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Abstract  25 

Model-data comparisons are always challenging, especially when working at a large spatial 26 

scale and evaluating multiple response variables. We implemented the Soil and Water 27 

Assessment Tool (SWAT) to simulate water quantity and quality for the Tennessee River Basin. 28 

We developed three innovations to overcome hurdles associated with limited data for model 29 

evaluation: 1) we implemented an auto-calibration approach to allow simultaneous calibration 30 

against multiple responses, including intermediate response variables, 2) we identified empirical 31 

spatiotemporal datasets to use in our comparison, and 3) we compared functional patterns in 32 

landuse-nutrient relationships between SWAT and empirical data. Comparing monthly SWAT-33 

simulated runoff against USGS data produced satisfactory median Nash-Sutcliffe Efficiencies of 34 

0.83 and 0.72 for calibration and validation periods, respectively. SWAT-simulated water quality 35 

responses (sediment, TP, TN, and inorganic N) reproduced the seasonal patterns found in 36 

LOADEST data. SWAT-simulated spatial TN loadings were significantly correlated with 37 

empirical SPARROW estimates. The spatial correlation analyses indicated that SWAT-modeled 38 

runoff was primarily controlled by precipitation; sedimentation was controlled by topography; 39 

and NO3 and soluble P were highly influenced by land management, particularly the proportion 40 

of agricultural lands in a subbasin. 41 
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1 Introduction 45 

The Energy Independence and Security Act (EISA) of 2007 set a target for US production of 46 

over 36 billion gallons of renewable fuels annually by 2022 (EISA, 2007). Because agricultural 47 

development has historically been associated with impacts on water quality (Dodds and Oakes, 48 

2008), converting the lands needed to meet EISA targets heightened concerns for the nation’s 49 

rivers and lakes, as well as for downstream estuaries. The health of waters in the Tennessee 50 

River Basin (TRB) is of particular interest because this region supports one of the most 51 

biologically diverse river fauna in North America (Haag and Williams, 2014; Keck et al., 2014). 52 

Previous studies have shown higher nutrient and sediment loadings in non-forested, human 53 

influenced watersheds in the TRB (Scott et al., 2002). Evaluating changes in water quality 54 

associated with large-scale regional shifts in land-use and management requires process-based 55 

modeling of hydrology and nutrient dynamics (Wellen et al., 2015). Process-based models are 56 

favored whenever projections beyond historical conditions are needed because these models 57 

incorporate the processes leading to change and do not require extrapolation of statistical 58 

relationships beyond the range represented in the data.  59 

Process-oriented models like the Soil & Water Assessment Tool (SWAT) (Arnold and Fohrer, 60 

2005; Srinivasan et al., 1998) incorporate current understanding of linkages between watershed 61 

properties and water quality responses, but they are also difficult to calibrate (Wang and Chen, 62 

2012). Although evaluation of multiple responses simulated by spatially-distributed process-63 

based models over time and space is strongly encouraged (Cao et al., 2006; Wellen et al., 2015), 64 

such comprehensive evaluations are limited by the availability of spatial and long-term temporal 65 

data. This challenge is compounded for models applied at a regional scale because monitoring 66 

efforts tend to be local in scale and of short duration, especially for water quality (Hoos and 67 
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McMahon, 2009). As such, we see a role for empirical models in the calibration and validation 68 

of regional-scale models. 69 

Empirical models have previously been fitted to spatial and temporal nutrient loads in the US 70 

(Saad et al., 2011). The monthly instream nutrient fluxes were estimated using LOADEST 71 

(LOAD ESTimator) developed by the United States Geological Survey (USGS) (Runkel et al., 72 

2004; USGS, 2015). LOADEST assists in developing regression models for estimating nutrient 73 

loads or fluxes over a user-defined time interval based on functions of streamflow, time, and 74 

additional user-specified variables (Runkel et al., 2004). The SPARROW (SPAtially Reference 75 

Regressions On Watershed attributes) is also a model developed by USGS that relates water 76 

quality measurements to characteristics of watersheds (Hoos and McMahon, 2009; Saad et al., 77 

2011) to estimate nutrient loads/fluxes. Both models represent empirical relationships most 78 

important during the historical period and smooth out the noise inherent in fine-resolution 79 

temporal water-quality measurements. 80 

When seeking regional surveys suitable for calibration, data may not be available for exactly 81 

the outputs produced by the model. However, flexibility in assimilating data can be achieved by 82 

comparing against intermediate or synthetic response variables. Several SWAT calibration tools 83 

are available, e.g., SWAT-CUP 2012 (Abbaspour, 2014), the Auto-Calibration tool (Van 84 

