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Abstract 24 

Obtaining reliable records of rainfall from satellite rainfall estimates (SREs) is a challenge as 25 

SREs are an indirect rainfall estimate from visible, infrared (IR), and/or microwave (MW) 26 

based information of cloud properties. SREs also contain inherent biases which exaggerate or 27 

underestimate actual rainfall values hence the need to apply bias correction methods to improve 28 

accuracies. We evaluate the performance of five bias correction schemes for CMORPH 29 

satellite-based rainfall estimates. We use 54 raingauge stations in the Zambezi Basin for the 30 

period 1998–2013 for comparison and correction. Analysis shows that SREs better match to 31 
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gauged estimates in the Upper Zambezi Basin than the Lower and Middle Zambezi basins but 32 

performance is not clearly related to elevation. Findings indicate that rainfall in the Upper 33 

Zambezi Basin is best estimated by an additive bias correction scheme (Distribution 34 

transformation). The linear based (Spatio-temporal) bias correction scheme successfully 35 

corrected the daily mean of CMORPH estimates for 70 % of the stations and also was most 36 

effective in reducing the rainfall bias. The nonlinear bias correction schemes (Power transform 37 

and the Quantile based empirical-statistical error correction method) proved most effective in 38 

reproducing the rainfall totals. Analyses through bias correction indicate that bias of CMORPH 39 

estimates has elevation and seasonality tendencies across the Zambezi river basin area of large 40 

scale. 41 

 42 

Keywords: Bias correction factor, Seasonality influences, Space-time variable, Elevation 43 

influences 44 
 45 

1. Introduction  46 

A plethora of error (hereafter bias) correction schemes for satellite-derived rainfall estimates 47 

(SREs) have been published  (e.g. Woody et al., 2014;Habib et al., 2014;Vernimmen et al., 48 

2012;Gebregiorgis et al., 2012;Tesfagiorgis et al., 2011;Shrestha, 2011). Bias correction 49 

schemes are important because SREs are prone to systematic and random errors related to the 50 

fact that SREs are indirect rainfall estimates from visible, infrared (IR), and/or microwave 51 

(MW) based information of cloud properties (Pereira Filho et al., 2010). Bias is defined as the 52 

systematic error or difference between raingauge estimates and SREs, and can be positive or 53 

negative (Moazami et al., 2013;Qin et al., 2014). Bias can be expressed for rainfall depth, its 54 

occurrence and intensity. Bias often exhibit a topographical and latitudinal dependency as, for 55 

instance,  shown for the National Oceanic and Atmospheric Administration (NOAA) Climate 56 

Prediction Center-MORPHing (CMORPH) bias in the Nile Basin (Bitew et al., 2011;Habib et 57 

al., 2012;Haile et al., 2013). For Southern Africa, Dinku et al (2008) and Thorne et al (2001) 58 

show that bias in rainfall occurrences and intensities can be related to location, topography, 59 

local climate and season. SRE’s tested are Tropical Applications of Meteorological Satellites 60 

(TAMSAT), Tropical Rainfall Measuring Mission (TRMM-3B42), Precipitation Estimation 61 

from Remotely Sensed Information using Artificial Neural Network (PERSIANN) and Climate 62 

Hazards Group InfraRed Precipitation with stations (CHIRPS). Studies in the Zambezi Basin, 63 

show evidence necessitating the correction of bias in SREs by comparing SREs against gauge 64 

observations. For example Cohen Liechti (2012) show that CMORPH rainfall have challenges 65 

in estimation of rainfall volumes at daily and monthly scales. Matos et al. (2013) and Thiemig 66 

et al. (2012) show that bias varies across geographical domains in the basin and may be as large 67 

as ±50 %. Negative bias indicates underestimation of rainfall whereas positive bias indicates 68 

overestimation (Moazami et al., 2013). 69 

 70 
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Bias correction schemes serve to correct for systematic errors of the SREs and aim to improve 71 

the reliability of SREs (Tesfagiorgis et al., 2011). Most bias correction schemes rely on 72 

assumptions that adjust for rainfall variability in space and time (Habib et al., 2014). As such, 73 

methodologies for bias correction were developed for multi-sensor (Breidenbach and 74 

Bradberry, 2001) and radar-gauge approaches (Vernimmen et al., 2012), and for climate 75 

models (Lafon et al., 2013) that provide rainfall estimates systematically in the time domain 76 

covering vast areas. Examples of correction schemes are mean bias (Seo et al., 1999), ratio bias 77 

(Anagnostou et al., 1999;Tesfagiorgis et al., 2011), distribution transformation (Bouwer, 78 

2004), spatial bias (Bajracharya et al., 2014), histogram equalisation (Thiemig et al., 2013), 79 

regression analysis (Cheema and Bastiaanssen, 2010;Shrestha, 2011;Yin et al., 2008) and 80 

probability distribution function (QME) matching (Gudmundsson et al., 2012;Gutjahr and 81 

Heinemann, 2013).  82 

 83 

Most bias correction schemes have background in climate models. Schemes aim to correct bias 84 

for satellite precipitation totals but do not address aspects of temporal variability of the 85 

precipitation (Botter et al., 2007). Bias correction techniques such as those based on regression 86 

techniques where rainfall totals are corrected relative to estimates from a reference rain gauge 87 

station, have reported distortion of frequency and intensity of rainfall (Botter et al., 2007). On 88 

one hand, some bias schemes are developed using multiplicative shifts procedures and tend to 89 

adjust only rainfall intensity to reproduce the long-term mean observed monthly rainfall, but 90 

these are reported not to correct any systematic error in rainfall frequency rainfall (Ines and 91 

Hansen, 2006). On the other hand, non-multiplicative bias correction procedures provide an 92 

option for using the daily corrected satellite rainfall in a manner that preserves any useful 93 

information about the timing of rainfall frequency within a season (Fang et al., 2015;Hempel 94 

et al., 2013). For many hydrologic applications correct representation of daily rainfall is 95 

important. Non-linear bias correction schemes are well known in literature for mitigating the 96 

underestimation of SREs in dry months without leading to an overestimation of rainfall during 97 

wet months (Vernimmen et al., 2012). Power function derived bias correction schemes correct 98 

for extreme values (depth, intensity, rate and occurrence) in CMORPH estimates (Vernimmen 99 

et al., 2012). Contrary, the Bayesian (likelihood) analysis techniques are found to over-adjust 100 

both light and strong rainfall intensities toward more intermediate intensities (Tian et al., 2010). 101 

 102 

Besides that bias may change over time, some correction schemes (e.g. the γ -distribution 103 

correction method) do not account for spatial patterns in bias (Müller and Thompson, 2013). 104 

Studies by Habib et al. (2014) and Tefsagiorgis et al. (2011) evaluated different forms of the 105 

space bias correction schemes. They concluded that the space fixed (invariant) technique which 106 

is obtained by using gauge and or SREs bias values lumped over the entire domain is ineffective 107 

in reducing rainfall bias as compared to space variant technique. This approach of using the 108 

average bias for all stations (space fixed) to correct SREs has its roots in radar rainfall (Seo et 109 
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al., 1999) and is unsuitable in large  basins (> 10,000 km2) where bias varies spatially and over 110 

time (see Habib et al., 2012). 111 

 112 

Applications of bias correction schemes mostly are reported for northern America, Europe and 113 

Australia. For less developed areas such as in the Zambezi Basin (Southern Africa) that is 114 

selected for this study applications are very limited. This is despite the strategic importance of 115 

the basin in providing water to over 50 million people. An exception is the correction of the 116 

TRMM-3B42 product for agricultural purposes in the Upper Zambezi Basin (Beyer et al., 117 

2014). Previous studies on use of SREs in the Zambezi river basin mainly focused on accuracy 118 

assessment of SREs with standard statistical indicators with little or no effort to perform bias 119 

correction despite the evidence of errors in these products. The use of uncorrected satellite 120 

rainfall is reported for hydrological modelling in the Nile Basin (Bitew and Gebremichael, 121 

