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Title: Using rainfall thresholds and ensemble precipitation forecasts to 

issue and improve urban inundation alerts 

Responses to reviewer #1 

Overall this paper makes a good scientific contribution as it demonstrates 

the development of an urban flood warning system using NWP ensemble 

rainfall forecasts to extend the lead time. Forecasting urban flooding from 

intense rainfall events is of high importance but currently very few 

systems exist around the world. Therefore this manuscript will be of high 

interest to many readers who could apply the findings to help develop 

their equivalent warning systems. Therefore I recommend that this paper 

is accepted for publication after the authors have addressed the following 

minor corrections. 

1. Provide more information about the rainfall thresholds. It would be 

helpful for the authors to provide more information about how these 

rainfall thresholds are derived. A reference to Wu 2013 is provided but 

access to this conference proceeding does not seem possible, therefore 

the authors should provide more information within their manuscript. 

On page 5 at line 11 I do not understand the difference between the 

first and second level alerts, when is a second level alert created as 

opposed to a first level alert, does this have any impact on the 

evaluation presented in this manuscript? 

Response: 

We appreciate for the Reviewer’s comments. The rainfall thresholds 

for the first and second alerts are different. By definition, there is a 3-h 

lead time before flooding if the second-level alert is issued. The first-

level alert is at an immediate risk of flooding. The WRA identified the 

rainfall thresholds of the second-level alerts for the purpose of 

precaution so the responding authorities have time to take associated 

actions. This study used the rainfall thresholds of the second-level 

alerts to evaluate the risk of flood alerts. Figure 2 is added to provide 

further information on the WRA's identification process of the rainfall 

thresholds. The text is also added in Section 2.2 in red. Please find the 

description on page 4 from lines 16 to 21 and lines 32 to 34 in the 

revised manuscript.    

2. Page 5 line 28 – do the 352 townships cover the entirety of Taiwan? 



This is a minor point but if they are only located in a certain part of 

the island then perhaps this could influence the evaluation scores? 

Response: 

We appreciate for the Reviewer’s comments. Yes, the 352 townships 

cover the entirety of Taiwan Island. The evaluation score was for the 

whole island. 

3. Is there a mismatch between observed rainfall data and the TAPEX 

forecasts? If there is a bias in the TAPEX rainfall estimates, for 

example it could underestimate extreme precipitation, could this be 

problematic when comparing against rainfall thresholds derived from 

observations and when assimilating observations during day 1? If 

TAPEX does underestimate rainfall during a typhoon then this could 

mean that the threshold is not exceeded but the forecasted rain is still 

extreme when compared to the model climatology. On line 10 of page 

9 the authors say that TAPEX rainfall forecasts were usually 

underestimated. In section 2.3 the authors should provide references to 

the verification scores of TAPEX forecasts of extreme rainfall and 

discuss the implications of comparing model forecasts against 

observed threshold values. Does a similar issue also affect the 

assimilation of observation data during the first 24 hours? For 

example what would the affect on the results be if the authors 

assimilated data from the previous forecast as opposed to observation 

data? The authors should discuss this point either within section 2.3 or 

in their conclusions. 

Response: 

We appreciate for the Reviewer’s comments. Yes, the 

underestimation of the rainfall forecast sincerely affects the flood 

forecasting. Mcbride and Ebert (2000) revealed that most numerical 

global models tend to over forecast the rainfall frequency on each 

threshold in Australia summer during December to February and 

slightly under forecast in winter. The study used a bias score to 

address the issue. If the bias score is smaller than 1.0, it means the 

rainfall forecast is underestimated. Mcbride and Elbert (2000) found 

that the bias score is below 1.0 when the rainfall threshold is 20 

mm/day and above. According to the performance in 2016, it indicate 

that TAPEX under predicted the rainfall frequencies during a rainfall 



event greater than 100mm/day. The bias scores were 0.49 to 0.12 for 

rainfall thresholds from 100 mm/day to 350 mm/day. The complexity 

of atmosphere gives the numerical weather forecasts a lot of 

uncertainties. However, that is beyond the scope of this study. The 

purpose of this study is to provide flood warning forecasts and 

improve the forecasts by adopting the uncertainties of numerical 

weather forecasts. The associated text is added in Section 2.3 

accordingly in red. Please find the revised text from line 29, page 5 to 

line 8, page 6 in the revised manuscript.   

4. Are the data in figure 6 created using results with or without the data 

assimilation, this should be clarified in the text? 

Response: 

We appreciate for the Reviewer’s comments. The results in figure 6 

are shown without the data assimilation technique. The section 4.1 is 

titled “Comparisons of forecasted results without a data assimilation 

technique” and figures 6-8 are in this section. To be clarified, the text 

“without a data assimilation technique” is added in the description of 

figures 6-8 and in the section 4.1. The title of the section 4-1 is 

changed to “Original forecast results without a data assimilation 

technique”.  

5. The explanation of the plotting of dtg in figures 6-8 needs clarification 

I am unclear about what is plotted at each dtg step in these figures, for 

example in figure 7 for cyclone Trami which made landfall on 

20130821 1800 does this mean that the data plotted at ’landfall’ refers 

to the 25-48 h data from the forecast on 20130819 1800, and the data 

plotted at -1 dtg refers to the 25-48 h data from the forecast on 

20130819 1200 etc? 

Response: 

We appreciate for the Reviewer’s comments. The Reviewer is correct. 

The landfall time is identified in Table 1. Taking TRAMI as an 

example, the landfall time is 20130821 1800 and the landfall dtg is 

2013082114 for 1-24 h, 2013082014 for 25-48 h, and 2013081914 for 

49-72h. Therefore, the -1 dtg is 2013082108 for 1-24 h, 2013082008 

for 25-48 h, and 2013081908 for 49-72h. The text is added for further 

explanation. Please find the text on page 8 from lines 16 to 19.   



6. The proximity of a cyclone to landfall affecting the result accuracy 

requires further explanation On line 14 of page 9 it is suggested that 

when the TAPEX model is initialized with a typhoon close to or 

having already made landfall that this affects the track accuracy and 

hence the rainfall accuracy. I understand that this could be problematic 

for forecasts between 1-24 hours lead time but would this issue not 

diminish with increasing lead time? For example the forecasts used in 

figure 8 (lead time 49-72 h), would these not have been initialized 

when the typhoons were yet to make landfall? My confusion here is 

linked to my confusion about the dtg in the previous point, so it would 

be greatly appreciated if the authors could provide clarification. 

Response: 

We appreciate for the Reviewer’s comments. The authors addressed 

the issue that when the vortex was initialized near the complex terrain, 

the current technique we used in TAPEX might not perform as well as 

it does when the vortex was in the open ocean. This might introduce 

errors in the consequent precipitation forecast. Thus it explained our 

model’s performance drop when the TAPEX model was initialized 

when a typhoon is close to or making landfall on Taiwan even if the 

forecast time is as small as 1 to 24 hours. The same issue may not 

create problems when the lead time is greater (or typhoon is away). 

However, other issues such as lack of observations cause the initial 

field degradation. The text is added in red accordingly in the revised 

manuscript. Please fine the text on page 9 from lines 12 to 21. 

7. Provide a table of the skill scores calculated across all the typhoons 

This would give some useful overview statistics about the proposed 

system, it might also help the reader to determine how close the 

system is to providing a FAR<0.5 as alluded to by Coughlan de Perez 

et al., 2016 and at which threshold level. 

Response: 

We appreciate for the Reviewer’s comments. Table 7 is added for 

Reviewer’s reference in the revised manuscript. With the data 

assimilation technique, the forecast results of 1 to 24 h is applicable. 

