method choices were not found to be 
important, this greatly simplifies the presentation. Additionally, all binary 
references to the methods were removed and the actual method choices 
are labeled:  

 
 

2) New Figure 8 (recession measure distributions for Elder Creek): We have 
retained the plot of all recession measures across all method combinations 
for Elder Creek. We believe at least one plot should illustrate the various 
effects of all 16 method combinations. However, we have added new 



labeling to identify these results as relevant to the Elder Creek catchment, 
and have added labeling to the horizontal axes to remind the reader of the 
correspondences between the method choices and the binary codes.  

 
3) New Figure 9 (shared vs. unshared distributions for Elder Creek): To clarify 

the connection between the Mann-Whitney U test and the shared vs. 
unshared distributions, we simplified and edited the shared vs. unshared 
distribution figure. First, we removed the binary codes referencing the 8 
combinations of the other method choices, as it is not an important detail 
for the analysis. Additionally, we only present shared vs. unshared 
distributions for two method choices: concavity and linearity. Finally, we 
highlight which distributions are identified as significantly different 
according to the Mann Whitney U test.  

 
4) Thanks to the reviewer’s comments concerning the varying periods of 

record for study catchments, we slightly altered the Mann Whitney 
sensitivity plot. We realized that differing record lengths between 
catchments may lead to discrepancies in the sample sizes between rows 
of the sensitivity plot. Therefore, we plot the ranking of sensitivities for 
each row, instead of the fraction of Mann Whitney U tests that identify 
significant differences between the shared and unshared distributions. This 
improves comparability between rows:  



 
 

5) As the reviewer suggested, we removed Table 2 and replaced it with a 
decision tree (see M7).  

 
 
Bibliography 
 
Fatichi, S., V. Yu Ivanov, and E. Caporali. "Investigating interannual variability of 
precipitation at the global scale: Is there a connection with seasonality?." Journal 
of climate 25.16 (2012): 5512-5523. 
 
Botter, Gianluca, et al. "Resilience of river flow regimes." Proceedings of the 
National Academy of Sciences 110.32 (2013): 12925-12930. 
 
Dralle, David N., Nathaniel J. Karst, and Sally E. Thompson. "Dry season 
streamflow persistence in seasonal climates." Water Resources Research 
(2016). 
 
Wittenberg, Hartmut. "Baseflow recession and recharge as nonlinear storage 
processes." Hydrological Processes 13.5 (1999): 715-726. 
 
Brutsaert, Wilfried, and John L. Nieber. "Regionalized drought flow hydrographs 
from a mature glaciated plateau." Water Resour. Res 13.3 (1977): 637-643. 
 



Howe, J. W. "Recession characteristics of Iowa streams: Part I – Temporal and 
areal distribution of recession constants.” (1966).  



Event-scale power law recession analysis: Quantifying
methodological uncertainty
David N. Dralle1, Nathaniel J. Karst2, Kyriakos Charalampous1,3, Andrew Veenstra1, and Sally E.
Thompson1

1University of California Berkeley, Berkeley, CA
2Babson College, Wellesley, MA
3University of Bristol, United Kingdom

Correspondence to: David N. Dralle (dralle@berkeley.edu)

Abstract.
The study of single streamflow recession events is receiving increasing attention following the presentation of novel theoret-

ical explanations for the emergence of power-law forms of the recession relationship, and drivers of its variability. Individually

characterizing streamflow recessions often involves describing the similarities and differences between model parameters fitted

to each recession time series. Significant methodological sensitivity has been identified in the fitting and parameterization of5

models that describe populations of many recessions, but the dependence of estimated model parameters on methodological

choices has not been evaluated for event-by-event forms of analysis. Here, we use daily streamflow data from 16 catchments

in northern California and southern Oregon to investigate how combinations of commonly used streamflow recession defini-

tions and fitting techniques impact parameter estimates of a widely-used power-law recession model. Results are relevant to

:::::::::
watersheds

:::
that

:::
are

::::::::
relatively

::::::
steep,

:::::::
forested,

::::
and rain-dominatedcatchments We

:
.
:::
The

::::::
highly

:::::::
seasonal

::::::::::::
mediterranean

:::::::
climate10

::
of

:::::::
northern

::::::::
California

::::
and

:::::::
southern

:::::::
Oregon

::::::
ensures

:::::
study

:::::::::
catchments

:::::::
explore

:
a
::::
wide

:::::
range

::
of
::::::::
recession

:::::::::
behaviors

:::
and

:::::::
wetness

:::::
states,

::::
ideal

:::
for

:
a
:::::::::
sensitivity

::::::::
analysis.

::
In

::::
such

::::::::::
catchments,

:::
we show that: (i) methodological decisions, including ones that have

received little attention in the literature, can impact parameter value estimates and model goodness-of-fit; (ii) the central ten-

dencies of event-scale recession parameter probability distributions are largely robust to methodological choices, in the sense

that differing methods rank catchments similarly according to the medians of these distributions; (iii) recession parameter dis-15

tributions are method-dependent, but roughly catchment-independent, such that changing the choices made about a particular

method affects a given parameter in similar ways across most catchments; and (iv) the observed correlative relationship be-

tween the power law recession scale parameter and catchment antecedent wetness varies depending on recession definition and

fitting choices.
::::::::::
Considering

:::::
study

::::::
results,

:::
we

::::::::::
recommend

:
a
::::::::::
combination

:::
of

:::
four

::::
key

:::::::::::::
methodological

:::::::
decisions

::
to
:::::::::
maximize

:::
the

::::::
quality

::
of

::::
fitted

::::::::
recession

::::::
curves,

::::
and

::
to

::::::::
minimize

::::
bias

::
in

:::
the

::::::
related

:::::::::
populations

:::
of

::::
fitted

::::::::
recession

::::::::::
parameters.20
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1 Introduction

Streamflow recession analysis has the goal of characterizing recession behavior in terms of phenomenological models of

decreases in flow (q
:
Q, with units of [L T�1] or [L3 T�1]) over time, typically represented with a power-law differential

equation (Boussinesq, 1877; Hall, 1968; Tallaksen, 1995):

dq

dt

dQ

dt

:::

=�aq�aQ

::::

b
=) qQ

:
(t) =

✓
qQ

:
0
1�b � (1� b)at

◆ 1
1�b

. (1)5

There is no universally agreed upon procedure for performing power law recession analysis, however most approaches are

comprised of two key steps: (i) Identify and isolate periods of flow recession using the hydrograph and (optionally) other

hydroclimatic datasets – a step referred to here as "recession extraction"; and (ii) Use the isolated periods of recession to

parameterize the power law model – a step we refer to as "fitting".

Classical recession analysis performs the fitting step in a single operation: [log (q) , log (�dq/dt)]

::::::::::::::::::::
[log (Q) , log (�dQ/dt)]10

point pairs are computed for multiple recession periods, and the recession parameters are then obtained from the slope and inter-

cept of a line fitted to the [log(q), log (�dq/dt)] point cloud (e.g. Brutsaert and Nieber, 1977; Stoelzle et al., 2013; Tague and Grant, 2004; Basso et al., 2015; Clark et al., 2009; Sawaske and Freyberg, 2014; Bogaart et al., 2016)
::::::::::::::::::
[log(Q), log (�dQ/dt)]

::::
point

:::::
cloud

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Brutsaert and Nieber, 1977; Stoelzle et al., 2013; Tague and Grant, 2004; Basso et al., 2015; Clark et al., 2009; Kirchner, 2009; Sawaske and Freyberg, 2014; Bogaart et al., 2016).

This form of “lumped” recession analysis is empirically and theoretically motivated. Practically, it reasonably captures ob-

served non-linearity in the hydrograph recession. Theoretically, it uses a model form that is predicted by solutions of the15

hydraulic groundwater equations (Boussinesq, 1904; Troch et al., 2013). Lumped recession analysis has been used for inverse

modeling, the development of flow separation algorithms, characterization of aquifer properties, and parameterization of hy-

drologic models, among other applications (Vogel and Kroll, 1992; Rupp and Selker, 2006a; Rupp et al., 2004; Szilagyi et al.,

1998; Huyck et al., 2005; Bogaart et al., 2016; Tague and Grant, 2004).

Recently, several authors have attributed physical meaning to observed variability across individual recessions within a20

single catchment, triggering an increase
::
in event-scale recession analyses (Dralle et al., 2016; Ghosh et al., 2016; Ye et al.,

2014; Wittenberg, 1999; Biswal and Marani, 2010, 2014; Biswal and Nagesh, 2014; Harman et al., 2009; Mutzner et al., 2013;

Bart and Hope, 2014; Shaw, 2016; Dralle et al., 2015; Patnaik et al., 2015; Shaw and Riha, 2012; Vogel and Kroll, 1996; Chen

and Krajewski, 2016). Whereas classical, lumped recession analysis seeks a single recession model parameterization to describe

all hydrograph recessions for an individual catchment, the goal of event-scale recession analysis is to interpret variations in25

catchment response to rainfall as a function of the properties of rainfall events (e.g. Harman et al., 2009) or the catchment state

(e.g. Biswal and Marani, 2010; Shaw and Riha, 2012).
::::::::::
Motivations

:::
for

:::::::::
event-scale

:::::::
analysis

:::::::
include

::::::
testing

:::::::
physical

:::::::
theories

:::
that

::::::
predict

:::::::::
variability

::
in

::::::
power

:::
law

::::::::::
streamflow

:::::::::
recessions

::::::::::::::::::::::::::::::::::::::::::
(e.g Harman et al., 2009; Biswal and Marani, 2010),

::::::::
detection

:::
of

:::::
human

::::
land

::::
use

::::::
impacts

:::
on

:::::::::
catchment

::::
water

:::::::
balance

:::::::::::::::::::::
(e.g. Bogaart et al., 2016),

::::
and

:::::::::
prediction

::
of

:::::
extent

::
of

:::
the

::::::
wetted

:::::::
channel

:::::::
network

:::::::::::::::::::::::::::
(Ghosh et al., 2016; Shaw, 2016).30

Among the many issues associated with event-scale analysis (Dralle et al., 2015), perhaps the most challenging are the

numerous subjective choices needed to establish consistent criteria for recession identification and fitting (Westerberg and

2



McMillan, 2015). For lumped analyses, Brutsaert and Nieber (1977) established a derivative-based method, which avoids the

issue of needing to determine the precise start day of a recession event. Event-scale analyses, however, must identify the start

and end of each recession event and select one of many fitting techniques to obtain (a,b) values.

Despite the growing number of event-scale recession studies, it remains unclear to what extent the particular method of

recession extraction and fitting could alter features of the computed populations of recession parameters. If uncertainty due to5

methodological choices exceeds physically-derived variations in the recession parameters, new and less ambiguous methods

will be needed to allow empirical comparative analyses, and to test hypotheses derived from novel theories (e.g. Biswal and

Marani, 2010; Clark et al., 2009; Harman et al., 2009). Previous work has demonstrated that method dependent variability

in recession parameters in lumped analysis can be larger than natural variability between catchments (Stoelzle et al., 2013).

For event-scale recession analysis, Chen and Krajewski (2016) demonstrate sensitivity of the recession exponent to recession10

length and start time relative to a flow peak. However, no systematic study has been undertaken to examine sensitivity of both

a and b to some of the most common methodological choices made during event-scale power law recession analysis. Given the

early stage of event-scale recession exploration, it is an opportune time to determine the methodological limitations associated

with event-scale techniques, hopefully supporting inter-comparability and consistency in future work.

Analogously to Stoelzle et al. (2013) and Chen and Krajewski (2016), this study examines the sensitivity of recession15

parameter values to the various methodological choices to be made when performing event-scale recession extraction and

fitting. Unlike
::::::::::
Specifically,

::
we

::::
seek

::
to
:::::::
address

::::
four

:::::::
primary

:::::::
research

::::::::
questions:

:

:::::::
Research

::::::::
question

:
1

:
–

::::
How

::
do

:::::::::::::
methodological

:::::::
choices

::::::
impact

::
fit

::::::
quality

::
of

:::
the

::::::
power

:::
law

::::::::
recession

::::::
model?