2011) and Zambezi Basin (Cohen Liechti et al., 2012), respectively, and for drought monitoring 122 

in Mozambique (Toté et al., 2015). Our selection of CMORPH satellite rainfall for this study 123 

is based on the fact that the product has successful applications in African basins such as in 124 

hydrological modelling (Habib et al., 2014) and flood predictions in West Africa (Thiemig et 125 

al., 2013). 126 

 127 

The objective of this study is to assess suitability of bias correction of CMORPH satellite 128 

rainfall estimates in the Zambezi River Basin for the period 1998-2013 for which time series 129 

are available from 54 rain gauge stations. Specific objectives are 1) to perform quality control 130 

on gauge based estimates in the Zambezi Basin 2) to develop linear/non-linear and time-space 131 

variant/invariant bias correction schemes using gauge based estimates in the basin 3) to apply 132 

and compare bias correction schemes to CMORPH satellite rainfall and 4) To assess the 133 

influence of elevation and seasonality on CMORPH performance and bias correction in the 134 

basin. 135 

 136 

This article is organised as follows: Section 2 gives a description of the study area and data 137 

availability. Methods used in this study are described in Section 3. Findings of the study are 138 

presented in Section 4.  Section 5 concludes and discusses findings of the study. 139 

 140 

2. Study area 141 

The Zambezi River is the fourth-longest river (~2,574 km) in Africa and basin area of 142 

~1,390,000 km2 (~4 % of the African continent). The river drains into the Indian Ocean and 143 

has mean annual discharge of 4,134 m3/s (World Bank, 2010b). The river has its source in 144 

Zambia and partly constitutes boundaries of Angola, Namibia Botswana, Zambia, Zimbabwe 145 

and Mozambique (Fig. 1). Because of its vastness in size, the basin has much difference in 146 

elevation, topography and climatic seasonality. For that reason the basin well suited for this 147 

study and divided into three hydrological regions, i.e., the lower Zambezi comprising the Tete, 148 

Lake Malawi/Shire, and Zambezi Delta subbasins, the middle Zambezi made up of the Kariba, 149 
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Mupata, Kafue, and Luangwa sub catchments, and the Upper Zambezi constituted by the  150 

Kabompo, Lungwebungo, Luanginga, Barotse, and Cuando/Chobe subbasins (Beilfuss, 2012). 151 

 152 

 153 
Figure 1: Zambezi River Basin with sub basins, major lakes, rivers, elevation and locations of the 54 rain gauging stations 154 

used in this study. 155 

 156 

The elevation of the Zambezi basin ranges from 0.0 m (for some parts of Mozambique) to 157 

~3000 m above sea level (for some parts of Zambia). Typical landcover types are woodland, 158 

grassland, water surfaces and cropland (Beilfuss et al., 2000). The basin is characterized by 159 

high annual rainfall (>1,400 mm) in the northern and north-eastern areas but low annual rainfall 160 

(<500 mm) in the southern and western parts (World Bank, 2010a). Due to the varied rainfall 161 

distribution, northern tributaries contribute much more water to the Zambezi River (e.g., the 162 

Upper Zambezi Basin contributes 60 % of total discharge) (Tumbare, 2000). The River and its 163 

tributaries are subject to cycles of floods and droughts that have devastating effects on the 164 

people and economies of the region, especially the poorest members of the population 165 

(Tumbare, 2005). It is not uncommon to experience both floods and droughts within the same 166 

hydrological year.  167 

 168 

3. Materials and Methodology 169 

 170 

3.1. Data 171 

 172 

3.1.1. Satellite derived rainfall 173 

Admin
Comment on Text
floods are seasonal and not cyclic. droughts are not cyclic. Cycles implies a repeated occurrence after  a fixed number of months or years.

Admin
Cross-Out

Admin
Inserted Text

Admin
Comment on Text
Elevation not clearly represented by the grey shading. A reader does not have a clue regarding values of elevation in different parts of the basin



6 

 

For this study time series (1998-2013) of CMORPH rainfall product at (8 km × 8 km, 30 174 

minutes resolution are selected. Images were downloaded from the GeoNETCAST ISOD 175 

toolbox by means of ILWIS GIS software (http://52north.org/downloads/). CMORPH 176 

estimates are derived from a combination of infrared (IR) temperature fields from geostationary 177 

satellites and passive microwave (PMW) temperature fields from polar orbiting satellites at 30 178 

minute temporal resolution (Joyce et al., 2004). For this study, data were aggregated to daily 179 

totals to match the observation interval from available gauge measurements. 180 

 181 

3.1.2. Gauge based rainfall data 182 

Time series of daily rainfall from 60 stations was obtained from meteorological departments 183 

Mozambique, Malawi, Zimbabwe and Zambia that cover the study area. After screening, 6 184 

stations with suspicious rainfall values were removed from the analysis to remain with 54 185 

stations. Although a number of the 54 stations are affected by data gaps, the available time 186 

series are of sufficiently long duration (Table 1) to serve objectives of this study. The locations 187 

of the stations cover a wide range of elevation values (3 m to 1600 m amsl.) allowing to assess 188 

the effect of elevation on  the SREs.  189 

 190 

Table 1: HERE 191 

 192 

3.1.3. Gauge based analysis: elevation influences 193 

 194 

To investigate elevation influence on CMOPRH performance, the hierarchical cluster ‘within-195 

groups linkage’ method in SPSS software was used to classify the Zambezi Basin into 3 196 

elevation zones (Table 2). This was based on elevation vs correlation coefficient of CMORPH 197 

and gauge based estimates. The Advanced Spaceborne Thermal Emission and Reflection 198 

Radiometer (ASTER) based 30m DEM obtained from http://gdem.ersdac.jspacesystems.or.jp/, 199 

was used to represent elevation across the Zambezi basin.  200 

 201 

Table 2: HERE 202 

 203 

Figure 2 shows Mean Annual Rainfall (MAR) isohyets by inverse distance interpolation of 204 

mean annual gauged measurements (1998-2013). 205 
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206 

Figure 2: Mean Annual Rainfall (MAR) distribution for the Zambezi Basin (1998-2013).  207 

 208 

The double mass-curve was used to check the consistency of rainfall of a single station with 209 

poor correlation coefficient (<0.4) against rainfall of nearby other stations (within 100 km 210 

radius) in the study area, following Searcy and Hardson (1960). Inconsistencies shown in the 211 

double mass-curve may be due to errors in the raingauge data collection. Any unreliable and 212 

inconsistent daily rainfall estimate for any year may be adjusted following: 213 

 214 

𝑃𝑎 =
𝑏𝑎

𝑏𝑜
𝑃𝑜           [1] 215 

 216 

Where: 217 

Pa = adjusted rainfall station X in any year 218 

𝑃𝑜 = observed rainfall for station X in the same year 219 

𝑏𝑎 = slope of graph to which records are adjusted 220 

𝑏𝑜 = slope of graph at time Po was observed 221 

 222 

3.2. Bias correction schemes  223 

In this study, the bias in CMORPH rainfall estimates was assessed and corrected using 5 224 

schemes. Based on  preliminary analysis on rainfall distributions in the Zambezi Basin, the bias 225 

correction factor is calculated for a certain day only when a minimum of five rainy days were 226 

recorded within the preceding ten-day window with a minimum rainfall accumulation depth of 227 

5 mm, otherwise no bias is estimated (i.e. a value of 1 is assigned). This means bias factors 228 

change value for each station for each 10 day period. 229 
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 230 

3.2.1. Spatio-temporal bias correction (STB) 231 

This linear bias correction scheme has its origin in the correction of radar based precipitation 232 

estimates (Tesfagiorgis et al., 2011) and downscaled precipitation products from climate 233 

models (Lenderink et al., 2007;Teutschbein and Seibert, 2013). The bias is corrected for 234 

individual raingauge stations at daily time step implying that bias correction varies in space and 235 

over time, and is based on the use of the BFSTB factor estimated from equation [2]: 236 

 237 

 

 









l-dt

dt

l-dt

dt

ti,G

ti,S
STBBF         [2] 238 

The CMOPRH daily rainfall estimates are then multiplied by the BFSTB for the respective time 239 

windows resulting in corrected CMORPH estimates in a temporally and spatially coherent 240 

manner. The advantages of the bias scheme are the simplicity and modest data requirements 241 

and that it adjusts the daily mean of CMORPH at each station.  242 

 243 

Where: 244 

G and S = daily gauge and CMORPH rainfall estimates, respectively 245 

i   = gauge location 246 

t   = julian day number 247 

l  = length of a time window for bias calculation 248 

n  = the total number of gauges within the entire domain of the study 249 

T   = full duration of the study period. 250 

 251 

3.2.2. Elevation zone bias correction (EZB). 252 

This bias scheme is proposed in this study and aims at correction of satellite rainfall by 253 

understanding elevation influences on the rainfall distribution. The method groups raingauge 254 

stations into 3 elevation zones (Table 2). The assumption is that stations in the same elevation 255 

zone have the same error characteristics and are assigned a spatial but temporally variant bias 256 

correction factor. The resulting bias correction factor is used to adjust satellite estimates by 257 

multiplying each daily station data by the daily bias factor, BFEZB. 258 

 259 

 