When the possibility threshold increases, the FAR score decreases. It 

implies that the number of false alarms decreases. To meet Cough de 

Perez et al. (2016)’s standard, the system can provide FAR < 0.5 when 



the possibility is above 30% with a lead time of 48 hours. For the lead 

time more than 48 hours, the system cannot meet the operational need 

of practitioner. A paragraph in red is added to address the finding at 

the end of the discussion section on page 11 from lines 21 to 27. The 

limitation of the system is also added in the same paragraph. As to the 

Reviewer’s other minor typographical corrections, we have made the 

following modifications. 

Reviewer comment Authors’ 

response 

1. Page 1 line 10 replace ’preceding’ 

with ’predicting’introduction part. In the abstract you 

should focus on your contribution. 

Corrected 

2. Flood Awareness System (EFAS)’ Page 3 line 6 the flash 

flood system in EFAS is currently the Enhanced Runoff 

Index based on Climatology (ERIC) see 

http://onlinelibrary.wiley.com/doi/10.1002/met.1469/abstract 

Corrected 

3. Page 3 line 8 replace ’sources’ with ’resources’ Corrected 

4. Page 4 line 8 replace ’early inundation warning system’ 

with ’inundation early warning system’ 

Corrected 

5. Page 6 line 9 insert ’the’ after ’The complexity of’  added 

6. Page 7 equation 3 replace ’Pobability’ with ’Probability Corrected 

7. Page 11 line 22 replace ’will appear’ with ’are likely’ Corrected 

8. Figure 3 replace ’Present Time’ with ’Timeline’ Corrected 

9. Table 1 caption insert ’that’ so that the sentence 

reads ’For typhoons that did not...’ 

added 

10. Table 5, in Matmo SR-FAR column for the 80% 

exceedance level did SR-FAR really equal 1.0? 

Yes, it 

equaled 1.0 

since the 

system did 

not produce 

false alarms. 

There were 

misses, but 

not included 

in the 

performance 

measure. 



Responses to reviewer #2 

In fact, the authors raised an essential point of research in their 

manuscript which is considered as (from my point of view) the highest 

priority for the hydrologists. I go through the paper several times in order 

to put my hand on how the authors introduced their contribution, I found 

that, the contribution is presented but not clear enough for me. Actually, 

while reading, there are several questions have been raised and also the 

difficulties in following the abbreviations reported in the text, so, first I 

recommend the authors to prepare a list of abbreviations at the beginning 

of the manuscript to easy following the manuscript. In addition, to avoid 

any duplication in the comments, I go through the first reviewer’s report, 

I totally agreed with his comments and I am sure if the authors consider 

them, the manuscript will be in excellent shape for the readers. 

  



Response: 

We appreciate for the Reviewer’s comments. We have revised the 

manuscript accordingly. A list of abbreviations was added after the 

Acknowledge section. Please see the attached manuscript for your 

reference. All the modification for Reviewer one’s comment was made in 

red in the revised manuscript. 

 

However, I am highlighting hereafter some other comments as well. 

1. The formulation of the rainfall threshold is not clear, showing 

comprehensive details on how they form it is essential for the readers. 

Response: 

We appreciate for the Reviewer’s comments. Figure 2 is added to 

provide further information on the identification process of WRA’s 

rainfall thresholds. The text is also added in Section 2.2 in red. Please 

find the description on page 4 from lines 16 to 21 and lines 32 to 34 in 

the revised manuscript.    

2. The introduction section is really very long, I suggest to shorten it to 

be direct to the point, to let the readers captured your idea in short 

way. Unless, the authors could split this section into several 

representative sub-sections. 

Response: 

We appreciate for the Reviewer’s comments. The introduction section 

was shortened according to the Reviewer’s comment. Please see the 

revised manuscript for your reference. The modification was made in 

red in the first section in the revised manuscript. 

3. The title of section 4-1 is not understandable 

Response: 

We appreciate for the Reviewer’s comments. The section 4-1 

described the forecast results without a data assimilation technique 

which was proposed by the study. To be clarified, the title is changed 

to “Original forecast results without a data assimilation technique”.  

4. In section 4-2„, at the beginning the authors start with the following 



statement “To decrease the uncertainty of numerical weather 

predictions and improve the performance of inundation alert 

forecasting, this study developed a hybrid real-time observed and 

forecasted rainfall model to improve the accuracy of early warning 

notifications.”. This section supposed to be results and discussion 

section, but I did not see before that how the authors develop this 

hybrid real-time observation model. 

Response: 

We appreciate for the Reviewer’s comments. The “hybrid real-time 

observed and forecasted rainfall model” actually means that the 

system modified forecasts with a data assimilation technique. The 

method was explained from Line 25, Page 5 in the original 

manuscript. To be clarified, the authors modified the content. At Line 

25, Page 5, the first sentence is also modified “To decrease the 

uncertainty in the rainfall forecasts, this study a data assimilation 

technique that used real-time rainfall observations to modify the 

rainfall forecasts and improve the 24-h urban inundation forecast’s 

performance.” At beginning of Section 4.2, the content is modified 

“To decrease the uncertainty of numerical weather predictions and 

improve the performance of inundation alert forecasting, this study 

applied a data assimilation technique that combined real-time 

observed and forecasted rainfalls to modify the forecasts. The data 

assimilation technique decreased the temporal uncertainty of 

numerical rainfall forecasts and improved the accuracy of early 

warning notifications. The longest rainfall threshold duration to trigger 

an inundation alerts is 24 h in this study. The technique was used to 

address the gap in forecasted rainfall data with observed rainfall 

information. The absence of forecasted rainfall values occurred in the 

first warning period (i.e., 1-24 h). Therefore, this study used the data 

assimilation technique to improve the 1- to 24-h forecasts.”   

5. Presentation of figures 5 and 6 are not of good quality. Figure 5 could 

be improved and increasing its scale. Figure 6, its notation is wrong (a, 

b) is repeated: : : and c the number 15 is appear which is not 

understandable for what. 

Response: 

We appreciate for the Reviewer’s comments. The figures are modified 



in the revised manuscript. The authors reproduced Figure 5 and 

corrected the notation in Figure 6.  

6. Adding a paragraph at the end of discussion section showing the 

limitations of the proposed method would be very helpful for readers 

Response: 

We appreciate for the Reviewer’s comments. The limitation of the 

system is added in red at the end of the discussion section. In addition, 

Table 7 is added based on Reviewer #1’s request to address the overall 

discussion of the system. With the data assimilation technique, the 

forecast results of 1 to 24 h is applicable. When the possibility 

threshold increases, the FAR score decreases. It implies that the 

number of false alarms decreases. To meet Cough de Perez et al. 

(2016)’s standard, the system can provide FAR < 0.5 when the 

possibility is above 30% with a lead time of 48 hours. For the lead 

time more than 48 hours, the system cannot meet the operational need 

of practitioner. The discussion is added to address the finding at the 

end of the discussion section. Please find the modification on page 11 

from lines 21 to 27 in the revised manuscript.  

7. The conclusion section is also very long and include several parts that 

consider as a discussion issue and not consider as conclusion, better to 

re-write this section to be direct to the point and reflect the objective 

of the study. 

