

1 River water quality changes in New Zealand over 26 years (1989 – 2014): Response to land

- 2 use and land disturbance
- 3
- 4 Jason P. Julian^{*1,5}, Kirsten M. de Beurs^{2,5}, Braden Owsley^{2,5}, Robert J. Davies-Colley³, Anne-
- 5 Gaelle E. Ausseil⁴
- ⁶ ¹Department of Geography, Texas State University, San Marcos, TX, USA
- ⁷ ²Department of Geography and Environmental Sustainability, The University of Oklahoma,
- 8 Norman, OK, USA
- 9 ³National Institute of Water and Atmospheric Research Ltd (NIWA), Hamilton, New Zealand
- ⁴Landcare Research, Palmerston North, New Zealand
- ⁵Landscape & Land Use Change Institute (LLUCI), http://tethys.dges.ou.edu/main/, USA
- 12 *Corresponding author: Jason.Julian@txstate.edu
- 13
- 14 Abstract
- 15 River water quality reflects land use in the catchment (mobilizing diffuse pollution) as well as
- 16 point source discharges. In New Zealand (NZ) diffuse pollution vastly outweighs point sources
- 17 which have largely cleaned up over many decades. Because NZ has good geospatial data on
- 18 physiographic variables, land cover and agricultural statistics, and time series on water quality at
- 19 the national scale over several decades, the country is a natural laboratory for investigating water
- 20 quality response to land use/disturbance and associated diffuse pollution 'pressures'. We
- 21 interpreted water quality state and trends for the 26 years from 1989 and 2014 in the National
- 22 Rivers Water Quality Network (NRWQN), consisting of 77 sites on 35 mostly large river
- 23 systems with an aggregate catchment amounting to half of NZ's land area. To characterize water

24	quality pressures, we used multiple land use datasets spanning 1990 - 2012, plus recently-
25	developed 8-day land-disturbance datasets using MODIS imagery. Current state and directions of
26	change in visual clarity and nitrate-nitrite-nitrogen provide a particularly valuable summary of
27	impact, respectively from mobilization of fine particulate matter and soluble nutrients. We show
28	that the greatest impact on river water quality in NZ over the 1989-2014 period is high-
29	producing pastures with their high nutrient inputs to support high densities of livestock. While
30	land disturbance was not itself a strong predictor of water quality, it did help explain outliers of
31	land use-water quality relationships, especially those with large areas of plantation forest.
32	Plantation forestry was strongly associated with water quality impacts, particularly on visual
33	clarity and particulate nutrients when land disturbed for harvesting generated sediment runoff
34	and nutrient mobilization. In all, our study demonstrates how interdisciplinary combinations of
35	expertise including geospatial analysis, land management, remote-sensing, and water quality can
20	advance understanding of broad-scale and long-term impacts of land use change on river water
36	advance understanding of broad-scale and long-term impacts of fand use change on river water
30 37	quality.
37	
37 38	quality.
37 38 39	quality. 1. Introduction
37 38 39 40	quality.1. IntroductionRiver water quality reflects all that has happened within its catchment, including
37 38 39 40 41	 quality. 1. Introduction River water quality reflects all that has happened within its catchment, including geomorphic processes, vegetation characteristics, climate, and anthropogenic land uses (Brierley,
 37 38 39 40 41 42 	 quality. 1. Introduction River water quality reflects all that has happened within its catchment, including geomorphic processes, vegetation characteristics, climate, and anthropogenic land uses (Brierley, 2010). Relationships between water quality and these catchment characteristics are not
 37 38 39 40 41 42 43 	quality. 1. Introduction River water quality reflects all that has happened within its catchment, including geomorphic processes, vegetation characteristics, climate, and anthropogenic land uses (Brierley, 2010). Relationships between water quality and these catchment characteristics are not straightforward because all of these factors interact over both space and time. For example, if
 37 38 39 40 41 42 43 44 	 quality. 1. Introduction River water quality reflects all that has happened within its catchment, including geomorphic processes, vegetation characteristics, climate, and anthropogenic land uses (Brierley, 2010). Relationships between water quality and these catchment characteristics are not straightforward because all of these factors interact over both space and time. For example, if intensive livestock grazing occurs on steep slopes, surface runoff and consequently river

groundwater. The influence of land use on water quality has also been shown to vary among different climates (Larned et al., 2004). With all of the various types of intensive land uses that have occurred across diverse landscapes over hundreds of years, rivers with degraded water quality are now widespread.

Historically, water quality in rivers was managed to meet minimal standards (Baron et al., 52 2002). However, in the last decade, a greater emphasis has been placed on maximizing the 53 54 ecosystem services provided by healthy rivers, which is driving efforts to improve water quality (Brauman et al., 2007; Davies-Colley, 2013). Early efforts in developed countries to improve 55 water quality focused on point-source pollution, particularly wastewater discharges from 56 57 factories and treatment plants (Campbell et al., 2004). While the broad-scale reduction in pointsource pollution elevated many water quality variables above minimal standards, most rivers 58 59 globally still have water quality impairments due to diffuse pollution – fine sediments, nutrients, 60 pathogens, toxicants, salts, and other contaminants that are delivered from unknown or many indistinguishable sources across the catchment (Vorosmarty et al., 2010). Agricultural land uses 61 are by far the greatest contributors of diffuse pollution, globally (Foley et al., 2005; Vitousek et 62 63 al., 1997b); however, the 'intangible' sources of diffuse pollution make it difficult to assign cause-and-effect relationships (Campbell et al. 2004). 64 Most studies that have examined relationships between land use and water quality have 65

used theoretical or numerical models because of the lack of consistent water quality data over long periods. While this practice can be useful for small catchments where much is known about its landscape, land-water relationships are complex with interdependencies, feedbacks, and legacy effects. Empirical studies can shed light on some of these complexities, but they are only useful for their particular catchments and may have limited generality or transferability.

- 71 Comparisons of many diverse catchments is probably most useful to advance understanding of
- 72 broad-scale land-water relationships.

73	One of the most comprehensive empirical riverine studies to date on land use-water
74	quality relationships has been Varanka and Luoto's (2012) study of 32 boreal rivers in Finland.
75	They analyzed five water quality variables over 10 years as a function of a suite of
76	physiographic, climate, and land use variables. A similar study was conducted on many of the
77	same rivers in Finland, but with a more sophisticated temporal analysis (Ekholm et al., 2015).
78	And several other studies have used this same river water quality dataset to investigate
79	environmental drivers. Like Finland, New Zealand (NZ) has an extensive river water quality
80	monitoring network, which has allowed many studies on river water quality state and trends
81	(Smith et al., 1996, 1997; Scarsbrook et al., 2003; Scarsbrook, 2006; Ballantine and Davies-
82	Colley, 2014) and effects of land use (Davies-Colley, 2013; Larned et al., 2004, 2016).
83	Here, we use NZ as a case study to illustrate long-term relationships among land
84	management, geomorphic processes, and river water quality. NZ provides a particularly valuable
85	case study because: (1) it has had one of the highest rates of agricultural land intensities over
86	recent decades and thus serves as a potential indicator for some developing countries that are
87	also increasing agricultural intensity; (2) it has one of the longest comprehensive national water
88	quality datasets in the world; and (3) it is physiographically-diverse. We examined monthly data
89	for a suite of water quality variables over a 26-year period for 77 very diverse catchments. We
90	then compared these states and trends of river water quality to landscape data that characterized
91	the geomorphology, soil properties, and hydro-climatology of these catchments. We also
92	assessed temporal changes in land cover/use, livestock, and land disturbance over our study
93	period and compared these to temporal changes in water quality variables. Altogether, these

- analyses illustrated coincident spatiotemporal patterns in land use and water quality in NZ rivers
- over a quarter of a century. Most of our analyses were performed at the catchment scale because
- 96 it integrates the spatiotemporal changes that are reflected in our water quality measurements, it is
- 97 the appropriate scale to analyze diffuse pollution, and it is the most appropriate spatial
- 98 management unit (Howard-Williams et al., 2010).
- 99

101 New Zealand, (Aotearoa "Land of the long white cloud" in the language of indigenous Maori people), is a small island nation (~268,000 km²) located between the South Pacific Ocean 102 103 to the east and the Tasman Sea to the west. Its two main islands (North Island and South Island) 104 are located between 34° and 47° S latitude. Being located on the active boundary between the Australian and Pacific Plates, NZ's geology and geomorphology are very diverse, including 105 106 active volcanoes, karst regions, a range of high fold mountains (the Southern Alps), large coastal plains, and rolling hills across both hard- and soft-rocks. Being stretched latitudinally, with 107 nowhere more than about 150 km from the sea, between two major ocean waters combined with 108 109 its topographic variability, NZ also has a diverse climate with regional extremes, including subtropical in the far north, temperate in the central North Island, extremely wet on the western side 110 of the Southern Alps (up to 10 m annually), and semi-arid in the rain shadow to the east of the 111 112 Southern Alps.

113 New Zealand is the last major habitable landmass to be settled by humans. Eastern 114 Polynesians first arrived around 1300 AD (Wilmshurst et al., 2008). Europeans first arrived in 115 the late-1700s, but large-scale settlement did not begin until the 1840s. Broad-scale agriculture 116 spread shortly after and has been intensifying since. While we address land use changes at the

^{100 2.} Study area

- 117 national scale in this study, our water quality analyses focus on 77 diverse catchments across NZ
- 118 (Fig. 1), which cumulatively cover about half of NZ's land area.

119

- 120 3. Methods
- 121 3.1. Water quality data

122 Water quality data was obtained from NZ's National Rivers Water Quality Network

123 (NRWQN), operated and maintained by the National Institute of Water & Atmospheric Research

124 (NIWA). This network represents one of the world's most comprehensive river water quality

125 datasets: thirteen water quality and two biomonitoring variables have been measured monthly

126 (via in situ measurements and grab samples), with supporting flow estimation, from 1989-2014

127 at 77 sites whose catchments cumulatively drain approximately half of New Zealand's land

128 surface (Davies-Colley et al., 2011). Further, this dataset has been operationally stable

throughout its history, which allows us to calculate trends over this period. For this study, we

130 focused on eleven water quality variables and their coincident flow (Table 1). We did not

analyze ammoniacal nitrogen (NH₄) because early NH₄ samples were biased high by laboratory

132 contamination (Davies-Colley et al., 2011).

All water quality variables, except water temperature (T_w) , were flow-normalized (for each site separately) in JMP® Pro (v 11.2.1) with local polynomial regression (LOESS) using a quadratic fit, a tri-cube weighting function, a smoothing window (alpha) of 0.67, and a four-pass robustness to minimize the weights of outliers (Cleveland and Devlin, 1988); where, flowadjusted value = raw value – LOESS value + median value. With LOESS, there is no assumption

- about the water quality variable's relationship with flow. For example, although visual clarity
- usually decreases systematically with increasing flow (Smith et al., 1997), algae blooms at low

- 140 flows can sometimes reduce clarity. LOESS also allowed us to examine relative water quality
- 141 changes over long periods.
- 142
- 143 3.2. Physiographic data
- 144 Water quality metrics and trends were compared to a suite of landscape variables (Table
- 145 2). Catchment morphometrics (area, slope, ruggedness) were obtained from a 30-m digital
- elevation model (DEM) that we rescaled from the 25-m DEM produced by Landcare Research.
- 147 This DEM was interpolated from 20-m contours of the national TOPOBASE digital topographic
- 148 dataset supplied by Land Information New Zealand (LINZ; scale: 1:50,000). Catchment area (A)
- 149 is the drainage area (in km²) above the NRWQN station, derived using Arc Hydro tools in
- 150 ArcGIS 9.3.1 in combination with the River Environment Classification (REC, v2.0) produced
- by NIWA. Mean catchment slope (S_c) was derived from the same software package, using a 3x3
- 152 cell window. We defined ruggedness (R_r) as the standard deviation of the 30-m slope grid for
- each catchment (sensu Grohmann et al., 2011). Drainage density (D_d) was calculated from the
- 154 ratio of the total length of REC streams over catchment area (in km/km²).
- Soils data was obtained from the 1:50,000 Fundamental Soils Layers (FSL), which is
 maintained by Landcare Research. Methods and data descriptions for this soils database are
- described in Webb and Wilson (1995) and Newsome et al. (2008). Catchment-scale soil
- variables (mean value across catchment) that we included in our analysis for being expected to
- be related to water quality were: soil depth (Z_s) , percent of catchment dominated by silty and
- 160 clayey surface soils (SC%), soil pH (pH_s), cation exchange capacity (CEC), organic matter
- 161 percentage (OM%), and phosphate retention (P_{ret}). Phosphate retention is a measure (in %) of the