  

 















-ldt

dt

ni

1i

-ldt

dt

ni

1i

ti,G

ti,S
EZBBF        [3] 260 

The merits of this bias correction scheme is that the daily time variability is preserved up to a 261 

constant multiplicative factor and at the same time accounting for spatial heterogeneity in 262 

topography (but fixed for each zone).  263 

 264 

3.2.3. Power transform (PT) 265 
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This nonlinear bias correction scheme is aimed at achieving a closer fit between monthly 266 

CMORPH and raingauge data. The bias scheme has its origins in general circulation models 267 

(Lafon et al., 2013) but has been extended to satellite rainfall estimates for hydrological 268 

modelling and drought monitoring (Vernimmen et al., 2012). The bias corrected CMORPH 269 

rainfall (P*) is obtained using:  270 

 271 

P∗= aPb          [4] 272 

Where 273 

P = raingauge monthly rainfall 274 

a = prefactor such that the mean of the transformed precipitation values is equal to the 275 

gauge based mean. 276 

b = factor calculated iteratively such that for each station the Coefficient of Variation 277 

(CV) of CMORPH matches the gauge based estimates 278 

 279 

Optimized values of a and b are obtained through the generalized reduced gradient algorithm 280 

(Fylstra et al., 1998). The bias correction is estimated for monthly periods but is applied at daily 281 

time step. The advantage of this bias scheme is that rainfall variability of the daily time series 282 

is preserved by adjusting both the monthly mean and standard deviation of the CMORPH 283 

estimates. The bias scheme also adjusts extreme precipitation values in CMORPH estimates 284 

(Vernimmen et al., 2012). 285 

 286 

3.2.4. Distribution transformation (DT) 287 

This additive approach to bias correction has its origin in statistical downscaling of climate 288 

model data (Bouwer et al., 2004). In this study the method determines the statistical distribution 289 

function at daily base of all raingauge station estimates as well as CMORPH values at the 290 

respective stations. The CMORPH statistical distribution function is matched from the 291 

raingauge data distribution following steps described in equations [5-9]. Both the difference in 292 

mean value and the difference in variation are corrected. First the bias correction factor for the 293 

mean ( TD ) is determined using equation [5]: 294 

 295 

S
G

T





 D
           [5] 296 

G  and S   are mean monthly gauge and CMORPH rainfall estimates for all stations, 297 

respectively. 298 

 299 

Secondly, the correction factor for the variation (
TD ) is determined by the quotient of the 300 

standard deviations, Gt and St, for gauge and CMORPH respectively. 301 

 302 
              

S
G

T




 D

           [6] 303 
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Once the correction factors are established, they are applied to correct all raingauge stations 304 

data from CMORPH image following: 305 

 306 
                  

uoDT ( SSS  )
TD + 

TD *
S )        [7] 307 

Where: 308 

DTS   corrected CMORPH 309 

oS   =  uncorrected CMORPH 310 

The merit of this bias scheme is that it corrects for frequency-based indices such as standard 311 

deviation and percentile values (Fang et al., 2015).  312 

 313 

3.2.5. Quantile mapping based on an empirical distribution (QME) 314 

This is a quantile based empirical-statistical error correction method with its origin in empirical 315 

transformation and bias correction of regional climate model-simulated precipitation (Themeßl 316 

et al., 2012). The method corrects CMORPH precipitation based on point-wise daily 317 

constructed empirical cumulative distribution functions (ecdfs). The frequency of precipitation 318 

occurrence is corrected at the same time (Themeßl et al., 2010).  319 

 320 

The adjustment of precipitation using quantile mapping can be expressed in terms of the 321 

empirical CDF (ecdf) and its inverse (ecdf-1): 322 

 323 

𝑃𝑄𝑀𝐸 = 𝑒𝑐𝑑𝑓𝑜𝑏𝑠
−1(𝑒𝑐𝑑𝑓𝑟𝑎𝑤(𝑃𝑟𝑎𝑤))         [8] 324 

 325 

Where: 326 

𝑃𝑄𝑀𝐸  =  bias corrected CMORPH 327 

𝑃𝑟𝑎𝑤  =  uncorrected CMORPH 328 

 329 

The advantage of this bias scheme is that it corrects bias in the mean, standard deviation (Fang 330 

et al., 2015) as well as errors in rainfall depth, The approach is important for long term water 331 

resources assessments under the influence of landuse or climate change. Furthermore, it 332 

preserves the extreme precipitation values (Themeßl et al., 2012). 333 

 334 

3.3. Performance evaluation of CMORPH rainfall types  335 

A comparison of corrected and uncorrected CMORPH satellite rainfall estimates with rain 336 

gauge data was performed using statistics that measure systematic differences (i.e. bias and 337 

relative bias), accumulated error (e.g. root mean square error), measures of association (e.g. 338 

correlation coefficient) and random differences (e.g. standard deviation of differences and 339 

coefficient of variation) (Haile et al., 2013). Comparison is also made for the dry and wet 340 

seasons and for different rainfall intensities (light rains-heavy rains). The root mean square 341 

error (RMSE), was used to measure the average error following Jiang et al. (2012). Thus RMSE 342 
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is used to test the accuracy of CMOPRH rainfall estimates against rain gauge based estimates. 343 

The correlation coefficient (CC) was used to assess the agreement between satellite-based 344 

rainfall and rain gauge observations. Equations [9-12] apply. 345 

 346 

𝐵𝑖𝑎𝑠     =
∑(𝑃𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒−𝑃𝑟𝑎𝑖𝑛 𝑔𝑎𝑢𝑔𝑒)

𝑁
         [9] 347 

 348 

𝑅𝑏𝑖𝑎𝑠  =  
∑(𝑃𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒−𝑃𝑟𝑎𝑖𝑛 𝑔𝑎𝑢𝑔𝑒)

∑𝑃𝑟𝑎𝑖𝑛 𝑔𝑎𝑢𝑔𝑒
         [10] 349 

 350 

𝑅𝑀𝑆𝐸 =  √
(𝑃𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒−𝑃𝑟𝑎𝑖𝑛 𝑔𝑎𝑢𝑔𝑒)2

𝑁
         [11] 351 

 352 

𝐶𝐶       =
∑( 𝑃𝑟𝑎𝑖𝑛𝑔𝑎𝑢𝑔𝑒−�̅�𝑟𝑎𝑖𝑛𝑔𝑎𝑢𝑔𝑒)(𝑃𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒−�̅�𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒)

√∑(𝑃𝑟𝑎𝑖𝑛𝑔𝑎𝑢𝑔𝑒−�̅�𝑟𝑎𝑖𝑛𝑔𝑎𝑢𝑔𝑒)
2√∑(𝑃𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒−�̅�𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒)

2
      [12] 353 

 354 

where: 355 

𝑃𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒  = rainfall estimates by satellite (mm/day) 356 

�̅�𝑠𝑎𝑡𝑒𝑙𝑙𝑖𝑡𝑒 = mean values of the satellite rainfall estimates (mm/day) 357 

𝑃𝑟𝑎𝑖𝑛 𝑔𝑎𝑢𝑔𝑒  = rainfall recorded by rain gauge (mm/day) 358 

�̅�𝑟𝑎𝑖𝑛𝑔𝑎𝑢𝑔𝑒 = mean values of the rain gauge observations (mm/day) 359 

N   = sample size (days). 360 

 361 

Bias, Rbias and RMSE range from 0.00 (CMORPH measurements = gauge based 362 

measurements) to infinity (CMORPH measurements ≠ gauge based measurements) (Mashingia 363 

et al., 2014). Correlation Coefficient (CC) ranges from -1 to 1 with a perfect score of 1. 364 