:

:::::::
Research

::::::::
question

:
2

:
–

:::::
When

::::::::::
catchments

:::
are

::::::
ranked

:::
by

::::
fitted

::::::::
recession

:::::::::
parameter

::::::::
statistics,

::
is

:::
the

::::
rank

:::::
order

:::::::::
dependent

:::
on

::::::::::::
methodological

::::::::
choices?20

:::::::
Research

::::::::
question

:
3

:
–

::::
How

::
do

:::::::::::::
methodological

:::::::
choices

:::::
affect

::
the

::::::::
empirical

:::::::::
frequency

::::::::::
distributions

:::::
(over

:::
the

:::::
period

::
of
:::::::
record)

::
of

::::::::
recession

::::::::
parameter

:::::::
values?

:::::::
Research

::::::::
question

:
4

:
–

::::
How

:::::
might

:::::::::::::
methodological

::::::
choices

:::::
affect

:::::::::::
relationships

:::::::
between

::
a

::::
given

::::::::
recession

:::::::::
parameter

:::
and

:::::
other

:::::::
physical

::::::::
measures

::
of

::::::::
catchment

:::::
state,

::::
such

::
as
:::::::::
catchment

::::::::
wetness?

::
In

::::::
seeking

:::::::
answers

::
to

:::::
these

::::::::
questions,

:::
we

::::::::
recognize

::::
that,

::::::
unlike lumped recession analysis (Vogel and Kroll, 1992; Brutsaert25

and Nieber, 1977; Kirchner, 2009), no set of canonical methods of event-scale recession analysis have been established. We

propose breaking down the two steps of recession analysis – recession extraction and power law model parameterization – into

four methodological choices; three concerning recession extraction, and one concerning model parameterization:

1. The minimum allowable length of a recession event
:
–
::::
This

::::::
choice

:::
sets

::
a

::::::::
minimum

:::::::
duration

:::::
(units

::
of

::::
days

::
in

:::
our

::::::::
analysis)

::
for

::
a
::::::::
recession

:::::
period

::
to

:::
be

:::::::
selected

::
for

::::::::
analysis.

:::::::::
Recessions

::::
less

::::
than

:::
the

::::::::
minimum

:::::::
duration

:::
are

:::::::::
discarded.30

2. The definition of the beginning of a recession event
:
–
::::
The

::::
start

::
of

:
a
::::::::
recession

:::::
event

::
is

::::::
usually

::::::::::
determined

::
by

:
a
::::
flow

:::::
peak

::::::
filtering

:::::::::
algorithm

::::::
applied

::
to

:::
the

:::::::::
streamflow

:::::
time

:::::
series.

::::::::::
Commonly,

:::::
peaks

:::
are

::::::::
identified

:::::
using

:
a
::::::
simple

::::
flow

:::::::::
threshold,

::::::
wherein

::::
flow

::::::
peaks

::::::::
exceeding

:::
the

::::::::
threshold

:::
are

::::::
flagged

::
as

::::::::
potential

:::::
starts

::
to

:
a
::::::::
recession

:::::
event.

:

3



3. The definition of the end of a recession event
:
–
:::::::::
Recession

::::
ends

::::
can

::
be

::::::::
identified

:::
by

:::
the

:::::::::
occurrence

:::
of

:
a
::::::
rainfall

::::::
event,

:
a
::::::::
transition

:::::
from

:::::::::
decreasing

::::::::
discharge

:::
to

:::::::::
increasing

::::::::
discharge

:::::::::::::::::::::::
(dQ/dt < 0! dQ/dt > 0),

:::
or

:
a
::::::

break
::
in

:::
the

:::::::
upward

::::::::
concavity

::
of

:::
the

::::
flow

::::
time

:::::
series

::::::::::::::::::::::::::
(d2Q/dt

2
> 0! d

2
Q/dt

2
< 0),

::::::
among

:::::
other

:::::::
criteria.

4. The method of power law model fitting
:
–

:::::::::
Numerous

:::::::
methods

:::
for

::::::
fitting

:::
the

::::::
power

::::
law

::::::::
recession

::::::
model

::::
have

:::::
been

:::::::::
developed.

::::
Most

::::
such

::::::::
methods

::::::
involve

:::::
either

:::::
some

::::
form

::
of

:::::
linear

:::::::::
regression

::
on

:::
the

:::
log

:::::::::::
transformed

::::::
version

::
of

::::::::
Equation5

:
1
:::::::::::::::::::::::::::
(log [�dQ/dt] = loga+ b logQ),

:::
or

::::::::
nonlinear

::::::::
regression

:::
on

:::
the

:::::::
solution

::
to

:::::::
Equation

::
1

In this work, we select two end-member settings that define realistic methodological limits for each of the above four

choices. The resulting 16 combinations of method choices, as applied to a broad flow dataset, provide a basis for constraining

method-dependent uncertainty in the populations of recession parameters.

2 Methods10

2.1 Study sites

The analyses in this study are performed using United States Geologic Survey daily streamflow data for the set of 16 U.S. catch-

ments from northern California and southern Oregon summarized in Tab.
:::::
Table 1. While recession analysis can be performed

using more frequently sampled discharge data
:::
can

:::
be

::::
used

:::
for

::::::::
recession

::::::::
analysis, we use daily data because it is the most

common choice in event-scale recession literature. The study watersheds are small to medium sized
::::::
periods

::
of

::::::
record

:::
for

::::
each15

::::::::
catchment

:::
are

:::::::::
visualized

::
in

:::
Fig.

::
1.
:

:::
The

:::::
study

:::::::::
catchments

:::
are

::::::::
relatively

:::::
steep, forested, rain-dominated catchments

:::
and situated within the U.S. western coastal

Mediterranean climate region
:::::::::::
mediterranean

:::::::
climate

:::::
region

:::::::::::::::::::::::
(Peel and Finlayson, 2007), which is characterized by a distinct

rainy season
::::
(with

:::::
little

::
or

:::
no

::::::::
snowfall), followed by a pronounced dry season during which rainfall

::::::::::
precipitation

:
makes

a minimal contribution to the water balance (Power et al., 2015). The tremendous range of moisture statesthat occur in these20

seasonally dry regions ensures that the study catchments “explore” a wide range of potential recessionbehaviors.
::::::::::::::::::::::::::::::::
(Power et al., 2015; Dralle et al., 2015).

:::::
While

:::::::
average

::::::
annual

::::::
rainfall

:::
for

:::
the

:::::
study

:::::::::
catchments

::::::
ranges

:::::
from

:::::
about

:::
1m

::
to

::::
2m,

:::
the

:::::
highly

:::::::
variable

:::::::
rainfall

::::::::::
climatology

:::::::::::
characteristic

::
of

::::::::::::
Mediterranean

:::::::
regions

::::::::::::::::::::::
(Fatichi et al., 2012) might

::
be

:::::::::
considered

:::::
ideal

:::
for

:
a
::::::::
recession

:::::::::
sensitivity

:::::::
analysis,

:::
as

:::::::::
catchments

:::::::::
experience

::
a

::::
large

:::::
range

:::
of

::::::::
recession

::::::::
behaviors

:::
and

:::::::
wetness

::::::
states.

::
A

::::::
typical

::::
year

::
of

::::::
runoff

::::
data

::
for

:::::
Elder

::::::
Creek

:::
near

:::::::::::
Branscomb,

::::::::
California

::::::
(USGS

::::::
Gage:

:::::::::
11475560)

::
is

::::::::
presented

::
in

::::::
Figure

::
2.25

2.2 Overview of the methods varied across recession analyses

:::::::::
Presumably

:::::
there

:::
is

::
an

::::::::::
unbounded

:::::
range

:::
of

:::::::::::::
methodological

:::::::
choices

::::
that

:::::
could

:::
be

:::::
made

:::::::::
regarding

:::::::::
event-scale

:::::::::
recession

:::::::
analysis.

:::
To

:::::::
constrain

:::
the

::::::::
problem,

:::
we

:::::::
address,

::
in

:::
the

:::::::
simplest

:::::::
manner

:::::::
possible,

:::
the

::::::::
decisions

::::
that

::
all

:::::::
analyses

:::::
must

::::::::
confront:

::
(i)

:::
the

::::::::
selection

::
of

::
a

::::::::
minimum

:::::::
duration

:::
of

::::
time

:::
for

:::
any

:::::::::
candidate

::::::::
recession,

:::
(ii)

:::
the

::::::::
selection

::
of

::
a
::::
time

:::::
point

:::::::::
signifying

:::
the

:::::::
recession

::::
start

::::::
(peak

::::::::
selection),

::::
(iii)

:::
the

::::::::
selection

::
of

::::::
criteria

::
to

:::::::
confirm

:::
the

:::::::::::
continuation

::
of

::
a

:::::::::
hydrograph

::::::::
segment

:::
that

::::::
merits30

::::::
analysis

:::::
(e.g.

:
a
:::::

slope
:::

or
::::::::
concavity

::::::::::::
requirement),

:::
(iv)

::::
the

:::::::
selection

:::
of

:
a
::::::

fitting
:::::::::::
methodology

:::
by

::::::
which

::
to

:::::::
analyze

:
a
:::::::

chosen

4



::::::::
recession.

::::::
While

::::
other

:::::::
choices

:::::::::::
undoubtedly

::::
have

:::::::
impacts

:::
on

:::
the

::::::::::::
characteristics

::
of

::
a
:::::::::
population

::
of

::::::::
analyzed

::::::::::
recessions,

:::
the

:::::::
selection

::
of

:::::
these

::::
four

::::::
criteria

::::::::
represent

:::
the

::::
most

::::::::::
constrained

:::
and

:::::::::::
fundamental

::
set

:::
of

::::::::::::
methodological

:::::::
choices

::
to

:::::::
explore.

:

2.2.1 Nomenclature and symbols used

To concisely describe the combinations of methods tested here, we first represent the four methodological choices with four

binary (taking values of 0 or 1) variables:5

1. Minimum recession length (M)

2. Peak selectivity (S)

3. Recession concavity (C)

4. Fitting method (L)

The extraction related variables (M, S, and C) are defined so that a value of 1 corresponds to a more restrictive extraction10

method; that is, the method choice filters out more recessions if its corresponding variable is 1 than if the variable is 0. For

example, M = 1 corresponds to a minimum recession length of 10 days, which is more restrictive than a minimum recession

length of 4 days (M = 0). Table
::::::
Figure 3 enumerates the 16 method combinations

::::
using

::
a
:::::::
decision

::::
tree,

::::::
where

::::
each

::::
level

:::
of

::
the

::::
tree

:::::::
sketches

:::
the

:::::
effect

::
of

::::
that

:::::
level’s

:::::::
method

::::::
choice

::
on

:::
the

:::::::
features

::
of

::::::::
extracted

:::::::::
recessions.

2.2.2 Defining the minimum allowable length of recession event (M)15

Nearly
:::::
Owing

:::
to

::
the

:::::::::
derivative

:::::
based

:::::::
methods

:::::::::
developed

::
by

::::::::::::::::::::::::
Brutsaert and Nieber (1977),

::::
most

:::::::
lumped

::::::::
recession

:::::::
analyses

:::
do

:::
not

::
set

::
a
::::::::
minimum

::::::::
duration

::::::::
recession

::::::
events.

::::::::
However,

::::::
nearly

:
all event-scale recession studies set a minimum duration for

chosen recession periods. Reasons for this choice vary; authors cite the removal of noise from short events (Ye et al., 2014),

the necessity of capturing late time flow processes (Chen and Krajewski, 2015), and data quality concerns related to sample

size (Shaw, 2016). Event-scale recession analyses have typically chosen a minimum of 4 to 5 days of recession for daily data20

(e.g. Shaw and Riha, 2012; Biswal and Marani, 2010), although values
:::::::
upwards

::
of

::
10

::::
days

:::::::::::::::::::
(e.g. Howe, 1966) and as low as 12

hours
::::::::::::::::::::::::::::::::::::::::::
(e.g. McMillan et al., 2014, for high frequency data) have been usedfor high frequency data (McMillan et al., 2014).

To logically examine sensitivity to minimum recession length, the ‘liberal’ and ‘restrictive’ end member values should

be chosen to be consistent with typical recession timescales of the study catchments. By fitting a linear recession model

(dQ/dt=�kQ) to a representative collection of recessions from each catchment in our dataset, we find that median recession25

response timescales (1/k [T]) range from about two to four days. To capture the important features of extracted recessions,

while also varying the minimum recession length significantly with respect to typical response times (and also without choosing

values so restrictive as to limit the size of our sample sets), we extract restricted sets of recessions using a minimum length of

ten days (M=1), and less restricted sets of recessions with a minimum length of four days (M=0).
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2.2.3 Identifying potential recession starts (S)

Ideally, rainfall data would be used to identify periods of recession. However, high-quality precipitation records are often

unavailable, and so the majority of event-scale recession analyses rely on flow data alone for recession identification. We

therefore only consider methods of recession analysis that can be applied to any daily streamflow record, with or without

rainfall data. More stringent extraction methods that require rainfall data would be expected to reduce uncertainty in recession5

analysis, as extracted recession periods with rainfall data can reasonably be expected to be a subset of those extracted without

rainfall data.