- amount of phosphate that is removed from solution by the soil via sorption. Thus, soils with high
- 163 P_{ret} have low P-availability for plant growth.
- 164 Median annual precipitation (*MAP*), median annual temperature (*MAT*), and median
- annual sunshine (MAS) averaged across each catchment was obtained from NIWA's National
- 166 Climate Database, which contained 5-km gridded daily weather data (Tait and Turner, 2005).
- 167 Our values for these three variables represent the median annual precipitation (total mm/y),
- temperature (mean °C), and sunshine (hours/y) for the period 1981-2010. Relative water storage
- 169 (*RWS*) was calculated as the proportion of the annual water yield stored in lakes and reservoirs.
- 170 Reservoir/lake storage was obtained from the Freshwater Ecosystems of New Zealand (FENZ)
- 171 Database, described in Snelder (2006). The last hydro-climatological variable we included in our
- analyses was the median discharge (Q_{50}) , which was calculated from the NRWQN 'flow
- stamping' at times of water quality sampling from 1989-2014.
- 174

175 3.3 Land use and disturbance data

176 There are two national land use datasets for New Zealand. The Land-Use and Carbon

177 Analysis System (LUCAS) was developed by the NZ Ministry for the Environment (MfE, 2012)

178 for reporting and accounting of carbon fluxes and greenhouse gas emissions, as required by the

179 United Nations Framework on Climate Change and the Kyoto Protocol. Accordingly, LUCAS

uses 1990 as its reference year and maps land use for 2008 and 2012 as well for 12 classes. The

- 181 Land Cover Database (LCDB) was developed by Landcare Research (LCR), with contributions
- 182 from MfE, Department of Conservation (DOC), Ministry for Primary Industries (MPI), and
- 183 Regional Councils (LCR, 2015). LCDB contains 35 land use classes for 1996, 2001, 2008, and
- 184 2012. Both datasets use a minimum mapping area of 1 hectare, and use many of the same data

- and methods to map land use. There are however, some key differences in their class
- 186 designations and classifications that are important to our analyses: (1) LUCAS includes
- 187 Manuka/Kanuka as forest, whereas LCDB designates Manuka/Kanuka as shrub; (2) LUCAS
- 188 lumps all post-1989 forests into one class, whereas LCDB differentiates between indigenous and
- 189 plantation forests; (3) LUCAS uses a conservative approach to mapping high-producing
- 190 grasslands, whereas LCDB uses phenological information to provide more accurate estimations
- 191 of high-producing grassland. Because of our focus on (water quality-impacting) plantation

192 forests and high-producing grasslands, we use the LCDB (v4.1) for our spatial and statistical

- analyses. We use LUCAS only to quantify long-term changes from 1990 to 2012, before the
- 194 LCDB was initiated in 1996. Table 3 describes the land use classes we used in this research,
- 195 which classes are included from both datasets, and the national comparison between LUCAS and
- 196 LCDB for 2012.
- 197 Livestock numbers for dairy cattle, beef cattle, sheep, and deer (at 1 ha resolution) for

each catchment were derived from maps provided by Ausseil et al. (2013), which is

199 representative for the year 2011. To assess total livestock impact on land disturbance, we

200 multiplied each livestock type by its AgriBase stock unit (SU) coefficient: sheep = 0.95 SU, deer

= 1.9 SU, beef cattle = 5.3 SU, and dairy cattle = 6.65 SU (Woods et al., 2006). The total SU for

202 each catchment was then normalized by catchment area, expressed as stock unit density (*SUD*) in
203 SU/ha.

Changes in *SUD* from 1990 to 2012 ($SUD_{2012-1990}$) were assessed using district-level data from StatsNZ (2015) on total numbers of sheep, deer, beef cattle, and dairy cattle. These livestock numbers were then aggregated for each catchment and multiplied by their respective SU coefficient. Stock units per hectare were then compared between 1990 and 2012 to assess

208 change in livestock impacts in each catchment. For Whakatane and Kawerau Districts, 1993 was

used because 1990 data was unavailable.

210 Land disturbance (i.e. bare soil) was quantified for all high-producing grasslands (D_{HG}) and plantation forests (D_{PF}) , as well as the whole catchment (D_C) for the period 2000 - 2013. 211 The methods for calculating disturbance are described in de Beurs et al. (2016). Briefly, MODIS 212 BRDF corrected reflectance data (MCD43A4) at 463 m spatial resolution and eight day temporal 213 resolution was used to calculate Tasseled Cap brightness, greenness and wetness based on the 214 coefficients following Lobser and Cohen (2007). These indices consist of linear combinations of 215 all seven MODIS reflectance bands to represent general image brightness which is comparable to 216 217 albedo, image greenness which is comparable to the better known vegetation indices such as NDVI and EVI, and image wetness which is linked to the amount of water captured in the 218 vegetation, most comparable to normalized difference water indices. Missing pixels were 219 220 ignored. We then calculated the mean and standard deviation of each tasseled cap index for each combination of land cover class (LCR, 2015) and climatic region for each 8-day time period. We 221 then used these measures to standardize the calculated tasseled cap indices. To determine how 222 223 disturbed each pixel was at any point in time, we then calculated the forest and grassland disturbances. The forest disturbance index is calculated as the standardized brightness minus the 224 225 standardized greenness and wetness. The idea is that disturbed forests appear brighter and less 226 green and less wet than undisturbed forests. The grassland index is the negative sum of all 227 indices, indicating that disturbed grasslands appear darker, less green and less wet than undisturbed grasslands. 228

229

230 3.4 Statistical methods

We used nonparametric Spearman rank correlation coefficients (r_s) instead of actual 231 232 values to look at relationships between variables, because many of the relationships are 233 curvilinear. Statistical significance was taken to be an alpha of 0.05. Bivariate comparisons between all variables (Tables 1-3) were performed to explore for associations and identify 234 correlated variables before later multivariate analyses. Median values (from the 26-y monthly 235 time-series) for water quality variables at each site were used when compared to physiographic 236 237 and land use variables of their corresponding catchment. Stepwise regression was then used to 238 rank-order the relative contributions of multiple landscape variables associated with each major water quality variable. Stepwise regression was used because it accounts for correlations among 239 240 the independent landscape variables. The order of variables in the stepwise regression model and the sign of their coefficient (proportional [+] vs. inverse [-]) provides an objective measure of the 241 contribution of each landscape variable to river water quality. The level of entry into the model 242 243 was set to p = 0.05. All the above statistical analyses were performed in JMP® Pro (v 11.2.1). Temporal trends in water quality (1989 - 2014) and disturbance (2000 - 2013) data 244 were assessed with the seasonal Kendall test which was corrected for temporal autocorrelation 245 246 using the rkt R package; missing values were ignored. We also calculated the Seasonal Kendall slope estimators (SKSE) using the same R package. Because some NRWQN sites had multiple 247 measurements in some months, a few records (no more than five) were removed from each site 248 249 in order to ensure 12 monthly values for each year for the SKSE test. There were also occasional 250 missing values for some variables throughout the time-series, particularly in the early years. Of particular note, there were no TN values for 1994 as a result of contamination by leaking 251 252 ammonia refrigerant during storage of frozen subsamples. HV1 did not have data for 18 months from 2012-2014. 253

254	In order to make trend comparisons among sites and derive an estimate of percent change
255	per year, we normalized SKSE values by dividing them by the raw data median to give the
256	relative SKSE (RSKSE) in percent change per year (Smith et al., 1996). Given that water
257	temperature (T_w) uses an arbitrary scale in °C, we only report SKSE values for this variable. We
258	also used the trend categories of Scarsbrook (2006): (1) no significant trend – the null hypothesis
259	for the Seasonal Kendall test was not rejected ($p > 0.05$); (2) significant increase/decrease – the
260	null hypothesis for the Seasonal Kendall test was rejected ($p < 0.05$); and (3) 'meaningful'
261	increase/decrease - the trend was significant, and the magnitude of the trend (RSKSE) was
262	greater than 1% per year. According to Ballantine and Davies-Colley (2014), a 1% change per
263	year translates to slightly more than 10% change per decade (due to compounding), a rate of
264	change that is easily detectable and observable.
265	
266	4. Results

267 4.1. Physiographic characteristics

The 77 NRWQN catchments were physiographically diverse in terms of morphometric, 268 269 soil, and hydro-climatological variables (Table 4; Supplement Table 1). Most notable with regards to its direct influence on runoff and water quality was median annual precipitation 270 271 (MAP), which ranged from 533 to 7,044 mm/y. When combined with the wide range of 272 catchment areas (A), median discharge (Q_{50}) varied over three orders of magnitude, from 0.4 to 515 m³/s, and annual water yield from 103 to 3,475 mm/y. In terms of soil, about a quarter of the 273 catchments had very sandy surface soils (SC% < 10) and a quarter had fine-textured soils (SC%274 275 > 70). Phosphate retention (P_{ret}), an important variable for fertilizer management and

consequently water quality, was particularly high (>57%; 10th percentile) for catchments HM2,

277 HM5, HM6, WA1, WA2, WA3, and WN5.

278	Several physiographic variables (Table 2) displayed strong latitudinal trends from North
279	to South (r_s): MAT (-0.83), MAS (-0.61), R_r (0.58), Z_s (-0.57), and P_{ret} (-0.52). Many of the
280	physiographic variables were strongly correlated ($p < 0.001$; Supplement Fig. 1). Notable ones
281	include (r_s) : $A \vee Q_{50}$ (0.89), $S_c \vee D_d$ (-0.79), $R_r \vee S_c$ (0.67), $Q_{50} \vee R_r$ (0.57), $RWS \vee Q_{50}$ (0.55),
282	<i>RWS</i> v A (0.54), R_r v D_d (-0.52), <i>OM</i> % v Z_s (0.47), <i>MAP</i> v S_c (0.47), Z_s v S_c (-0.42), Z_s v <i>SC</i> %
283	(-0.41), $P_{ret} v pH_s$ (0.40), MAP v P_{ret} (0.39), and MAT v OM% (0.38). In consideration of these
284	relationships and perceived importance for water quality (sensu Varanka and Luoto, 2012), we
285	used the following subset of minimally correlated physiographic variables for subsequent
286	multivariate analyses: catchment slope (S_c), silt-clay percentage (SC %), phosphate retention
287	(P_{ret}) , and median flow (Q_{50}) .

288

289 4.2. Land use change and disturbance

Land use in NZ, like physiography, varied widely; and our 77 catchments captured this 290 291 diversity (Fig. 1; Supplement Table 2). Thirteen catchments were dominated (>50%) by nonplantation forests (NF), with one (WN2) containing more than 94%. Thirteen other catchments 292 were dominated by shrub/grassland (SG) that was not intensively managed. The most dominant 293 294 land use was grasslands that were intensively managed (hereafter high-producing grasslands; 295 HG), covering the majority of the area for 31 catchments. Together, these three land uses made 296 up 84% of the catchments' areas. Plantation forest (PF) was the majority land use for three 297 catchments: RO3, RO5, and RO2, all in the volcanic plateau of central North Island. Open water (OW) was the majority land use for one catchment (RO1) and relatively high (>10%) for two 298

- 299 others (RO6, DN10). Barren/other (BO), which was largely bare rock, was relatively high
- (>10%) for 13 mountainous catchments. Urban (UR) coverage rarely exceeded 1%, with only
- 301 one catchment greater than 2% (WN1). Annual cropland (AC) exceeded 1% in 11 catchments,
- 302 but never exceeded 8%. Vegetated wetland (VW) and perennial cropland (PC) were minimal in
- all catchments, each rarely exceeding 1%.
- 304 In general, non-plantation forest (*NF*), shrub/grassland (*SG*) and barren (*BO*) areas
- dominated mountainous catchments with high S_c and low Z_s ; while high-producing grasslands
- 306 (*HG*) dominated most lowland catchments with low S_c , high Z_s , and high pH_s . Like *HG*,
- plantation forest (*PF*) mostly occurred on flat areas ($r_s = -0.48$ with S_c) with thick soils (0.35)
- with Z_s) that were less acidic (0.31 with pH_s). *PF* was also significantly proportional to P_{ret} ($r_s =$
- 309 0.24). Given the relative dominance of catchment land use, relationships with physiographic
- 310 variables, and potential effects on water quality in NZ rivers (Davies-Colley, 2013; Howard-
- Williams et al., 2010), the land use variables used for subsequent multivariate analyses were NF,
- 312 *SG*, *HG*, *PF*, and *OW*.
- Land use change in the 77 catchments from 1990 to 2012 was usually minor (Supplement
- Table 2). The greatest change was a 13.4% increase in *PF* in GS1, which was almost entirely
- accounted for by a 13% decrease in SG. Thirteen other catchments experienced small increases
- (3.0 6.6%) in *PF*, accounted for by decreases in *SG* or *HG* or both. HM3 and HM4 had the
- 317 greatest increases in HG at 3.4% and 2.0%, respectively. High-producing grasslands (HG) for the
- other 75 catchments remained virtually unchanged (< 0.4%) or decreased. WH3 had the greatest
- decrease in HG at -4.8%. Land use change in other catchments was negligible. Changes in total
- stock unit density between 1990 and 2012 (SUD₂₀₁₂₋₁₉₉₀) were also minor with only two
- 321 catchments (AK1 and AK2: both -5.1 SU/ha owing to urban fringe expansion) changing more