Response: 

We appreciate for the Reviewer’s comments. The conclusion section is 

condensed to two paragraphs. The first paragraph describes the overall 

picture of the study and general findings from the original results 

without a data assimilation technique. The general recommendations 

of using numerical rainfall forecasts during typhoons were proposed at 

the end of the first paragraph. The second paragraph then describes the 

improvement of the system after considering real time observations in 

the evaluation process. Finally, some suggestions are included for the 

future improvement. Please find the modification which was made in 

red at the conclusion section in the revised manuscript. 
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Abstract. Urban inundation forecasting with extended lead times is useful in saving lives and property. This study 

proposes the integration of rainfall thresholds and ensemble precipitation forecasts to provide probabilistic urban 

inundation forecasts. Utilization of ensemble precipitation forecasts can extend forecast lead times to 72 h, predicting 10 

peak flows and to allow response agencies to take necessary preparatory measures. However, ensemble precipitation 

forecasting is time and resource intensive. Using rainfall thresholds to estimate urban areas’ inundation risk can 

decrease this complexity and save computation time. This study evaluated the performance of this system using three 

hundred and fifty-two townships in Taiwan and seven typhoons during the period 2013-2015. The levels of forecast 

probability needed to issue inundation alerts were addressed because ensemble forecasts are probability based. This 15 

study applied six levels of forecast probability and evaluated their performance using five measures. The results 

showed that this forecasting system performed better before a typhoon made landfall. Geography had a strong impact 

at the start of the numerical weather modeling, resulting in the underestimation of rainfall forecasts. Regardless of this 

finding, the inundation forecast performance was highly contingent on the rainfall forecast skill. This study then tested 

a hybrid approach of on-site observations and rainfall forecasts to decrease the influence of numerical weather 20 

predictions and improve the forecast performance. The results of this combined system showed that forecasts with a 

24-h lead time improved significantly. These findings and the hybrid approach can be applied to other 

hydrometeorological early warning systems to improve hazard-related forecasts.   

1 Introduction 

Flooding is one of the most destructive disasters in the world and results in enormous losses of life and property 25 

annually (Gruntfest and Handmer, 2001; Barredo, 2009; Hallegatte et al., 2013; Sampson et al., 2015). Global flood 

risk is likely to increase under climate change; as a result, numerous adaption strategies should be considered 

(Hirabayashi et al., 2013). Establishing an early flood warning system to reduce disaster losses is the most cost-

effective solution of all of the structural and non-structural measures studied (Alfieri et al., 2012; Hallegatte, 2012). 

Several flood warning systems have been developed and implemented in response to floods (Pappenberger et al., 2005; 30 

Thielen et al., 2009; López-Trujillo, 2010; De Kleermaeker et al., 2012; Doong et al., 2012). 
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Various approaches are used to simulate flooding based on the available rainfall data. Complex models such as the 

one- or two-dimensional Saint-Venant equations better describe flow behaviors and provide detailed spatial 

information as part of their flood forecasts (e.g., Nguyen et al., 2015; Huthoff et al., 2015). However, the high 

computation costs and substantial data requirements involved in solving these detailed models limit the application of 

these models during an emergency response or real-time forecast. Therefore, a variety of alternatives, such as 5 

simplified equation-based systems, data-driven models, and rainfall threshold-based approaches, have been developed 

to improve the computing efficiency of the models.  

Simplified equation-based systems (e.g., Cirbus and Podhoranyi, 2013; Liu et al., 2014; Shao et al. 2015) use 

simplified equations, such as Manning’s equation, to describe water spreading, thereby improving the calculation 

efficiency of the forecasting models. However, the data required, including digital elevation models (DEMs) and 10 

surface roughness, are sometimes difficult to collect. As a result, data preparedness is still a practical concern for the 

abovementioned models. Data-driven models are based on computational intelligence or machines. Flood forecasting 

is just one of the applications of these models (e.g., Chang et al., 2010; Lin et al., 2013). As indicated by the name, 

the quality and quantity of data used in the model have a considerable impact on the performance of data-driven 

models. To collect accurate flood inundation data is a challenge in itself. In addition, the performance of data-driven 15 

models deteriorates as forecast time increases (e.g., Lin and Jhong, 2015; Badrzadeh et al., 2015). Data-driven models 

also cannot provide forecasts with longer lead times. A rainfall threshold approach is commonly applied to evaluate 

landslide risk (e.g., Crosta and Frattini, 2003; Guzzetti et al., 2007; Posner and Georgakakos, 2015). Meteorological 

organizations generally issue flood forecasts/warnings if a critical value—namely, a rainfall threshold—is exceeded 

by the observed or predicted rainfall (Martina et al., 2006). Several operational meteorological agencies throughout 20 

the world issue warnings based on Flash Flood Guidance (FFG) values (Gourley et al., 2014). The US National 

Weather Service (NWS) developed FFG values for flash flooding (Carpenter et al., 1999). Based on these values, 

floods are predicted, and flood warnings are issued Georgakakos (2005, 2006) studied operational flash flood warning 

systems based on FFG and provided analytical results. These studies found that an FFG threshold is likely to produce 

a high probability of detection in regions where flash floods are frequent. The European Flood Awareness System 25 

(EFAS) uses numerical weather predictions and the Enhanced Runoff Index based on Climatology, which is based on 

simulated climatology, an FFG-related concept, to provide flash flood warnings (Raynaud et al., 2015). In countries 

such as Kenya and Haiti that do not have enough well-trained operators and resources to set up an efficient flood 

warning system, the approach is a viable alternative that allows for the mitigation of flood damage (Georgakakos et 

al., 2013; Shamir et al.,2013; Hoedjes et al, 2014). The rainfall threshold approach has proven successful in identifying 30 

a number of flash floods across Europe (Alfieri et al., 2014). Although it should not be considered a substitute for 

complex hydro-meteorological models because of its simplicity, using a rainfall threshold approach to develop a flood 

warning system can be an immediately useful tool for a variety of decision makers interested in early warnings and 

flash floods (Martina et al., 2006). Only a few studies (Jang, 2015; Wu et al., 2015) have applied rainfall thresholds 

to evaluate urban inundation risk. The present study represents the first of its kind to use the rainfall threshold approach 35 

and quantitative precipitation forecasts (QPFs) to evaluate inundation risk in Taiwan. By directly comparing QPFs 

with critical rainfall thresholds, this study aims to propose an early warning system that provides forecasts, allows for 
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the possibility of issuing urban inundation warnings and gives response agencies enough lead time to implement 

emergency preparedness plans. 

A flood warning system that uses QPFs as the rainfall input could increase the forecasting horizon from a few hours 

to a few days (Pappenberger et al., 2005; Shi et al., 2015). Georgakakos (2005) concluded that the dominant source 

of uncertainty in applying a rainfall thresholds approach to evaluate flood risk is precipitation. The uncertainty in 5 

forecasted rainfall values is generally higher than that for observed rainfall data. Nevertheless, to extend the forecast 

lead time, operational and research flood forecasting systems around the world are increasingly moving toward using 

QPFs to provide early warnings (Cloke and Pappenberger, 2009). Martina et al. (2006) discussed the possibility of 

providing flood warnings at given river reaches by directly comparing the QPF to a critical rainfall threshold value. 

Regardless of the forecasts’ uncertainty, considering which probabilistic forecast levels should be used to issue 10 

inundation alerts or take actions is a challenging topic. Higher levels of probabilistic forecasts usually give the 

practitioner more confidence in the results. Dale et al. (2014) proposed a risk-based decision-support framework that 

could be easily applied in an operational flood forecast and early warning context. Other studies have also discussed 

the selection of appropriate probabilistic forecasts in terms of the economic and practical consequences of taking 

action (Coughlan de Perez et al., 2015; Coughlan de Perez et al., 2016). Therefore, the present study evaluates the 15 

system’s performance in terms of different levels of forecast probability. In addition, this study proposes a data 

assimilation technique that uses real-time observations to decrease the uncertainty from rainfall forecasts and increases 

the 24-h forecast accuracy. 