Without rainfall data, recession starts are typically identified by locating days with discharge peaks; that is, times when

dq/dt

::::::
dQ/dt

:
changes sign from positive to negative. However, some recession starts, while consistent with this definition,

do not satisfy other important criteria for robust analysis and should be excluded. Rationales for exclusion might include10

discarding minor peaks that are small relative to measurement error, or which have dynamics that would be expected to be

unresolvable on daily timescales, although few authors give a strong justification for their choices in this regard. For example,

Ye et al. (2014) discard peak flows less than the 10th flow percentile to filter noise from small events. Mutzner et al. (2013)

and Biswal and Marani (2010) choose only recession events where initial flow conditions are greater than mean annual flow

in order to avoid “minor events, which may not have significantly increased the average soil saturation, thus not triggering a15

significant response of the groundwater." Without identifying some justifiable tolerance for noise associated with small peaks,

or defining what constitutes a significant groundwater response, it is difficult to objectively determine a peak threshold below

which recessions should be excluded from analysis.

To test the effect of peak filtering decisions on recession analysis, we implement a peak selection procedure that is sensitive

to the “distinctness” of any given peak relative to the data around it (Yoder, 2009). Our scheme selects a peak if all of the20

following are true: (i) it is a local maximum; (ii) it is greater by some threshold amount (X) than the local minimum lying

between it and the previously chosen peak; and (iii) discharge decays to a local minimum by the same threshold amount before

the next greater local maximum is found.
:::
The

::::
peak

:::::::::
extraction

::::::::
algorithm

::
is
:::::::::

illustrated
::
in

::::
Fig.

::
4.

:
We define the threshold as

X = range(q)/d
::::::::::::::
X = range(Q)/d, where range(q

::
Q) = max(q

:
Q) - min(q

::
Q) is taken over the period of record. Here, d is a

tunable parameter that we set to be 50 for highly selective extraction (S=1; only larger, more distinct peaks are analyzed) and25

set to 500 for less selective extraction (S=0, a broad range of peaks are analyzed).

In most studies, once a significant discharge peak has been identified, a recession start-time, which is often lagged from

the discharge peak, is chosen. The most commonly cited rationale for this lagged recession start is to ensure the dominance

of groundwater dynamics in the recession signal, rather than overland flow processes (e.g. Biswal and Marani, 2014; Patnaik

et al., 2015). Most event-scale recession analyses lag recession starts by at least one day (Patnaik et al., 2015; Bart and Hope,30

2014; Biswal and Marani, 2014), although it is not clear that such lagging is necessary to enable proper interpretation of

event-scale dynamics (e.g. Harman et al., 2009). Fast flow processes, as well as slow, may also contribute to the hypothesized

dynamics which generate power law recession behavior. For example, Harman et al. (2009) postulate that heterogeneous

transport timescales alone give rise to power law recession dynamics, with no restriction on the “fastest allowable” timescale.
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Without a priori information that surface flow processes are a significant source of run off generation in a watershed, lagging

each recession start may be unnecessary. For example, no surface flow processes have been observed at the Elder Creek

watershed in our collection of study watersheds; all runoff is generated by a highly responsive perched water table system

(Salve et al., 2012). While adopting either approach – lagging the recession time or not – involves some risk, we seek and

analyze distinct streamflow peaks without removing any days following the recession start.5

2.2.4 Identifying the end of a recession event (C)

A number of criteria have been used to determine the end of a recession event. Without a reliable rainfall record, many event-

scale analyses halt recession extraction upon the first day where flow does not decrease, that is, as soon as dq/dt� 0

:::::::::
dQ/dt� 0

(e.g. Mutzner et al., 2013). Vogel and Kroll (1996) define the recession end as the first day of increase in the 3-day moving

average of streamflow. Shaw and Riha (2012) end the extracted recession two days before dq/dt
:::::
dQ/dt

:
changes from negative10

to positive following a recession start. Some studies use the inflection point of the recession curve – the first day following a

rainfall event for which the hydrograph is concave down – to identify the start of the extracted recession (Singh and Stall, 1971;

Wittenberg and Sivapalan, 1999). A similar concavity criterion, paired with the requirement of decreasing flow, could also be

used to define the end of a recession event. Exploring every possible combination of the the above (and other) methods would

lead to an intractably large number of methodological combinations. We therefore define two consensus strategies derived from15

the above criteria.

The first (C=0) considers a recession as any hydrograph segment with dq/dt < 0

:::::::::
dQ/dt < 0

:
following an identified peak.

The second, more restrictive strategy (C=1) requires that the raw flow time series is strictly decreasing (again, dq/dt < 0

:::::::::
dQ/dt < 0)

and classified as concave up. A recession day is classified as concave up if either the raw time series or a 3-day averaged time

series is concave up; that is, if the second difference of either the raw flow time series or a smoothed flow time series is greater20

than or equal to zero. The inclusion of the criterion based on the three day moving average has the effect of including days

with small “bumps” in concavity in the raw time series, while consideration of the raw time series ensures inclusion of days

immediately after sharply peaked events, which are often classified as convex by the smoothed time series. This simple criteria

could serve as an improvement to methods that only require dq/dt < 0

:::::::::
dQ/dt < 0, which could inadvertently extract highly

convex recessions that are likely associated with continued rainfall.25

2.2.5 Choosing a fitting procedure (L)

Fitting methods can be broken down into one of three categories: (i) linear regression or enveloping of a binned collection

of [log (q) , log (�dq/dt)]

:::::::::::::::::::
[log (Q) , log (�dQ/dt)]

:
points (e.g. Kirchner, 2009; Parlange et al., 2001); (ii) linear regression or

enveloping of a raw collection of [log(q), log (�dq/dt)]

:::::::::::::::::::
[log(Q), log (�dQ/dt)]

:
points (e.g. Brutsaert and Nieber, 1977; Biswal

and Marani, 2010); or (iii) nonlinear regression (e.g. Wittenberg, 1994). Within these three general categories, a wide variety30

of specific regression techniques can be applied (e.g. Thomas et al., 2015; Zecharias and Brutsaert, 1988). Importantly, many

of these approaches require a large number of data points and are thus unsuitable for event-scale methods.
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For event scale recession fitting, the most popular method is to find a regression line through raw [log(q), log (�dq/dt)]

:::::::::::::::::::
[log(Q), log (�dQ/dt)]

:
point data corresponding to each recession event. There is evidence, however, that nonlinear fitting

methods produce more consistent values for recession parameter fits (Wittenberg, 1999; Chen and Krajewski, 2016). Moreover,

nonlinear techniques have been used to successfully parameterize hydrologic models (Müller et al., 2014; Dralle et al., 2016),

and to avoid numerical issues associated with computing the time derivative of a flow time series (Rupp and Selker, 2006b).5

For the purposes of the present study, we again frame the problem in terms of the most fundamental methodological

dichomtomy
::::::::
dichotomy

:
between linear and nonlinear fitting. Linear fitting (L=1) is performed on the log-transformed val-

ues, [log (q) , log (�dq/dt)]

::::::::::::::::::::
[log (Q) , log (�dQ/dt)].

::::::
Values

::
of

:::
the

::::
flow

:::::::::
derivative

:::
are

:::::::::
computed

:::
for

::::
each

::::
two

::::
day

:::::::
window

::::
(days

:
i

::::
and

:::::
i� 1,

::::
with

::::::
�t= 1

::::
day)

::::
over

:::
the

:::::::
duration

::
of

:::
the

::::::::
recession

::
as

::::::::::::::::::::::
dQ/dt= (Qi �Qi�1)/�t,

::::
with

::::::::::::
corresponding

::::::
values

::
of

::
Q

::::::::
computed

::
as

:::
the

:::::::
average

::::
flow

:::::
value

::::
over

::::
both

:::::
days,

:::::::::::::::::
Q= (Qi +Qi�1)/2 (Brutsaert and Nieber, 1977). Nonlinear fitting10

(L=0) is performed
::::
using

::::::::
nonlinear

::::
least

:::::::
squares

:::::::::::
minimization

:
on extracted, non-transformed recession segments.

2.3 Method combination comparisons

In general, only fitted exponents can be reliably compared between different recession events (e.g. Berghuijs et al., 2016;

Sawaske and Freyberg, 2014). This is a consequence of a mathematical artifact that arises
::::::
impacts

::::
fitted

::::::
values

::
of

:::
the

::::::::
recession

::::
scale

:::::::::
parameter,

::::::
arising when fitting power laws to datasets with arbitrarily chosen scaling (Dralle et al., 2015). The issue can15

be avoided by setting the recession exponent to a fixed value (e.g., the median (Biswal and Marani, 2010)), but this comes at

the expense of biasing the fitted values of a due to constraints on the exponent. Dralle et al. (2015) present a technique that

removes the scaling artifact from the recession scale parameter without constraint on the recession exponent.

:::
The

:::::
scale

:::::::::
correction

::::::::
procedure

::::::
begins

:::
by

::::
first

::::::
fitting

::::
each

::::::::
recession

:::::
curve

:::
to

:::::
obtain

:::
an

:::::
initial

::::::::::
population

:::
(of

::::
size

::
n)

:::
of

:::::::
recession

::::::::::
parameters

::
ai:::

and
:::
bi.:::

The
::::
flow

:::::
time

:::::
series

:
is
::::
then

::::::::
re-scaled

:::
by

:
a
::::::::
constant,

:::
Q0,

::::::::
computed

:::
as:

:
20

Q0 = exp

"Pn
i=1(bi � b)(logai � loga)

Pn
i=1(bi � b)

2

#
,

::::::::::::::::::::::::::::::::::

(2)

:::::
where

::::
loga

::
is

:::
the

:::::
mean

::
of

:::
the

::::::
natural

::::::::
logarithm

::
of

:::
the

:::
ai, :::

and
:
b

::
is
:::
the

:::::
mean

::
of

:::
the

::
bi.:::::::::

Following
:::::::::
re-scaling,

:::
the

::::
flow

::::
time

:::::
series

:
is
:::::
re-fit

::
to

::
the

::::::
power

:::
law

::::::::
recession

::::::
model.

:::::
While

:::
the

::::::::
recession

::::::::
exponent

:
is
::::::::::::::::
scale-independent,

:::
the

:::::::
recession

:::::
scale

::::::::
parameter

::::
will

::
be

::::::
altered

::
by

:::
the

::::::
scaling

:::::::::
procedure

::
in

::::
such

:
a
::::
way

::
as

::
to

::::::::
eliminate

::::::::
artifactual

:::::
linear

:::::::::
correlation

:::::::
between

:::::
loga

:::
and

::
b.

:::
The

::::::::
resultant

:::::::::
population

::
of

::::::::
recession

::::
scale

::::::::::
parameters

:::
has

:::::
units

::
of

::::::
inverse

::::
time

::::
and

:::
has

::::
been

::::::
shown

::::::::::
empirically

::
to

:::::::
correlate

::::::::
strongly

::::
with25

:::::::
measures

:::
of

::::::::
catchment

:::::::
wetness

:::::::::::::::::
(Dralle et al., 2015).

With this in mind, we choose three primary recession measures for comparison between recession events: the recession

exponent (b), the scale-corrected (Dralle et al., 2015) recession scale parameter (a), and the recession time (TR), defined by

Stoelzle et al. (2013) as the amount of time required for flow levels to decline from the median flow to the tenth flow percentile.

The measure TR, which depends on both a and b, belongs to a class of widely calculated recession timescales for the general,30

nonlinear form of Eq. (1) (e.g. Stoelzle et al., 2013; Westerberg and McMillan, 2015).
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To see how methodological choices might impact the interpretation of a, b, and TR, we organize our analysis around three

primary questions:
::::
four

:::::::
primary

::::::::
questions,

::::::
which

::::
were

:::::::
outlined

::
in

:::
the

::::::::::
introduction

::::
and

:::
are

::::::
detailed

::
in
:::
the

:::::::::
following

:::::::
sections.