322	than 1.6 SU/ha over this period (Supplement Table 3). Temporal changes in $SUD_{2012-1990}$ for 56
323	of the 77 catchments were within the range of -1.0 to 1.0 SU/ha.
324	Although land use and total livestock densities changed little in 1990-2012, livestock
325	types changed considerably for many catchments (Supplement Table 3). The general pattern was
326	dairy cattle replacing sheep. The number of dairy cattle from 1990 to 2012 increased in 72
327	catchments, with a mean increase of 0.6 SU/ha for all catchments; while the number of sheep
328	decreased in all 77 catchments (mean = -0.9 SU/ha). Deer and beef cattle numbers changed little:
329	0.0 and -0.2 SU/ha, respectively.
330	When 2011 livestock densities were compared with physiographic variables, the
331	strongest relationships were found with combined SUD of dairy and beef cattle (hereafter
332	SUD_{cattle} ; Supplement Fig. 2). SUD_{cattle} decreased strongly with increasing slope, S_c ($r_s = -0.79$),
333	but increased with Z_s (0.43), pH_s (0.32), and P_{ret} (0.27). SUD_{cattle} also increased with MAT
334	(0.68) and MAS (0.42) , but decreased with MAP (-0.34). Thus, highest cattle densities were
335	found in catchments such as WA3 (with the highest SUD_{cattle} at 15.7 SU/ha) that were relatively
336	flat, warm, sunny, and dry, with deep soils that had relatively high pH and high P-retention.
337	High-producing grasslands (HG) had similar, but less strong, correlations with these same
338	physiographic variables.
339	Catchment disturbance (D_C) varied widely over both space and time between 2000 and
340	2013 (Supplement Table 4). The maximum amount of D_C at one time was 35.7% for WN3 on
341	07-Apr-2003, almost entirely due to bare pastures. D_C exceeded 15% on six other occasions (264
342	days in total) in this catchment. In general, the North Island (Fig. 2) had a greater extent and
242	interview of distants when the Courth Island (E's 2). The most interview distants around a

intensity of disturbance than the South Island (Fig. 3). The most intense disturbances occurred as 343

344 a result of plantation forest harvests, and these disturbances were on average visible for about 1.5

345	y up to about 4 y, with exceptions lasting more than 6 y. Indeed, D_C was strongly correlated to
346	<i>PF</i> coverage ($r_s = 0.51$). The catchment with the highest median D_C (10.5%) was RO3, which
347	had 69.8% of its catchment in PF and 17.7% in HG. Fourteen other catchments had D_C above
348	5%, and two-thirds of these were dominated by either PF or HG.
349	We also analyzed disturbance of plantation forests (D_{PF}) and high-producing grasslands
350	(D_{HG}) separately for each catchment. For catchments with at least 21.4-km ² (100 MODIS pixels,
351	for the sake of statistical robustness) of plantation forest, the mean (\pm SD) D_{PF} (from 2000 to
352	2013) was 10.6 \pm 5.6%. The catchments with the highest D_{PF} were those with low mean annual
353	precipitation, MAP ($r_s = -0.42$). There were no significant relationships between D_{PF} and any of
354	the other physiographic variables. For catchments with at least 21.4-km ² of high-producing
355	grasslands, the mean (±SD) D_{HG} was 6.0 ± 6.4%. The catchments with the highest D_{HG} were
356	those with low mean annual sunshine (MAS; $r_s = -0.25$), low mean annual temperature (MAT; -
357	0.30), high catchment slope (S_c ; 0.25), and high ruggedness (R_r ; 0.31). The six catchments with
358	the highest D_{HG} (>15%) all had low phosphate retention (P_{ret} ; <32%). While it is assumed that
359	greater densities of livestock lead to greater pasture disturbance, we did not find a proportional
360	relationship between stock unit density (SUD) and D_{HG} across space (i.e. among catchments). In
361	fact, the highest median D_{HG} was found for catchments with low SUD ($r_s = -0.45$). Over time
362	however, we observed a fairly strong trend ($r_s = 0.50$) of lower D_{HG} with decreasing SUD (-
363	$SUD_{2012-1990}$). In all there were seven catchments with significant or meaningful decreases in
364	D_{HG} from 2000 to 2013 (assessed with Seasonal Kendall slope; SKSE), all of which had a
365	negative SUD ₂₀₁₂₋₁₉₉₀ .
266	

366

367 4.3 Water quality characteristics and trends

5

369	All water quality variables (per site) had strong relationships with flow (Q) except water
370	temperature (T_w) , which instead followed a seasonal pattern. Conductivity (COND) generally
371	decreased with Q for most sites, with exceptions being AX1, DN2, DN10, NN5, RO1, RO6, and
372	TK1. For several sites, <i>COND</i> was high for flood flows. Water pH (pH_w) decreased with Q for
373	most sites likely due to relatively acidic rainfall, with exceptions being AX3, AX4, RO5, and
374	RO6. Several sites experienced high pH_w during high flows. The typical pattern for dissolved
375	oxygen (DO) for most sites was a wide range at low flows, and high flows converging to near
376	100% DO. The exceptions were sites where DO decreased with flow (DN1, HM4, HM5, WH4)
377	and lake-fed sites where DO was high (>90%) for virtually all flows (AX2, AX4, DN4, D10,
378	RO1, RO6, TK4).
379	Visual clarity (<i>CLAR</i>) had a strong (mean r^2 of 0.53 among all sites) exponential-decay
380	trend with flow for almost all sites, as has been reported previously (Smith et al., 1997). Four
381	sites, all lake-fed, had their highest CLAR for intermediate flows (DN10, RO1, RO6, HM3). Of
382	these four, the first three had high <i>CLAR</i> (> 2m) for virtually all flows. Turbidity (<i>TURB</i>) had
383	generally the opposite trend of CLAR (as could be expected given the inverse relationship of
384	these variables), and increased near-linearly with Q (albeit with more scatter than $CLAR$).
385	Several of the lake-fed sites had relatively low TURB at high flows (AX1, AX2, DN1, DN10,
386	RO1, RO2, RO6). Colored dissolved organic matter (CDOM) generally increased with flow as
387	has been reported previously by Smith et al. (1997); the lake-fed sites of RO1, RO2, and RO6
388	were exceptions. CDOM was sometimes low during floods, likely due to a dilution effect.
389	Total nitrogen (TN) generally increased with Q , but with a high degree of scatter, for
390	almost all sites. The exceptions were AX1, AX2, AX4, DN10, RO1, RO6, and TK4, where TN

391	was low for all flows, usually less than 100 mg/m ³ . The trends of oxidized nitrogen (NO_x) with
392	flow varied widely among the sites. For many sites (26/77), NO_x increased with Q , usually with
393	a positive logarithmic trend (i.e. asymptotes at high flows) due to dilution effects at high flows.
394	A couple sites displayed a concave upward parabolic trend where NO_x concentrations were
395	lowest for intermediate flows and high for both low and high flows (CH2, DN6), which we were
396	unable to explain but is likely due to source of flow. Total phosphorous (TP) generally increased
397	with Q at 73 of the sites, reflecting mobilization of suspended matter (containing P) with Q .
398	Exceptions were the lake-fed sites of DN10, RO1, and RO6, where TP was low for all flows,
399	usually $\leq 10 \text{ mg/m}^3$. At the lake-fed site of RO2, <i>TP</i> actually decreased with <i>Q</i> . Dissolved
400	reactive phosphorus (DRP) generally increased with Q for most sites; however, there were many
401	exceptions. Twenty sites had no detectable trend with Q ($r^2 < 0.10$). DRP actually decreased with
402	Q at four sites (HM5, RO2, TU2, WA3).
403	
404	4.3.2 Catchment characteristics
405	Median monthly values of water quality variables for the 77 catchments ranged widely
400	(T-1) 5. Complement T-1) 5. Complemented and second and second and its all second subility

406 (Table 5; Supplement Table 5). Some rivers had exceptional water quality all around, while

407 others had either current issues with multiple variables or worsening temporal trends (assessed

with SKSE from 1989 to 2014; Table 6). Because of the dependence of water quality on flow, 408

409 we first assessed temporal trends in Q. Only two catchments had significant increases in Q

(AX4, WH4), with the latter also being 'meaningful.' Three catchments had significant decreases 410

411 in Q (HM3, HM5, TU2) and five others also had 'meaningful' decreases in Q (CH2, GY4, HM4,

412 RO3, RO4).

413	Water temperatures (T_w) were not particularly high for any of the catchments; however,
414	21 rivers had significant increases in T_w , possibly the signature of climate change. The highest
415	rates of T_w increase (0.04°C/y < SKSE < 0.08°C/y) were for large alpine rivers in the central
416	South Island covered mostly by shrub/grasslands (TK3, TK4, TK6, AX3). Because of its strong
417	latitudinal trend (stronger than any land use effect), T_w was not analyzed further. Dissolved
418	oxygen (DO) was close to 100% for most catchments, but was particularly low (<90%) for two
419	catchments: RO2 which was affected by discharge from a large pulp mill at Kawerau, and AK2
420	which is on the Auckland fringe and thus affected by various peri-urban activities. DO was very
421	high (>110%) for one catchment (HV2) due to supersaturation from high periphyton in this
422	nutrient-enriched river. Temporal trends in DO from 1989 to 2014 were relatively minor
423	(RSKSE < $0.5\%/y$), except RO2 which had a significant increase (RSKSE = $0.7\%/y$) attributable
424	to progressive improvements in treatment of organic waste from its large pulp mill. Conductivity
425	(COND) was low (<115 μ S/cm) for all South Island catchments and varied considerably for the
426	North Island (54-528 μ S/cm). Most catchments (52/77) experienced significant or 'meaningful'
427	increases in COND from 1989 to 2014. Water pH (pH_w) was neutral to alkaline for all rivers,
428	which have been described as calcium-sodium bicarbonate waters by Close and Davies-Colley
429	(1990), and only displayed minor changes (RSKSE < $\pm 0.1\%/y$) over the 26-year study period.
430	Median visual water clarity (CLAR) was exceptionally high (>5 m) for seven catchments
431	and very low (<1 m) for 22 catchments. Since 1989, CLAR improved in almost half of the rivers,
432	and worsened in 4 rivers (Table 6; Supplement Table 5). TURB was strongly inversely
433	proportional to <i>CLAR</i> ($r_s = -0.97$) and generally followed opposite trends of <i>CLAR</i> . However,
434	fewer of its trends were significant and it had a disproportionally large number of 'meaningful'
435	increases (17 catchments compared to only 2 'meaningful' decreases in CLAR). CDOM was low

436 for most of the rivers, with only five catchments greater than 2.0 m⁻¹. Nineteen of the catchments

437 experienced significant or 'meaningful' decreases in CDOM since 1989. Only one catchment

438 had a 'meaningful' increase in *CDOM* (TK3).

Total nitrogen (*TN*) was high (>250 mg/m³) for more than half of the catchments, with

the vast majority (30/39) of these being lowland catchments (<150 m in elevation). Most of these

441 catchments also had high NO_x . Thirty-three catchments had significant or 'meaningful' increases

442 in TN from 1989 to 2014, while only five had significant or 'meaningful' decreases in TN (Table

6). NO_x had a similar number of increasing temporal trends, but also had 'meaningful' decreases

444 for 12 catchments. Total phosphorous (TP) followed a similar geographical pattern as TN.

Eighteen of the 23 catchments with high TP (>30 mg/m³) were lowland catchments. Most of the

446 catchments with high TP (18/23) also had high DRP (>9 mg/m³). Seventeen catchments had

447 'meaningful' increases in DRP, compared to only three with 'meaningful' decreases. There was

448 more of a balance in temporal trends of *TP*, with eight 'meaningful' increases and seven

449 'meaningful' decreases.

450 In addition to the expected correlations between *CLAR* and *TURB*, and among the

451 nitrogen and phosphorous constituents, several other significant relationships existed among the

452 water quality variables (Supplement Fig. 3). *TP* was correlated with *CLAR* ($r_s = -0.77$), *TURB*

453 (0.73), *TN* (0.71), *NO_x* (0.61), *CDOM* (0.62), and *COND* (0.65). *DRP* was also correlated with

454 TN (0.71), NO_x (0.65), and CDOM (0.58). CDOM was correlated with TN (0.63). Finally, COND

455 and T_w were correlated (0.67). Taking into consideration this broad multicollinearity, we focus

456 our multivariate analyses on several key water quality variables, particularly those that

457 experienced the most changes from 1989 to 2014 (Table 6): *CLAR*, *TN*, *NO_x*, *TP*, and *DRP*.