2 System development 

The proposed inundation early warning system integrates ensemble precipitation forecasts, rainfall thresholds, and a 20 

real-time data assimilation technique to assess the possibility of issuing inundation alerts. Figure 1 shows the system’s 

operational process during a typhoon event. The forecast results are intended to be provided to practitioners through 

a webpage. Due to a limitation in the computing resources and data retrieval tools available, the system generates a 

forecast every 6 h and updates the results on the webpage. The details of each component in the system are as follows. 

2.1 Ensemble precipitation forecasts for system input 25 

This study used rainfall forecasts from a precipitation ensemble forecast experiment, namely, the Taiwan cooperative 

precipitation ensemble forecast experiment (TAPEX). TAPEX is a collective effort among academic institutes and 

government agencies such as National Taiwan University (NTU), National Central University (NCU), National 

Taiwan Normal University (NTNU), Chinese Culture University (CCU), the Central Weather Bureau (CWB), the 

National Center for High-Performance Computing (NCHC), the Taiwan Typhoon and Flood Research Institute 30 

(TTFRI), and the National Science and Technology Center for Disaster Reduction (NCDR). The experiment began in 

2010 and was the first attempt to design a high-resolution numerical ensemble weather model in Taiwan. The 

experiment collects worldwide observation data, including temperature, wind, surface pressure, and relative humidity, 
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from satellites, atmospheric sounding devices, buoys, aviation routine weather reports, ships, and other available 

sources (e.g., Hsiao et al., 2012; Hsiao et al., 2013). TAPEX uses the outputs from the Global Forecast System (GFS) 

produced by the National Centers for Environment Prediction (NCEP), along with observation data, as the initial and 

boundary conditions for its forecasts. Various model physics schemes and data assimilation strategies are used to 

perturb the numerical weather models and create differentiated ensemble members. To date, twenty ensemble 5 

members and four different regional models (AWR-WRF, HWRF, MM5 and CreSS) have been established for 

precipitation forecasting. The experiment aims to provide 24-, 48-, and 72-h typhoon rainfall forecasts and generates 

four runs per day at a 5-km spatial resolution. TAPEX’s rainfall forecasts can extend the inundation forecast lead time 

to 72 h, which exceeds the average rainfall-runoff concentration time and the lag between observed peak participation 

and flooding in Taiwan. This lead-time is thus considered sufficient for decision-making processes to be implemented 10 

prior to inundation. 

2.2 Rainfall threshold for urban inundation alerts 

Coughlan de Perez et al. (2016) defined the danger level of flooding as the 95th percentile of a flood model’s forecasts 

at a lead-time of 0 h. The present study considered rainfall thresholds as danger levels related to the likelihood of 

urban inundation. In Taiwan, the Water Resources Agency (WRA) has developed rainfall thresholds for all townships 15 

(Wu and Wang, 2009). Figure 2 shows the WRA’s identification process for rainfall thresholds at the township level. 

It starts by collecting historical flood records that show when and where a flood occurred. The initial rainfall thresholds 

can then be estimated by determining the cumulative rainfall amounts at nearby rain gauges. The finalized rainfall 

thresholds for different townships are based on further investigations of local drainage capacity, local characteristics 

(e.g., land subsidence), and the professional judgement of local experts. The WRA reviews the rainfall thresholds 20 

every year once the new records are available. Inundation alerts are issued when observed rainfall meets or exceeds a 

given rainfall threshold. Local governments and civil agencies take necessary measures such as evacuating residents 

and deploying dewatering pumps based on the alerts. Given the historical record, the WRA assumes that inundations 

are directly related to accumulated rainfall and use a regression analysis to identify a two-level alarm for five duration 

periods. The five duration periods are 1, 3, 6, 12, and 24 h; a total of 10 rainfall thresholds are used to issue urban 25 

inundation alerts. The two levels of alarms are defined as follows: 

First-level alert: If the rain continues, the roads and villages subject to a high risk of flooding in the alerted townships 

may flood.  

Second-level alert: If the rain continues, the roads and villages subject to a high risk of flooding in the alerted 

townships will flood in the next 3 h. 30 

The WRA has associated different rain gauges with different townships and issues warnings by comparing the 

observations with the associated rain gauges. The rainfall thresholds for the first and second alerts are different. There 

is a 3-h lead time before flooding if the accumulated rainfall reaches the second-level alert. The first-level alert is at 

an immediate risk of flooding. The WRA identified the rainfall thresholds of the second-level alerts for the purpose 



5 

 

of precaution so that the responding authorities have time to take action. An inundation alert is issued if any of the et 

al., 2012). Taiwan is situated on one of the primary paths for western North Pacific typhoons and is affected by an 

average of 3.4 typhoons each year. Taiwan’s average annual rainfall is 2,600 mm, which is 2.5 times greater than the 

global average; and 80% of the precipitation on the island is caused by typhoons and storms from May to October 

(Cheng and Liao, 2011). Typhoons bring heavy rainfall and cause severe floods in Taiwan. The short concentration 5 

rainfall thresholds is met by the observed rainfall. Wu (2013) compared the alerts to collected inundation records in 

2012 and 2013 and concluded that the forecast accuracy rate is above 60%. As the only rainfall thresholds approach 

used to issue inundation alerts in Taiwan, it has proven its applicability in predicting flood inundation. This study used 

the rainfall thresholds of the second-level alerts to develop an early flood warning system. 

2.3 Inundation risk evaluation and a data assimilation technique to modify the forecasts 10 

In practice, the WRA issues inundation alerts when the cumulative rainfall exceeds the rainfall threshold at time T 

(Figure 3). However, WRA compares real-time precipitation observations to the rainfall thresholds, and thus the lead 

time is usually not long enough to allow communities to implement emergency preparedness measures. This study 

proposes a practical early warning system that compares cumulative projected rainfall instead of observed rainfall to 

provide probabilistic urban inundation forecasts. The system uses TAPEX’s forecasted rainfall to extend the model’s 15 

lead-time to 72 h. Figure 4 shows the forecast length during a real-time operation. TAPEX uses available observations 

at t-6 as its model’s initial conditions, and its numerical weather model computation process took 6 h to produce 

rainfall forecasts from t to t+72 h. Three hundred and fifty-two Taiwanese townships were used in this study to 

evaluate the proposed system’s performance. Equations (1) and (2) were used to calculate the probability of inundation 

in any given township; the forecasts were displayed over three distinct time periods (1-24 h, 25-48 h, and 49-72 h). A 20 

rolling window approach was applied to estimate the probability of issuing an inundation alert: each hour of the 

forecasting period was considered an evaluation end point, and the cumulative rainfall was calculated for the different 

durations.     

fi = {
1
0

  
if PFi,accu ≥ PTdur

if PFi,accu < PTdur 
 dur = {1, 3, 6, 12, 24 h}        (1) 

where 𝑃𝐹𝑖,𝑎𝑐𝑐𝑢 is the cumulative forecasted rainfall of the ith ensemble member in TAPEX. PTdur represents cumulative 25 

rainfall thresholds for the different durations (dur) (1, 3, 6, 12, and 24 h). An inundation occurred (fi =1) if the 

cumulative forecasted rainfall exceeded any of these thresholds. 