 365 

Visual comparison was also done using Taylor diagrams which  provides a concise statistical 366 

summary of how well patterns match each other in terms of their CC, their root-mean-square 367 

difference (RMSEi), and the ratio of their variances on a 2-D plot (Taylor, 2001). The reason 368 

that each point in the two-dimensional space of the Taylor diagram can represent the above 369 

three different statistics simultaneously is that root-mean-square difference, and the ratio of 370 

their variances are related by the following: 371 

 372 

𝑅𝑀𝑆𝐸𝑖2
= 𝛿𝑓

2 + 𝛿𝑟
2 − 2𝛿𝑓𝛿𝑟𝐶𝐶         [13] 373 

 374 

Where: 375 

𝛿𝑓
2 + 𝛿𝑟

2 = standard deviation between CMORPH and raingauge rainfall, respectively 376 

 377 

 378 

4. Results and Discussion 379 

 380 

4.1.Basic statistics for the CMORPH and gauge estimates 381 
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The mean rainfall, highest rainfall and sum of the gauged and CMORPH rainfall estimates for 382 

the period 1998-2013 vary widely (Table 3). Statistical scores (based on the mean, maximum 383 

and sum) indicate underestimation of the CMORPH rainfall for both the lowland and the 384 

highland stations, with more underestimation experienced in the highland stations. In as much 385 

CMORPH matches the standard deviation of gauge based estimates (+/- 2 mm/day) for 30 out 386 

of 54 stations, a summary for the lowland and highland stations shows lower standard deviation 387 

for CMORPH than the gauge based estimates. There are also instances where CMORPH shows 388 

agreement with the gauge estimates (e.g. CV of 3.12 for both CMORPH and gauge in the 389 

highland stations). The minimum recorded rainfall for both the CMORPH and gauge estimates 390 

is 0.0.  391 

 392 

Table 3: HERE 393 
 394 
 395 

Figure 3 also shows a comparison of the mean annual rainfall (MAR) for the gauge based 396 

estimates (through Universal Krigging interpolation technique) and CMORPH observations in 397 

the Zambezi Basin. The raingauge map shows higher estimated values in the northern parts of 398 

the basin compared to the CMORPH estimates. There are also patches of higher MAR values 399 

found in the Shire and Kariba Basin for the CMORPH estimates. 400 

 401 

 402 

Figure 3: Mean annual rainfall (1998-2013) for the Rain gauge and CMORPH observations in the Zambezi Basin 403 

 404 

4.2. Quality assessment using double-mass curves 405 

Figure 4 reports four (4) selected double mass curves, with Figure 4d being the best in terms 406 

of the rainfall matching, followed by Figure 4b and Figure 4c. The worst in terms of match is 407 

Figure 4a. Pairs of stations with less pronounced differences in slope gradients are Neno vs 408 

Monkey, Bolero vs Chitipa and Mvurwi vs Karoi. However, there are stations that show clear 409 

break points and pronounced differences in slope gradients (staircase-like features) in double-410 

mass curves. These are observed in the Nchalo vs Nsanje, Mvurwi vs Muzarabani and these 411 

could be caused by changes due to errors in the rain gauge data collection at Nchalo or Mvurwi 412 

stations. Results also confirm that stations with relatively greater distance from each other (e.g. 413 

Bolero to Lundazi ~ 180km) shows poor match and hence more pronounced differences in 414 
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slope gradients than stations that have close proximity (e.g. Mvurwi to Guruve ~ 45 km ). In 415 

addition stations that show close match exhibit similar elevation (e.g. Neno and Makoka have 416 

elevation difference ~ 96 m asl.) compared to stations that show poor match (e.g Mvurwi and 417 

Muzarabani ~1064 m asl.). In cases where break point are not clearly shown, we used nearby 418 

stations to adjust for the inconsistencies in these suspicious stations for years prior to the break. 419 

This analysis highlights the critical need for quality gauge based stations that can provide 420 

reliable validation datasets as a prerequisite for the assessment of satellite based rainfall 421 

estimates and bias correction.422 
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      423 
Figure 4: Double Mass Curves for accumulated amount of rainfall in selected suspicious raingauges. Top left panes: Nchalo vs Nsanje, Makhanga, Ngabu and Thyolo. Top right: Neno vs Monkey, 424 
Balaka, Chileka, Makoka and Mimosa. Bottom left: Mvurwi vs Mt Darwin, Muzarabani, Guruve and Karoi. Bottom right: Bolero vs Chitipa, Mfuwe, Lundazi and Kasungu425 
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4.3.. Elevation influences: CMORPH and gauge rainfall  426 

A Taylor Diagram with a comparison of the daily averaged time series (1998–2013) CMORPH 427 

and rain gauge observations for the 3 elevation zones is shown in Figure 5. The diagram was 428 

prepared with the adjusted rainfall stations (Petauke, Harare Kutsaga, Bolero, Mvurwi, 429 

Kanyemba, Neno and Nchalo) to show if the relation between CMORPH and gauge rainfall is 430 

elevation dependent. Nearly 90 % (47 out of 54) of the stations fall below the reference mean 431 

standard deviation (8.45 mm/day). It can be noted that 16 % (5 out of 31) of the stations in the 432 

highland area (>1600 m) have a standard deviation below 6 mm/day indicating low variability 433 

in their data. In addition 25 % (2 out of 8) of the stations in the lower elevation zone (<250 m) 434 

are above the reference 8.4 mm/day standard deviation and, as such, indicate high variability 435 

in the data. Kanyemba, Muzarabani and Mimosa stations in the intermediate elevation zone 436 

(250-950 m) lie on the dashed arc (line of standard deviation) and implies matching standard 437 

deviation with gauged based estimates. However, no station is close to the indicated reference 438 

point implying that the whole basin has low correlation and low RMSE.  439 
 440 

 441 
Figure 5. Normalised statistical comparison between time series of Raingauge (reference) vs CMORPH estimations, period 442 
1998-2013, for the 54 raingauge stations. Refer to Table 1 for full names of the stations. The correlation coefficients for the 443 
radial line denote the relationship between CMORPH and gauge based observations. Standard deviations on the x and y axes 444 
show the amount of variance between the two time series. The distance of the symbol to the origin depicts the ratio of 445 
CMORPH standard deviation to Raingauge standard deviation. The angle between symbol and abscissa measures the 446 
correlation between CMORPH and Raingauge observations. The distance of the symbol from point (1, 0) is a relative measure 447 
of the CMORPH error (for details, see Taylor (2001).  448 
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 449 

All the stations have a RMSE above 7 mm/day with higher values (> 10 mm/day) found at 450 

Nsanje and Harare (Belvedere). Results are also consistent with findings in West Africa’s 451 

Benin and Niger where the daily mean RMSE between CMORPH and gauge based 452 

measurements for a period ranging from 2003-2009, was found to be 9 mm/day and 13.8 453 

mm/day, respectively (Gosset et al., 2013). Overall the CMORPH performance in terms of 454 

correlation coefficient, RMSE and standard deviation over the 3 elevation zones does not 455 

follow a specific pattern even though the high lying stations show a slightly better match to 456 

CMORPH estimates. We can conclude that aspects of elevation in the Zambezi Basin are not 457 

well shown in the relationship between CMORPH and gauge rainfall. This finding is also 458 

described in Vernimmen et al. (2012) in Indonesia who found no relationship between 459 

performance of TMPA 3B42RT precipitation against and elevation (R2 = 0.0001). The study 460 

by Gao and Liu (2013) showed that the bias in CMORPH rainfall over the Tibetan Plateau 461 

present weak dependence on topography. Contrary to these findings, Romilly and 462 

Gebremichael (2011) showed that the accuracy at a monthly scale of high resolution SREs: 463 

CMORPH,  PERSIANN and TRMM TMPA 3B42RT is related to elevation for six river basins 464 

in Ethiopia. This difference could be due to the fact that the range of elevation in Ethiopia is 465 

from minus 196 m to 4 500 m asl. (Romilly and Gebremichael, 2011). In contrast, the Zambezi 466 

basin stations used in this study have elevation ranges from 3m to 1 575 m asl. 467 

 468 

4.4. Performance of CMORPH rainfall vs Gauge estimates  469 

The spatial distribution of values of bias, Rbias, RMSE and CC are presented at (sub) basin 470 

level (Figure 6-8) but also for individual stations (Table 4). Figure 6 shows the bias estimate 471 

of gauge and CMORPH daily rainfall for the Zambezi Basin. Large bias values are identified 472 

at Lower Zambezi stations such as Mimosa (1.57 mm/day), Thyolo (1.47 mm/day), Bvumbwe 473 

(1.24 mm/day) and Chichiri (0.95 mm/day). Negative bias at Middle Zambezi stations such as 474 