458

459	4.4 Water Quality relationships with physiography, land use, and disturbance
460	There was a predictable relationship between catchment area (A) and Q_{50} ($r_s = 0.89$; all
461	following parentheses in this section are r_s unless specified), and <i>CLAR</i> generally decreased with
462	A (-0.37). Except for $TURB$ (0.32), no other water quality variables had significant relationships
463	with catchment area. Several water quality variables correlated with catchment slope (S_c) ,
464	including: TN (-0.72), TP (-0.63), and DRP (-0.65), meaning N and P concentrations were
465	relatively high in lowland (low slope) catchments. DRP (0.65) and TP (0.61) were directly
466	proportional to mean annual temperature (MAT), but this association probably arises because the
467	highest phosphorus values occurred mainly in lowland catchments and some of the northernmost
468	catchments, temperature being strongly correlated with altitude and latitude. DRP also had a
469	(counterintuitive) significant relationship with soil phosphate retention, P_{ret} (0.35). No other
470	strong physiographic relationships emerged from our analyses.
471	The strongest relationships between water quality and land use (Table 7) included high-
472	producing grasslands (HG), which had strong positive relationships with several water quality
473	variables except CLAR which decreased as HG increased. The lesser-managed shrub/grasslands
474	(SG) had generally opposite relationships with water quality, but note that SG did not have
475	significant relationships with TURB or CLAR. Non-plantation forest (NF) followed the same
476	trends as SG , but had fewer significant relationships with water quality. Plantation forest (PF),
477	on the other hand, followed the same trends as HG, with poorer water quality being associated
478	with greater coverage of PF; although correlations were not as strong as HG. CDOM, DRP, and
479	all N-constituents had significant negative correlations with open water (OW) , meaning that
480	water quality improved with greater OW coverage, plausibly due to entrapment of fine sediment
481	and nutrients.

482	Water quality was correlated with all stock unit density (SUD) metrics (Table 7;
483	Supplement Fig. 4), except deer (SUD_{de}) which only had relatively weak relationships with TN
484	and NO_x . The nutrients and CDOM had the strongest correlations with SUD_{cattle} , which includes
485	both dairy and beef cattle. COND, CLAR, and TURB had the strongest (slightly) correlations
486	with SUD _{be} . Overall, degraded water quality was strongly associated with high livestock
487	densities, even stronger than coverage of high-producing grasslands.
488	No significant correlations between water quality and total catchment disturbance (D_C)
489	were found; however, there were significant associations when disturbance was isolated by high-
490	producing grasslands (D_{HG}) and plantation forest (D_{PF} ; Table 7). Unexpectedly, CLAR and
491	<i>TURB</i> were not correlated to D_{HG} , and surprisingly, the rest of the water quality variables had a
492	significant <i>inverse</i> relationship with D_{HG} . Conversely, <i>CLAR</i> was the only water quality variable
493	correlated to plantation forest disturbance, D_{PF} ($r_s = -0.27$). Some interesting results emerged
494	when temporal trends in water quality (via SKSE) were assessed for catchments with high
495	disturbance. Of the 15 catchments with D_c greater than 5%, six had 'meaningful' increases in
496	TURB (RO3, HM4, RO6, WA6, HV6, HM2; all in North Island); while only one (HV5) had a
497	'meaningful' decrease in TURB. Most of these 15 catchments also experienced significant
498	increases in <i>TN</i> (9 catchments; 7/9 also 'meaningful') and NO_x (10 catchments; 8/10 also
499	'meaningful'). Interestingly, TP and DRP significantly increased in only two of these highly
500	disturbed catchments.
501	
502	4.5 Multivariate water quality relationships

In order to build on the above correlation analyses, the water quality variables of *CLAR*, *TN*, *NO_x*, *TP*, and *DRP* were each assessed in a multivariate stepwise regression, using the

505	following ten physiographic and land use independent variables: Sc, SC%, Pret, Q50, NF, SC	G.
505	Tono wing ten physiographie and fand use independent variables. Sc, Se 70, 176, 250, 111, 50	σ,

- 506 HG, PF, OW, and SUD_{cattle} (Table 8). The residual plots for all five water quality variables met
- 507 the assumptions of normality and linearity, but displayed heteroscedasticity with wide scatter for
- high values. CLAR was correlated to -HG, followed by +OW, - Q_{50} , and -PF, where signs
- 509 represent whether the relationship is positive (+) or inverse (-). Thus, water clarity was
- 510 predictably lower for larger rivers that drain larger areas of high-producing grasslands and/or
- 511 plantation forests, but improved with increased open water coverage (Fig. 4).
- 512 The combined stock unit density for beef and dairy cattle (*SUD_{cattle}*) was the primary
- 513 predictor for all four nutrient variables, with TN, TP, and DRP also being proportional to
- 514 plantation forest coverage (PF; Table 8). Coverage of high-producing grasslands (HG) and silt-
- clay surface soils (SC%) were also proportional factors for TN. In sum, land use was the primary
- and secondary predictor for all five water quality variables (Fig. 4).
- 517

518 5. Discussion

519 5.1 River water quality states and trends

520 We found a wide range of water quality across NZ rivers (Table 5), with drastic

- 521 differences between upland and lowland rivers, distinguished by the 150 m elevation threshold.
- 522 For example, visual water clarity (*CLAR*), which is often used as a 'master variable' for overall
- 523 water quality (Davies-Colley et al., 2003; Julian et al., 2008), was high for upland rivers (mean =
- 524 3.2 m), with only two [alpine glacial flour-affected] rivers below the ANZECC (2000) guideline
- of 0.6 m (CH3, AX3). Many of the upland rivers (7/33) had very high water clarity (> 5 m),
- 526 including one of the clearest non-lake-fed rivers in the world Motueka River (NN2) with a
- 527 median CLAR of 9.8 m. The lowland rivers, in contrast, had a mean CLAR of 1.2 m, with 17

528	(39%) below the ANZECC guideline of 0.8 m. Note that these ANZECC (2000) guidelines,
529	which are statistical derivations (i.e. 20th-percentile of the first decade of the NRWQN record for
530	'reference' sites), are merely 'trigger values' that when exceeded trigger a management response
531	to protect ecosystem health (Hart et al., 1999). Although these 'trigger values' are not effects-
532	based standards (which would be difficult to define for the wide variety of NZ ecosystems), they
533	do provide a useful reference for comparing water quality states and trends. Save for a few
534	borderline exceptions, the same sites that were below visual clarity guidelines also exceeded the
535	turbidity trigger values of 4.1 and 5.6 NTU for upland and lowland rivers, respectively.
536	Nutrient concentrations in NZ rivers also varied widely (Table 5), again with high
537	concentrations typically in lowland catchments and low concentrations in upland catchments.
538	Nine of the ten catchments with the highest TN (>740 mg/m ³) were lowland catchments. In all,
539	13 lowland catchments exceeded the ANZECC TN guideline of 614 mg/m ³ and 8 upland
540	catchments exceeded the guideline of 295 mg/m ³ . Almost three quarters of these catchments
541	(15/21) also exceeded the NO_x guideline of 444 mg/m ³ (lowland) and 167 mg/m ³ (upland). There
542	were a similar number of sites exceeding guidelines for TP ($33/26 \text{ mg/m}^3$ for lowland/upland)
543	and <i>DRP</i> (10/9 mg/m ³ for lowland/upland), each with at least 20 and most of these were
544	corresponding. Our results on the state and trends of the 77 NRWQN catchments generally
545	accord with earlier NRWQN studies (e.g. Ballantine and Davies-Colley, 2014) and a recent
546	publication by Larned et al. (2016), which analyzed water quality states and trends for 461 NZ
547	river sites for the period 2004-2013.
548	Based on ANZECC (2000) trigger values, we have organized the catchments into four
549	classes (Fig. 5): I. clean river with high visual water clarity (CLAR) and low dissolved inorganic

nutrients (DIN); II. sediment-impacted river with low CLAR and low DIN; III. nutrient-impacted

551	river with high CLAR and high DIN; and IV. sediment- and nutrient-impacted river with low
552	CLAR and high DIN. Note that the term 'sediment-impacted' is a connotation for total suspended
553	solids (TSS), which includes organic matter as well. In agriculture-dominated catchments, both
554	mineral sediment and particulate organic matter can greatly increase TSS (Julian et al., 2008).
555	We use CLAR as a preferred metric for suspended matter because TSS is not routinely measured
556	in the NRWQN (or other monitoring networks) while <i>CLAR</i> correlates strongly to TSS ($r = -$
557	0.92), and better than <i>TURB</i> ($r = 0.87$) (Ballantine et al., 2014). Further, <i>CDOM</i> in NZ rivers is
558	low with minimal impact on <i>CLAR</i> . We use NO_x as our preferred metric for DIN because it is
559	least affected by suspended sediment and soil properties (compared to DRP). However,
560	catchments that exceed ANZECC guidelines for DRP are indicated in Fig. 5 by grey-filled
561	markers.
562	When this classification is combined with the SKSE trend analyses (Table 6), we obtain a
563	clear picture of the current and potential state of NZ rivers (Fig. 5). Before individual rivers are
564	discussed (next section), we first point out key differences between the upland and lowland
565	catchments, which will later be placed within the context of physiography and land use. Most
566	obvious, and consistent with the findings of Larned et al. (2004), was that lowland rivers were
567	much more degraded, particularly by sediment. More than a third of the lowland catchments
568	were either Class II or IV (17/44); whereas, only two upland catchments were Class II. None of
569	the upland catchments were Class IV, and more than two-thirds were clean rivers (Class I). Both
570	types had a similar number of nutrient-impacted rivers (Class III). Another major difference is
571	that all but three of the upland catchments are far from class boundaries, meaning that they are
572	relatively stable in terms of water quality. Further, almost all of the upland catchments that have
573	had significant increases in NO_x were already nutrient-impacted. Conversely, many of the

574	lowland catchments are very close to class boundaries, with most of these having recently
575	changed classes or likely crossing over in the near future. Particularly concerning is that almost
576	half of the lowland rivers (19/44) are currently experiencing 'meaningful' increases (>1% per
577	year) in NO_x , DRP, or both. The other striking trend is that many of the lowland rivers are
578	becoming clearer, with 18/44 experiencing 'meaningful' increases (>1% per year) in $CLAR$ –
579	which, plausibly, has been attributed to increasing riparian fencing to exclude cattle from
580	channels (Davies-Colley, 2013; Ballantine and Davies-Colley, 2014; Larned et al., 2016).
581	While clearer rivers are seen as an improvement in water quality; when combined with
582	increasing nutrients, warmer water, and lower flows, the perfect recipe for toxic algae blooms is
583	created. Only recently has the widespread problem of toxic algae blooms in NZ rivers been
584	evidenced (Wood et al., 2015; McAllister et al., 2016), and our results indicate that this problem
585	could worsen given the increasing trends we found in water temperatures, DIN, and most
586	influential in our opinion, water clarity. Eutrophication and global warming receive the most
587	attention when it comes to degraded water quality, but rivers have increasingly become light-
588	limited (Hilton et al., 2006; Julian et al., 2013) such that when clarity improves in warm,
589	nutrient-rich rivers, algae can proliferate. Particularly problematic for NZ is that its lowland
590	catchments, which are warmer (mean median T_w of 13.6 v 10.8 °C for upland rivers), have much
591	greater DIN, and have longer water residence times, are the ones becoming appreciably clearer
592	(Fig. 5). If droughts become more frequent and intense in NZ, toxic algae blooms are also likely
593	to become more frequent, more widespread, and more problematic. However, this algae response
594	is complex and depends on a number of interacting factors such that the apparent potential for
595	increasing algal nuisance might not necessarily be realized in some rivers.