Griensven, 2005), and the R-SWAT-FME framework (Wu and Liu, 2014); however, these tools 85 

do not include intermediate or synthetic response variables to compare against. This limitation 86 

prevented us from calibrating SWAT using the final water quantity and quality responses if the 87 

corresponding observations (or datasets) were not available.  88 

This paper presents solutions to the aforementioned challenges, including fitting regional-89 

scale SWAT model when there is limited spatial and long-term water quality data available and 90 
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representation of reservoirs in a highly regulated watershed. We describe efforts to implement 91 

SWAT modeling of water quantity and quality for the TRB including the configuration of 22 92 

reservoirs. We incorporate the Shuffled Complex Evolution algorithm (Duan et al., 1992) into 93 

SWAT2012 to enable auto-calibration of the model against multiple hydrologic (i.e., water 94 

quantity) and water quality response variables (including intermediate and synthetic response 95 

variables) at multiple sites. We calibrate and validate SWAT water quantity and quality against 96 

empirically modeled datasets available from the USGS throughout the conterminous US. We 97 

also used functional validation to compare primary drivers controlling runoff and water quality 98 

in the process-based SWAT model and the empirical models. Functional validation goes beyond 99 

adding a stamp of approval (i.e., validation), instead comparing relationships to understand 100 

differences and guide future modeling or data collection efforts. The approach described here can 101 

be applied in other regions of the US where the required empirical models have been developed.  102 

 103 

2 Materials and Methods 104 

2.1 Study Area 105 

The Tennessee River Basin (TRB), a tributary basin of the Mississippi River Basin, is located 106 

in the southeastern part of the United States (USGS, 2014b) (Fig. 1). There are significant 107 

physiographic differences in the eastern and western portions of the basin (Price and Leigh, 108 

2006). Forest cover is the dominant natural vegetation in the basin. In the western portion, 109 

alluvial plains produced rich soils. The middle of the basin, which was historically covered by 110 

bottomland forest and prairie, now supports high percentages of pasture and cropland. Eastward, 111 

the geology becomes more mountainous and dominated by limestone with sandstone ridges. The 112 

easternmost portion of the basin lies in the rugged Blue Ridge and Southern Appalachian 113 
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provinces with relatively poor soils (Price and Leigh, 2006). The TRB area has a subtropical 114 

climate (warm, humid summers, mild winters) (Sagona, 2003). December through early May is 115 

the major flood season (TVA, 2014). Since the 1930’s, the TRB has been impounded by a series 116 

of dams (reservoirs), most of which are managed by the Tennessee Valley Authority (TVA). 117 

Main-stem Tennessee River dams are operated in “run-of-river” mode to support river navigation 118 

and generate hydroelectric power. Dams on the tributaries function as storage impoundments and 119 

are used primarily for flood control (TVA, 2014). Kentucky Dam is 35 km (22 mi) upstream 120 

from Paducah, Kentucky, where the Tennessee River flows northwest into the Ohio River (Fig. 121 

1).  122 

2.2 Watershed Delineation and Definition of SWAT Hydrologic Response Units  123 

SWAT (Version 2012/Revision 627) was used to model water quantity and water quality 124 

(Arnold et al., 2012). The Digital Elevation Model (DEM) data (1-arc-second, c.a. 30 m) for 125 

TRB was downloaded from the National Elevation Dataset 126 

(http://nationalmap.gov/elevation.html). We conducted watershed delineation in ArcSWAT 127 

(Winchell et al., 2013) based on (i) USGS-defined 8-digit Hydrologic Unit Codes (Jager et al., 128 

2015) (HUC8, Fig. 1), and (ii) major stream gages and reservoirs (Fig. 1). Watershed delineation 129 

of the TRB using the DEM resulted in a drainage area of 106,124 km2. Twenty-two (22) 130 

reservoirs were included in the SWAT setup (Fig. 1). SWAT includes a reservoir module that 131 

can represent these waterbodies in the watershed (Chen et al., 2015; Wang and Xia, 2010). The 132 

reservoir outflow may be calculated by one of the four methods provided by SWAT (Arnold et 133 

al., 2012): (i) average annual release rate for uncontrolled reservoir; (ii) measured monthly 134 

outflow; (iii) simulated controlled outflow with target release; and (iv) measured daily outflow. 135 
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The last method (i.e., IRESCO = 3, measured daily outflow) was adopted in this study and TVA 136 

provided daily reservoir outflow rates from 1985 to 2013.    137 

Hydrological Response Units (HRUs) represent unique combinations of soil type, slope, and 138 

land use or land cover. STATSGO soil map units (Soil Survey Staff, 1994) that comprised more 139 

than 10% of a subbasin were retained. We discretized slope into four categories: <1%, 1–2%, 2–140 