Mfuwe (-1.7 mm/day) and Chitedze (-0.9 mm/day) indicates rainfall underestimation. 475 

Generally CMORPH overestimates rainfall estimates at 9 stations (33 %) of the Lower 476 

Zambezi. Most of these Lower Zambezi stations are in south eastern part of the basin in 477 

Mozambique where the Zambezi Basin enters the Indian Ocean. CMORPH overestimates daily 478 

rainfall estimates at 7 out of 10 stations in the Upper Zambezi stations of which most are at 479 

high elevated areas. Most of these highland stations are in Zambezi’s Kabompo Basin, the 480 

headwater catchment of the Zambezi to the West. Overall, data for stations in the Middle 481 

Zambezi Basin underestimates rainfall based on basin average bias (-0.12 mm/day). 482 

 483 
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 484 
Figure 6: Bias estimate of gauge and CMORPH daily rainfall for the Zambezi Basin  485 
 486 

Figure 7 shows that a number of stations such as Nchalo in the Lower Zambezi and Karoi in 487 

the Middle Zambezi have Rbias relatively close to zero, -2.24 mm/day and, 1.17 mm/day, 488 

respectively (see also Table 4). CMORPH accurately estimates rainfall at these stations. 489 

Stations such as Tyolo, Mimosa and Victoria Falls have very high Rbias (>40 mm/day) and 490 

indicates that the daily rainfall of this product does not correspond well with the observed 491 

rainfall. It is worth noting that there is overestimation at 70 % of the stations (19 out of27 492 

stations) of the Lower Zambezi areas. There is overestimation at 35 % of the stations (6 out of 493 

17 stations) in the Middle Zambezi stations. All the 10 stations in the Upper Zambezi are 494 

overestimating rainfall (>7mm/day). Note that the basin mean for the Middle Zambezi stations 495 

is as low as -0.59 compared to 14.32 for the Upper Zambezi and 11.24 for the Lower Zambezi. 496 

 497 

 498 
Figure 7: Rbias estimate of gauge and CMORPH daily rainfall for the Zambezi Basin  499 

 500 

The lowest RMSE (Figure 8) is found in highland stations of the Upper Zambezi such as 501 

Senanga (4.99 mm/day) and this suggest that CMORPH rainfall matches the gauge based 502 
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estimates. This is comparable to the lowest RMSE found in the Lower Zambezi’s lowland 503 

stations such as Mfuwe (6.41 mm/day). Studies such by Moazami et al. (2013) in Iran 504 

demonstrated more accurate estimations of satellite rainfall in highland and mountainous areas 505 

than in lowland areas. Contrary to our findings, some studies report that satellite rainfall 506 

estimations have much smaller error in lowland areas than in mountainous regions 507 

(Gebregiorgis and Hossain, 2013;Stampoulis and Anagnostou, 2012). 508 

 509 

 510 
Figure 8: RMSE estimate of gauge and CMORPH daily rainfall for the Zambezi Basin  511 

 512 

The generally poor performance by CMORPH shown by some of the performance indicators 513 

suggest that satellite estimates do not provide results similar to the gauge measurements. This 514 

could be a result of both the temporal and the spatial samples being different. In addition, the 515 

low spatial coverage (e.g. for Angola to the NW of Zambezi Basin) could have contributed to 516 

poor representation of the above skills over large areas. 517 

 518 

4.5. Rainfall bias correction 519 

The statistics for the gauge, uncorrected and bias corrected satellite rainfall types for each of 520 

the Zambezi basins are shown in Table 4. The Spatio-temporal bias (STB) and Distribution 521 

transformation (DT) bias correction schemes are effective in correcting for the mean values of 522 

the CMORPH estimations. The Power tranform (PT) in the Lower Zambezi, STB in the Middle 523 

Zambezi and DT in the Upper Zambezi have standard deviations closer to the gauge 524 

observations than all other bias correction schemes. The PT also has the closest maximum 525 

rainfall estimates to the gauge observations in the Lower and Middle Zambezi Basins as 526 

compared to greater overestimation by other bias correction schemes (e.g. STB: 216 mm/day 527 

vs Gauge: 107 mm/day). Our  results are consistent with findings by Ahmed et al (2015) who 528 

showed that PT is the most reliable and suitable method for removing bias in GCM model 529 

derived monthly rainfall in an arid Baluchistan mountainous province of Pakistan. In the Lower 530 
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and Upper Zambezi basins, the DT total volume of rainfall is closer to the gauge observations 531 

and suggests effectiveness of the bias correction scheme. In the Middle Zambezi Basin, the 532 

uncorrected CMORPH (R-CMORPH) actually peforms better than the bias correction schemes 533 

in reproducing the total rainfall volume. Underestimation of runoff volume is experienced for 534 

most bias correction schemes as shown by ratios of less than 1.0. Using the standard statistics, 535 

it can be observed that the DT bias correction scheme was effective in removing bias in the 536 

CMORPH rainfall particularly in the Upper Zambezi basin. However we observe that the bias 537 

schemes perfomance depends on the original aim they are designed for. For example the STB 538 

and PT are meant to adjust the mean and standard deviations of CMORPH rainfall estimates 539 

respectively. Statistics in Table 4 for the 3 Zambezi basins confirm these findings.  540 

 541 

Table 4: HERE 542 

 543 

Figure 9 shows generally high bias values of the six bias correction schemes for the Upper 544 

Zambezi Basin. The highest bias range (-0.38 to 0.46 mm/day) is found in the Middle Zambezi 545 

Basin. The negative bias prevalent for the DT bias correction scheme in all the three Zambezi 546 

basins suggests underestimation of rainfall while the rest tend to generally overestimate. 547 

 548 

 549 
Figure 9: Bias values of gauge and CMORPH daily rainfall for the uncorrected CMORPH and the 5 bias correction schemes 550 
averaged for the Lower Zambezi, Middle Zambezi and Upper Zambezi. 551 
 552 

The highest Rbias is consistently found for the EZB bias correction scheme. Significant 553 

underestimation of rainfall is by DT for the Lower and Middle Zambezi Basin (Figure 10). The 554 
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most significant skill in reproducing gauge based estimates (-17.06) is captured in the Middle 555 

Zambezi Basin for all the bias correction schemes save for DT  556 

 557 

 558 

 559 
 560 
Figure 10: Rbias of gauge and CMORPH daily rainfall for the uncorrected CMORPH and the 5 bias correction schemes 561 
averaged for the Lower Zambezi, Middle Zambezi and Upper Zambezi. 562 
 563 

Based on the RMSE, the best perfoming bias correction scheme for the Lower, Middle and 564 

Upper Zambezi basin is DT, EZB and PT respectively. The lower the RMSE score, the less 565 

difference there is between the bias corrected CMORPH and gauge based estimates (Figure 566 

11). The most unsatisfactory perfoming bias correction scheme is PT for the lower Zambezi 567 

(10.10 mm/day). This RMSE is even poorer compared to the uncorrected CMORPH (8.63 568 

mm/day) and shows the ineffectiveness of the bias correction scheme.  569 

 570 
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 571 
Figure 11: RMSE of CMORPH daily rainfall for the uncorrected CMORPH and the 5 bias correction schemes averaged for 572 
the Lower Zambezi, Middle Zambezi and Upper Zambezi.  573 
 574 

Figure 12 shows the Taylor diagram statistical comparison between the time series of rain 575 

gauge (reference) observations vs CMORPH bias correction schemes averaged for the Lower 576 

Zambezi, Middle Zambezi and Upper Zambezi for the period 1998-2013. There is no data for 577 

any bias correction scheme that lies closer to the reference point on the X-axis suggesting the 578 

overal ineffectivenes of the bias correction schemes in removing errors. Only the PT for the 579 

Lower Zambezi basin lie on the dashed arc (line of standard deviation) and means they have 580 

the correct standard deviation which indicates that the pattern variations are of the right 581 

amplitude. There is no consistent pattern of variability in the bias correction schemes. However 582 

gauged against the reference raingauge mean standard deviation of 8.5 mm/day, most bias 583 

correction schemes exhibit high variability in CMORPH perfomance across all the Zambezi 584 

basins. 585 

 586 
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 587 
Figure 12: Taylor’s diagram of statistical comparison between the time series of Raingauge (reference) observations vs 588 
CMORPH bias correction schemes averaged for the Lower Zambezi, Middle Zambezi and Upper Zambezi for the period 1998-589 
2013. The distance of the symbol from point (1, 0) is a relative measure of the bias correction scheme’s error. The position of 590 
each symbol appearing on the plot quantifies how closely that bias correction scheme’s precipitation pattern matches the 591 
raingauge. Lower Zambezi=no asterisk, Middle Zambezi= *, Upper Zambezi = **. The blue contours indicate the RMSE 592 
values. 593 