𝑃𝑟 =
1

𝑁
∑ 𝑓𝑖

𝑁
𝑖=1 × 100, 𝑁 = 1, 2, … ,20        (2) 

There are 20 ensemble members (N=20) in TAPEX. Equation (2) sums the fi values to obtain a probability (𝑃𝑟), which 

represents the inundation risk for any given township. Each township’s inundation risk can be obtained by repeating 30 

the above steps and comparing the results to TAPEX’s 72-h rainfall forecasts. Three separate time periods (1-24 h, 

25-48 h, and 49-72 h) illustrate the township’s future inundation risk. 
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The accuracy of the rainfall forecasts has a considerable impact on the flood inundation forecasts. Mcbride and Ebert 

(2000) revealed that most numerical global models over-predicted and slightly under-predicted the rainfall frequency 

of various thresholds in Australia in summer and winter, respectively. These authors used a bias score (bias) to address 

the over- or under-estimation issue. A prediction is underestimated if the bias is less than 1.0. Mcbride and Elbert 

(2000) found that the biases of most numerical models were less than 1.0 for rainfall thresholds greater than 20 mm/day. 5 

The TAPEX under-predicted the rainfall frequencies during a rainfall event greater than 100 mm/day according to the 

forecast results in 2016. The biases were 0.49 and 0.12 for rainfall thresholds of 100 mm/day and 350 mm/day, 

respectively. The complexity of the earth-atmosphere system and associated physical interactions adds uncertainty to 

the ensemble rainfall forecasts. However, this is beyond the scope of this study. The purpose of this study is to provide 

flood warnings by adopting the existing uncertainties in numerical weather forecasts and to improve the forecasts by 10 

using a data assimilation technique that uses real-time rainfall observations. This study used the technique to modify 

the 24-h urban inundation forecast performance. Figure 4 illustrates the combination of observations and forecasts 

used in the forecasting process. This study utilized five rainfall thresholds to represent different rainfall durations. 

However, these five thresholds could not be applied to evaluate the inundation risk at every hour within the first 24-h 

forecast. For example, only one rainfall threshold covers the 1-h period, which can be considered time t in Figure 3; 15 

however, there is a lack of forecasts for t - 1 and the preceding hours. When t = t + 2, only rainfall thresholds for 1 

and 3 h can be adopted. This shortcoming results in the underestimation of inundation forecasts. Given the above 

assumption, all five duration periods are applicable after the 25th h. This study proposes a data assimilation technique 

using observed rainfall data to address the absence of rainfall forecasts. It applies available observation data from t - 

24 to t - 1 prior to issuing inundation forecasts at t (Figure 4). Figure 2 combines the observation data (red line) and 20 

forecasts (dash line) with all rainfall thresholds (solid blue line). Alerts are issued if the combination exceeds the 

rainfall threshold at any given duration. In other words, the inundation forecast is improved within the first 24 h.  

3 Study area and data 

3.1 Study area 

Taiwan has an area of approximately 36,000 km2, and approximately 70% of the island is covered by mountains. A 25 

mountain range runs through the center of the island from north to south and forms a ridge dividing the east- and west-

bound rivers. The rest of the island is composed of alluvial plains below 100 m in elevation. Ninety percent of the 

population lives on these alluvial plains. The distance from the mountaintops to the sea is very short, less than 70 km 

on average. Most of the riverbed slopes exceed 1/100 in the upstream reaches and are between 1/200 to 1/500 in the 

downstream reaches, which results in average rainfall-runoff concentration times of between 6 and 72 h in the 30 

townships (Jang, 2015) and a lag time between observed peak precipitation and flooding of between 2 and 10 h (Jang 

time and high density of the population in the plains areas further increase the damage caused by floods. Taiwan is 

one of the most disaster-prone countries in the world; thus, it has been selected as the study area here for the 

development of an urban inundation warning system. 
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3.2 Observed inundation alerts 

Records such as the time of occurrence, depth, and extent of inundation are used to calibrate and validate early warning 

systems. Collecting accurate information is thus incredibly important. However, data collection during major floods 

is challenging. For example, identifying the occurrence time of an inundation is always an issue because of the lack 

of in situ monitoring devices. This study used urban inundation alerts issued by the WRA as a reference to evaluate 5 

the system’s performance. The WRA issues alerts following the Common Alerting Protocol (CAP), which was first 

published by the OASIS Emergency Management Technical Committee in 2005 (OASIS Emergency Management 

Technical Committee, 2005). The WRA updates its alerts every ten minutes and uploads the information to an open-

source platform operated by the National Science and Technology Center for Disaster Reduction (Lee et al., 2014). 

The CAP data include observed flood warning information, such as the flood warning’s location and duration. 10 

Information on seven typhoons, including SOULIK (2013), TRAMI (2013), MATMO (2014), FUNG-WONG (2014), 

LINFA (2015), SOUDELOR (2015), and DUJUAN (2015), was collected to evaluate the system’s performance. Five 

of these typhoons made landfall and resulted in heavy rainfall and floods. For example, SOUDELOR dropped more 

than 1,100 mm of precipitation within 24 h and had wind gusts of up to 66.1 ms-1 in northern Taiwan (i.e., Suao 

Township, Yilan County). Detailed information on these seven typhoons is listed in Table 1. The landfall time was 15 

identified when the eye of the typhoon made landfall. Of these typhoons, the eyes of TRAMI and LINFA did not make 

landfall. For reference, this study selected the minimum observed atmospheric pressure at a weather station to define 

the time when these two typhoons were closest to Taiwan. The selected weather stations were the Taipei station for 

TRAMI and the Kaohsiung station for LINFA. 

4 Results and discussion 20 

This study relied on the contingency information shown in Table 2 to evaluate the performance of the proposed system. 

Hits and misses were associated with the observed records and determined based on whether the system’s warning 

forecasts were consistent with the observations. A false alarm was associated with forecasts that did not correlate with 

observed data. “No event” was assigned to a township when neither the CAP records nor the model indicated flooding. 

Because floods are not frequent events, the no event (no flooding) scenario typically had a higher frequency than the 25 

other three fields. Different measures that have been broadly adopted by previous studies (e.g., Nguyen et al., 2015; 

Yang et al., 2015; Zhang et al., 2015) were used to evaluate the system’s performance: 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 (𝑃𝑂𝐷) =
𝐻𝑖𝑡

𝐻𝑖𝑡+𝑀𝑖𝑠𝑠
,       (3) 

𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 (𝐹𝐴𝑅) =
𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚

𝐻𝑖𝑡+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚
,       (4)    

𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑟𝑎𝑡𝑖𝑜 (𝑆𝑅) =
𝐻𝑖𝑡

𝐻𝑖𝑡+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚
,        (5)      30 

𝑇ℎ𝑟𝑒𝑎𝑡 𝑠𝑐𝑜𝑟𝑒 (𝑇𝑆) =
𝐻𝑖𝑡

𝐻𝑖𝑡+𝑀𝑖𝑠𝑠+𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚
.       (6) 

Both POD and TS are sensitive to hits and range from 0 to 1. The only difference between these two values is that 

POD ignores false alarms and TS does not. POD has the ability to be artificially improved by the issuance of additional 

alarms, which would increase the number of hits. TS is also known as the critical success index (CSI) and usually 
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results in poorer scores for rare events. SR and FAR are the success ratio and false alarm ratio, respectively. FAR is 

used in conjunction with POD. If FAR equals 0.5 or less, the performance is considered tolerable (Coughlan de Perez 

et al., 2016). The sum of SR and FAR equals 1, and both indices ignore misses. This study combined SR and FAR into 

one index (SR-FAR) that had a range from -1 to 1. A positive value (> 0) for SR-FAR was expected given that the 

likelihood of correct warnings is acceptable. Rare events such as floods result in extremely large numbers of no events, 5 

which could greatly affect the forecast results. In this study, a no event forecast can provide information to decision 

makers that allows them to allocate resources to those townships with a higher inundation risk. Equations (3) to (6) 

do not consider the “no event” scenario in their formulas. The accuracy (ACC) of the model, which is shown in 