5%, and >5%. We used the 2009 Cropland Data Layer (CDL-2009) (USDA-NASS, 2014) to 141 

represent land use/land cover (Jager et al., 2015). Natural vegetation in TRB is dominated by 142 

forest (59.4%) and grassland (11.7%). The major crops in TRB are hay (non-Alfalfa, 9.7%), 143 

soybeans (1.7%), and corn (1.5%). We retained land-use classes that comprised more than 2% 144 

area of a subbasin. This protocol created a total of 4,026 distinct HRUs in 55 subbasins. 145 

2.3 Meteorological Forcings  146 

We downloaded historical meteorological observation from DAYMET (Thornton et al., 1997) 147 

estimated for the center of each HUC8 (Fig. 1) over the period 1980–2014 (35 years). Daily 148 

meteorological variables include total precipitation (mm), maximum and minimum temperatures 149 

(⁰C), and solar radiation (MJ m−2 d−1). Two additional variables (wind speed and relative 150 

humidity) were estimated by the SWAT model’s climate generator (Gassman et al., 2007). The 151 

mean annual precipitation (MAP) on HUC8 units ranged from 1129 to 1715 mm with an average 152 

of 1433 mm during 1980-2014.  153 

2.4 Model Calibration  154 

Existing auto-calibration routines in the SWAT model are not designed to calibrate against 155 

intermediate response variables (e.g., HUC8 runoff and NO3+NO2). For this effort, we 156 

incorporated the Shuffled Complex Evolution (SCE) algorithm (Duan et al., 1992) into the 157 

source code of SWAT2012 model to implement auto-calibration (Fig. 2). SCE is a stochastic 158 
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optimization algorithm that has been widely used in calibration of hydrological models including 159 

SWAT (Wang and Xia, 2010; Zhang et al., 2009). We calibrated 39 parameters (Table 1) 160 

governing the hydrologic (i.e., water quantity) and water quality processes in SWAT. The 39 161 

parameters were selected based on the sensitivity analyses in previous studies (Abbaspour et al., 162 

2007; Baskaran et al., 2010; Bekele and Nicklow, 2007; Santhi et al., 2001; Wang et al., 2014; 163 

Wu and Liu, 2012). Generally, these parameters were calibrated step by step. The hydrologic 164 

parameters (No. 1–14) were first calibrated against hydrologic response variables (i.e., water 165 

quantity variables, e.g., streamflow or runoff). The second step was to calibrate the water quality 166 

parameters (No. 15–39) using water quality measurements (e.g., sediment, nitrogen, and/or 167 

phosphorus), where a subset of the parameters might be calibrated depending on the response 168 

variables as described below. 169 

Fifteen types of calibrations with regard to various response variables (See Supplement Table 170 

S1) were defined in our current auto-calibration tool. The first five types correspond to five 171 

hydrologic response variables: daily streamflow, monthly streamflow, daily reservoir storage, 172 

daily soil water content, and monthly runoff on subbasin or HUC8; the next five types include 173 

monthly nutrient (sediment, nitrogen, phosphorus) fluxes (metric tons per month); and the last 174 

five types refer to instream monthly nutrient concentration (mg/L). Other response variables 175 

could also be defined and added to this calibration framework. 176 

Criteria used to assess model performance include:  177 

(1) Nash-Sutcliffe Efficiency (NSE, Eq. 1): 178 
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where Yobs and Ysim are the observed and simulated data, respectively; obsY  is the mean value of 180 

observations; and n and i denote the number of data points and the ith data, respectively. NSE is 181 

less than or equal to 1 and may be negative (Moriasi et al., 2007).           182 

 (2) Percent Bias (PBIAS, Eq. 2):  183 

%100×
−

=
obs

simobs

Y
YYPBIAS                            (2) 184 

where PBIAS (Moriasi et al., 2007) denotes the deviation of predicted mean value (Ysim ) from 185 

observed mean value ( obsY ) as a percentage of . 186 

According to Moriasi et al. (2007), model simulation is satisfactory if NSE > 0.5 and if 187 

|PBIAS| ≤ 25% for streamflow (runoff), |PBIAS| ≤ 55% for sediment, and |PBIAS| ≤ 70% for 188 

nitrogen (N) and phosphorus (P).  189 

The overall objective function is the weighted average of individual objective functions: 190 

F = wj ⋅ f j( )
j=1

k

∑
               

(3) 191 

where F denotes the overall objective function of k individual objective functions; fj is the jth 192 

objective function that could be calculated as NSE or |PBIAS| of interested response variable;  193 

and wj is the weighting factor for each fj. 194 

2.5 Calibration and Validation of Runoff 195 

Because streamflow (discharge) at a station within the TRB is largely a measure of the outflow 196 

from the upstream reservoir(s) and because observed reservoir outflow was used in this study, 197 

we calibrated hydrologic parameters based on runoff (i.e., total water yield) instead of 198 

streamflow. We used the USGS computed monthly runoff (1985–1995) in HUC8(USGS, 2014a) 199 

obsY
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as reference for SWAT calibration, with one year (1985) for model spin-up and 10 years (1986–200 