:

How do methodological choices impact the overall quality of individual recession fits? –

2.3.1
::::::::
Research

:::::::
question

::
1

:
–
:::::
How

::
do

::::::::::::::
methodological

::::::
choices

:::::::
impact

:::
the

::::::
overall

:::::::
quality

::
of

:::::::::
individual

::::::::
recession

::::
fits?

Fit quality is one measure of confidence in the estimated value for each recession measure. Testing event-scale recession5

theories that predict specific values for recession measures (e.g. Biswal and Marani, 2010) can be expected to be constrained

by the degree of this confidence. This section
:::::::
question

:
looks to identify method combinations that consistently produce high

quality fits, and thus high confidence in recession parameter estimates.

Are a, b, and TR “characteristic” across various methodological choices? – That is, do catchments rank in a similar order

according to different statistical measures (in the present study, the median and inter-quartile range) of the populations of a,10

b, and TR across the sixteen method combinations (c.f. Stoelzle et al., 2013)? The results of comparative hydrologic studies

(e.g. Bogaart et al., 2016), which rely on relative relationships between recession measures, can be expected to be affected by

any methodological sensitivity demonstrated here.

For each catchment, are the empirical frequency distributions of a, b, and TR statistically similar across method combinations,

and, if not, what method choices have the greatest impact on recession parameter distributions? – Beyond measures of central15

tendency of recession parameter estimates, event-scale theories suggest that higher order moments of recession parameter

distributions should vary in systematic ways, depending on climate or catchment physiographic properties (Biswal and Nagesh, 2014; Harman et al., 2009).

By addressing this question, we seek to identify the methodological choices which could most significantly impact testing of

event-scale recession theories.

2.3.2 Testing the quality of recession fits20

We report two measures of the overall quality of recession fits as a function of combinations of method choices. First we

compute the mean average percent error (abbreviated as MAPE and denoted mathematically as EMAP)
::::::::::
(abbreviated

:::
as

::::::
MAPE

:::
and

:::::::
denoted

:::::::::::::
mathematically

::
as

:::::::
EMAP) for each method combination, across all catchments. MAPE is computed as:

EMAP =

1

N

NX

i=1

�����
Qi � ˆ

Qi

Qi

����� , (3)

where Qi and ˆ

Qi are the observed and predicted flows on the i

th day following the start of the recession event. (Note that25

comparing goodness of fit using R

2 is not appropriate, because one of our fitting methods is nonlinear (Kvalseth, 1985).) We

also report, for each method, the percentage of all fits that yield “non-physical” estimates for the recession parameters, which

we define as b < 0. In all subsequent analyses, the recession parameters are filtered so that b� 0 (b < 0 occurs for less than 3%

of all recession events).

2.3.2
::::::::
Research

:::::::
question

::
2

:
–
::::
Are

::
a,

::
b,

::::
and

:::
TR::::::::::::::

“characteristic”
::::::
across

:::::::
various

:::::::::::::
methodological

::::::::
choices?30
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::::
That

::
is,

:::
do

:::::::::
catchments

::::
rank

::
in

::
a
::::::
similar

:::::
order

::::::::
according

::
to

:::::::
different

:::::::::
statistical

::::::::
measures

::
(in

:::
the

:::::::
present

:::::
study,

:::
the

::::::
median

::::
and

::::::::::
inter-quartile

::::::
range)

::
of

:::
the

::::::::::
populations

::
of

::
a,

::
b,

:::
and

:::
TR::::::

across
:::
the

::::::
sixteen

::::::
method

::::::::::::
combinations

:::::::::::::::::::::
(c.f. Stoelzle et al., 2013)?

::::
The

:::::
results

:::
of

::::::::::
comparative

::::::::::
hydrologic

::::::
studies

:::::::::::::::::::::
(e.g. Bogaart et al., 2016),

::::::
which

::::
rely

:::
on

::::::
relative

:::::::::::
relationships

::::::::
between

::::::::
recession

::::::::
measures,

:::
can

:::
be

:::::::
expected

::
to

:::
be

:::::::
affected

::
by

:::
any

:::::::::::::
methodological

:::::::::
sensitivity

:::::::::::
demonstrated

:::::
here.

2.3.3 Ranking catchments by recession characteristics5

While Stoelzle et al. (2013) perform lumped recession analysis and obtain single recession parameter values for each catchment

and method combination, our event-scale analysis yields distributions for b, a,
:
b,
:

and TR. We therefore report measures of

central tendency and variability for the computed recession variables, b, a, and TR::::::::
measures.

:::
We

:::::::
choose

:::
the

:::::::
median

::
as

::
a

:::::::
measure

::
of

::::::
central

::::::::
tendency

::::
and

:::
the

:::::::::::
inter-quartile

:::::
range

:::
as

::
a

:::::::
measure

::
of

::::::::::
variability,

::::
both

:::
of

:::::
which

:::
are

::::::
robust

:::::::
against

:::
the

::::::
biasing

::::::
effects

::
of

:::::::::
occasional

::::::
outlier

:::
fits. Following Stoelzle et al. (2013), we compute Spearman rank correlation coefficients10

by ranking catchments between
::
all method combination pairs based on the following measures (recession characteristics):

median(a), median(b), median(TR), IQR(a), IQR(b), IQR(TR), where IQR is the inter-quartile range.
:::
The

::::
rank

::::::::::
correlation

:::
can

::::
take

:
a
:::::
value

::::::::
between

::
-1

:::
and

::
1,
::::::

where
::
a

::::
rank

:::::::::
correlation

::
of

::
1
::::::::
indicates

:::
that

::::
two

:::::::
method

:::::::::::
combinations

:::::::
produce

::::::::
identical

:::::::
rankings

:::
and

::
a

::::
rank

:::::::::
correlation

::
of

::
-1

::::::::
indicates

:::
that

::::
two

::::::
method

::::::::::::
combinations

:::::::
produce

::::::
exactly

:::::::
opposite

::::::::
rankings.

Even if the absolute magnitudes of the values of a, b, and TR vary between the method combinations, these rank tests15

will determine whether catchments rank in the same order by the recession characteristic for all methods. Determining the

consistency of such ranked comparisons has implications for efforts to develop effective metrics for catchment classification,

where relative differences in recession characteristics have been used to compare or categorize catchments (e.g Bogaart et al.,

2016; Mutzner et al., 2013; Guzmán et al., 2015)
:
.

2.3.3 Comparing
::::::::
Research

:::::::
question

::
3

:
–
::::
For

::::
each

::::::::::
catchment,

:::
are

::::
the

::::::::
empirical

:::::::::
frequency

:
distributions of a, b, and20

TR ::::::::::
statistically

::::::
similar

:
across method combinations

:
,
::::
and,

::
if

:::
not,

:::::
what

:::::::
method

:::::::
choices

::::
have

:::
the

:::::::
greatest

:::::::
impact

::
on

::::::::
recession

::::::::::
parameter

::::::::::::
distributions?

:::::::::
Event-scale

:::::::
theories

::
of

:::
the

::::::::::
streamflow

::::::::
recession

::::::
suggest

::::
that,

:::::::
beyond

::::::::
measures

::
of

::::::
central

::::::::
tendency,

::::::
higher

:::::
order

::::::::
moments

::
of

:::::::
recession

:::::::::
parameter

:::::::::::
distributions

:::::
(such

::
as

:::
the

::::::::
variance)

::::::
should

::::
vary

::
in

:::::::::
systematic

::::::
ways,

::::::::
depending

:::
on

:::::::
climate

::
or

:::::::::
catchment

:::::::::::
physiographic

:::::::::
properties

::::::::::::::::::::::::::::::::::::::::
(Biswal and Nagesh, 2014; Harman et al., 2009).

:::
By

:::::::::
addressing

:::::::
research

:::::::
question

:::::
three,

:::
we

:::::
seek

::
to25

::::::
identify

:::
the

:::::::::::::
methodological

:::::::
choices

:::::
which

:::::
could

::::
most

:::::::::::
significantly

::::::
impact

:::::
testing

:::
of

:::::::::
event-scale

::::::::
recession

:::::::
theories.

:

While shifts in the Spearman rank correlation between method combinations allow a comparative analysis of the effects of

method choice, they do not provide information about variations in the specific values of the recession parameters obtained by

each method. To address the specific values of the recession parameters, which is important for testing theories that make such

specific predictions (Biswal and Marani, 2010; Brutsaert, 1994), we therefore also explore the empirical frequency distributions30

of parameter populations estimated with each methodological combination.

We first illustrate general patterns of a, b, and TR, across all method combinations with Tukey box plots for a single rep-

resentative catchment – the Elder Creek watershed, a tributary of the Eel River in Northern California. These plots provide

10



visual representation of the observed difference between the character of recession measure distributions for different method

combinations. However, they do not represent the absolute effect of changing individual method choices. This is because more

restrictive extraction procedures produce populations of recessions that are a subset of the populations generated by less re-

strictive extraction measures. For example, fixing all other method choices, recessions extracted with a minimum length of 10

days must be a subset of recessions extracted with a minimum length of 4 days. This “dilutes” the true effect of the shift in5

choice of minimum recession length on the recession measures derived from the two resulting populations.

One way to isolate the absolute effect of a given method choice is to compare recessions that are shared between the

restrictive choice and non-restrictive choice, to those that are unshared between the restrictive and non-restrictive choices.

This procedure is illustrated for the minimum length choice in Fig. 5. Here, the raw streamflow data (Fig. 5a) is subjected to

extraction procedures with a minimum length of 4 days (Fig. 5b) and with a minimum length of 10 days (Fig. 5c). All other10

method choices are fixed. Clearly the 10 day minimum length recessions are a subset of the 4 day minimum length. Two distinct

groups can then be formed: a set of recessions shared between the two extractions (Fig. 5c), and a set of unshared recessions

(Fig. 5d; those extracted by the minimum 4 day extraction, but not the 10 day extraction). Differences between these disjoint

“shared” and “unshared” sets of recessions embody the absolute effect of an individual method choice on a recession measure.

Recession measures between the two groups should be comparable if the particular recession measure is not sensitive to the15

method choice.

We compare shared and unshared recession measure distributions in two ways. First, for a high level overview, we show

Tukey box plots of shared vs. unshared distributions of the recession exponent (b) for a single catchment (the Elder Creek

watershed) for each of the
:::
two

:
recession extraction choices (M, S, and C

:::::::
minimum

::::::
length

::::
and

::::::::
concavity). We also compare

populations between linear and nonlinear fitting, though we note that this is not a “shared” vs. “unshared” comparison.20

We then use a two-sided Mann-Whitney U Test (Mann and Whitney, 1947) to compare shared vs. unshared distributions

for each recession measure across all method choices and all catchments. The null hypothesis for this non-parametric test is

that the shared and unshared distributions are sampled from the same population. For a given catchment and for each method

choice, we compute p-values for the Mann-Whitney U Test by comparing shared to unshared distributions for each of the

eight combinations of the other method choices. If the test rejects the null hypothesis, then we conclude that the method25

choice significantly changes the distribution of the recession measure [
::::
note:

:::
We

::::
also

:::::::
compare

::::::::::
populations

:::::::
between

:::::
linear

::::
and

::::::::
nonlinear

:::::
fitting;

::::::::
although

:
it
::
is
:::
not

::
a

:::::::
“shared”

:::
vs.

:::::::::
“unshared”

:::::::::::
comparison,

:::
the

:::
two

:::::
fitting

::::::::
methods

:::::::::
nonetheless

:::::::
produce

:::::::
distinct

::::::::::
distributions

:::
for

:::
the

::::::::
recession

::::::::
measures].

For each method choice and catchment, we then compute the fraction of
::::
rank

:::
the

::::
four

::::::
method

:::::::
choices

:::
by

:::
the

::::::
number

:::
of

::::::::::::
Mann-Whitney

::
U
:
tests (eight total tests per method choice per catchment; shared vs. unshared for all 8 combinations of the30

other method choices) which returned statistically different
::::
tests

:::
for

::::
each

:::::::
method

::::::
choice)

::::
that

:::::
detect

:::::::::
significant

::::::::::
differences

:::::::
between shared and unshared distributions.

::
A

::::::
method

::::::
choice

::
is
::::::::
assigned

:
a
::::::
higher

::::
rank

::
if

::::
more

::::::::::::::
shared/unshared

:::::::::::
comparisons

:::::
detect

:::::::::
significant

::::::::::
differences.