596

597	5.2 The role of physiography in dictating land use across NZ
598	While physiography did not emerge as a significant independent variable in the
599	multivariate analyses (except TN with SC%), physiography is important because it largely
600	controls the location and intensity of agricultural land uses. The greatest coverages of high-
601	producing grasslands (HG) and the highest densities of cattle (SUD_{cattle}), the two primary
602	explanatory variables for all five major water quality variables (Table 8), were both found
603	predominantly in flat areas with deep soils located in warm, sunny, and relatively dry climates.
604	Livestock in NZ depend almost exclusively on pasture grasses and thus their productivity is
605	maximized when pasture productivity is maximized. The very large cattle are not well suited for
606	steep slopes, particularly dairy cattle which can weigh more than 500 kg. Deep soils are
607	important because they absorb and hold more water for plant uptake, and are not as susceptible
608	to waterlogging, especially in wetter climates. Year-round and intense grazing is best supported
609	by warm and sunny climates where pasture grasses are highly productive and recover quickly
610	following intense grazing such as strip/rotational grazing which is common in NZ dairy farms.
611	Another soil property we found to be positively correlated to SUD _{cattle} was phosphate
612	retention (P_{ret}) . The highest dairy cow densities were found on Allophanic volcanic soils with
613	high P_{ret} , likely because these soils respond favorably to P-fertilizer and thus can be managed
614	more intensively. However, soils with high P_{ret} require more P-fertilizer, and thus generally have
615	higher export of <i>DRP</i> to rivers. Our finding of a significant positive correlation between these
616	two variables is consistent with this interpretation. Further, we found that high-producing
617	pastures with high P_{ret} had the lowest disturbance (D_{HG}) , indicating that these intensively
618	managed pastures recover quickly following grazing. In a more comprehensive study of land
619	disturbance across the North Island of NZ, de Beurs et al. (2016) also found that Allophanic soils

had the least disturbance among all soil orders. Where high livestock densities occur in less than 620 621 ideal conditions, land disturbance is likely. Our catchment-scale analyses limit our interpretation of specific situations, but based on our results, field observations and previous remote sensing 622 analyses, pasture disturbance in NZ will likely be highest during droughts on steep, south-facing 623 slopes with thin soils being heavily grazed by sheep. Under these conditions, grasses will be 624 grazed down to bare soil and recover very slowly. 625 626 Plantation forests (*PF*) in NZ also correlated with thick soils with relatively high P_{ret} on 627 flat areas, particularly the pumice soils of the central North Island. The porous nature of the pumice soils allows them to efficiently hold and regulate nutrients, water, and air; while being 628 629 well-draining and resistant to compaction and flooding. Under these conditions, radiata pine (the dominant PF species in NZ) grows rapidly (mean harvest cycle of 28 y) and can be harvested 630 year-round. Since 1990 however, many of the PF additions have occurred on steeper slopes in 631 632 response to carbon credit incentives, greater economic demand for wood products (PCE, 2013), and the need for soil erosion control on steep pasture susceptible to land-sliding (Parkyn et al., 633 2006). 634 635

5.3 Land use and water quality in New Zealand rivers

637 5.3.1 Land use diversity and effectiveness

Water quality in NZ rivers has been related to regional differences in climate and sourceof-flow (Larned et al., 2016); however, we focus here on the role of land use because (1) the vast majority of our catchments were large (only five less than 100 km²) and thus their surface water quality was likely dominated by catchment characteristics (Julian and Gardner, 2014); (2) the changes we observed in water quality have been linked to land use globally (Foley et al., 2005;

643	Vitousek et al., 1997a; Bennett et al., 2001; Walling, 2006); and (3) our results indicate that land
644	use was the dominant source of diffuse pollutants, and thus influence on spatial and temporal
645	patterns in river water quality across NZ. Before describing relationships, we would like to first
646	point out that the 77 NRWQN catchments captured the diversity of land use in NZ, with NF, SG,
647	and HG (the three dominant land uses of NZ) accounting for 84% of both the 77 catchments and
648	NZ as a whole. Our empirical study was also an excellent natural experiment in which to assess
649	the effects of land use on water quality because we had an assortment of dominant land uses
650	(>50% area) among our catchments (Fig. 1): 24 HG, 13 SG, 13 NF, 2 PF, and 25 mixed (i.e. no
651	single dominant land use).
652	
653	5.3.2 High-producing pastures and livestock densities
654	High-producing grassland coverage (HG) was the primary explanatory variable for visual
655	clarity (CLAR; Table 8, Fig. 4). CLAR in NZ rivers is mostly influenced by mineral and organic
656	particulates (Davies-Colley et al., 2014). Livestock reduce visual clarity in multiple ways,
657	especially in NZ where high densities of multiple types of livestock tread year-round on
658	relatively steep slopes with highly erodible soils vegetated by shallow-root introduced grasses
659	which are susceptible to destabilization (McDowell et al., 2008). The year-round treading is
660	particularly important because most NZ regions during winter are very wet with short days,
661	which increases soil disturbance (pugging and compaction) and slows recovery times. Where
662	livestock have direct access to rivers, their trampling of riverbanks and instream disturbance is
663	often the main contributor to reduced CLAR (Trimble and Mendel, 1995; McDowell et al., 2008).
664	The lowland flatter areas in NZ have high HG coverage and high cattle stock densities
665	(SUD_{cattle}) . These lowlands also have high drainage densities – often increased by artificial

666	drainage. The influence of HG on $CLAR$ is exacerbated by this interaction of high SUD_{cattle} and
667	artificial drainage, which explains the high negative correlation between HG and CLAR (-0.45).
668	Interestingly, SUD _{cattle} was not an explanatory variable for CLAR in the stepwise regression,
669	which is likely a result of two factors. First, HG and SUD _{cattle} are highly correlated, and stepwise
670	regression does not include secondary variables that are explaining the same proportion of
671	variance as the primary independent variable. Second, we found that CLAR has actually
672	<i>improved</i> in catchments where SUD_{cattle} is high and/or has increased (Fig. 5), which we attribute
673	to the promotion of riparian fencing across NZ since 2003, when the Dairying and Clean
674	Streams Accord was implemented (Bewsell et al., 2007; Howard-Williams et al., 2010). By
675	excluding (dairy) cattle from channels and riparian zones, the contribution of riverbank and bed
676	erosion to degraded CLAR has been mitigated and reduced over time. Indeed, CLAR has been
677	significantly and meaningfully improving in many of NZ's rivers (Table 6), even those with
678	increasing SUD_{cattle} , albeit from a fairly degraded condition. Of the 34 catchments with
679	significant increases in CLAR, all but 5 had increases in SUD_{cattle} from 1990 to 2012.
680	Another potential explanation for improved water clarity at numerous sites is the
681	considerable decrease in sheep density across the NZ landscape. NZ had 57.65 million sheep in
682	1990. By 2012, that number had been reduced by almost half, to 31.19 million (StatsNZ, 2015).
683	Although cattle are larger and have a greater treading impact per animal, the much greater
684	number of sheep means that stock unit density (SUD) may be broadly comparable as regards
685	environmental impact. Another difference is that sheep are generally placed on steeper, less
686	stable slopes in NZ, where headwater stream channels are located. Where there are breaks in
687	slope (even small ones), sheep create tracks of bare soil with their hooves and hillside scars with
688	their bodies (for scratching and shelter), both of which can enhance soil erosion (Evans, 1997).

Further, cattle (using their tongues) leave approximately half the grass height on the pasture after 689 690 grazing; whereas sheep (using their teeth) graze approximately 80% of grass height (down to 691 bare soil in dire conditions), leaving it exposed to erosion (Woodward, 1998). Considering all 692 these factors, sheep can have a greater impact on sediment runoff into rivers, and consequently 693 visual clarity, than suggested by their aversion to water versus cattle's attraction to water. Although not isolated in our analyses, the particulate fractions of TN and TP have likely been 694 695 affected by similar processes as CLAR and may follow the same temporal trends (Ballantine and 696 Davies-Colley, 2014).

697 While HG was also strongly correlated to river nutrient concentrations (Table 7), the 698 primary explanatory variable for all four major nutrient metrics (Table 8, Fig. 4) was the livestock density of beef and dairy cattle (SUD_{cattle}). The difference between these two 699 700 explanatory variables may seem trivial, however the distinction is important if we want to 701 understand future trends and effectiveness of water quality management strategies. As we 702 demonstrated, the area of land used for high-producing grasslands (HG) has not changed much since 1990. In fact, it has decreased or stayed virtually the same in all but two of the 77 703 704 catchments. Yet, nutrient concentrations have been increasing in many of the rivers (Table 6), which we attribute to (1) increasing numbers of cattle (mostly dairy) on both HG and SG, and (2) 705 legacy nutrients being slowly delivered to the rivers in groundwater. From 1990 to 2012, NZ 706 707 approximately doubled its number of dairy cattle, exceeding 6.4 million. (StatsNZ, 2015). This enormous addition to a country that is only 268,000 km² in area, has been accompanied by more 708 709 than 1.426 million tonnes of P-based fertilizers and 335,000 tonnes of N-based fertilizers 710 annually (1990-2012 mean; StatsNZ, 2015). Of the nutrients consumed by lactating dairy cows, approximately 79% of N and 66% of P are returned to the landscape in the form of urine and 711

- feces (Monaghan et al., 2007). This results, potentially, in about 260,000 tonnes of N-based and
 940,000 tonnes of P-based diffuse pollution. Some of these nutrients will be transported to rivers
 during subsequent storms, but a majority will remain (building up) in the landscape to be slowly
 added to rivers over decadal time-scales (Howard-Williams et al., 2010).
 5.3.3 Plantation forests
- 718 All water quality variables were significantly correlated to plantation forest coverage 719 (PF; Table 7), with a negative relationship with CLAR (i.e. CLAR was lower for higher PF) but 720 positive for all other variables (i.e. nutrients increased with PF). From the stepwise regression, 721 PF emerged as an explanatory variable for all major water quality variables except NO_x (Table 722 8), suggesting that its dominant impact on river water quality was from surface runoff. Plantation 723 forestry activities can add a considerable amount of sediment and nutrient pollution to rivers, 724 especially during and immediately following harvesting (Fahey et al., 2003; Croke and Hairsine, 2006; Davis, 2005). This harvesting period of maximum soil disturbance usually lasts about two 725 years (Fahey et al., 2003), but the land cover may remain sparsely vegetated and susceptible to 726 727 erosion for several years (but usually not more than 5 y; de Beurs et al., 2016). The greatest PF impact on sediment runoff, and thus potentially CLAR, is usually from road sidecast/runoff, 728 shallow landslides, and channel scouring/gullying (Fahey et al., 2003; Motha et al., 2003; 729 730 Fransen et al., 2001). 731 Rivers receive a pulse of nutrients during the forest harvest, but fertilizers are also 732 applied at time of re-planting and sometimes routinely to enhance growth (Davis, 2005). Radiata 733 pine in the pumice soils of the central North Island, the dominant area of PF in NZ, are particularly responsive to both N- and P-fertilizers and thus likely receive ample supplements. 734

735	Like pasture fertilizers, some of these nutrients may be delivered to rivers during intense
736	precipitation, but there is also a legacy of nutrients left behind. Fertilizers have been applied to
737	plantation forests in NZ since the 1950s, with an intense period of application in the 1970s
738	(Davis, 2005). While fertilization rates (tonnes/ha/y) have decreased since 1980, the amount of
739	NO_x leaving catchments mostly covered in <i>PF</i> has significantly and 'meaningfully' increased
740	since 1989: RO3 (69.8% PF, 3.0%/y RSKSE), RO5 (53.3% PF, 1.7%/y RSKSE), and RO2
741	(42.5% PF, 1.2%/y RSKSE). None of these catchments had more than 17.7% HG, none had
742	major increases in HG (< 0.3%), none had major increases in SUD_{cattle} (< 0.7 SU/ha), and none
743	had a significant increase in D_{PF} . What the catchments did have in common were all had
744	gravelly/sandy pumice soils (< 4.5 $SC\%$) and all were intensively managed as reported by Davis
745	(2005) and as indicated by high D_C (> 6.8%). The extended periods of nonvegetated land due to
746	weed control also increases the amount of nutrients delivered to rivers over the long term (Davis,
747	2005).
748	
749	5.3.4 Other land uses

750 Open water (OW) in the form of lakes can remove sediment, nutrients, and CDOM by a range of processes (Schallenberg et al., 2013;Wetzel, 2001). Consistent with this concept, our 751 bivariate comparisons showed that catchments with more OW had lower CDOM, TN, NO_x , and 752 753 DRP (Table 7). Our multivariate analyses found OW to be an explanatory variable for CLAR (Table 8, Fig. 4), which we attribute to several of the stations with high CLAR being located 754 downstream of large lakes (AX1, DN10, RO1, RO6). If these 4 catchments are removed, the 755 relationship between OW and CLAR is not significant. While lakes can improve downstream 756 757 water quality, many lakes in NZ, particularly shallow lakes, are experiencing eutrophication and

- other water quality issues (Larned et al., 2016; Abell et al., 2011), which can cause regime shifts
- (Schallenburg and Sorrell, 2009) and degrade downstream river water quality.
- 760 An important land use for nutrient/sediment fluxes that was missing from our analyses
- 761 was vegetated wetlands (VW), which was a consequence of exceptionally low VW coverage in
- 762 NRWQN catchments (0.1% on average and a maximum of 2.2%). With such a miniscule
- coverage, these residual wetlands do not provide a detectable water quality improvement
- function at the catchment-scale (Mitsch and Gosselink, 2000). Historically, wetlands covered
- approximately 10% of mainland NZ (Ausseil et al., 2011). This considerable loss (> 90% of pre-
- 766 European extent) of wetlands has deprived NZ rivers of many valuable ecosystem services,
- respecially the filtration/processing of sediment and nutrients (Clarkson et al., 2013; Verhoeven et
- al., 2006). If some of these wetlands could be restored, some of the alarming eutrophication
- rends we have documented here (Table 6, Fig. 5) could be mitigated. For example, Mitsch et al.
- 770 (2001) found that just adding 10% of wetland coverage can reduce up to 40% of the nitrogen
- 771 entering receiving waters.
- 772 The other important land use missing from our analyses was urban (UR), also because 773 very little of NZ's land area is urban (Table 3), accounting on average for only 0.35% of our catchment areas (maximum 5.8%). However, urban water management did have major effects on 774 three of our catchments by reducing DRP point sources. The 'meaningful' decrease of DRP 775 776 (RSKSE = -4.6%/y) in the Manawatu River below Palmerston North (WA9) was due to 777 progressive improvements in the city's wastewater treatment, particularly after 2008 when a new 778 main wastewater treatment plant (incorporating P-removal) became fully operational. DRP was 779 also 'meaningfully' reduced (RSKSE = -5.3%/y) for the Ohinemuri River below Waihi (HM6) when P-removal was added to the Waihi wastewater treatment plant in 2005. And DRP for Hutt 780

781	River at Boulcott (WN1) was 'meaningfully' reduced (RSKSE = $-3.1\%/y$) with progressive
782	improvements to the Hutt Valley wastewater treatment, which were completed in 2002. It is
783	important to note that these point discharge-affected sites were the only ones with meaningful
784	reductions in DRP.
785	
786	5.3.5 Land disturbance and water quality
787	So far, we have discussed how land use affects water quality, with a focus on sediment
788	and nutrient runoff from high-producing grasslands (HG) and plantation forests (PF) . When land
789	is disturbed (i.e. bare soil), sediment/nutrient mobilization can be enhanced. The most intense
790	and longest lasting disturbances occurred during plantation forest harvests. Following harvest,
791	we found that the land remained disturbed for 1-6 years, with a mean of 1.5 years. The overall
792	mean and median D_{PF} among all catchments was 10%, which means that plantation forestry
793	leaves large areas of disturbed land at any one time. When this bare land is exposed to intense
794	precipitation, large quantities of sediment and nutrients can be mobilized into the rivers. This
795	happened in the Motueka Catchment (NN1) in 2005 when a 50-y storm fell on some recently-
796	harvested plantation forests. For one of NN1's sub-catchments, the post-harvest disturbed land
797	caused a five-fold increase in sediment yield compared to pre-harvest events. Following this
798	event, sediment yields at NN1 were elevated by a factor of 2-3 over the next 3 years (Basher et
799	al., 2011). Similar sediment erosion events for plantation forests during the post-harvest
800	disturbance have been documented for other catchments across NZ (Hicks et al., 2000; Phillips et
801	al., 2005). Because these disturbances only last a few years, they typically do not show up as
802	temporal trends (via SKSE); however it is possible that they produce enough readily available

803 sediment to impact water quality for longer periods.