1995) for model calibration. Another 18 years (1996–2013) of data were used for model 201 

validation. The USGS HUC8 runoff estimates were generated by combining historical flow data 202 

at USGS stream gages and the corresponding drainage basin boundaries and hydrologic units 203 

boundaries.(USGS, 2014a) In a previous study, this dataset was used to calibrate the Variable 204 

Infiltration Capacity (VIC) model for the conterminous US (Oubeidillah et al., 2014). The 205 

objective of our multi-site calibration of runoff was to calibrate hydrologic parameters (No. 1–14) 206 

of the subbasins within each HUC8. For example, when we implemented calibration in terms of 207 

the HUC8-06010102, the parameters in four subbasins (1, 4, 5 and 6) in this HUC8 were 208 

calibrated. We calculated simulated HUC8 runoff as the area-weighted-average of runoff from 209 

subbasins within each HUC8: 210 

 RHUC8 = Rsub( j)× Areasub( j) / AreaHUC8[ ]
j=1

m

∑               (4) 211 

 [ ]∑
=

=
m

j
subHUC jAreaArea

1
8 )(                                         (5) 212 

where RHUC8 is the runoff in a HUC8; Rsub(j) and Areasub(j) are the simulated runoff (mm) and 213 

the area (km2) in the jth subbasin; and AreaHUC8 is the total area of the HUC8 that includes m 214 

subbasins. The NSE of monthly HUC8 runoff was defined as the objective function in hydrologic 215 

calibration. 216 

2.6 Calibration and Validation of Monthly Nutrient Fluxes  217 

Nutrient measurements are sparse in rivers of the TRB. We have attempted to collect in-situ 218 

water quality monitoring data from over 6,000 USGS and EPA (Environmental Protection 219 

Agency) stations within the TRB through the National Water Quality Monitoring Council 220 
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(NWQMC)’s online Water Quality Portal  (WQP) (NWQMC, 2015). However, we did not find 221 

long-term water quality data that coincided with our model simulation period (i.e., after 1980’s). 222 

Therefore, we used the LOADEST (LOAD ESTimator) dataset (Runkel et al., 2004) as reference 223 

to calibrate water quality parameters. The LOADEST dataset provided estimates of monthly 224 

nutrient fluxes (1996–2006) at the Tennessee River near Paducah, KY (i.e., the outlet of TRB) 225 

(USGS, 2015). We used three-year (1994–1996) of data for model spin-up and 10 years (1997–226 

2006) for model calibration. Another seven years (2007–2013) of data were used for model 227 

validation. Four water quality variables were available from the LOADEST dataset: sediment, 228 

total phosphorus (TP), total nitrogen (TN), and NO3+NO2. The hydrologic parameters (No. 1–14) 229 

calibrated against runoff were fixed during the calibration of water quality parameters (No. 15–230 

39). The NSE of monthly water quality was defined as the objective function during SWAT 231 

calibration. When multiple response variables (e.g., Sediment, TP, TN, NO3+NO2) were 232 

considered in model calibration, we used Eq. (4) to calculate the overall objective function. In 233 

addition, the spatial distribution of mean annual nutrient loadings estimated by the SPARROW 234 

model (Hoos and McMahon, 2009) was employed as another dataset for model validation at the 235 

HUC8 level. The mean annual loads (MAL) of nutrients at the HUC8 level were calculated as 236 

the area-weighted average of the MALs at all subbasins within the HUC8.   237 

2.7 Spatial Correlation Analyses  238 

Understanding how water yield and nutrient loadings vary with watershed characteristics is 239 

important for quantifying primary drivers controlling water quantity and quality and for 240 

developing nutrient management policies (Hoos and McMahon, 2009). To this end, we 241 

implemented spatial correlation analyses between response variables and watershed attributes. 242 

For this study, two variables were considered highly correlated if the absolute value of 243 
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correlation coefficient (|r|) was greater than 0.6 and the correlation was significant (p-value < 244 

0.05), and moderately correlated if |r| was between 0.2 and 0.6 and the correlation was 245 

significant.  246 

Based on the 29-year (1985–2013) simulation results from the calibrated SWAT model, we 247 

calculated the mean annual values of response variables including Runoff, RC (Runoff 248 

Coefficient, i.e., the ratio of runoff to precipitation), Sediment, OrgP (organic phosphorus), SolP 249 

(soluble P), MinP (mineral P attached to sediment), TP, TN, OrgN (organic N), and NO3. We 250 

first conducted spatial correlation analysis between these response variables at the subbasin level. 251 

We implemented spatial correlation analysis between the response variables and the subbasin 252 

attributes (explanatory variables): Precipitation (mm), Subbasin_Slope (subbasin slope, %), 253 