:
We use this fraction

:::
rank

:
as an indicator of the sensitivity of a recession measure to a given

method choice. We perform this procedure for all recession measures, a, b, and TR. Since each measure requires 512 total

comparisons (16 catchments⇥ 8 tests⇥ 4 method choices), we apply a Bonferonni correction for the critical p-value of each35
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test, which is required when a statistical test is applied many times for multiple comparisons (Abdi, 2007). For an overall level

of significance of ↵= 0.05, the correction requires a critical p-value for each test set to p= ↵/512.

2.3.4
::::::::
Research

:::::::
question

::
4

:
–
::::
Can

::::::::::::::
methodological

::::::
choices

::::::
affect

:::::::
features

::
of

:::
the

::::::::
observed

:::::::::::
relationship

::::::::
between

::::::::
measures

::
of

::::::::::
catchment

:::::::
wetness

:::
and

:::
the

:::::::::
recession

::::
scale

:::::::::::
parameter?

::::::
Overall,

::::
few

::::::
studies

:::::
have

::::::::
attempted

::
to
:::::

tease
:::::
apart

:::
the

:::::::::
convergent

::::::::::
predictions

::
of

::::::
power

:::
law

::::::::
recession

::::::::
theories.

:::::
Some

::::::
works5

:::::::
informed

:::
by

::::::::::::::::::::::::::::::::
Biswal and Marani (2010) demonstrate

::
a
::::::::::
relationship

:::::::
between

::::::::
measures

:::
of

:::::::::
antecedent

:::::::::
catchment

:::::::
wetness

::::
and

::
the

::::::
power

::::
law

:::::
scale

:::::::::
parameter

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Bart and Hope, 2014; Biswal and Nagesh, 2014; Patnaik et al., 2015),

::::::::
although

:::::::
explicit

::::::::::
connections

::
to

::::::
wetted

:::::::
channel

:::::::
network

::::::::
expansion

::::
and

:::::::::
contraction

::::
still

::::::
require

::::::::::
elucidation

:::::::::::::::::
(Ghosh et al., 2016).

::::::::
Whatever

:::
its

:::::::
physical

:::::
basis,

::
we

:::::::
observe

::::::
similar

::::::::::
correlations

:::::::
between

::::::::
measures

::
of

:::::::::
antecedent

:::::::
wetness

:::
and

:::
the

::::::::::::
scale-corrected

::::::::
recession

:::::
scale

::::::::
parameter.

:::
To

::::::::::
demonstrate

::::
that

:::::::
method

::::::
choices

:::
can

:::::::::::
significantly

::::::
impact

:::
the

::::::::
quantitive

::::::
nature

::
of

::::
such

::::::::
emergent

::::::::::::
relationships,10

::
we

:::::::
explore

:::
the

::::::::
functional

::::::::::
relationship

:::::::
between

:::
the

::::::::
recession

::::
scale

:::::::::
parameter

:::
and

:
a
:::::::
measure

:::
of

:::::::::
antecedent

::::::
wetness

:::
for

:::
the

:::::
Elder

:::::
Creek

::::::::
catchment

:::
for

:::::
three

:::::::::::::
methodological

:::::::::::
combinations.

::::
The

:::::::::
antecedent

:::::::
wetness

:::::::
measure

::::
(W )

:
is
:::::::::
computed

::
as

:
a
::::::::
weighted

::::
sum

::
of

:::::::::
streamflow

::::
prior

::
to
:::::
each

::::::::
recession

:::::
event:

W =

60X

i=1

0.95

i
Qi,

::::::::::::::

(4)

:::::
where

:
i

::
is

:::
the

::::::
number

:::
of

::::
days

::::
prior

::
to

:::
the

::::
start

::
of

:::
the

::::::::
recession

:::::
event.

::::
The

:::::::::
weighting

:::::::::
coefficient,

:::::
0.95

i,
::
is

:::::::
included

::
to
::::::::
discount15

::
the

:::::
effect

:::
of

:::
less

:::::
recent

::::::
events

::
on

:::
the

:::::::::
catchment

:::::::
wetness

::::
state.

:::::::::
Following

::::::::
recession

::::::::
extraction

::::
and

:::::
fitting,

::
a

::::::::
regression

::::
line

::
is

::
fit

::
to

:::::::
observed

:::::::
log-log

:::::
linear

::::::::::
relationships

::::::::
between

:
a

::::
and

::
W

::::
and

:::
the

:::::::
resulting

:::::::::
regression

::::::
slopes

:::
are

::::::::
compared

:::::::
between

:::
the

:::::
three

::::::
method

:::::::::::::
combinations.

3 Results

:::::
While

:::
the

::::::
lengths

::
of

:::::
record

:::
for

:::::
study

:::::::::
catchments

::::
vary

:::::
from

::
35

:
-
::
99

:::::
years,

:::
we

::::
find

:::
that

:::::::::
subsetting

::::
flow

::::::
records

:::
and

::::::::::::
re-performing20

::::::
analysis

:::::
does

:::
not

::::::::::
significantly

::::::
impact

::::
our

:::::::
findings.

:::
We

::::
also

::::
find

::::
that,

::
at

:::::::::
confidence

:::::
level

::::::::
p= 0.05,

::::::::::::
approximately

:::
6%

:::
of

:::
the

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(16 catchments⇥ 16 method combinations⇥ 3 recession measures) = 768

:::::::::
populations

::
of

::::::::
recession

::::::::
measures

::::::
exhibit

:::::::::
significant

:::::
trends

::::
over

:::::
time.

::
At

::
a
:::::::::
confidence

:::::
level

::
of

:::::
0.05,

:::
one

::::::
would

::::::
expect

:::
5%

::
of

:::
the

::::
tests

:::
to

:::
flag

::::::::::
significance

::::::
purely

:::
by

::::::
chance.

::::
We

:::::::
conclude

::::
that

:::
any

::::::::
potential

:::::
trends

::
in

::::::::
recession

:::::::::
parameters

::::
over

::::
time

::::
will

::::
have

:
a
::::::::
minimal

::::::
impact

::
on

:::
the

::::::
results

::
of

:::
this

::::::
study.

3.1
::::::
Results

:::::::::
addressing

::::::::
research

::::::::
question

:
125

:::
The

::::::::
box-plots

::
in

::::
Fig.

::
6

:::
are

::::::::
generated

:::::
using

::::::::
computed

::::::
MAPE

::::::
values

:::
for

:::
all

:::
fits

:::::
across

:::
all

::::::::::
catchments.

:::
The

::::::
boxes

:::
are

:::::::
grouped

::::
using

:::::::
certain

:::::::::::
combinations

:::
of

:::::::
linearity

::::
and

::::::::
concavity,

::::
the

:::
two

:::::::
method

:::::::
choices

:::::
found

:::
to

::
be

::::
the

::::::::
strongest

:::::::::
controllers

::
of

:::
fit

::::::
quality.

:::::
There

::
is

:
a
:::::
clear

:::::::
increase

::
in

::
fit

::::::
quality

::::::::
associated

::::
with

:::::::::
extraction

::
of

:::::::::::
concave-only

:::::::::
recessions

:::
and

:::
use

::
of

::::::::
nonlinear

::::::
fitting

:::::::::
procedures.

:
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3.2
::::::

Results
:::::::::
addressing

::::::::
research

::::::::
question

:
2

Catchments were ranked by the values of 6 recession characteristics – median(a), median(b), median(TR), IQR(a), IQR(b),

and IQR(TR) – for all pairs of method combinations. The collection of corresponding Spearman rank correlations are presented

as box plots in Fig. 7. The rank correlation can take a value between -1 and 1, where a rank correlation of 1 indicates that two

methods produce identical rankings and a rank correlation of -1 indicates that two methods produce exactly opposite rankings.5

We performed a thorough investigation of the rank correlations between different method combinations across all 16 study

catchments but found few patterns related to individual method choices. Therefore, we present aggregated box-plots of the

Spearman rank correlation for each of the recession characteristics. Overall, none of the rank correlations were negative,

suggesting that, at worst, no method combination predicts a characteristic ranking that is inverted relative to another method

combination. The most “characteristic” measure, in the sense that its ability to rank catchments is least sensitive to the method10

choice, is median(a).

The box-plots in Fig. ?? are generated using computed MAPE values for all fits from each combination of method choices.

The figure provides a rough measure of the sensitivity of fit quality to each individual methodological choice. The patterns in

Fig. ?? hint at a hierarchy of the importance of method choices in terms of their impact on the “quality” of extracted recessions

and their corresponding power law fits. Specifically, the concavity (C) and linearity (L) method choices roughly subdivide the15

results into three groups: The worst fits observed were those performed without the concavity requirement and with linear

regression (shown as combinations that end in 01 in Fig. ??). Fits that use concave recessions or nonlinear fitting, but not both,

are of intermediate quality (combinations that end in 00 or 11). The best fits by a large margin are those that combined the

concavity requirement with nonlinear regression (combinations that end in 10).

3.3
::::::

Results
:::::::::
addressing

::::::::
research

::::::::
question

:
320

Figure 8 contains box plots for all
::
Fig

::
8

:::::::
presents

:::
box

:::::
plots

::
of

:::
the three recession measures and for

:::::
across all method combina-

tions for the Elder Creek watershed. The overall patterns observed here are comparable to those of the other 15 watersheds.

While the scale-correction procedure for a has only been applied in one previous study (Dralle et al., 2015), the median

values of scale-corrected a are consistent with inverse recession timescales (commonly referred to as the ‘recession constant’)

extracted from linear reservoir models (e.g. Sánchez-Murillo et al., 2015; Botter et al., 2013). The observed median values of b25

and TR are also consistent with those typically found in lumped recession analyses (e.g. Tague and Grant, 2004; Palmroth et al., 2010; Szilagyi et al., 2007; Wang, 2011; Stoelzle et al., 2013; McMillan et al., 2014).

Variability in
::::
study

:::::::::
catchment.

::::
For

:::
any

:::::
given

::::::
method

:::::::::::
combination,

:::::::::
variability

::
in the recession measures can be significant. The

recession exponent b regularly falls between b= 1 and b= 2.5, while the inter-quartile range
:::::
ranges for a and TR :::::::

typically

span upwards of an order of magnitude. This degree of variability in a, while large, is comparable to event-scale recession

studies that impose a fixed value on the recession exponent (e.g. Shaw and Riha, 2012).30

Figure 9 presents box plots for the
:
is
::::::::
provided

::
to

::::
help

::::::::
illustrate

:::
the

::::::::::
comparisons

:::::::
between

:
shared and unshared distributions

of the recession exponent
::::::::
recession

::::::::
measures.

::
In

::::
this

::::
case,

:::
we

::::::::
compare

::::::::
recession

::::::::
exponent

::::::
shared

::
vs.

::::::::
unshared

:::::::::::
distributions

for the Elder Creek watershed . Each subplot in Fig. 9 corresponds to one of the four method choices (M, S, C, or L)
:::
for

:::
the
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::::::::
minimum

::::::::
recession

:::::
length

:::::::
method

:::::
choice

::::
and

:::
the

::::::::
concavity

::::::
method

::::::
choice. The light green boxes represent the distribution of

the recession exponent for shared recessions, while the dark green boxes represent the distribution of the recession exponent

:::::::
unshared

:::::::::
population

::
of

::::::::
recession

::::::::
exponent

:::::
values

::
(extracted by only the less restrictive procedure

:
). The horizontal axes in each

subplot show
::::::::
enumerate

:
the eight possible combinations of the other method choices, showing how these shared and unshared

distributions vary for different combinations of the other method variables. Significant differences between the shared and5

unshared distributions
::
as

:::::::::
determined

:::
by

:
a
::::::::
two-sided

:::::::::::::
Mann-Whitney

::
U

:::
Test

:::
are

::::::::
indicated

::::
with

:::
red

::::::::::
highlighting

:
in Fig. 9indicate

that the recession measure is sensitive to modulation of the method choice represented by the particular subplot.

The interpretation of “shared versus unshared” is different for each method choice. For the minimum recession length ,

“not shared” means 4-9 day recessions; and “shared” means recessions 10 days or longer. For peak filtering selectivity, “not

shared” means the many small flow peaks not extracted by the more selective procedure; “shared” means large flow peaks. For10

concavity , “not shared” means recessions that are not distinctly concave (which, presumably, are the recession periods with

residual precipitation); “shared ” means drier recessions, or recession periods that are less likely to have significant residual

precipitation.