 594 

Most of the bias correction schemes lie in the range 6.0 to 9.0 mm/day (Figure 12). There is  a 595 

consistent pattern betwen the bias correction schemes that have low correlation and high 596 

RMSE. Overal, the best performing bias correction schemes (DT and PT) have CC close to 597 

0.5, standard deviation close to the reference (8.5 mm/day) and a RMSE less than  6mm/day. 598 

This is mainly for the Lower and Middle Zambezi basins showing a fair agreement with gauge 599 

based estimates and also an effectivenes of this bias correction scheme. The least perfoming 600 

bias correction scheme is QME and EZB with a low CC < 0.43 and standard deviation (< 6.0) 601 

that is lower than the reference suggesting poor skill of these bias correction schemes. Inherent 602 

to the methodology of most of the bias correction schemes (e.g. DT and QME) is that the spatial 603 

pattern of the SRE does not change and therefore the correlation for a specific station for daily 604 

precipitation does not necessarily improve.  605 
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 606 

The percentage of days belonging to the five rainfall intensities in the Zambezi basin for each 607 

bias correction scheme is shown in Table 5. The greater percentage of rainfall (>82 %) falls 608 

under the very light shower rains, 0-2.5 mm/day. A smaller percentage falls under the 2.5-5.0 609 

mm/day which are the fairly light showers. A very low percentage belongs to the heavy showers 610 

of greater than 20 mm/day. Compared to the gauge based estimates, the STB, PT and DT 611 

generally resembles the gauge based estimates in terms of the five rainfall intensities in all the 612 

Zambezi basins and this presents the effectiveness of the three bias correction schemes. All the 613 

five rainfall types in the Lower and Middle Zambezi basins generally tend to overestimate the 614 

moderately heavy rainfall (10–20 mm/day) and underestimate moderate and heavy rainfall (>20 615 

mm). Results are consistent with findings by Gao and Liu (2013) who also found consistent 616 

under and overestimation in the Tibetan Plateau by monthly high-resolution precipitation 617 

products including CMORPH for almost the same rainfall range (>10mm/day). 618 

 619 

Table 5: HERE 620 
 621 
 622 

4.6. Seasonality influences on CMORPH bias correction 623 

Table 6 shows standard statistics for the gauge, uncorrected and bias corrected satellite rainfall 624 

for the dry and wet seasons. Compared to the gauge based and uncorrected CMORPH, the 625 

Distribution transformation (DT) and Spatio-temporal bias (STB) schemes are more effective 626 

in correcting errors in satellite rainfall than the Power transform (PT), Elevation Space bias 627 

(EZB) and Quantile based empirical-statistical error correction method (QME). The DT is more 628 

effective in reducing bias in the dry season than the wet season. For both the wet and dry 629 

season, the STB is most effective in reducing bias in the Upper Zambezi Basin. This result 630 

agrees with findings in Ines and Hansen (2006) for semi-arid eastern Kenya which showed that 631 

multiplicative bias correction schemes (in this case STB) were effective in correcting monthly 632 

and seasonal rainfall totals.  633 

 634 
 635 
Table 6: HERE  636 

  637 

4.7. Elevation influences on CMORPH bias correction  638 

Using the elevation space (EZB) bias correction scheme, bias correction effectiveness at the 639 

Zambezi escarpment (highland) and valley (lowland) of the Middle Zambezi Basin (Figure 13) 640 

was assessed. We took a closer look at 6 stations, of which 3 (Mushumbi, Zumbo and 641 

Kanyemba) are on the Zambezi escarpment with elevation above 1 100 m and the other 3 642 

(Mvurwi, Guruve, Karoi) in the valley have an elevation below 400 m. The stations have an 643 

mean distance between gauges of about 105 km.  644 
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 645 
Figure 13: Location of stations and elevation of the Zambezi valley and escarpment 646 

 647 

Table 7 reveals that for the uncorrected CMORPH, the rainfall data for stations in the valley 648 

has serious underestimation of rainfall than for the escarpment, save for Guruve station. 649 

Through EZB bias correction scheme, rainfall data for the stations on the Zambezi escarpment 650 

have effectively reduced the bias and Rbias in CMORPH rainfall than for stations on the 651 

escarpment. None of the valley stations’ rainfall nor their escarpment counterparts were 652 

effective in reducing the RMSE. However, the CC slightly reduced for all the six stations after 653 

bias correction. The general conclusion is that rainfall data for stations in the Zambezi valley 654 

outperform that of sations on the escarpment in terms of uncorrected CMORPH perfomance 655 

and its bias correction. 656 

 657 

Table 7. HERE 658 
 659 
  660 

5. Conclusions  661 

 662 

Rainfall in semi-arid river basins such as the Zambezi plays a central role in the livelihoods of 663 

human populations. The adoption of SREs offers a timely and cost efficiency opportunity to 664 

improve our understanding of the spatio-temporal variation of this water cycle component. The 665 

above is important for instance for climate monitoring, hydrologic prediction, model 666 

verification, or any other application that affect land or water rmanagement where rainfall data 667 

is required. Since SREs are prone to systematic and random errors by the fact that SREs are 668 

indirect rainfall estimates, this study aimed to to assess suitability of bias correction of 669 

CMORPH satellite rainfall estimates in the Zambezi River Basin for the period 1998-2013 for 670 

which time series are available from 54 rain gauge stations. From the study, the following can 671 

be concluded: 672 

 673 
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1. Quality control performed on the gauge based estimates in the Zambezi Basin helped to 674 

improve reliability of gauge based estimates.  Uncorrected CMORPH rainfall estimates in 675 

the three Zambezi subbasins show inconsistences (in terms of rainfall volume, depth and 676 

intensity) when compared with gauge based estimates. Results also show that it is not 677 

always the case that the Lower, Middle or Upper Zambezi station estimations outperform 678 

one another. Analyses showed that the aspects of elevation in the Zambezi Basin are not 679 

well shown in the relationship between CMORPH and gauge rainfall. Findings from this 680 

study agree with previous work by Gao and Liu (2013) and Vernimmen et al. (2012) who 681 

found weak relationship between performance of SREs and elevation. The research yet 682 

contradict previous observations (e.g. Haile et al., 2009;Katiraie-Boroujerdy et al., 683 

2013;Rientjes et al., 2013;Wu and Zhai, 2012) that found elevation dependant trends of 684 

CMORPH rainfall distribution. This shows that there is still room for further research in 685 

this area.  686 

 687 

2. The additive bias correction scheme (Distribution transformation) has the best estimation 688 

of rainfall particularly in the Upper Zambezi Basin. However each bias correction factor 689 

has its desirable outcome depending on the performance indicators used. The linear based 690 

(Spatio-temporal) bias correction scheme successfully adjusted the daily mean of 691 

CMORPH estimates at 70 % of the stations and was also more effective in reducing the 692 

rainfall bias. The spatio-temporal bias correction scheme, using gauge and or SREs bias 693 

values that vary over time over the entire Zambezi basin is more effective in reducing 694 

rainfall bias than the EZB that does not consider spatial variation.  The nonlinear bias 695 

correction schemes (Power transform and the Quantile based empirical-statistical error 696 

correction method) were more effective in reproducing the rainfall totals. 697 

 698 

3. The study assessed the percentage of days belonging to the five rainfall intensities (0-2.5, 699 

2.5-5, 5-10, 10-20 and >20 mm/day) in the Zambezi basin for each bias correction scheme. 700 

There is overestimation of the moderately heavy rainfall (10–20 mm/day) and 701 

underestimation of the moderate to heavy rainfall (>20 mm) by the five bias corrected 702 

rainfall types. Overall improved performance was experienced through the STB, PT and 703 

DT schemes.  704 

 705 

4. Detailed analysis for stations in the Zambezi valley (< 400 m amsl) and escarpment (> 1 706 

100 m amsl) indicate that bias correction of CMORPH rainfall is influenced by elevation. 707 