Elevation_Drop (difference between highest and lowest elevations, m), and fractions of major 254 

land-use types (Forest_Fraction, Grassland_Fraction, Hay_Fraction, Crop_Fraction, 255 

Shrubland_Fraction, Wetlands_Fraction, Water_Fraction, Developed_Fraction, see Supplement 256 

Fig. S1).  257 

3 Results and Discussion 258 

In the sections below, we describe calibration and validation of different SWAT model 259 

responses including runoff and water quality metrics. 260 

3.1 Runoff  261 

SWAT simulations of TRB runoff were implemented with regard to the period from 1985 to 262 

2013. We divided the 29-year runoff dataset into three sub-datasets: (i) a 1-year spin-up period 263 

(1985), (ii) a 10-year calibration period (1986–1995), and (iii) an 18-year validation period 264 

(1996–2013).  The spatial resolution was the 8-digit hydrologic units (HUC8s) throughout the 265 

TRB. 266 
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Hydrologic parameters (No. 1–14 in Table 1) were calibrated by comparing simulated 267 

monthly HUC8 runoff with the USGS dataset. As an example, Fig. S2 shows the comparison 268 

between the SWAT-simulated monthly runoff (i.e., water yield, denoted by ‘Sim’) and USGS 269 

runoff (denoted by ‘Obs’) in HUC8-06040006, which is the outlet HUC8 of TRB. The NSE 270 

values for this HUC8 were 0.90 and 0.70 for model calibration and validation, respectively.  271 

Values of NSE across the 32 HUC8s (Fig. 3a) ranged from 0.56 to 0.93 with 50% confidence 272 

interval (CI) of 0.74–0.88 (median 0.83); the PBIAS values (Fig. 3b) were within a narrow range 273 

(−7%–13%). The model also performed well over the validation period, although NSE was lower 274 

than that during the calibration period, as one would expect. The median NSE was 0.72 with 50% 275 

CI of 0.57–0.77; and the PBIAS values were within the satisfactory range, i.e., ±25%,(Moriasi et 276 

al., 2007) except for two HUC8s (06010108 and 06010204). Regarding the whole dataset for the 277 

combined calibration and validation periods (1986–2013), the median NSE was 0.79 (50% CI: 278 

0.69–0.84) and all of the PBIAS values were within ±25% except for one HUC8 with a 279 

marginally satisfactory PBIAS (−26%).  280 

The SWAT-simulated mean annual runoff (MAR) in the two aforementioned HUC8s 281 

(06010108 and 06010204) might be more reasonable than the USGS-estimated MAR. We 282 

analyzed the mean annual precipitation (MAP) and MAR data from 1986–2013 and found that 283 

the runoff in these two HUC8s might be underestimated in the USGS dataset to some degree 284 

(See Fig. S3).  285 

3.2 Water Quality  286 

The SWAT simulation of water quality began with the year 1996 owing to data availability. The 287 

20-year (1994–2013) water quality dataset was also divided into three sub-datasets: (i) a 3-year 288 
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spin-up period (1994–1996), (ii) a 10-year calibration period (1997–2006), and (iii) a 7-year 289 

validation period (2007–2013).     290 

The water quality parameters (No. 15–39 in Table 1) were calibrated against the LOADEST 291 

dataset by taking into account multiple objectives, i.e., four response variables, including 292 

sediment, TP, TN, and NO3+NO2. Calibration greatly improved the performance of the model, 293 

particularly for sediment (NSE = −100 and 0.06 for pre- and post-calibration, respectively), TP 294 

(NSE = −2.5 and 0.44 for pre- and post-calibration, respectively), and TN (NSE = 0.02 and 0.38 295 

for pre- and post-calibration, respectively) (See Supplement Table S2). The NSE values for 296 

model validation were not as good as the NSE for calibration, but the PBIAS values (Table S2) 297 

were satisfactory except for NO3+NO2 (−157%). The squared correlation coefficients (r2) for TN 298 

and TP during both calibration and validation periods equaled or exceeded 0.4 whereas the r2 299 

values for sediment and inorganic N were less than 0.4 (Table S2). SWAT-simulated water 300 

quality responses reproduced the seasonal patterns found in LOADEST data during both 301 

calibration and validation periods (See Fig. S4).  302 

We further conducted the water quality simulation for a longer period of time (1985–2013) 303 

than the period for model calibration and calibration (1997–2013). The spatial distributions of 304 

SWAT-simulated MALs (1986–2013) of TN and TP were comparable to the SPARROW 305 

estimates. The spatial patterns of SWAT-simulated TN and TP at the subbasin level are shown in 306 

Fig. 4 and other variables (runoff, RC, sediment, and NO3) are shown in Fig. S5. The spatial 307 

MALs of TN and TP from SWAT were compared with the SPARROW dataset (MALs from 308 

1975–2004) at the HUC8 level (Fig. 5). The PBIAS values (between SWAT and SPARROW) for 309 