Results of .
:::::

Two
::
of

:::
the

:::::
eight

::::::::::::::
unshared/shared

::::::::::
distribution

::::
pairs

:::
are

:::::::::
identified

::
as

::::::::::
significantly

::::::::
different

:::
for

:
the

::::::::
minimum

:::::
length

:::::::
method

:::::::
choice,

:::::
while

::::
eight

::
of

:::
the

:::::
eight

::::
pairs

:::
are

::::::::
identified

::
as

::::::::
different

::
for

:::
the

:::::::::
concavity

::::::
choice.15

:::
The

::::::
results

:::::
from

:::
Fig.

::
9
::::
feed

::::
into

:::
the

:::::
larger

::::::
shared

:::
vs.

::::::::
unshared

:::::::
analysis

:::
for

:::
all

::::::::
recession

::::::::
measures

::::::
across

::
all

::::::::::
watersheds

::::::::
presented

::
in

::::
Fig.

:::
10.

::::
This

:::::
figure

:::::
plots

::::::::
outcomes

::
of

:::
all Mann-Whitney U tests between shared and unshared distributions for

each recession measure, for all method choices, and for all catchments, are presented in Fig. 10.
:
. The Elder Creek (catchment

number 11475560) recession exponent distributions in Fig. 9 correspond to the recession exponent subplot
:::::::
(center) of Fig.

10
:
,
:::
row

:::::::::
11475560,

::::::::
columns

::
M

::::
and

:
C. In agreement with Fig. 9, the recession exponent is most significantly affected by the20

choice to extract only concave recessions
:
,
:::
and

::::
less

::
so

::
by

:::
the

:::::::::
minimum

::::::::
recession

:::::
length. The strong dependence on concavity

demonstrated in Fig. 9 manifests in Fig. 10 as the very dark rectangle in the concavity column of the recession exponent

parameter for catchment
::
the

:::::
Elder

:::::
Creek

::::::::::
catchment,

::::
gage

:::::::
number

:
11475560. This indicates that all Mann-Whitney U tests

detected a significant difference between the eight shared and unshared distributions for concavity

3.4
::::::

Results
:::::::::
addressing

::::::::
research

::::::::
question

:
425

:::
Fig.

:::
11

::::
plots

:::
the

::::::::
logarithm

::
of

:::
the

::::::::
recession

:::::
scale

::::::::
parameter

::::::
against

:::::::::
logarithm

::
of

:::
the

:::::::::
antecedent

:::::::
wetness

:::::::
variable

:::
(W)

:::
for

:::::
three

::::::
method

::::::::::::
combinations.

::::
The

:::
first

::::
and

::::::
second

:::::
plots

:::
are

::::
less

::::::::
restrictive

::::
with

:::::::
respect

::
to

::::::::
recession

::::::
length

:::
and

:::::
peak

::::
size;

:::
the

::::
first

:::
plot

:::::::
extracts

:::::::
concave

:::::::::
recessions

::::
and

::::
uses

::::::::
nonlinear

::::::
fitting,

:::::
while

:::
the

::::::
second

::::
plot

:::::::
extracts

:::::::::
decreasing

:::::::::
recessions

::::
with

::::::
linear

:::::
fitting.

::::
The

::::
third

::::
plot

::::
uses

::
a

:::::
highly

::::::::
selective

::::::::
extraction

:::::::::
procedure

:::
and

:::
fits

:::
the

::::::::
recession

::::::
model

::::
with

::::::::
nonlinear

::::::::::
regression.

:::
All

::::
plots

::::::::::
demonstrate

::
a
::::::::::
decreasing,

::::::
log-log

:::::
linear

::::::::::
relationship

::::::::
between

:::
the

:::::::::
antecedent

:::::::
wetness

:::::::
measure

::::
and

:::
the

::::::::
recession

:::::
scale30

::::::::
parameter.
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4 Discussion

4.1 Recession fit quality

The finding that concavity and linearity
:::
The

::::::
pattern

::
in
::::

Fig.
::

6
:::::
hints

::
at

:
a
:::::::::

hierarchy
::
of

:::
the

::::::::::
importance

::
of

:::::::
method

::::::
choices

:::
in

::::
terms

:::
of

::::
their

::::::
impact

:::
on

:::
the

::::::::
“quality”

::
of

::::::::
extracted

:::::::::
recessions

:::
and

::::
their

::::::::::::
corresponding

::::::
power

::::
law

:::
fits.

:::::::::::
Specifically,

::
we

::::::
found

:::
that

:::
the

::::::::
concavity

:::
(C)

::::
and

:::::::
linearity

:::
(L)

::::::
method

:::::::
choices

::::::
roughly

:::::::::
subdivide

:::
the

:::::
results

::::
into

::::
three

:::::::
groups.

:::
The

:::::
worst

:::
fits

::::::::
observed5

::::
were

:::::
those

::::::::
performed

:::::::
without

:::
the

::::::::
concavity

::::::::::
requirement

:::::
(only

:::
the

:::::::::
decreasing

::::::::::
requirement)

::::
and

::::
with

:::::
linear

:::::::::
regression.

:::
Fits

::::
that

:::
use

:::::::
concave

::::::::
recessions

:::
or

::::::::
nonlinear

::::::
fitting,

:::
but

:::
not

::::
both,

:::
are

:::
of

::::::::::
intermediate

:::::::
quality.

:::
The

::::
best

:::
fits

:::
are

:::::
those

:::
that

:::::::::
combined

:::
the

::::::::
concavity

::::::::::
requirement

::::
with

::::::::
nonlinear

:::::::::
regression.

:::::::
Overall,

:::
the

::::::
results

::::::
suggest

:::
an

:::::::
additive

:::::::
increase

::
in

::::::::
goodness

::
of

::
fit

:::::::::
associated

::::
with

::
the

:::::::::
concavity

::::::::::
requirement

:::
and

::::::::
nonlinear

::::::
fitting.

:

:::
The

::::::
finding

::::
that

::::::::
concavity

::::
and

:::::::
linearity play primary roles in determining the quality of recession fits is notable in light of10

the fact that minimum recession length and minimum recession peak size are more commonly emphasized as the most im-

portant methodological choices made during event-scale recession analysis (e.g. Biswal and Marani, 2010; Patnaik et al.,

2015; Mutzner et al., 2013).
::
We

::::
did

:::
not

::::
find

::::
that

:::::
these

::::::
method

:::::::
choices

:::::
were

:::::::::
important

:::::::::::
determinants

::
of

:::
fit

::::::
quality.

:
Evi-

dence here suggests concavity requirements and nonlinear fitting greatly improve the quality of event-scale recession analyses

and that these improvements are additive when we impose these methodological choices together
:::
and

:::
that

:::::
these

::::::::::::
improvements15

::
are

:::::::
additive

:::::
when

:::
we

:::::::
impose

::::
these

:::::::::::::
methodological

:::::::
choices

:::::::
together. In fact, the often-used definition of flow recession, that

the flow derivative is negative, could be misleading; the simple dynamical system model developed by Kirchner (2009) predicts

that streamflow can decrease during precipitation events. The use of improved, flow-derived recession extraction methods, such

as the concavity requirement, could reduce the frequency of “false" recession extraction, increasing the quality of recession

measure estimates.20

Beyond the tendency to produce lower quality fits, the linear fitting procedures applied in the majority of recession studies

have other well-documented drawbacks. Linear regression on log-transformed flow values disproportionately weights errors

for smaller model values, creating a risk of bias in the fit (Miller, 1984; Pattyn and Van Huele, 1998). Linear fitting also requires

computation of the flow derivative, which introduces a number of documented numerical and data quality challenges (Rupp

and Selker, 2006b). The various differencing schemes that can be implemented to obtain the flow derivative (e.g. Thomas25

et al., 2015) add another potential source of method dependent bias in the fitting scheme. There are downsides, however,

associated with nonlinear fitting (Motulsky and Ransnas, 1987). Fit bias may be introduced by the optimization algorithm

used, or the necessity of specifying an initial condition for the nonlinear fitting procedure. Choice of initial values can be

relatively clear for recession measures like b that can be expected to have tightly constrained values, but for other more variable

recession measures, such as a, this choice could also be opaque, and differing initial conditions could lead to differing recession30

parameter estimations.

4.2 Recession measures are characteristic
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We find that the medians and IQRs of a, b, and TR are all fairly characteristic, though to varying degrees; median(a) is more characteristic than median(b) or median(TR), and each IQR is less characteristic than its corresponding median. One might expect that median(a) is highly characteristic because it spans many orders of magnitude, while other parameters are more tightly constrained. However, the derived measure TR also has a wide range and does not display the same level of rank stability as a; see Fig. 8 for approximate ranges.

:::
We

:::
find

::::
that

:::
the

:::::::
medians

:::
and

:::::
IQRs

::
of

::
a,

::
b,

:::
and

:::
TR:::

are
:::
all

::::
fairly

::::::::::::
characteristic,

::::::
though

::
to

:::::::
varying

:::::::
degrees.

:::
All

::::
rank

::::::::::
correlations

::
are

::::::::
positive,

::::::::
indicating

::::
that,

::
at

:::::
worst,

:::
no

::::::
method

::::::::::
combination

:::::::
predicts

:
a
:::::::::::
characteristic

:::::::
ranking

:::
that

::
is
:::::::
inverted

::::::
relative

::
to

:::::::
another

::::::
method

:::::::::::
combination.

:::::::::
Median(a)

::
is

::::
more

::::::::::::
characteristic

:::
than

:::::::::
median(b)

::
or

:::::::::::
median(TR),

:::
and

::::
each

::::
IQR

::
is
::::
less

:::::::::::
characteristic

::::
than

::
its

::::::::::::
corresponding

:::::::
median.

:::
One

:::::
might

::::::
expect

:::
that

:::::::::
median(a)

::
is
::::::
highly

:::::::::::
characteristic

:::::::
because

:
it
:::::
spans

:::::
many

:::::
orders

::
of

::::::::::
magnitude,5

::::
while

:::::
other

::::::::::
parameters

:::
are

:::::
more

::::::
tightly

::::::::::
constrained.

::::::::
However,

:::
the

:::::::
derived

:::::::
measure

:::
TR::::

also
::::

has
:
a
:::::
wide

:::::
range

:::
but

::::
does

::::
not

::::::
display

:::
the

::::
same

:::::
level

::
of

::::
rank

:::::::
stability

::
as

::
a.

:

The relatively stable ranking of catchments by recession measures has potential implications for testing event-scale recession theory.
Recent

:::
The

::::::::
relatively

::::::
stable

:::::::
ranking

::
of

::::::::::
catchments

::
by

::::::::
recession

:::::::::
measures

:::
has

::::::::
potential

::::::::::
implications

:::
for

::::::
testing

::::::::::
event-scale

:::::::
recession

::::::
theory.

:::::::
Recent work by Harman et al. (2009) hypothesizes that b can be interpreted as a measure of the diversity of10

water transport timescales throughout the various parts of the catchment. In this framework, measures of variability of b could

be interpreted as representative of the “realizable” range of catchment states, with respect to the relative dominance of various

water transit times in the catchment. Strongly characteristic measures of b suggest the potential to use the recession exponent

to develop relative measures of catchment complexity, if the Harman et al. (2009) theory applies to catchment populations.

Results also
::::
also provide support for application of the recession scale parameter scale-correction procedure presented by15

Dralle et al. (2015). Medians of the scale-corrected recession scale parameters rank catchments more consistently than all other

recession characteristics. Moreover, the fact that a has units of inverse time suggests it can be interpreted physically in a manner

similar to more commonly computed response timescales, such as TR (e.g. Stoelzle et al., 2013; Westerberg and McMillan,

2015). In fact, the median and IQR of TR are the least consistent catchment ranking characteristics. Considering that TR is a

measure derived from both a and b, it has likely inherited catchment ranking uncertainty from both these parameters. Numerous20

derived recession measures have been used for comparative catchment analysis (Sawaske and Freyberg, 2014; Berghuijs et al.,

2016; Stoelzle et al., 2013), and the findings here suggest a trade-off; the development of more complex derived measures

comes at the risk of compounding uncertainty.

4.3 Comparing distributions of recession measures

The repeating “saw-tooth”
:::::::
Patterns

::
in

:::
the

::::::::
recession

::::::::
measures

:::
for

:::::
Elder

::::::
Creek

::::::
plotted

::
in

::::
Fig.