Equation (7) and is also called the proportion of correct forecasts (Wilks, 2005), is simple and intuitive, and it served 

as a valuable reference in this study. 10 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝐶𝐶) =
𝐻𝑖𝑡+𝑁𝑜 𝑒𝑣𝑒𝑛𝑡

𝐻𝑖𝑡+𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚+𝑀𝑖𝑠𝑠+𝑁𝑜 𝑒𝑣𝑒𝑛𝑡
        (7) 

The next section presents the performance evaluation of the proposed system and then modifies the forecasting results 

using a hybrid of real-time observation and rainfall forecasts to improve the first 24-h inundation forecasts. This study 

used the time the typhoon made landfall as a reference point to define the evaluation period. The time needed to 

generate a rainfall forecast is 6 h, noted as one date-time group (dtg). The evaluation period was plus-minus three dtgs 15 

(18 h) relative to the time at which a typhoon made landfall.  For example, Table 1 shows that TRAMI made landfall 

at 6 pm, August 21, 2013. The landfall dtg is at 2 pm, August 21 for 1-24 h; 2 pm, August 20 for 25-48 h; and 2 pm, 

August 19 for 49-72 h. The -1 dtg is 8 am, August 21 for 1-24 h; 8 am, August 20 for 25-48 h; and 8 am, August 19 

for 49-72 h. The average impact duration of a typhoon in Taiwan is 73.68 h (Huang et al., 2012). A typhoon has the 

most impact during the evaluation period (a total of 36 h). 20 

4.1 Original forecast results without a data assimilation technique   

Both the typhoon tracks and geography affected the performance of the rainfall forecasts. Figure 5 shows the observed 

typhoon tracks, and Figure 6 compares the forecasted and observed tracks for SOULIK, SOUDELOR, and MATMO. 

The models of the first two typhoons were consistent with the observed tracks, while the third was not; as a result, the 

performance of rainfall forecasts during the first two typhoons exceeded that of the third typhoon. The causes of the 25 

track forecast errors are beyond the discussion of this study. Use of ensemble rainfall forecasts as inputs to produce 

flood warning forecasts should take into account uncertainties such as track and rainfall forecast errors in numerical 

weather predictions. Figures 7-9 show the differences between the observed and forecasted flood warnings without a 

data assimilation technique over three lead-time periods (1-24 h, 25-48 h, and 49-72 h). Tables 3 to 5 summarize the 

average ACC, POD and SR-FAR results for different lead-time lengths during the evaluation period. The proposed 30 

system provides probabilistic forecasts. For example, 50% flood probability means that at least 10 out of 20 TAPEX 

members produced rainfall forecasts that met or exceeded the rainfall thresholds. The appropriate probability threshold 

that initiated response actions was discussed. Six probability thresholds (10%, 30%, 50%, 70%, 80%, and 100%) were 

selected. The results showed that forecasts with lower possibility thresholds had higher TS scores (Figures 7-9). For 
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example, Figure 7 shows that the TS scores of SOUDELOR are 0.1-0.4 for the 10% probability threshold, which are 

higher than those for the 70% probability threshold. All tables showed that the average performance of low-possibility 

thresholds over the evaluation period resulted in better TS and POD scores. A lower probability threshold means a 

lower inundation threshold. Thus, the number of hits increased, but the number of false alarms increased as well. 

Decision makers generally consider an increased number of actions “in vain” when taking emergency measures based 5 

on a low probability threshold. The higher probability thresholds (e.g., a probability threshold > 50%) had lower TS 

scores and   indicated that TAPEX ensemble rainfall forecasts were usually underestimated in this study. TAPEX’s 

forecasted tracks had an impact on the rainfall forecasts, which affected the accuracy of the inundation forecasting. 

SOUDELOR and SOULIK had the best performance in terms of TS scores. The results for these typhoons were 

consistent with the track forecasts’ performance (Figure 5). The results also showed that the TS performance decreased 10 

after the typhoons made landfall. The period from -3 dtg to landfall is shown in Figures 7-9. The steep terrain of 

Taiwan poses a challenge to the vortex initialization in numerical weather prediction models. Most current techniques 

are unable to properly initiate a typhoon vortex near complex terrain, when in reality the typhoons are already well 

developed at the time of landfall. The typhoons, due to their proximity to Taiwan by the time of model initiation, are 

not well developed in the models because of the terrain. The vortex is initialized near the complex terrain, and the 15 

current technique in TAPEX may not perform as well as it does when the vortex is in the open ocean. This introduces 

errors into the consequent precipitation forecast. This observation explains the decreased system performance when 

the TAPEX model initialization involves a typhoon close to or making landfall on Taiwan, even if the forecast time 

is as small as 1 to 24 h. The same issue does not create problems when the lead time is greater (or the typhoon is 

farther away). However, due to the complexity of the atmosphere, other issues, such as lack of observations, can cause 20 

the initial field degradation. Consequently, the typhoon tracks, rainfall, and related inundation forecasts were 

inevitably influenced. In the tables, the majority of ACC values exceeded 0.7. The less likely the inundation, the higher 

the ACC value. For example, only a few inundation alerts were issued during LINFA; the system’s corresponding 

ACC scores were above 0.9. However, the POD and SR-FAR values were not as good as the ACC values in this case. 

The POD scores were zero. The SR-FAR values could not be calculated because there were zero hits and false alarms. 25 

When the system produced less accurate forecasts, the performance of the POD and SR-FAR functions decreased, 

resulting in a lower number of observed inundation alerts. A large number of inundation alerts were issued by the 

WRA during SOUDELOR and SOULIK. The ACC numbers were below 0.8. The POD and SR-FAR numbers were 

relatively better than those in LINFA. A lower possibility threshold indicated that more hits and false alarms occurred; 

this resulted in negative SR-FAR scores. In general, the SR-FAR scores decreased when the forecast lead time increased. 30 

However, the results for SOULIK were opposite for the 50% probability threshold and below. The TS score was higher 

when the probability increased by up to 50% prior to the typhoon making landfall (i.e., -1 dtg). The number of false 

alarms decreased when the probability threshold increased. This helped improve the TS score at -1 dtg. However, this 

finding did not hold true when the probability threshold was above 70%. Typhoon MATMO performed worst in terms 

of SR-FAR scores for the three different lead-time lengths. Figure 5 shows that the forecasted tracks did not coincide 35 

with the observed track. When a typhoon made landfall, the topography affected the performance of the numerical 

weather models, worsening the performance of the inundation warning forecasts. All of the results above indicate that 
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the greatest uncertainty in the forecasts appears in the numerical weather predictions, which also has an important 

impact on other related disaster forecasts. 

4.2 Modified forecasts using the data assimilation technique 

To decrease the uncertainty of numerical weather predictions and improve the performance of inundation alert 

forecasting, this study applied a data assimilation technique that combined real-time observed and forecasted rainfall 5 

amounts to modify the forecasts. The data assimilation technique decreased the temporal uncertainty of numerical 

rainfall forecasts and improved the accuracy of early warning notifications. The longest rainfall threshold duration to 

trigger an inundation alerts is 24 h in this study. The technique was used to address the gap in forecasted rainfall data 

with observed rainfall information. The absence of forecasted rainfall values occurred in the first warning period (i.e., 

1-24 h). Therefore, this study used the data assimilation technique to improve the 1- to 24-h forecasts. Table 6 shows 10 

the modified forecast results compared to the original forecasts. Compared to the results without the hybrid technique, 

all performance measures’ scores improved significantly. For example, when all typhoons were tested using the 

original forecasts, the system performed best during SOULIK. Using the hybrid technique, the POD scores improved 

from 0.517 to 0.783 and from 0.002 to 0.245 for the 10% and 100% probability thresholds, respectively. The TS scores 

improved from 0.293 to 0.513 and from 0.002 to 0.235 for the 10% and 100% probability thresholds, respectively. 15 

The probability threshold represents the number of ensemble members’ forecasted rainfall events that met or exceeded 

the rainfall thresholds. The hybrid technique forecasts thus support the idea that a higher probability threshold indicates 

lower uncertainty in terms of forecasting. The FAR and POD scores decreased when the probability threshold 

increased. Decision-making confidence increases when the probability threshold increases and the FAR decreases. 