TN (Fig. 5a) at 26 out of 32 HUC8 units were within the range of ±70%, and the PBIAS values at 310 

three HUC8 were higher than 80%. The 50% CIs of MAL of TN were 2.5–6.7 kg N/ha and 4.7–311 
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7.4 kg N/ha by SWAT and SPARROW, respectively. The SWAT-simulated MAL of TN across 312 

the 32 HUC8 units was 5.5 kg N/ha, which was 12% lower than the TN loading (6.2 kg N/ha) 313 

estimated by SPARROW. 314 

As for phosphorus (Fig. 5b), the SWAT-simulated MAL of OrgP+SolP (organic P + soluble 315 

P) was 48% lower than the SPARROW-modeled TP, while the SWAT-simulated MAL of TP 316 

(organic P + soluble P + mineral P) was 50% higher than the SPARROW-modeled TP. This was 317 

because mineral P contributed most (75.2%) to the TP yield and organic P contributed least 318 

(8.5%) to TP.  The SWAT-simulated MAL of OrgP+MinP (organic P + mineral P, 0.93 kg P/ha) 319 

was comparable to the SPARROW-estimated TP (0.88 kg P/ha).  320 

The spatial patterns of TN from the two models (SWAT and SPARROW) were significantly 321 

correlated with each other (r = 0.54, p-value < 0.001). The spatial pattern of SPARROW-322 

estimated TP was not significantly correlated with SWAT-simulated TP, but moderately 323 

correlated with SWAT-simulated OrgP+SolP (r = 0.38, p-value = 0.03) and highly correlated 324 

with SWAT-simulated TN (r = 0.84, p-value < 0.001).  325 

Different from the multi-site hydrologic calibration for each HUC8, water quality was 326 

calibrated against data from one site owing to data availability. Notice that this site (Paducah, 327 

KY) is located at the outlet of TRB. In addition, 10 out of 25 water quality parameters are basin-328 

wide parameters (Table 1, denoted by ‘basins.bsn’) that are spatially identical in SWAT. 329 

Therefore, current water quality calibration could represent the overall water quality regime in 330 

the watershed. In summary, the temporal comparison of water quality simulations between 331 

SWAT and LOADEST and the spatial comparison between SWAT and SPARROW showed a 332 

correspondence between process-based SWAT modeling results and those from empirically 333 

modeled data in the TRB. 334 
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3.3 Spatial Correlation between Response Variables  335 

Functional validation seeks to compare key functional relationships found in process-based 336 

models with those in data. This approach goes beyond simple ‘validation’ or casting a stamp of 337 

approval on a model to understand the reasons for any remaining differences. We found that 338 

SWAT-simulated MALs of MinP (mineral P attached to sediment) and TP were highly 339 

correlated with sediment, which confirms that sediment plays an important role in watershed 340 

phosphorus dynamics (Fig 6a). The TN yield was highly correlated with NO3. TN loadings were 341 

dominated by NO3, i.e., the fraction of TN that was NO3 ranged from 37% to 99% with an 342 

average of 80%. TP was not correlated with TN, but OrgP (organic P) was moderately correlated 343 

with OrgN (organic N) and SolP (soluble P) was moderately correlated with NO3, which implies 344 

similarity between SolP and NO3 dynamics and similarity between OrgP and OrgN dynamics in 345 

SWAT (Neitsch et al., 2011). The SPARROW-estimated spatial patterns of TN and TP were 346 

correlated with each other; however, the SWAT-simulated spatial distributions of TN and TP 347 

were decoupled because the MinP component (attached to sediment) in SWAT and TN was 348 

dominated by inorganic nitrogen.  Nutrient (Sediment, P and N) loadings were not significantly 349 

correlated with runoff (Fig. 6a), suggesting that nutrient point-source and non-point sources and 350 

other physical landscape variables (Hoos and McMahon, 2009) control variation in nutrient 351 

loadings simulated by SWAT.  352 

3.4 Correlation between SWAT Response Variables and Subbasin Attributes  353 

The spatial correlation analyses showed that the response variables differed in their controlling 354 

factors. Runoff was highly correlated with precipitation (r = 0.68) and moderately and positively 355 

related to Forest_Fraction (r = 0.36). The runoff coefficient (RC) was moderately and positively 356 

correlated with Elevation_Drop (r = 0.32) and Subbasin_Slope (r = 0.31) (Fig. 6b).  357 
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Sediment loadings were moderately and positively correlated with Elevation_Drop (r = 0.47), 358 

which verifies that the representation of topography and topology in this mountainous region 359 

drives sediment dynamics (Wellen et al., 2015). We did not find any significant correlation 360 

between TP and the aforementioned subbasin attributes. However, OrgP (organic P) was highly 361 

associated with Developed_Fraction (r = 0.64) that represented human activities in urban area 362 