804	The coincidence of rainstorms on disturbed pasture could have the same effect on
805	sediment/nutrient runoff if the pasture is connected to the stream network via steep slopes or
806	adjacent channels/canals (Dymond et al., 2010). Pastures become disturbed from overgrazing,
807	strip grazing, pugging/soil compaction, tilling/reseeding, cropping/harvesting, or landsliding on
808	steep slopes. Given the high intensity of grazing management in NZ, all of these are common.
809	While D_{HG} was lower than D_{PF} on average, D_{HG} had a higher maximum (Table 4).
810	Spatiotemporal patterns in disturbance between these two land uses were also different (de Beurs
811	et al., 2016). D_{PF} covered large areas and lasted years at a time; whereas D_{HG} had two patterns:
812	(1) one related to dairy cattle strip grazing, which were short-lived due to quick recovery times
813	of grasses in fertilized soils; and (2) more widespread and longer continuous disturbances
814	occurring on steeper slopes grazed by sheep and beef cattle, particularly following drought
815	periods. Because our disturbance analyses had a spatial resolution of 463 m, we likely missed
816	some paddock-scale disturbances. Future work could use Landsat imagery (30-m resolution) to
817	assess disturbance (sensu de Beurs et al., 2016).
818	All six catchments with 'meaningful' increases in D_{HG} had large increases in dairy cattle
819	density 1990-2012 (mean of 1.0 SU/ha across the catchment). Not surprisingly, all six
820	catchments suffered impacts to water quality. Five of the six had 'meaningful' increases in DRP
821	and three had meaningful increases in NO_x and TN . One had a 'meaningful' increase in $TURB$
822	and three had significant reductions in DO. One of these catchments, in particular, may provide a
823	glimpse into NZ's future if agricultural intensification continues. The Waingongoro River
824	catchment (WA3) is covered almost entirely by HG (91.2%), with practically all of this land
825	being used for intensive strip grazing. The SUD_{da} was 15.0 SU/ha in 1990 and increased to 15.4
826	SU/ha by 2012. The D_{HG} from 2000-2013 had a strong increasing trend of 9.8%/y RSKSE,

827	associated with the intensification of dairy operations (Wilcock et al., 2009). The result of all this
828	intensification was that WA3 had 'meaningful' increases in TP, DRP, and TN. The only reason
829	NO_x did not display a significant trend is because the catchment was already overloaded with a
830	median river concentration of 1,852 mg/m ³ . Noteworthy is that these significant trends of
831	increasing SUD_{da} , D_{HG} , and nutrients are occurring not only in lowland catchments on the North
832	Island (WA3, HV2), but also in upland catchments of the North Island (RO6), as well as both
833	lowland (TK1) and upland (CH3, TK2) catchments on the South Island.
834	While disturbance was not itself a strong predictor of water quality, it did help explain
835	outliers of land use-water quality relationships. For example, streams with high DRP (> 20
836	mg/m ³ ; 10 th percentile) had one of two dominant land uses, either plantation forest, <i>PF</i> (RO2,
837	RO3) or high-producing grassland, HG (HM5, WA3, WA9, HM4, HM2). The one exception was
838	RO4, which had relatively low coverage of PF (11.2%) and HG (2.9%). In fact, RO4 is
839	dominated by NF (79.1%). Upon closer examination, we found that the small areas of PF and
840	HG in RO4 were disturbed frequently. Further, most of the disturbed forestry occurred on steep
841	slopes and most of the disturbed pastures (practically all sheep and beef) occurred on hilly terrain
842	adjacent to stream channels. Our high temporal-resolution analyses of disturbance showed that
843	even though this catchment is mostly indigenous forest, intense disturbances on small
844	proportions of developed land can have a considerable impact on water quality. RO4 is also
845	experiencing significant increases in TURB and TP, as well as a significant decrease in Q.
846	Another outlier example was RO3, which was the only non-HG-dominated catchment
847	with extremely high NO_x (634 mg/m ³). RO3 was dominated by <i>PF</i> (69.8%), but it had the
848	highest median disturbance (10.5%) of all catchments. As discussed previously, disturbance in
849	plantation forests is correlated with harvest frequency and management intensity. In addition to

850	the many pulses of NO_x from the forest harvests and post-harvest storms over a vegetation-
851	cleared soil surface, all of the replantings in the N-deficient pumice soils would have been
852	accompanied by routine N-fertilizer applications (Davis, 2005). And the catchment's well-
853	drained sandy/gravelly soils meant that this dissolved N was transported to streams without
854	much attenuation. This catchment also exceeds ANZECC guidelines for DRP and has
855	experienced meaningful increases in <i>TURB</i> , <i>TN</i> , and NO_x .
856	We believe that land disturbance and consequently river eutrophication and reduced
857	visual clarity will continue to worsen in some NZ catchments based on the following. More
858	plantation forests were planted 1993-1997 (3,810 km ²) than any other 5-y period in NZ history
859	(NZFFA, 2014). With a 28-y mean age of harvest, NZ will experience its greatest coverage and
860	intensity of forest disturbance around 2025, less than 10 years from now. When combined with
861	drought and intense storms, the potential for nutrient and sediment mobilization from these lands
862	into NZ's rivers is high, especially given that approximately 45% of these plantings occurred on
863	high-producing grasslands (NZFFA, 2014) where many of the legacy nutrients will be exported
864	to rivers during forest harvest (Davis, 2014). Many of these plantings also occurred on steep
865	slopes, which exacerbates sediment runoff. If carbon prices continue to stay low, there will be a
866	high likelihood that many of the harvested forests will be converted to pasture, adding even more
867	nutrients to NZ rivers (PCE, 2013). Given that the Central Government created a national policy
868	goal of nearly doubling the export to GDP ratio by the year 2025 (MBIE, 2015), NZ is likely to
869	see continued increases in livestock density, fertilizer usage, and supplemental feed to support
870	these extra livestock, all of which will add even more pressure and risks of eutrophication on
871	NZ's rivers.

872

873 Conclusions

874 This study had the overall goal of describing how changes in land use and land 875 disturbance impact river water quality across broad scales and over long periods. To address this goal we used a combination of 'brute force' statistical analyses (in terms of hundreds of analyses 876 877 using a suite of physiographic, land use, and water quality data for 77 catchments over 26 years) and careful examination (using multi-resolution data to find patterns and relationships among 878 879 these variables). This goal was ambitious and we likely missed some relationships and details of 880 water quality changes. However, we found empirical evidence for several key relationships among land use, land disturbance, and water quality, which we now place into a broader 881

882 perspective.

The greatest negative impact on river water quality in New Zealand (NZ) in recent 883 decades has been high-producing pastures that require large amounts of fertilizer to support high 884 885 densities of livestock. While this claim has been previously published (Davies-Colley, 2013; Howard-Williams et al., 2010; and references within), our results and supporting information 886 show that the relationship between high-producing pastures and water quality is complicated, 887 888 being dependent on physiography (particularly soil type), livestock type/density, and disturbance regime. Dairy cattle receive much of the blame for degraded water quality because of their high 889 nutrient requirements (Howard-Williams et al., 2010), but beef cattle can also strongly degrade 890 891 water quality due to comparable required inputs and grazing on steeper land with a higher 892 potential for runoff (McDowell et al., 2008). Further, pasture designations/boundaries are 893 becoming increasingly blurred by modern cattle management, with greater movements of dairy 894 and beef cattle among pastures, greater use of high-producing pastures for beef, over-wintering of dairy cattle on beef pastures, and cross-breeding (Morris, 2013). While riparian fencing has no 895

918

doubt improved the clarity of NZ rivers, the removal of millions of sheep from steep slopes has 896

897 also likely played a role that should be investigated further.

898 New Zealand is the global leading exporter of whole milk powder, butter, and sheep

products; and NZ's prominence in these industries is likely to continue over the next decade 899

900 (OECD/FAO, 2015). Because NZ's economy is heavily dependent on agricultural production,

the agricultural intensification that we have documented since 1990 may be expected to continue, 901

902 with greater livestock densities being supported by supplemental feed and fertilizers. Even if best

903 management practices are adopted to reduce nutrient export to rivers, there is already a half-

904 century legacy of nutrients distributed across the NZ landscape that will continue to leak to the

905 rivers. Having an extensive national network like the NRWQN to document and study these

906 water quality changes is important, but unfortunately the NRWQN is being down-sized at the

time of writing. Less than half of the 77 sites are to be retained by NIWA in a 'benchmark' 907

908 network, with 'excess' sites being transferred to regional operation or closed. Although regional

management agencies in NZ conduct much water quality monitoring (e.g. Larned et al., 2016), 909

the quality (of some) and consistency of their datasets falls short of the NRWON – which was 910

911 also longer-running than all but a very few regional sites.

In response to public concerns on water quality, New Zealand released its National Policy 912 Statement on Freshwater Management in 2011. Data and evidence-based science is now needed 913 914 to support and facilitate limit settings for water quality standards, especially for diffuse pollution 915 (Duncan, 2014). In their most recent environmental review by the Organisation for Economic 916 Co-operation and Development (2015), NZ had the highest percent increase (1990-2005) in 917 agricultural production out of 29 OECD countries, the highest percent increase in N-fertilizer use, and the 2nd highest increase in P-fertilizer use. This massive application of nutrients to the

919	NZ landscape over our study period is reflected in overall nutrient enrichment of NZ rivers (Fig.
920	5; Table 6). However due to legacy/lag effects, notably the slow delivery of nutrients to rivers
921	from land and groundwaters (Larned et al., 2016), the full impact on river water quality will not
922	be fully appreciated for another several decades (Howard-Williams et al., 2010; Vant and Smith,
923	2004).
924	
925	Author contribution
926	J. Julian designed the study and performed most of the analyses. K. de Beurs developed the
927	disturbance dataset and performed all trend analyses, both with assistance from B. Owsley. R.
928	Davies-Colley provided water quality dataset and guidance on its use. AG. Ausseil developed
929	the stock unit density dataset and provided guidance on land use analyses. J. Julian prepared the
930	manuscript with contributions from all co-authors.
931	
932	Acknowledgments
933	The impetus for this research was J.P. Julian's Fulbright Senior Scholar Fellowship,
934	which was hosted by the National Institute of Water & Atmospheric Research (NIWA) in
935	Hamilton, NZ in 2012. This work was funded by NASA LCLUC grant NNX14AB77G and NSF
936	Geography grants #1359970 and #1359948 (Co-PIs Julian and de Beurs). Andrew Tait (Climate
937	Principal Scientist at NIWA) provided climate data. Agricultural production and other data

essential to this manuscript was collected by William Wright (Landcare Research; LCR). Many 938

- other people in New Zealand provided expert advice, including Suzie Greenhalgh (LCR), Sandy 939
- Elliot (NIWA), Andrew Hughes (NIWA), Deborah Ballantine (then of NIWA), Graham 940
- 941 McBride (NIWA), Murray Hicks (NIWA), David Hamilton (University of Waikato), Les Basher

- 942 (LCR), Ian Fuller (Massey University), Roger Young (Cawthron Institute), Rien Visser
- 943 (University of Canterbury), and David Lee-Jones (USDA FAS). Support for this project was also
- 944 provided by numerous Regional Councils/Districts, including Auckland, Canterbury, Horizons,
- 945 Tasman, and Waikato.
- 946
- 947 **References**
- Abell, J. M., Özkundakci, D., Hamilton, D. P., and Miller, S. D.: Relationships between land use
- and nitrogen and phosphorus in New Zealand lakes, Marine and Freshwater Research, 62,
 162-175, 2011.
- 951 Ausseil, A. G. E., Chadderton, W. L., Gerbeaux, P., Stephens, R. T. T., and Leathwick, J. R.:
- Applying systematic conservation planning principles to palustrine and inland saline
 wetlands of New Zealand, Freshwater Biology, 56, 142-161, 2011.