In addition, there is also seasonality tendencies are evident in the performance of bias 708 

correction schemes. The DT is more effective in reducing bias in the dry season than the 709 

wet season. 710 

 711 
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Table 1: Rain gauge stations in the Zambezi Basin showing station code, subbasin they belong to, years of data availability 936 

and elevation. 937 
Station Code Subbasin Zambezi 

classification 

X 

Coord 

Y 

Coord 

Start date End Date % gaps  

(missing 

records) 

Elevation 

 (m) 

Marromeu 

Mru Zambezi 

Delta 

Lower Zambezi 

36.95 -18.28 29/05/2007 31/12/2013 0.37 3 

Caia 

Ca Zambezi 

Delta 

Lower Zambezi  

35.38 -17.82 29/05/2007 

31/12/2013 

0.13 28 

Nsanje Ns Shire Lower Zambezi 35.27 -16.95 01/01/1998 31/12/2013 3.49 39 

Makhanga Mk Shire Lower Zambezi 35.15 -16.52 01/01/1998 31/12/2013 9.43 48 

Nchalo Nc Shire Lower Zambezi 34.93 -16.23 01/01/1998 31/12/2013 0.60 64 

Ngabu Ng Shire Lower Zambezi 34.95 -16.50 01/01/1998 3112/2010 0.74 89 

Chikwawa Chk Shire Lower Zambezi 34.78 -16.03 01/01/1998 31/12/2010 0.93 107 

Tete Te Tete Lower Zambezi 33.58 -16.18 29/05/2007 31/12/2013 0.17 151 

Chingodzi Chg Shire Lower Zambezi 34.63 -16.00 29/05/2007 10/01/2013 11.8 280 

Zumbo Zu Shire Lower Zambezi 30.45 -15.62 29/05/2007 12/09/2012 0.16 345 

Mushumbi Msh Kariba Middle Zambezi 30.56 -16.15 11/06/2008 11/12/2013 7.47 369 

Kanyemba Kny Tete Middle Zambezi  30.42 -15.63 01/01/1998 30/03/2013 5.86 372 

Morrumbala 
Mor Zambezi 

Delta 
Lower Zambezi 

35.58 -17.35 29/05/2007 10/01/2013 13.3 378 

Muzarabani Mz Tete Middle Zambezi 31.01 -16.39 01/01/1998 31/12/2013 1.14 430 
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Monkey Mon Shire Lower Zambezi 34.92 -14.08 01/01/1998 30/11/2010 0.00 478 

Mangochi Man Shire Lower Zambezi 35.25 -14.47 01/01/1998 31/12/2010 0.02 481 

Rukomechi Rk Kariba Middle Zambezi 29.38 -16.13 01/01/1998 31/12/2013 6.40 530 

Mutarara Mut Shire Lower Zambezi 33.00 -17.38 29/05/2007 10/01/2013 11.7 548 

Mfuwe Mf Luangwa Middle Zambezi 31.93 -13.27 01/01/1998 31/12/2010 2.70 567 

Mimosa Mim Shire Lower Zambezi 35.62 -16.07 01/01/1998 31/12/2010 3.96 616 

Balaka Bal Shire Lower Zambezi 34.97 -14.98 01/01/1998 30/04/2010 0.78 618 

Thyolo Thy Shire Lower Zambezi 35.13 -16.13 01/01/1998 31/12/2010 0.11 624 

Chileka Chil Shire Lower Zambezi 34.97 -15.67 01/01/1998 31/12/2013 0.60 744 

Neno Nen Shire Lower Zambezi 34.65 -15.40 01/01/1998 01/01/2010 9.14 903 

Mt Darwin MtD Tete Middle Zambezi 31.58 -16.78 01/01/1998 02/03/2008 5.00 962 

Chipata Chip Shire Lower Zambezi 32.58 -13.55 01/01/1998 13/08/2003 1.11 995 

Makoka Mak Shire Lower Zambezi 35.18 -15.53 01/01/1998 31/12/2010 0.00 996 

Livingstone Liv Kariba Middle Zambezi 25.82 -17.82 01/01/1998 31/12/2013 0.00 996 

Senanga Sen Barotse Upper Zambezi 23.27 -16.10 01/01/1998 31/12/2013 8.90 1001 

Petauke Pet Luangwa Middle Zambezi 31.28 -14.25 01/02/1998 31/12/2013 0.40 1006 

Msekera Msk Luangwa Middle Zambezi 32.57 -13.65 01/03/1998 31/12/2015 19.7 1028 

Kalabo 
Kal Lungue 

Bungo 
Upper Zambezi 

22.70 -14.85 01/01/1998 31/12/2011 5.20 1033 

Mongu Mong Barotse Upper Zambezi 23.15 -15.25 01/01/1998 31/12/2013 0.51 1052 

Kasungu Kas Shire Lower Zambezi 33.47 -13.02 01/01/2003 31/07/2013 0.00 1063 

Victoria Falls VF Kariba Middle Zambezi 25.85 -18.10 01/01/1998 31/12/2013 2.26 1065 

Bolero Bol Luangwa Middle Zambezi 33.78 -11.02 01/01/2003 31/05/2013 0.00 1070 

Zambezi 
Za Lungue 

Bungo 
Upper Zambezi 

23.12 -13.53 01/01/1998 31/12/2013 1.60 1075 

Kabompo Kap Kabombo Upper Zambezi 24.20 -13.60 01/01/1998 30/04/2005 0.08 1086 

Chichiri Chic Shire Lower Zambezi 35.05 -15.78 01/01/1998 31/12/2010 0.00 1136 

Chitedze Chtd Shire Lower Zambezi 33.63 -13.97 01/01/2003 30/04/2013 0.00 1150 

Lundazi Lu Luangwa Middle Zambezi 33.20 -12.28 01/01/2003 30/04/2013 1.40 1151 

Guruve Gur Tete Middle Zambezi 30.70 -16.65 01/01/1998 30/03/2013 0.02 1159 

Kaoma Kao Barotse Upper Zambezi 24.80 -14.80 01/01/1998 31/11/2013 9.89 1162 

Bvumbwe Bv Shire Lower Zambezi 35.07 -15.92 01/01/1998 01/01/2011 0.00 1172 

Kasempa Kas Kafue Middle Zambezi 25.85 -13.53 01/01/1998 31/12/2013 9.10 1185 

Kabwe Kab Luangwa Middle Zambezi 28.47 -14.45 01/01/1998 13/10/2012 1.54 1209 

Chitipa Chit Shire Lower Zambezi 33.27 -9.70 01/01/2003 06/01/2013 0.05 1288 

Mwinilunga Mwi Kabompo Upper Zambezi 24.43 -11.75 01/01/1998 31/12/2013 4.81 1319 

Karoi Kar Tete Middle Zambezi 29.62 -16.83 01/01/1998 31/12/2004 15.08 1345 

Solwezi Sol Kafue Middle Zambezi 26.38 -12.18 01/01/1998 31/12/2013 0.02 1372 

Harare 
(Belvedere) 

HB Tete Middle Zambezi 
31.02 -17.83 01/01/1998 31/03/2013 7.80 1472 

Harare(Kutsaga) HK Tete Middle Zambezi 31.13 -17.92 01/01/2004 30/09/2010 0.55 1488 

Mvurwi Mv Tete Middle Zambezi 30.85 -17.03 01/01/1998 11/12/2000 0.00 1494 

Dedza Ded Shire Lower Zambezi 34.25 -14.32 01/01/2003 31/10/2012 0.00 1575 

 938 
Table 2: Elevation zones influenced by correlation between the satellite and gauge based estimates. 939 

Elevation zone Station membership  

< 250 m 

(lowland) Marromeu, Caia, Nsanje, Makhanga, Nchalo, Ngabu, Chikwawa, Tete (Chingodzi)   

 

250- 950 m 

(medium) 

Chingodzi, Zumbo, Mushumbi, Kanyemba, Muzarabani, Monkey, Mangochi, Rukomechi, 

Mutarara, Mfuwe, Mimosa, Balaka, Thyolo, Chileka, Neno 

 

> 950 m 

(highland) 

Mt Darwin, Chipata, Makoka, Livingstone, Senanga, Petauke, Msekekera, Kalabo, Mongu, 

Kasungu, Victoria Falls, Bolero, Zambezi, Kabompo, Chichiri, Chitedze, Lundazi, Guruve, 

Kaoma, Bvumbwe, Kasempa, Kabwe, Chitipa, Mwinilungu, Karoi, Solwezi, Harare 

(Belvedere), Harare (Kutsaga), Mvurwi, Dedza, Morrumbala 

 940 

 941 
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 942 

 943 

 944 

 945 

 946 

 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 
Table 3: Frequency based statistics for the CMORPH and gauge daily estimates for the lowland and highland stations in the 968 
Zambezi Basin 969 
 970 