::
8

:::
are

::::::::
generally

::::::::::::
representative25

::
of

:::
the

:::::::
patterns

::::::::
observed

::
in

:::
the

:::::
other

::
15

:::::
study

::::::::::
catchments.

::::
The

::::
four

::::
step

::::::::
repeating

:
pattern for b seen in Fig. 8 indicates that

concavity and linearity play important roles in shifting the distributions of the recession exponent. If
::::
When

:
other methodolog-

ical choices are fixed, linear
::::::::
nonlinear fitting and concavity both produce noticeably higher values for the recession exponent.

Without the concave requirement, the “decreasing only” extraction procedures will produce lower values due to increased

convexity
::::::::
decreased

::::::::
concavity. Table 2 supports this conclusion; the concavity requirement greatly decreases the number of30

“non-physical” (b < 0) extracted recessions. The upward shift for linear fitting may be the result of “over-weighting” of errors

in the tail end of the recession , where deviations from linearity in the curve defined by the collection of [log (q) , log (�dq/dt)]

point pairs are consistently observed to exhibit a steeper slope. This supports the use of non-linear regression techniques as a

means to avoid biases inherent in log-transformed power law fits
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:::
The

::::::::
recession

:::::
scale

::::::::
parameter

:::
(a)

::::::
varies

::::
most

::::::::
strongly

::::
with

::::::::
minimum

::::::
length

:::
and

:::::::::
selectivity,

::::
and

:::
the

::::::::
recession

::::
time

:::::
(TR)

:::::
varied

:::::
most

:::::::
strongly

::::
with

:::::::
linearity

::::
and

:::::::::
concavity.

:::
The

:::::
latter

::::::
likely

:::::
results

:::::
from

:::
the

::::
fact

:::
that

::::
TR ::

is
:
a
::::::::
measure

::::::
derived

:::::
from

::
the

:::::::::
recession

::::::::
exponent,

::::
and

:::
thus

:::::::
inherits

:::
b’s

::::::
strong

::::::::
sensitivity

:::
to

:::
the

::::::::
concavity

::::
and

:::::::
linearity

:::::::
method

:::::::
choices.

:::
The

::::::
degree

:::
of

::::::::
variability

::
in

::
a

:
is
::::::::::
comparable

::
to

:::::::::
event-scale

::::::::
recession

::::::
studies

:::
that

::::::
impose

::
a
::::
fixed

:::::
value

::
on

:::
the

::::::::
recession

:::::::
exponent

:::::::::::::::::::::::
(e.g. Shaw and Riha, 2012).

:::::
While

:::
the

::::::::::::::
scale-correction

:::::::::
procedure

:::
for

::
a

:::
has

::::
only

:::::
been

:::::::
applied

::
in

::::
one

::::::::
previous

:::::
study

:::::::::::::::::
(Dralle et al., 2015),

:::
the

:::::::
median5

:::::
values

::
of

:::::::::::::
scale-corrected

:
a

:::
are

:::::::::
consistent

::::
with

::::::
inverse

::::::::
recession

:::::::::
timescales

::::::::::
(commonly

::::::
referred

::
to
:::
as

:::
the

::::::::
‘recession

:::::::::
constant’)

:::::::
extracted

:::::
from

:::::
linear

:::::::
reservoir

::::::
models

::::::::::::::::::::::::::::::::::::::::::::
(e.g. Sánchez-Murillo et al., 2015; Botter et al., 2013).

::::
The

:::::::
observed

:::::::
median

:::::
values

::
of

::
b

:::
and

:::
TR :::

are
:::
also

:::::::::
consistent

:::
with

:::::
those

:::::::
typically

::::::
found

:
in
:::::::
lumped

::::::::
recession

:::::::
analyses

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Tague and Grant, 2004; Palmroth et al., 2010; Szilagyi et al., 2007; Wang, 2011; Stoelzle et al., 2013; McMillan et al., 2014).

The
:
A pattern of shorter whiskers from left to right in Fig. 8 shows that the variability of the recession measures decreases as

extraction procedures become more restrictive. For a minimum recession length of 10 days and highly selective peak filtering10

(M=1, S=1), this decrease in variability is likely due to the fact that the collection of extracted recessions becomes less “diverse”

as the extraction method becomes more restrictive, as suggested by Stoelzle et al. (2013). As compared to minimum length and

peak selectivity, which had a minimal impact on fit quality (see Fig. ??
:
6), the larger variability for non-concave data paired

with nonlinear fitting is due, at least in part, to more noise from persistent rainfall during the recession. This suggests again

that peak size and recession length data quality concerns cited by some authors (e.g. Ye et al., 2014; Shaw, 2016) could be15

augmented to consider fitting methods and the “quality” of the shape of extracted recessions.

Patterns displayed in Fig. 9 are largely similar to distributions of b in other watersheds. Whiskers are longer
::::::
shorter for

“shared” distributions for minimum length and selectivity
:::
(as

::::
well

::
as

:::
for

:::::::::
selectivity,

::::::::
although

:
it
::
is
:::
not

::::::
plotted

::::
here

::
to
::::::::

simplify

::
the

:::::::::::
presentation). This could be because there are typically fewer large storms and long recessions than there are small storms

and short recessions, or because very large storms and very long recessions
:
,
:::::
which

:::
are

:::::
more

:::::
likely

:::
to

::
be

:::::::
shared, represent20

the asymptotic behavior of the catchment response associated with more extreme states. The length of concavity whiskers

are comparable
::::::
Despite

::::
this

:::::::
disparity

::
in

:::::::::
variability

:
between shared and unshared distributions, although concavity

::
the

::::::
Mann

:::::::
Whitney

::
U

:::
test

::::::::
identified

::::
only

:::
two

::
of

:::
the

:::::
eight

:::::::::
distribution

:::::
pairs

::
as

::::::::::
significantly

::::::
distinct

:::::
from

:::
one

:::::::
another,

:::::::::
suggesting

::::::::
moderate

::::::::
sensitivity

::
of

::
b

::
to

:::
the

::::::::
minimum

::::::::
recession

:::::
length

:::::::
choice.

:::
The

::::::
second

:::::::
subplot

:::::::
displays

:::::
shared

::::
and

::::::::
unshared

::::::::::
distributions

:::
for

:::
the

::::::::
concavity

::::::
method

:::::::
choice,

:::::
which

:
again emerges as the most important choice for determining the absolute magnitude of b.25

There is a clear separation between shared and unshared distributions
::::
The

:::::
Mann

:::::::
Whitney

::
U

:::
test

::::::::
identified

:::
all

::::
eight

::::::::::
distribution

::::
pairs

::
as

::::::::::
significantly

:::::::
distinct,

:::::::::
indicating

::::
high

:::::::::
sensitivity of b for concavity

:
to

:::
the

::::::::
concavity

:::::::
method

::::::
choice.

While
:::::::
Whereas

:::
Fig.

::
6
::::::::
indicated

:
certain method choices seem to play

:::
play

:::
an important role in determining quality of fit,

Fig. 10 demonstrates that other choices could play a more important role in determining realized values of a and b. This

finding makes it difficult to determine the “best” method combination. Whereas concavity and linearity were the dominant30

drivers of goodness of fit, it is selectivity and concavity that exert the strongest control over the distribution of b. Minimum

recession length seems to exert the strongest control over the distribution of the recession scale parameter (a). Along with the

inconsistencies in controls on each recession measure, we also note that some recession measures are uniformly sensitive to a

given method for all catchments (e.g. concavity strongly affects b for
:::::
almost all catchments), while others seem to vary between
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catchments. For example, linearity exerts a strong control on the distribution of b for catchment 11468500 (Noyo River), but

apparently makes very little difference for catchment 11143000 (Big Sur River).

4.4 Consequences for event-scale
:::
The

:::::::::::
relationship

:::::::
between

::::::::::
catchment

:::::::::
antecedent

:::::::
wetness

::::
and

:::
the

:
recession

theory
::::
scale

:::::::::
parameter

The “revival” of power law recession analysis at the event-scale can be attributed primarily to two new (and distinct) theories5

concerning catchment function, both of which predict that recessions should take a power law functional form, and that the

recession parameters a and b should vary between events. Clark et al. (2009) and Harman et al. (2009) theorize that power

law parameters provide information primarily about the partitioning and distribution of flow residence timescales within the

catchment. Logical extensions of the theory suggest that measures of variability in the recession exponent could provide

information on heterogeneity in catchment transport timescales. Contrasting theory by Biswal and Marani (2010) suggests that10

the recession scale parameter can be uniquely mapped to the rate of wetted channel contraction during the recession phase.

In later work, Biswal and Nagesh (2014) hypothesize that spatial heterogeneity in rainfall could also introduce variation in the

recession exponent.

The theory of Harman et al. (2009) and Clark et al. (2009) has some support from abstract, multi-reservoir models, but it

is unclear precisely how such models correspond to the physical architecture of a catchment. A key prediction made by15

Harman et al. (2009) – that the recession exponent should increase with catchment size – receives mixed support from empirical

studies (e.g. Stoelzle et al., 2013). In comparison, the wetted channel dynamics underlying the theory of Biswal and Marani (2010) are

highly observable, although some empirical evidence has been presented that contradicts important assumptions of the theory

(Shaw, 2016; Whiting and Godsey, 2016).

Overall, few studies have attempted to tease apart the convergent predictions of power law recession theories. Some works20

informed by Biswal and Marani (2010) demonstrate a relationship between measures of antecedent catchment wetness and

the power law scale parameter (e.g. Bart and Hope, 2014; Biswal and Nagesh, 2014; Patnaik et al., 2015), although explicit

connections to wetted channel network expansion and contraction still require elucidation (Ghosh et al., 2016). Whatever its

physical basis, we observe similar correlations between measures of antecedent wetness and the scale-corrected recession scale

parameter. Figure ?? plots the recession scale parameter versus a measure of antecedent wetness for the Elder Creek catchment25

for three methodological combinations. The antecedent wetness measure (W ) is computed as a weighted sum of streamflow

prior to each recession event:

W =

60X

i=1

0.95

i
Qi,

where i is the number of days prior to the start of the recession event. The weighting coefficient, 0.95i, is included to discount

the effect of less recent events on the catchment wetness state. All plots demonstrate a decreasing, log-log linear relationship30

between the antecedent wetness measure and the recession scale parameter. The first and second plots are less restrictive with

respect to recession length and peak size; the first plot extracts concave recessions and uses nonlinear fitting, while the second
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plot extracts decreasing recessions with linear fitting. The third plot uses a highly selective extraction procedure and fits the

recession model with nonlinear regression. Despite moderate sensitivity to concavity and linearity in the Elder Creek data

(catchment 11475560) displayed in Fig. 10, the first two fits
::
in

::::
Fig.

::
11

:
are not statistically different as shown by 95% confi-

dence intervals for the fitted slopes. The slope on the third plot differs significantly from the first two, likely due to the fact

that the population of recessions originates from a highly selective extraction procedure
:::
that

::::::
triggers

:::
a’s

::::::
strong

:::::::::
sensitivity

::
to5

::
the

:::::::::
minimum

::::::::
recession

:::::
length

:::::::
method

::::::
choice. This highlights the potential for recession extraction bias in parameter popula-

tions; without good cause to discard smaller or shorter recessions, such choices can lead to quantitatively different interpre-

tations of recession parameter values.
::
In

:::::::
general,

::::
Fig.

::
11

::::::::::::
demonstrates

:::
that

::::::::::
quantitative

:::::::::
validation

::
of

::::::::
recession

:::::::
theories

::::
that

::::::
predict

::::::::
emergent

:::::::::::
relationships

:::::::
between

::::::::
recession

::::::::
measures

::::
and

:::::::::
catchment

::::
state

::::
may

:::
be

:::::::
hindered

:::
by

::::::::::
uncertainty

::::::
relating

:::
to

::::::::::::
methodological

:::::::
choices.

:
10

4.5
:::::::::::::

Methodological
:::::::::::::::
recommendation

::::::
Results

::::::::::
demonstrate

::::
that

::::::::
nonlinear

:::::
fitting

:::
and

:::::::::
concavity

::::::::::
significantly

:::::::
increase

::::::::
recession

::
fit

:::::::
quality,

:::::
while

::::::::
minimum

:::::
length

::::
and

::::
peak

::::::::
selectivity

:::
do

:::
not

::::::::
adversely

:::::
affect

:::
it.