954 Ausseil, A. G. E., Dymond, J. R., Kirschbaum, M. U. F., Andrew, R. M., and Parfitt, R. L.:

- 955 Assessment of multiple ecosystem services in New Zealand at the catchment scale,
- 956 Environmental Modelling & Software, 43, 37-48, 10.1016/j.envsoft.2013.01.006, 2013.
- 957 Australian and New Zealand Environment and Conservation Council (ANZECC): Australian and
- 958 New Zealand Guidelines for Fresh and Marine Water Quality, Volume 1: The Guidelines,
- 959 National Water Quality Management Strategy, Paper No. 4, Onehunga, 314 pp., 2000.
- 960 Ballantine, D. J., and Davies-Colley, R. J.: Water quality trends in New Zealand rivers: 1989–
- 961 2009, Environmental Monitoring and Assessment, 186, 1939-1950, 10.1007/s10661-013-
- 962 3508-5, 2014.

- 963 Ballantine, D. J., Hughes, A. O., and Davies-Colley, R. J.: Mutual relationships of suspended
- sediment, turbidity and visual clarity in New Zealand rivers, in: Proceedings of the
- 965 International Association of Hydrological Sciences, New Orleans, 265-271, 2014.
- 966 Baron, J. S., Poff, N. L., Angermeier, P. L., Dahm, C. N., Gleick, P. H., Hairston, N. G., Jackson,
- 967 R. B., Johnston, C. A., Richter, B. D., and Steinman, A. D.: Meeting ecological and
 968 societal needs for freshwater, Ecological Applications, 12, 1247-1260, 2002.
- 969 Basher, L. R., Hicks, D. M., Clapp, B., and Hewitt, T.: Sediment yield response to large storm
- 970 events and forest harvesting, Motueka River, New Zealand, New Zealand Journal of
- 971 Marine and Freshwater Research, 45, 333-356, 2011.
- 972 Bennett, E. M., Carpenter, S. R., and Caraco, N. F.: Human Impact on Erodable Phosphorus and
- 973 Eutrophication: A Global Perspective: Increasing accumulation of phosphorus in soil
- threatens rivers, lakes, and coastal oceans with eutrophication, BioScience, 51, 227-234,

975 10.1641/0006-3568(2001)051[0227:hioepa]2.0.co;2, 2001.

- Bewsell, D., Monaghan, R. M., and Kaine, G.: Adoption of stream fencing among dairy farmers
 in four New Zealand catchments, Environmental Management, 40, 201-209, 2007.
- 978 Brauman, K. A., Daily, G. C., Duarte, T. K., and Mooney, H. A.: The nature and value of
- 979 ecosystem services: An overview highlighting hydrologic services, in: Annual Review of
- 980 Environment and Resources, Annual Review of Environment and Resources, Annual
 981 Reviews, Palo Alto, 67-98, 2007.
- Brierley, G. P.: Landscape memory: the imprint of the past on contemporary landscape forms
 and processes, Area, 42, 76-85, 2010.
- 984 Campbell, N., D'Arcy, B., Frost, A., Novotny, V., Sansom, A.: Diffuse pollution. An
- 985 introduction to the problems and solutions, IWA publishing, London, 322 pp., 2004.

986	Clarkson, B. R., Ausseil, A. G. E., and Gerbeaux, P.: Wetland ecosystem services, in: Ecosystem
987	Services in New Zealand - Conditions and Trends, edited by: Dymond, J. R., Manaaki
988	Whenua Press, Lincoln, 192-202, 2013.
989	Cleveland, W. S., and Devlin, S .J.: Locally weighted regression: An approach to regression
990	analysis by local fitting, Journal of the American Statistical Association, 83, 596-610,
991	1988.
992	Close, M. E., and Davies-Colley, R. J.: Baseflow water chemistry in New Zealand rivers 1.
993	Characterisation, New Zealand Journal of Marine and Freshwater Research, 24, 319-341,
994	10.1080/00288330.1990.9516428, 1990.
995	Croke, J. C., and Hairsine, P. B.: Sediment delivery in managed forests: a review, Environmental
996	Reviews, 14, 59-87, 10.1139/a05-016, 2006.
997	Davies-Colley, R. J.: River water quality in New Zealand: An introduction and overview, in:
998	Ecosystem Services in New Zealand - Conditions and Trends, edited by: Dymond, J. R.,
999	Manaaki Whenua Press, Lincoln, 432-447, 2013.
1000	Davies-Colley, R. J., Vant, W. N., and Smith, D. G.: Colour and Clarity of Natural Waters:
1001	Science and Management of Optical Water Quality, Blackburn Press, Caldwell, 310 pp.,
1002	2003.
1003	Davies-Colley, R. J., Smith, D. G., Ward, R. C., Bryers, G. G., McBride, G. B., Quinn, J. M., and
1004	Scarsbrook, M. R.: Twenty years of New Zealand's National Rivers Water Quality
1005	Network: Benefits of careful design and consistent operation, Journal of the American
1006	Water Resources Association, 47, 750-771, 2011.
1007	Davies-Colley, R. J., Ballantine, D. J., Elliott, A. H., Swales, A., Hughes, A. O., and Gall, M. P.:
1008	Light attenuation – a more effective basis for the management of fine suspended

- sediment than mass concentration?, Water Science and Technology, 69, 1867-1874. doi:
- 1010 10.2166/wst.2014.096, 2014.
- 1011 Davis, M.: Nutrient losses from forestry in the Lake Taupo catchment, Environment Waikato
- 1012
 Technical Report 2005/37, Hamilton, 22, 2005.
- 1013 Davis, M.: Nitrogen leaching losses from forests in New Zealand, New Zealand Journal of
- 1014 Forestry Science, 44, 1-14, 10.1186/1179-5395-44-2, 2014.
- 1015 de Beurs, K. M., Owsley, B. C., and Julian, J. P.: Disturbance analyses of forests and grasslands
- 1016 with MODIS and Landsat in New Zealand, International Journal of Applied Earth
- 1017 Observation and Geoinformation, 45, Part A, 42-54,
- 1018 http://dx.doi.org/10.1016/j.jag.2015.10.009, 2016.
- 1019 Duncan, R.: Regulating agricultural land use to manage water quality: The challenges for science
- and policy in enforcing limits on non-point source pollution in New Zealand, Land Use
- 1021 Policy, 41, 378-387, 2014.
- 1022 Dymond, J. R., Betts, H. D., and Schierlitz, C. S.: An erosion model for evaluating regional land-
- 1023 use scenarios, Environmental Modelling & Software, 25, 289-298,
- 1024 10.1016/j.envsoft.2009.09.011, 2010.
- 1025 Ekholm, P., Rankinen, K., Rita, H., Räike, A., Sjöblom, H., Raateland, A., Vesikko, L., Cano
- 1026 Bernal, J. E., and Taskinen, A.: Phosphorus and nitrogen fluxes carried by 21 Finnish
- agricultural rivers in 1985–2006, Environmental Monitoring and Assessment, 187, 1-17,
- 1028 10.1007/s10661-015-4417-6, 2015.
- Evans, R.: Soil erosion in the UK initiated by grazing animals, Applied Geography, 17, 127-141,
 http://dx.doi.org/10.1016/S0143-6228(97)00002-7, 1997.

- 1031 Fahey, B. D., Marden, M., and Phillips, C. J.: Sediment yields from plantation forestry and
- 1032 pastoral farming, coastal Hawke's Bay, North Island, New Zealand, Journal of Hydrology
- 1033 (New Zealand), 42, 27-38, 2003.
- 1034 Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, F. S.,
- 1035 Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A.,
- 1036 Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, I. C., Ramankutty, N., and Snyder, P.
- 1037 K.: Global consequences of land use, Science, 309, 570-574, 2005.
- 1038 Forest Owners Association (FOA): New Zealand plantation forest industry: Facts and figures
- 1039 2011/2012, Ministry for Primary Industries, Wellington, 46 pp., 2012.
- 1040 Fransen, P. J. B., Phillips, C. J., and Fahey, B. D.: Forest road erosion in New Zealand:
- 1041 overview, Earth Surface Processes and Landforms, 26, 165-174, 10.1002/1096-
- 1042 9837(200102)26:2<165::AID-ESP170>3.0.CO;2-#, 2001.
- 1043 Grohmann, C. H., Smith, M. J., and Riccomini, C.: Multiscale analysis of topographic surface
- 1044 roughness in the Midland Valley, Scotland, IEEE Transactions on Geoscience and
- 1045 Remote Sensing, 49, 1200-1213, 2011.
- 1046 Hart, B. T., Maher, B., and Lawrence, I.: New generation water quality guidelines for ecosystem
- 1047 protection, Freshwater Biology, 41, 347-359, 10.1046/j.1365-2427.1999.00435.x, 1999.
- 1048 Hicks, D. M., Gomez, B., and Trustrum, N. A.: Erosion thresholds and suspended sediment
- 1049 yields, Waipaoa River Basin, New Zealand, Water Resources Research, 36, 1129-1142,
- 1050 10.1029/1999WR900340, 2000.
- Hilton, J., O'Hare, M., Bowes, M. J., and Jones, J. I.: How green is my river? A new paradigm of
 eutrophication in rivers, Science of the Total Environment, 365, 66-83, 2006.

- 1053 Howard-Williams, C., Davies-Colley, R., Rutherford, K., and Wilcock, R.: Diffuse pollution and
- 1054 freshwater degradation: New Zealand Perspectives, International Conference of the IWA
- 1055 Diffuse Pollution Specialist Group, Beaupre, Quebec, 2010.
- 1056 Julian, J. P., and Gardner, R. H.: Land cover effects on runoff patterns in eastern Piedmont
- 1057 (USA) watersheds, Hydrological Processes, 28, 1525-1538, 10.1002/hyp.9692, 2014.
- 1058 Julian, J. P., Doyle, M. W., Powers, S. M., Stanley, E. H., and Riggsbee, J. A.: Optical water
- 1059 quality in rivers, Water Resources Research, 44, W10411,
- 1060 doi:10410.11029/12007WR006457, 2008.
- 1061 Julian, J. P., Davies-Colley, R. J., Gallegos, C. L., and Tran, T. V.: Optical Water Quality of
- 1062 Inland Waters: A Landscape Perspective, Annals of the Association of American
- 1063 Geographers, 103, 309-318, 2013.
- 1064 Landcare Research (LCR): New Zealand Land Cover Database, available
- 1065 at: <u>http://www.lcdb.scinfo.org.nz/</u>, 2015.
- 1066 Larned, S. T., Scarsbrook, M. R., Snelder, T. H., Norton, N. J., and Biggs, B. J. F.: Water quality
- 1067 in low-elevation streams and rivers of New Zealand: recent state and trends in contrasting
- land-cover classes, New Zealand Journal of Marine and Freshwater Research, 38, 347366, 2004.
- 1070 Larned, S., Snelder, T., Unwin, M., and McBride, G.: Water quality in New Zealand rivers:
- 1071 current state and trends, New Zealand Journal of Marine and Freshwater Research, DOI:
- 1072 10.1080/00288330.2016.1150309, 2016.
- 1073 Lobser, S. E., and Cohen, W.B.: MODIS tasselled cap: land cover characteristicsexpressed
- through transformed MODIS data, Int. J. Remote Sens., 28,5079–5101, 2007.

1075	McAllister, T. G., Wood, S. A., and Hawes, I.: The rise of toxic benthic Phormidium
1076	proliferations: a review of their taxonomy, distribution, toxin content and factors
1077	regulating prevalence and increased severity, Harmful Algae, 55, 282-294, 2016.
1078	McDowell, R. W., Houlbrooke, D. J., Muirhead, R. W., Muller, K., Shepherd, M., and Cuttle, S.
1079	P.: Grazed Pastures and Surface Water Quality, Nova Science Publishers, New York, 238
1080	рр., 2008.
1081	Ministry of Business, Innovation & Employment (MBIE): Business Growth Agenda: 2015,
1082	available at: http://www.mbie.govt.nz/info-services/business/business-growth-
1083	agenda/pdf-and-image-library/towards-2025/mb13078-1139-bga-report-01-export-
1084	markets-09sept-v17-fa-web.PDF, 2015.
1085	Ministry for the Environment (MfE): Land-use and carbon analysis system (LUCAS): Satellite
1086	imagery interpretation guide for land-use classes (2 nd edition), Ministry for the
1087	Environment, Wellington, 73 pp., 2012.
1088	Mitsch, W. J., and Gosselink, J. G.: The value of wetlands: importance of scale and landscape
1089	setting, Ecological Economics, 35, 25-33, http://dx.doi.org/10.1016/S0921-
1090	8009(00)00165-8, 2000.
1091	Mitsch, W. J., Day, J. W., Gilliam, J. W., Groffman, P. M., Hey, D. L., Randall, G. W., and
1092	Wang, N.: Reducing Nitrogen Loading to the Gulf of Mexico from the Mississippi River
1093	Basin: Strategies to Counter a Persistent Ecological Problem: Ecotechnology-the use of
1094	natural ecosystems to solve environmental problems-should be a part of efforts to
1095	shrink the zone of hypoxia in the Gulf of Mexico, BioScience, 51, 373-388,
1096	10.1641/0006-3568(2001)051[0373:rnlttg]2.0.co;2, 2001.