Coughlan de Perez et al. (2016) concluded that the likelihood of taking a necessary action when the FAR is lower than 20 

0.5 would satisfy the decision maker’s requirements for not taking action potentially in vain. Table 6 shows that most 

of the FAR scores improved to below 0.5 using the hybrid technique. Though these values improved compared to 

previous results, all of the POD scores were still low and continued to decrease when the probability threshold 

increased. The low POD score implies a lower hit rate. To improve these values, identifying the accuracy and 

uncertainty of rainfall forecasts is necessary.  25 

Table 7 shows the overall performance of the system for seven typhoons in terms of FAR and TS scores. The overall 

results indicate that the FAR score decreases when the possibility threshold increases. The FAR score is smaller than 

0.5 when the possibility is greater than 30 % with a lead time of 48 h. Therefore, the system performance meets the 

requirements of decision makers to take action during typhoon events (Coughlan de Perez et al., 2016). However, the 

system cannot provide acceptable forecasts with a lead time greater than 48 h, regardless of which possibility threshold 30 

is selected. This finding limits the use of the system when the lead time is greater than 48 h. The system integrates 

TAPEX data to obtain forecasted typhoon tracks and rainfall amounts. However, for some local convections, such as 

afternoon thunderstorms, the current 5-km spatial resolution of TAPEX might not be sufficient to resolve these 

weather phenomena as well as it does for much larger-scale weather systems, such as typhoons. These small-scale 

weather systems pose another limitation to the use of this system.    35 
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5 Conclusions 

This study proposed an early inundation warning system that integrates ensemble rainfall forecasts and rainfall 

thresholds. Five rainfall thresholds with different durations were applied. Seven typhoon events during the period 

2013-2015 and real inundation alert records from the WRA were used to evaluate the performance of the system. Five 

performance measures and a period of 18 h (3 dtgs) before and after a typhoon made landfall were considered. The 5 

system applied ensemble rainfall forecasts and provided probabilistic forecasts. Therefore, six different probability 

thresholds were considered to trigger the issuance of inundation alerts and calculate various performance scores. An 

appropriate probability threshold helps decision makers take fewer actions in vain. The results showed that a lower 

probability threshold had a higher POD score, which is associated with a higher inundation alert detection rate. The 

downside of a lower probability threshold is a higher FAR score. If the FAR is above 0.5, the system is considered 10 

impractical (Coughlan de Perez et al., 2016). Although the system performed better before a typhoon made landfall, 

particularly in terms of TS scores, it was still unable to identify the most useful probability threshold for identifying 

when emergency responders should take various actions. Numerical weather predictions were the dominant input 

influencing the forecast results. The system’s performance varied according to the different typhoons tested. In other 

words, the system cannot maintain a constant level of performance due the temporal and spatial uncertainties in the 15 

numerical rainfall forecasts. Taiwan’s steep terrain also poses a challenge to the vortex initialization in numerical 

weather prediction models and contributes to the uncertainty inherent in the rainfall forecasts. In conclusion, the 

findings of this study suggest that a better forecast is usually produced (1) when the forecasted typhoon tracks are 

consistent with the observed tracks and (2) before a typhoon makes landfall.      

Finally, the authors developed a data assimilation technique that combined real-time observed and forecasted rainfall 20 

to decrease the uncertainty of numerical weather predictions and to improve 24-h inundation forecasts. The results 

showed that the FAR scores decreased when the probability threshold increased. All FAR scores were below 0.5 or 

less when the probability threshold was 30% or above. This technique improved the appeal of the early warning 

system and generated more valuable forecasts that allowed decision makers to take fewer actions in vain. To further 

decrease the uncertainty of numerical weather predictions and improve the performance of inundation forecasts, 25 

advanced techniques, such as radar observations and associated data assimilation systems, could be considered in the 

future. A greater number of extreme weather events are likely in the future due to global climate change. These 

extreme events will bring high-intensity rainfalls over very short time spans. Radar observations efficiently improve 

very short-range rainfall forecasts, which are essential for accurate inundation forecasts. Rainfall thresholds need to 

be updated to meet the present flood capacity, such as when a new storm sewage system is put in place. After all, 30 

decision makers use forecasted rainfall and threshold-based early warning systems for a high-level overview of 

flood risk only. Given its advantage of an extended lead time and rapid estimation process, the model presented here 

is beneficial for emergency deployment to prepare large areas in advance of flooding.  For small-area forecasts 

during a disaster, a complex physics-based model is recommended to replace the threshold-based model and provide 

detailed information.        35 
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Figure 1: The operational flow chart for the proposed urban inundation early warning system.  
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Figure 2: The identification process of rainfall thresholds (Modified from Wu and Wang, 2009).  

 

 

Figure 3: WRA issues an inundation alert when observed rainfalls meet or exceed any given rainfall 5 
thresholds (Modified from Martina et al., 2006). 
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Figure 4: A combination of real time rainfall observations and forecasts to improve 1- to 24-h inundation 

forecasts. 

 

Figure 5: Location of Taiwan Island, seven typhoons during 2013-2015, and their observed tracks. 5 
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Figure 6: Comparisons of Forecasted and observed typhoon tracks for SOULIK (top), SOUDELOR (middle), 

and MATMO (bottom): black lines are TAPEX’s ensemble mean forecasted tracks and each black line’s 5 
forecasting length is 72 h; red lines are observed tracks. 
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Figure 7: Comparisons of TS performance with a 1- to 24-h lead time considering various probability 

thresholds without a data assimilation technique.  20 
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Figure 8: Comparisons of TS performance with a 25- to 48-h lead time considering various probability 

thresholds without a data assimilation technique. 

 30 

(a) 10% (b) 30% 

(c) 50% (d) 70% 

(e) 80% (f) 100% 
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Figure 9: Comparisons of TS performance with a 49- to 72-h lead time considering various probability 

thresholds without a data assimilation technique. 

  30 

(a) 10% (b) 30% 

(c) 50% (d) 70% 

(e) 80% (f) 100% 
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Table 1:  Information of seven typhoons during 2013 - 2015 used to evaluate the system performance. 

Year Name Warning period (LST) Landfall time (LST) 

2013 SOULIK 2013/07/11 0830-2013/07/13 2330 2013/07/13 0300 

2013 TRAMI 2013/08/20 1130-2013/08/22 0830 2013/08/21/ 1800* 

2014 MATMO 2014/07/21 1730-2014/07/23 2330 2014/07/23 0010 

2014 FUNG-WONG 2014/09/19 0830-2014/09/22 0830 2014/09/21 1000 

2015 LINFA 2015/07/06 0830-2015/07/09 0530 2015/07/08 1500* 

2015 SOUDELOR 2015/08/06 1130-2015/08/09 0830 2015/08/08 0440 

2015 DUJUAN 2015/09/27 0830-2015/09/29 1730 2015/09/28 1740 

* For typhoons that did not make landfall, this study defined the landfall time while the minimum observational 

station pressure was observed when typhoon was closest to Taiwan. 