:::
The

::::::::
recession

:::::::
measure

::
a

::
is

::::::
highly

:::::::
sensitive

::
to

:::
the

::::::::
minimum

::::::
length

::::::
choice,

::::
and

:::
the

:::::::
recession

::::::::
exponent

::
is
::::::
highly

::::::::
sensitive

::
to

::::::::
concavity

::::
and

:::::::::
moderately

::::::::
sensitive

::
to

:::::
peak

:::::::::
selectivity,

::
as

:::::::::::
demonstrated

:::
by

:::::::
Figures

:
8
:::
and

::::
10.

:::::
Taken

::
all

::::::::
together,

:::
we

::::::::
conclude

:::
that

::::
this

:::::::
suggests

:::
an

::::
ideal

:::::::::::
combination

::
of

::::::
method

:::::::
choices

:::
that

::::
will

::::
both

:::::::::
maximize15

::
fit

::::::
quality

:::
and

:::::::::
minimize

:::
bias

:::
in

:::
the

:::::
‘type’

:::
of

::::::::
recession

::::::::
identified

:::
for

::::::
fitting:

::::
Four

::::
day

::::::::
minimum

::::::
length

:::
(M

::
=

::
0),

::::::::::
permissive

:::::::
recession

:::::
peak

::::::::
selectivity

:::
(S

:
=
:::
0),

::::::::
concavity

::::::::::
requirement

:::
(C

:
=
:::
1),

::::
and

::::::::
nonlinear

::::
least

::::::
squares

::::::
fitting

::
(L

::
=

::
0).

:

5
::::::::::
Conclusion

This study quantified the sensitivity of the power law streamflow recession parameters a and b to four common methodological

choices made during recession extraction and fitting. While rankings of study catchments in terms of the descriptive statistics of20

a and b were relatively insensitive to the methods used, individual method choices did significantly impact observed parameter

distributions, though each parameter had a distinct sensitivity profile. These results highlight the importance of accounting for

methodological uncertainty when performing event-scale recession analysis.

6 Data availability

All streamflow data used for this study can be found on the website for United States Geological Survey (http://waterdata.usgs.25

gov/nwis).
::::
Code

::::
used

::
to

:::::::
perform

:::
this

:::::::
analysis

::
is

:::::
being

::::::::
developed

::
as

::
a
:::
web

::::::::::
application

:::
for

::
the

::::::::::
Consortium

::
of

::::::::::
Universities

::::::
Allied

::
for

::::::
Water

:::::::
Research

::::::::::
(CUAHSI),

:::
and

::
is
:::::::::::
preliminarily

::::::::
available

::
at https://github.com/daviddralle/tethysapp-recession_analyzer.

:
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Table 1. Study catchments

USGS gage number Catchment name Catchment area [km2] Number of years of data

11143000 Big Sur River, Big Sur, CA 120.4 65

11451100 North Fork Cache Creek, Clearlake Oaks, CA 155.9 44

11463170 Big Sulphur Creek, Cloverdale, CA 33.9 35

11468000 Navarro River, Navarro, CA 784.8 65

11468500 Noyo River, Fort Bragg, CA 274.5 64

11472200 Outlet Creek, Longvale, CA 416 37

11473900 Middle Fork Eel River, Dos Rios, CA 1929.5 50

11475000 Eel River, Fort Seward, CA 5457.1 60

11475560 Elder Creek, Branscomb, CA 16.8 48

11476500 South Fork Eel River, Miranda, CA 1390.8 75

11476600 Bull Creek, Weott, CA 72.8 55

11481000 Mad River, Arcata, CA 1256.1 65

11481200 Little River, Trinidad, CA 104.9 60

11482500 Redwood Creek, Orick, CA 717.4 62

14307620 Siuslaw River, Mapleton, CA 1522.9 48

14325000 Coquille River, Powers, OR 437.7 99

25



Table 2. Fraction of recessions with non-physical recession exponent (b < 0) for each method combination.

Method combination (MSCL) Fraction of fits with b< 0

0 (0000) 0.114

1 (0001) 0.035

2 (0010) 0.070

3 (0011) 0.005

4 (0100) 0.097

5 (0101) 0.024

6 (0110) 0.059

7 (0111) 0.003

8 (1000) 0.032

9 (1001) 0.002

10 (1010) 0.013

11 (1011) 0.0

12 (1100) 0.016

13 (1101) 0.001

14 (1110) 0.004

15 (1111) 0.0

Enumeration of the methodological choices associated with the sixteen method combinations considered here. Method combination

Minimum recession length (M)M = 1 =) min len = 10 daysM = 0 =) min len = 4 daysPeak selectivity (S)S = 1 =) d = 50S = 0

=) d = 500Recession concavity (C)C = 1 =) concave and decreasingC = 0 =) decreasingFitting method (L)L = 1 =) log-log

linear fittingL = 0 =) non-linear fitting0 0 0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1 8 1 0 0 0 9 1 0 0 1 10 1 0

1 0 11 1 0 1 1 12 1 1 0 0 13 1 1 0 1 14 1 1 1 0 15 1 1 1 15
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Figure 1.
:::::
Green

::::
lines

::::::::
correspond

::
to

::::::
periods

:::::
during

:::::
which

::::::::
streamflow

:::
data

::::
was

:::::::
available

::
for

::::
each

::::::::
catchment.

:
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Figure 2.
::::::
Typical,

:::::
highly

:::::
erratic

:::::
runoff

::::
time

::::
series

:::
for

:::::::
Northern

::::::::
California

:::::
coastal

:::::::::::
Mediterranean

:::::::::
watersheds.
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Figure 3.
:::::::
Graphical

:::::::::
illustration

::
of

::
the

::::::
sixteen

::::::
method

::::::
choices.

::::::::
Minimum

:::::::
recession

:::::
length

:::
(M)

:::::::::
determines

::::::
whether

:::::::
extracted

::::::::
recessions

:::
are

::::::
required

::
to

::::
have

:
a
::::::::

minimum
:::::
length

::
of

:::::
either

:
4
:::

(M
::
=

::
0)

::
or

::
10

::::
days

:::
(M

::
=

::
1).

::::::::
Recession

::::
peak

::::::::
selectivity

:::
(S)

:::::::::
determines

::::::
whether

:::
the

::::
peak

::::::
selection

::::::::
algorithm

::
is

:::::
highly

:::::::
restrictive

::
(S

::
=
::
1)

::
or

:::::::
relatively

::::::::
permissive

::
(S

::
=
::
0).

::::::::
Recession

::::::::
concavity

::
(C)

:::::::::
determines

::::::
whether

::::::::
recessions

:::
are

::::::
required

::
to

::
be

::::
both

::::::::
decreasing

:::
and

::::::
concave

::
up

::
(C

::
=
::
1),

::
or
::::::

simply
::::::::
decreasing

::
(C

::
=
::
0).

::::::
Finally,

::::::::
Linearity

::
(L)

:::::::::
determines

::::::
whether

::
or

:::
not

:::
the

:::::
values

::
of

::
the

:::::::
recession

:::::::::
parameters

:
a
:::
and

::
b
::
are

:::::::::
determined

::::
using

:::::
linear

::::::::
regression

::
on

:::
the

:::
plot

::
of

:::::::::::
log [�dQ/dt]

::
vs.

:::::
logQ

::
(L

::
=

::
1),

::
or

::::
using

::
a

:::::::
nonlinear

::::
least

:::::
squares

::
fit
::
to

:::
the

:::
raw

:::::::
recession

::::
time

::::
series

::
(L

::
=
::
0).

:
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Figure 4.
:::::::
Illustration

:::
of

::
the

::::
peak

::::::::
extraction

::::::::
algorithm.

::::
The

:::::
square

::::::::
represents

::
the

:::::
most

:::::
recent

:::::::
recession

::::
peak

:::::::
identified

:::
for

:::::::
selection.

::::
The

:::::
empty

::::
star

:::::::
identifies

:
a
::::
local

::::::::
maximum

:::
that

:::
will

:::
not

::
be

::::::
selected

:::
due

::
to

:::
the

:::
fact

:::
that

:::
the

::::::::
subsequent

:::::::
recession

::::
does

:::
not

::::
decay

:::
by

::
an

::::::
amount

::
X

:::::
before

::
the

::::
next

::::
local

::::::::
maximum.

:::
The

::::
filled

:::
star

::
is

::::::
selected

::
as

:
a
:::::::
recession

::::
peak

::::::
because

:
it
::
is
::
at

:::
least

::
X
::::::
greater

:::
than

:::
the

::::
local

:::::::
minimum

:::::::
between

:
it
:::
and

::::
the

::::::::
previously

::::::
selected

:::::::
recession

::::
peak

:::::::
(square),

:::
and

:
is
:::::::
followed

::
by

::
a
:::
flow

:::::::
decrease

::
of

::
at

:::
least

:::
X .
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Figure 5. Example recession extraction from the hydrograph (a) using a less restrictive method M=0 (b) and a more restrictive method M=1

(c). The recessions identified by the more restrictive method will be “shared” by the two methods, in the sense that they will by definition also

be identified by the less restrictive method. Recessions identified by only the less restrictive method (d) are classified as “not shared
::::::
unshared”.
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Figure 6.
::::
Mean

:::::::
absolute

::::::::
percentage

::::
error

::::::
(MAPE)

::::::
lumped

:::::
across

::::::::
catchments

::
by

::::
three

::::::
groups:

:::::::
Concave

:::
only

::::::::
recessions

:::
with

::::::::
nonlinear

:::::
fitting;

::::::
Concave

::::::::
recessions

::
or
::::::::

nonlinear
:::::
fitting

:::
but

:::
not

:::
both

:::::::
(denoted

:::::
using

:::
the

:::::
logical

::::::::
‘exclusive

:::
or’

:::::::
operator,

:::::
‘xor’);

:::
and

:::::::::
decreasing

::::::::
recessions

::::::
(without

:::
the

:::::::
concavity

::::::::::
requirement)

:::
and

:::::
linear

::::
fitting

:::::::::
procedures.
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Figure 7. Box and whisker plots of Spearman rank correlations for all six descriptive measures of the distributions of a, b, and TR. Per

characteristic, there are 15⇥ 16 = 240 unique pairwise comparisons between method combinations.
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Mean absolute percentage error (MAPE) for all method combinations, lumped across catchments.
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Figure 8. Box plots for a, b, and TR across all method combinations for Elder Creek watershed.
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Figure 9. Box plots comparing
:::::::
recession

:::::::
exponent

:
shared vs. unshared distributions for the

:::::::
minimum

:
recession exponent

::::
length

::::
and

:::::::
concavity

::::::
method

::::::
choices for Elder Creek. Each sub-plot corresponds to a particular method choice; the shared boxes are generated with

the b values from the recessions shared between the 0
:::
more

:
and 1

:::
less

:::::::
restrictive

:
values of the subplot method choice

::
for

::::
that

::::::
sub-plot.

The unshared boxes are those values of b from the recessions extracted by only
:::
only the less restrictive value of the subplot method choice.

The independent axis shows
::::::::
enumerates

:
the values for

:::
eight

:::::::::::
combinations

::
of the method choices other than the subplot method choice. For

the linear versus nonlinear comparison, the distributions are by definition all shared, as the L method choice does not affect the extraction

procedure; here the comparison is simply between population of nonlinear fits (0) and linear fits (1).
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Figure 10. Results of Mann-Whitney U test sensitivity analysis. Each row represents one of the 16 study catchments, each subplot one of

the three recession measures a, b, or TR, and each subplot column one of the four methodological choices (MSCL). Each cell is colored by

the fraction of statistically different pairs of shared versus unshared distributions for the particular recession measure conditioned by the two

values of the corresponding method choice
:
a
::::::::
sensitivity

::::
rank. A cell shading of 1 4

:
(dark purple

:::::
darkest) means all eight pairs

:::
that

::::::
method

:::::
choice

:::
had

::
the

::::::
highest

::::::
number of

:::::::::
significantly

:::::::
different shared and unshared distributions were determined to be statistically different

::
for

:::
that

:::::::
recession

::::::
measure

::
in

:::
that

::::::::
catchment, indicating that the particular recession measure is highly sensitive to the corresponding method choice.
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Figure 11. The recession scale parameter plotted against antecedent catchment wetness for three method combinations, together with a linear

fit for each point cloud, and a 95% confidence interval for each fitted slope.
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