(Hoos and McMahon, 2009); SolP (soluble P) was moderately correlated with Hay_Fraction (r = 363 

0.43) indicating the influence of agricultural fertilization; and MinP (mineral P) was moderately 364 

correlated with Elevation_Drop (r = 0.37) that was the primary driver for sediment generation.  365 

Organic N (OrgN) was moderately correlated with Wetlands_Fraction (r = 0.27) and 366 

Shrubland_Fraction (r = −0.30). NO3 was highly correlated with Hay_Fraction (r = 0.63) and 367 

moderately correlated with Crop_Fraction (r = 0.48), mostly owing to the response of NO3 yield 368 

to agricultural fertilization. In addition, NO3 showed a moderate negative correlation with 369 

Forest_Fraction (r = −0.54), Subbasin_Slope (r = −0.44), and Elevation_Drop (r = −0.34). Note 370 

that TRB subbasins with steeper slopes generally had more forest and less cropland. The primary 371 

drivers controlling TN were the same as those for NO3 as TN was dominated by NO3.  372 

4 Summary 373 

Model-data comparisons are always challenging, especially when working at a large spatial 374 

scale and evaluating multiple response variables. We developed three innovations to overcome 375 

hurdles associated with limited data for model testing: 1) we implemented an auto-calibration 376 

approach to allow simultaneous calibration against multiple responses, including intermediate 377 

response variables, 2) we identified empirical modeled datasets interpolated in space and time to 378 

use in our comparison, and 3) we compared functional patterns in landuse-nutrient relationships 379 

between SWAT and empirical data. Using these innovations, we were able to successfully 380 
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implement a calibrated model for the river basin and to evaluate performance. The SWAT 381 

calibration tool developed in this study can be accessed upon request via GitHub 382 

(https://github.com/wanggangsheng/SWATopt.git).	383 

In addition to quantitative performance evaluation, we also discerned what the most 384 

important influences on SWAT responses were. Runoff was mainly controlled by precipitation; 385 

runoff coefficient and sedimentation were controlled by topographic attributes; whereas NO3 and 386 

soluble P were highly influenced by land use types, particularly the croplands (hay and other 387 

crops). This is likely because our management of these croplands included applying fertilizers 388 

containing N and P. Patterns in phosphorus dynamics differed more between the empirical and 389 

process-based model than patterns in nitrogen dynamics, suggesting an area for future 390 

exploration. 391 
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Tables 

Table 1. Selected SWAT parameters for model calibration 

No Parametera Description Default Min Max Input file Fortran code 
1 CN2 Initial SCS curve number II  85 35 98 *.mgt Readmgt.f 
2 ESCO Soil evaporation compensation factor 0.95 0.01 1 *.hru Readhru.f 
3 EPCO Plant uptake compensation factor 1 0.01 1 *.hru Readhru.f 
4 OV_N Manning’s n value for overland flow 0.1 0.01 0.6 *.hru Readhru.f 
5 CH_N2 Manning’s n value for main channel 0.014 0.01 0.5 *.rte Readrte.f 
6 CH_K2 Channel effective hydraulic conductivity 

(mm/hr) 
0.001 0.001 150 *.rte Readrte.f 

7 ALPHA_BF Baseflow alpha factor (days) 0.048 0.001 1 *.gw Readgw.f 
8 GW_DELAY Ground water delay (days) 31 0.0001 500 *.gw Readgw.f 
9 RCHRG_DP Deep aquifer percolation fraction 0.05 0.0001 1 *.gw Readgw.f 
10 GW_REVAP Groundwater revap coefficient 0.02 0.02 0.2 *.gw Readgw.f 
11 GW_SPYLD Specific yield for shallow aquifer (m3/m3) 0.003 0.0001 0.4 *.gw Readgw.f 
12 SOL_AWC Available water capacity (mm H2O/mm soil) 0.2 0.01 0.4 *.sol Readsol.f 
13 SOL_K Saturated hydraulic conductivity (mm/h) 10 0.01 100 *.sol Readsol.f 
14 SURLAG Suface runoff lag coefficient (days) 4 0.5 12 sub.lag Readhru.f 
15 SPCON Linear re-entrainment parameter 0.0001 0.0001 0.01 basins.bsn Readbsn.f 
16 SPEXP Exponent re-entrainment parameter 1 1 2 basins.bsn Readbsn.f 
17 PRF Adjustment factor for sediment routing in the 