 Product type Mean St. dev CV max sum ratio 

Lowland 

Stations 

CMORPH 2.39 7.86 3.33 115.69 9796.81  

Gauge 2.49 9.13 3.89 139.70 10486.42 0.93 

Highland 

Stations 

CMORPH 2.33 6.94 3.12 106.77 10099.85  

Gauge 2.70 8.18 3.12 115.20 11578.93 0.87 

 971 

 972 

 973 

 974 

 975 
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 976 

 977 

 978 

 979 

 980 

 981 

 982 

 983 

 984 

 985 

 986 

 987 

 988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

 1002 
Table 4: Frequency based statistics for the gauge, uncorrected and bias corrected satellite rainfall for each of the Zambezi 1003 
basins. Bold figures shows improved performance of the bias correction scheme from the uncorrected CMORPH when 1004 
compared against the gauge based estimates 1005 

Basin B-scheme Mean Std dev Max Sum Ratio 

Lower 

Zambezi Gauge 2.62 9.17 142.77 10792.58  

 R-CMORPH 2.39 7.58 156.50 9540.65 0.88 

 PT 2.12 8.42 139.33 8883.26 0.82 

 QME 2.21 8.07 129.46 9349.42 0.87 

 EZB 1.46 5.92 112.77 8529.38 0.79 

 DT 
2.00 7.78 137.53 11683.35 1.08 

 STB 2.60 7.73 165.63 9494.89 0.88 

Middle 

Zambezi Gauge 2.47 8.33 109.81 10112.74  

 R-CMORPH 2.51 7.74 112.39 10373.64 1.03 

 PT 1.93 6.55 109.76 9186.37 0.91 

 QME 1.86 6.78 114.87 8150.50 0.99 
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 EZB 1.55 6.02 110.61 9039.03 0.89 

 DT 1.81 6.73 115.79 10555.56 1.05 

 STB 2.45 8.28 214.74 10488.24 1.04 

Upper 

Zambezi Gauge 2.55 7.82 117.24 13008.24  

 R-CMORPH 2.12 6.44 103.25 10722.09 0.82 

 PT 1.94 5.83 90.52 10284.19 0.79 

 QME 1.98 6.22 94.32 8674.54 0.67 

 EZB 1.67 5.56 96.43 9750.19 0.75 

 DT 2.49 7.72 112.81 14415.79 1.04 

 STB 2.08 6.88 175.84 10850.88 0.83 

 1006 

 1007 

 1008 

 1009 

 1010 

 1011 

 1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

 1020 

 1021 

 1022 
Table 5: Percentage of days that belong to the five rainfall intensities (0-2.5, 2.5-5, 5-10, 10-20 and >20 mm/day) for the 1023 
Zambezi Basin. Bold figures shows best CMORPH performance when compared against the gauged and uncorrected 1024 
CMORPH rainfall estimates.  1025 
 1026 

 Rainfall 

intensity  

Gauge  R_CMORPH STB PT DT EZB QME 

 0.0-2.5 85.72  83.86 85.41 85.35 87.69 89.81 88.75 

 2.5-5.0 2.87  4.71 4.30 4.20 3.08 2.80 3.09 

LZ 5.0 - 10 3.43  4.32 3.93 4.06 3.18 2.79 2.83 

 10 - 20 3.53  3.78 3.38 3.48 2.88 2.39 2.45 

 >20 4.45  3.32 2.98 2.91 3.17 2.20 2.88 

 0.0-2.5 84.91  83.67 87.38 86.38 88.55 90.24 83.74 

MZ 2.5-5.0 3.34  4.06 3.15 3.48 2.67 2.40 2.75 

 5.0 - 10 3.90  4.31 3.42 3.75 3.02 2.41 2.79 

 10 - 20 3.89  4.05 3.02 3.45 2.88 2.55 2.63 

 >20 3.96  3.92 3.03 2.95 2.89 2.40 9.00 

 0.0-2.5 84.14  82.01 83.77 83.68 83.36 80.34 84.91 

UZ 2.5-5.0 3.62  5.30 5.01 5.08 4.35 5.50 3.29 
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 5.0 - 10 4.24  5.62 5.01 5.11 4.80 5.76 3.27 

 10 - 20 4.09  4.35 3.76 3.87 4.19 5.07 2.77 

 >20 3.91  2.73 2.45 2.25 3.30 3.32 5.75 
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Table 6: Frequency based statistics for the gauge, uncorrected and bias corrected satellite rainfall for the dry and wet seasons.  1052 
 1053 

  Dry season Wet season  

Basin Bfactor Mean Std dev Max Sum Ratio Mean Std dev Max Sum Ratio 

LZ Gauge 0.46 2.78 60.9 908.60  4.89 12.60 143.2 10039.9  

 R-CMORPH 0.39 2.42 55.4 836.47 0.92 4.29 9.91 110.5 8616.7 0.86 

 PT 0.32 2.12 48.7 706.46 0.78 3.64 10.46 121.5 7563.1 0.75 

 DT 0.22 2.60 65.9 654.12 0.72 3.64 9.94 109.0 10612.2 1.06 

 QME 0.27 2.03 57.7 792.95 0.87 2.60 7.79 109.9 7564.8 0.75 

 EZB 0.27 2.05 59.1 793.63 0.87 2.65 7.92 112.4 7729.0 0.77 
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 STB 0.37 2.39 56.3 866.58 0.95 3.93 10.19 117.3 8612.7 0.86 

MZ Gauge 0.33 4.69 187.9 762.88  4.99 18.31 238.1 10681.5  

 R-CMORPH 0.19 1.84 46.2 393.98 0.52 4.73 10.18 110.7 9969.2 0.93 

 PT 0.13 1.41 38.1 319.72 0.42 3.27 7.85 163.5 7993.3 0.75 

 DT 0.31 2.52 61.6 921.73 1.21 6.52 13.47 97.4 19032.2 1.78 

 QME 0.13 1.52 45.8 370.56 0.49 2.97 8.10 108.3 8638.9 0.81 

 EZB 0.13 1.51 45.6 369.73 0.48 3.00 8.11 108.3 8740.8 0.82 

 STB 0.15 1.63 46.6 381.09 0.50 3.96 11.12 100.9 10187.7 0.95 

UZ Gauge 0.24 2.53 70.4 640.40  5.57 11.04 120.6 13240.4  

 R-CMORPH 0.22 1.98 61.1 577.44 0.90 4.56 8.75 101.4 10700.6 0.81 

 PT 0.20 1.80 54.3 513.02 0.80 3.52 7.01 112.6 9130.1 0.69 

 DT 0.08 2.12 64.8 233.24 0.36 3.48 7.83 105.0 10146.7 0.77 

 QME 0.18 1.81 58.9 524.21 0.82 3.10 7.20 97.8 9022.3 0.68 

 EZB 0.18 1.85 59.3 534.50 0.83 3.15 7.13 97.2 9199.9 0.69 

 STB 0.23 2.11 63.1 601.79 0.94 3.97 8.91 112.8 10127.4 0.76 
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Table 7. Performance of uncorrected CMORPH (R-CMORPH), and the bias corrected CMORPH’s Elevation zone bias (EZB) 1062 
for three stations in the Middle Zambezi valley (Mushumbi, Kanyemba and Zumbo) and three on the escarpment (Guruve, 1063 
Karoi and Mvurwi)  1064 

 
Mushumbi 

 

Kanyemba Zumbo Guruve Karoi Mvurwi 

 ELEVATION (m) 
369 

 

372 345 1159 1345 1494 

Bias 
R-CMORPH -0.10 -0.33 -0.17 -0.05 0.03 0.53 

EZB 0.08 -0.07 0.001 0.27 0.35 0.8 

Rbias 
R-CMORPH -5.38 -13.57 -8.35 -1.97 1.07 20.61 

EZB 0.21 4.22 10.22 13.63 25.98 4.22 

RMSE 
R-CMORPH 7.04 9.16 7.62 7.49 7.32 9.88 

EZB 7.44 9.56 8.06 7.43 7.44 9.99 

CC 
R-CMORPH 0.62 0.42 0.53 0.52 0.51 0.32 

EZB 0.55 0.36 0.50 0.49 0.47 0.28 
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