Table 2: Contingency table used for the system performance evaluation. 

 CAP records from WRA 

Issued Not Issued 

Forecasted by the 

proposed system 

Issued Hit False alarm 

Not issued Miss No event 

 5 
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Table 3: Average performance with 1- to 24-h lead time during the evaluation period for all possibility thresholds. 

* n/a means that either FAR or POD had zero values in the denominator and cannot be calculated. 

Table 4: Average performance with 25- to 48-h lead time during the evaluation period for all probability thresholds. 

% 

SOULIK TRAMI MATMO FUNG-WONG LINFA SOUDELOR DUJUAN 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

10 0.732 0.746 -0.127 0.621 0.494 -0.544 0.620  0.297  -0.779 0.913  0.374  -0.337 0.923  0.271  -0.856 0.756 0.616 -0.038 0.842  0.383  0.075  

30 0.821 0.453 0.258 0.817 0.117 -0.187 0.811  0.086  -0.757 0.947  0.245  0.490  0.978  0.063  -0.625 0.796 0.291 0.265 0.833  0.053  0.023  

50 0.825 0.274 0.594 0.830 0.044 0.357 0.857  0.023  -0.781 0.944  0.116  0.895  0.981  0.000  -1.000 0.787 0.147 0.400 0.832  0.010  -0.111 

70 0.795 0.081 0.725 0.827 0.009 0.333 0.877  0.010  -0.143 0.940  0.039  1.000  0.982  0.000  n/a* 0.772 0.047 0.256 0.831  0.000  -1.000 

80 0.784 0.029 0.600 0.826 0.007 0.200 0.877  0.007  0.333  0.937  0.000  n/a* 0.982  0.000  n/a* 0.769 0.028 0.143 0.831  0.000  -1.000 

100 0.779 0.000 -1.000 0.826 0.000 n/a* 0.877  0.000  n/a* 0.937  0.000  n/a* 0.982  0.000  n/a* 0.769 0.007 1.000 0.833  0.000  n/a* 

* n/a means that either FAR or POD had zero values in the denominator and cannot be calculated. 

Table 5: Average performance with 49- to 72-h lead time during the evaluation period for all probability thresholds. 5 

% 

SOULIK TRAMI MATMO FUNG-WONG LINFA SOUDELOR DUJUAN 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

10 0.671 0.576 -0.299 0.514 0.573 -0.610 0.483  0.317  -0.835 0.860  0.303  -0.668 0.910  0.188  -0.913 0.761  0.531  -0.024 0.826  0.129  -0.138 

30 0.762 0.092 -0.301 0.715 0.219 -0.593 0.771  0.099  -0.814 0.935  0.071  -0.154 0.978  0.000  -1.000 0.782  0.154  0.248  0.829  0.002  -0.818 

50 0.782 0.022 0.333 0.784 0.105 -0.531 0.866  0.017  -0.737 0.937  0.000  -1.000 0.982  0.000  n/a* 0.768  0.040  0.022  0.831  0.000  -1.000 

70 0.780 0.000 n/a* 0.821 0.047 -0.245 0.876  0.003  -0.500 0.937  0.000  n/a* 0.982  0.000  n/a* 0.768  0.016  0.059  0.833  0.000  n/a* 

80 0.780 0.000 n/a* 0.826 0.021 0.000 0.877  0.003  1.000  0.937  0.000  n/a* 0.982  0.000  n/a* 0.769  0.014  0.333  0.833  0.000  n/a* 

100 0.780  0.000  n/a* 0.826  0.000  n/a* 0.877 0.000 n/a* 0.937  0.000  n/a* 0.982  0.000  n/a* 0.767  0.000  n/a* 0.833  0.000  n/a* 

* n/a means that either FAR or POD had zero values in the denominator and cannot be calculated. 

Table 6: Average performance with 1- to 24-h lead time during the evaluation period for all probability thresholds using the data assimilation technique 

% 
SOULIK TRAMI MATMO FUNG-WONG LINFA SOUDELOR DUJUAN 

POD FAR TS POD FAR TS POD FAR TS POD FAR TS POD FAR TS POD FAR TS POD FAR TS 

10 0.783  0.401  0.513  0.247  0.610  0.178  0.399  0.727  0.194  0.406  0.640  0.236  0.239  0.667  0.162  0.604  0.437  0.411  0.381  0.375  0.310  

30 0.508  0.260  0.431  0.079  0.404  0.075  0.198  0.429  0.172  0.290  0.274  0.262  0.022  0.000  0.022  0.316  0.181  0.295  0.211  0.155  0.203  

50 0.359  0.223  0.326  0.063  0.250  0.062  0.129  0.250  0.123  0.187  0.065  0.185  0.022  0.000  0.022  0.220  0.106  0.214  0.131  0.156  0.128  

70 0.285  0.193  0.267  0.047  0.200  0.046  0.096  0.147  0.094  0.129  0.000  0.129  0.022  0.000  0.022  0.194  0.090  0.190  0.095  0.152  0.093  

80 0.265  0.186  0.250  0.042  0.182  0.042  0.086  0.103  0.085  0.110  0.000  0.110  0.022  0.000  0.022  0.164  0.069  0.162  0.075  0.184  0.074  

100 0.245  0.153  0.235  0.040  0.150  0.039  0.069  0.087  0.069  0.058  0.000  0.058  0.022  0.000  0.022  0.115  0.057  0.114  0.068  0.097  0.067  

 

 

 10 

% 

SOULIK TRAMI MATMO FUNG-WONG LINFA SOUDELOR DUJUAN 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

ACC POD SR- 

FAR 

10 0.787 0.517 0.033 0.776 0.186 -0.433 0.778  0.241  -0.626 0.914  0.348  -0.341 0.976  0.196  -0.419 0.758  0.396  -0.050 0.839  0.252  0.083  

30 0.795 0.201 0.204 0.823 0.021 -0.250 0.867  0.046  -0.472 0.944  0.219  0.360  0.981  0.000  n/a* 0.792  0.166  0.462  0.844  0.100  0.519  

50 0.787 0.092 0.220 0.827 0.009 0.333 0.874  0.007  -0.667 0.944  0.129  0.818  0.981  0.000  n/a* 0.780  0.077  0.517  0.834  0.027  0.222  

70 0.781 0.031 0.133 0.826 0.000 n/a* 0.876  0.000  -1.000 0.941  0.058  1.000  0.981  0.000  n/a* 0.775  0.049  0.514  0.832  0.007  -0.143 

80 0.779 0.015 -0.059 0.826 0.000 n/a* 0.877  0.000  -1.000 0.940  0.039  1.000  0.981  0.000  n/a* 0.772  0.031  0.500  0.832  0.000  -1.000 

100 0.780 0.002 1.000 0.826 0.000 n/a* 0.877  0.000  n/a* 0.937  0.000  n/a* 0.981  0.000  n/a* 0.767  0.005  0.000  0.833  0.000  n/a* 
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Table 7: Performance of all typhoons with the data assimilation technique for 1 to 24 h, 25 to 48 h, and 49 to 72 h lead time 

% 
1 to24 h 25 to 48 h 49 to 72 h 

FAR TS FAR TS FAR TS 

10 0.51 0.33 0.67 0.25 0.76 0.18 

30 0.26 0.25 0.49 0.19 0.75 0.08 

50 0.18 0.18 0.34 0.11 0.72 0.03 

70 0.15 0.15 0.29 0.03 0.59 0.01 

80 0.14 0.13 0.38 0.01 0.42 0.01 

100 0.12 0.11 0.20 0.00 - 0.00 
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