main channel 
1 0.001 2 basins.bsn Readbsn.f 

18 ADJ_PKR Adjustment factor for sediment routing in 
tributary channels 

1 0.5 2 basins.bsn Readbsn.f 

19 CH_COV Channel cover factor 0.001 0.001 1 *.rte Readrte.f 
20 CH_EROD Channel erodibility factor 0.001 0.001 1 *.rte Readrte.f 
21 USLE_K Soil erodability factor 0.28 0.01 0.65 *.sol readsol.f 
22 BIOMIX Biological mixing coefficiency 0.2 0.01 1 *.mgt Readmgt.f 
23 RSDCO Residue decomposition factor 0.05 0.02 0.1 basins.bsn Readbsn.f 
24 NPERCO Nitrogen percolation factor 0.2 0.001 1 basins.bsn Readbsn.f 
25 N_UPDIS N uptake distribution parameter 20 0.001 100 basins.bsn Readbsn.f 
26 NSETLR N settling rate in reservoir (m/yr), Line 7 & 8 5.5 1 15 *.lwq Readlwq.f 
27 SHALLST_N Concentration of NO3 in groundwater (mg N/L) 0.0001 0.0001 1000 *.gw Readgw.f 
28 ERORGN Organic N enrichment for sediment 0.001 0.001 5 *.hru Readhru.f 
29 SOL_ORGN Initial organic N concentration (mg N kg−1 soil) 0.01 0.01 50 *.chm Readchm.f 
30 SOL_NO3 Initial NO3 concentration in the soil layer (mg 

N kg−1 soil) 
0.01 0.01 50 *.chm Readchm.f 

31 PPERCO Phosphorus percolation factor (10 m3 Mg−1) 10 10 17.5 basins.bsn Readbsn.f 
32 PHOSKD Phosphorus soil partitioning coefficient (m3 

Mg−1) 
175 100 200 basins.bsn Readbsn.f 

33 PSP P sorption coefficient 0.4 0.01 0.7 basins.bsn Readbsn.f 
34 PSETLR P settling rate in reservoir (m/yr), Line 5 & 6 10 2 20 *.lwq Readlwq.f 
35 BC4 Rate const for mineralization of organic P to 

dissolved P (1/d) 
0.35 0.01 0.7 *.swq Readswq.f 

36 RS5 Organic P settling rate (1/d) 0.05 0.001 0.1 *.swq Readswq.f 
37 ERORGP Organic P enrichment ratio with sediment 

loading 
0.001 0.001 5 *.hru readhru.f 

38 SOL_ORGP Initial organic P (mg P kg−1 soil) 0.01 0.01 50 *.chm Readchm.f 
39 SOL_SOLP Initial soluble P concentration in the soil layer 

(mg P kg−1 soil) 
5 0.01 50 *.chm Readchm.f 

aFour groups of parameters: No. 1–14: Water quantity; No. 15–21: Sediment; No. 22–30: Nitrogen; No. 31–39: 

Phosphorus.
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Figure Captions 

Figure 1. Fifty-five subbasins and 22 reservoirs of the Tennessee River Basin (TRB) in the Soil 

and Water Assessment Tool (SWAT). The mainstem Tennessee River runs from east to west, 

exiting the basin below Kentucky Dam. 

 

Figure 2. Integrating the Shuffled Complex Evolution (SCE) algorithm into the Soil and Water 

Assessment Tool (SWAT) permitted calibration against intermediate response variables.  

 

Figure 3. Model calibration of SWAT-modeled runoff by optimizing hydrologic parameters and 

validation. The distribution shows values for 32 HUC8 units (8-digit Hydrologic Unit Codes). 

Measures of model performance are (a) Nash-Sutcliffe Efficiency (NSE), (b) Percent Bias 

(PBIAS). 

 

Figure 4. Spatial distribution of SWAT-simulated mean annual values at 55 subbasins: (a) TN 

yield (kg N/ha), (b) TP yield (kg P/ha). 

 

Figure 5. Comparison of spatial distribution of TN and TP yield between SWAT simulation and 

SPARROW dataset at 32 HUC8 units. SWAT metrics: OrgP_SolP = OrgP (organic P) + SolP 

(soluble P); OrgP_MinP = OrgP + MinP (mineral P attached to sediment); SolP_MinP = SolP + 

MinP; and TP = OrgP + SolP + MinP.  

 

Figure 6. Spatial correlation analysis (a) between response variables (mean values from 1996 to 

2013), (b) between response variables and subbasin attributes. Larger circle denotes higher 
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correlation coefficient and only significant correlations (p-value < 0.05) are shown. Numbers in 

(a) denote correlation coefficients. Response variables are: sediment yield (kg TSS/ha), organic 

phosphorus yield (OrgP, kg P/ha), soluble P yield (SolP, kg P/ha), mineral P yield attached to 

sediment (MinP, kg P/ha), total P yield (TP = OrgP + SolP + MinP, kg P/ha), total nitrogen yield 

(TN, kg N/ha), organic N yield (OrgN, kg N/ha), nitrate yield (NO3, kg N/ha), runoff depth 

(mm), and runoff coefficient (RC, ratio of runoff to precipitation). 
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Figure 5  
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Figure 6  
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