- 1097 Monaghan, R. M., Hedley, M. J., Di, H. J., McDowell, R. W., Cameron, K. C., and Ledgard, S.
- 1098 F.: Nutrient management in New Zealand pastures—recent developments and future
- 1099 issues, N. Z. J. Agric. Res., 50, 181-201, 10.1080/00288230709510290, 2007.
- 1100 Morris, S. T.: Sheep and beef cattle production systems, in: Ecosystem Services in New Zealand
- Conditions and Trends, edited by: Dymond, J. R., Manaaki Whenua Press, Lincoln, 7984, 2013.
- 1103 Motha, J. A., Wallbrink, P. J., Hairsine, P. B., and Grayson, R. B.: Determining the sources of
- suspended sediment in a forested catchment in southeastern Australia, Water Resources
 Research, 39, 1056, doi:1010.1029/2001WR000794, 2003.
- 1106 Newsome, P. F. J., R.H., W., and Willoughby, E. J.: Land Resource Information System Spatial

1107 Data Layers: Data Dictionary, Palmerston North, 75, 2008.

1108New Zealand Farm Forestry Association (NZFFA): National Exotic Forest Description: as at 1

1109 April 2014, Ministry for Primary Industries, Wellington, 77 pp., 2014.

- 1110 OECD/FAO: OECD-FAO Agricultural Outlook 2015-2024, OECD/Food and Agriculture
- 1111 Organization of the United Nations Paris, 148, 2015.
- 1112 Parkyn, S. M., Davies-Colley, R. J., Scarsbrook, M. R., Halliday, N. J., Nagels, J. W., Marden,

1113 M., and Rowan, D.: Pine afforestation and stream health: a comparison of land-use in two

- soft rock catchments, East Cape, New Zealand, New Zealand Natural Sciences, 31, 113135, 2006.
- 1116 Parliamentary Commissioner for the Environment (PCE): Water quality in New Zealand: land
- 1117 use and nutrient pollution, Parliamentary Commissioner for the Environment,
- 1118 Wellington, 82 pp., available at: http://www.pce.parliament.nz/media/1275/pce-water-
- 1119 <u>quality-land-use-web-amended.pdf</u>, 2013.

Phillips C. J., Marden M., and Rowan D.: Sediment yield following plantation harvesting,
Coromandel Peninsula, North Island, New Zealand, Journal of Hydrology (NZ), 44, 29-
44, 2005.
Scarsbrook, M. R.: State and trends in the National River Water Quality Network (1989-2005),
Ministry for the Environment, ME number 778, 48 pp., available
at: http://www.mfe.govt.nz/publications/ser/water-quality-network-nov06/index.html,
2006.
Scarsbrook, M. R., McBride, C. G., McBride, G. B., and Bryers, G. G.: Effects of climate
variability on rivers: Consequences for long term water quality analysis, Journal of the
American Water Resources Association, 39, 1435-1447, 2003.
Schallenberg, M. and Sorrell, B.: Regime shifts between clear and turbid water in New Zealand
lakes: Environmental correlates and implications for management and restoration, New
Zealand Journal of Marine and Freshwater Research, 43, 701-712, DOI:
10.1080/00288330909510035, 2009.
Schallenberg, M., de Winton, M. D., Verburg, P., Kelly, D. J., Hamill, K. D., and Hamilton, D.
P.: Ecosystem services of lakes, in: Ecosystem Services in New Zealand - Conditions and
Trends, edited by: Dymond, J. R., Manaaki Whenua Press, Lincoln, 203-225, 2013.
Smith, D. G., McBride, G. B., Bryers, G. G., Wisse, J., and Mink, D. F. J.: Trends in New
Zealand's National River Water Quality Network, New Zealand Journal of Marine and
Freshwater Research, 30, 485-500, 10.1080/00288330.1996.9516737, 1996.
Smith, D. G., Davies-Colley, R. J., Knoeff, J., and Slot, G. W. J.: Optical characteristics of New
Zealand rivers in relation to flow, Journal of the American Water Resources Association,
33, 301–312, 1997.

- 1143 Snelder, T. H.: Definition of a multivariate classification of New Zealand Lakes, National
- 1144 Institute of Water & Atmospheric Research Ltd, Christchurch, 32, 2006.
- 1145 Statistics New Zealand (StatsNZ): 2012 Agricultural Census tables, available
- 1146 at: <u>http://www.stats.govt.nz/browse_for_stats/industry_sectors/agriculture-horticulture-</u>
- 1147 <u>forestry/2012-agricultural-census-tables/livestock.aspx</u>, 2015.
- 1148 Tait, A., and Turner, R.: Generating Multiyear Gridded Daily Rainfall over New Zealand,
- 1149 Journal of Applied Meteorology, 44, 1315-1323, 10.1175/JAM2279.1, 2005.
- 1150 Trimble, S. W. and Mendel, A. C.: The cow as a geomorphic agent—A critical review,
- 1151 Geomorphology, 13, 233–253, 1995.
- 1152 Vant, B., and Smith, P.: Nutrient concentrations and water ages in 11 streams flowing into
- 1153 LakeTaupo, Environment Waikato Technical Report 2002/18R, 26, 2004.
- 1154 Varanka, S., and Luoto, M.: Environmental determinants of water quality in boreal rivers based
- 1155 on partitioning methods, River Research and Applications, 28, 1034-1046,
- 1156 10.1002/rra.1502, 2012.
- 1157 Verhoeven, J. T. A., Arheimer, B., Yin, C., and Hefting, M. M.: Regional and global concerns
- 1158 over wetlands and water quality, Trends in ecology & evolution, 21, 96-103,
- 1159 http://dx.doi.org/10.1016/j.tree.2005.11.015, 2006.
- 1160 Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W.,
- 1161 Schlesinger, W. H., and Tilman, G. D.: Human alteration of the global nitrogen cycle:
- 1162 Sources and consequences, Ecological Applications, 7, 737-750, 1997a.
- Vitousek, P. M., Mooney, H. A., Lubchenco, J., and Melillo, J. M.: Human domination of Earth's
 ecosystems, Science, 277, 494, 1997b.

- 1165 Vorosmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A., Green, P.,
- 1166 Glidden, S., Bunn, S. E., Sullivan, C. A., Liermann, C. R., and Davies, P. M.: Global
- threats to human water security and river biodiversity, Nature, 467, 555-561, 2010.
- 1168 Walling, D. E.: Human impact on land-ocean sediment transfer by the world's rivers,
- 1169 Geomorphology, 79, 192-216, 2006.
- 1170 Webb, T. W., and Wilson, A. D.: A Manual of Land Characteristics for Evaluation of Rural land,
- 1171 Landcare Research New Zealand Ltd, Lincoln, 1995.
- 1172 Wetzel, R. G.: Limnology: Lake and River Ecosystems, Academic Press, San Diego, 1006 pp.,
- **1173** 2001.
- 1174 Wilcock, R. J., Betteridge, K., Shearman, D., Fowles, C. R., Scarsbrook, M. R., Thorrold, B. S.,
- and Costall, D.: Riparian protection and on-farm best management practices for
- restoration of a lowland stream in an intensive dairy farming catchment: A case study,
- 1177 New Zealand Journal of Marine and Freshwater Research, 43, 803-818,
- doi:10.1080/00288330909510042, 2009.
- 1179 Wilmshurst, J. M., Anderson, A. J., Higham, T. F. G., Worthy, T. H.: Dating the late prehistoric
- dispersal of Polynesians to New Zealand using the commensal Pacific rat, Proceedings of
 the National Academy of Sciences, 105, 7676-7680, 2008.
- 1182 Wood, S., Hawes, I., McBride, G., Truman, P., and Dietrich, D.: Advice to inform the
- development of a benthic cyanobacteria attribute, Cawthron Institute, Report No. 2752,
- 1184 Nelson, 91, 2015.
- 1185 Woods, R., Bidwell, V., Clothier, B., Green, S., Elliott, S., Shankar, U., Harris, S., Hewitt, A.,
- 1186 Gibb, R., Parfitt, R., and Wheeler, D.: The CLUES Project: Predicting the effects of land-

1187	use on water quality - Stage II, National Institute of Water & Atmospheric Research,
1188	Christchurch, 2006.
1189	Woodward, S. J. R.: Bite mechanics of cattle and sheep grazing grass-dominant swards, Applied
1190	Animal Behaviour Science, 56, 203-222, 1998.
1191	
1192	
1193	
1194	
1195	

Hydrology and Earth System Sciences Discussions

1196 Tables

1197

- 1198 Table 1. Water quality variables measured by the National River Water Quality Network
- (NRWQN) obtained from monthly samples from 1989 to 2014 for 77 catchments.

Variable	Definition (units)
Q	Water discharge (m^3/s)
T_w	Water temperature (°C)
DO	Dissolved oxygen (%)
COND	Water conductivity (μ S/cm)
pH_W	Water pH $(-log_{10}[H^+])$
CLAR	Horizontal visual water clarity from black disc sighting range (m)
TURB	Water turbidity (NTU)
CDOM	Colored dissolved organic matter, measured as spectrophotometric absorbance of a membrane filtrate at 440 nm (m ⁻¹)
TN	Total nitrogen (mg/m ³)
NO_x	Oxidized nitrogen in nitrate and nitrite forms (mg/m^3)
ТР	Total phosphorus (mg/m ³)
DRP	Dissolved reactive phosphorus (mg/m ³)

1202 ′	able 2. Landscape variables characterizing the 77 catchments of the National River	Water

- 1202 Table 2. Landscape variables characterizing the 77 catchinents of the National River water1203 Quality Network (NRWQN). More details on sources for these data can be found in Methods
- 1204 section.

_

Variable	Definition (units)	Source (resolution/scale)	
Morphometric variables			
Area (A)	Total catchment area above monitoring site (km ²)	National Elevation Dataset (30 m)	
Drainage density (D_d)	Total length of streams per catchment area (km/km ²)	River Environment Classification, v2 (1:24,000)	
Catchment slope (S_c)	Mean slope across entire catchment (degrees)	National Elevation Dataset (30 m)	
Ruggedness (R_r)	Standard deviation of catchment slope (degrees)	National Elevation Dataset (30 m)	
Soil variables			
Silt-clay percentage (SC%)	Percentage of catchment surface soils dominated by clayey or silty soils (%)	Fundamental Soil Layers (1:63,360)	
Soil depth (Z_s)	Mean maximum potential rooting depth across catchment (m)	Fundamental Soil Layers (1:63,360)	
Soil pH (pH_S)	Mean pH at 0.2-0.6 m depth across catchment $(-\log_{10}[H^+])$	Fundamental Soil Layers (1:63,360)	
Cation exchange	Weighted mean CEC at 0-0.6 m	Fundamental Soil Layers	
capacity (CEC)	depth across catchment (cmoles [+]/kg)	(1:63,360)	
Organic matter percentage (<i>OM%</i>)	Weighted mean of total carbon at 0-0.2 m depth across catchment (%)	Fundamental Soil Layers (1:63,360)	
Phosphate retention (P_{ret})	Weighted mean of phosphate retention at 0-0.2 m depth across catchment (%)	Fundamental Soil Layers (1:63,360)	
Hydro-climatological variables			
Median annual precipitation (<i>MAP</i>)	Median annual precipitation averaged across catchment (mm/y)	NIWA National Climate Database (5 km)	
Median annual temperature (<i>MAT</i>) Median annual sunshine (<i>MAS</i>)	Median annual temperature averaged across catchment (°C) Median annual sunshine hours averaged across catchment	NIWA National Climate Database (5 km) NIWA National Climate Database (5 km)	

 $\begin{array}{ll} \text{(hours/y)}\\ \text{Median discharge}\\ (Q_{50}) & \text{Median discharge from}\\ \text{NRWQN samples during 1989-}\\ 2014 \ (\text{m}^3/\text{s}) \end{array}$

NRWQN (catchment)

Relative water storage (<i>RWS</i>)	Proportion of annual Q_{50} stored in reservoirs/lakes (m ³ /m ³)	Freshwater Environments New Zealand (1:50,000)
Land Use and Land Distu	irbance variables	
Land use	Percent of catchment that is occupied by each land use (%); see Table 3 for land uses	Land Cover Database (LCDB, v 4.1), 2001 (1 ha)
High-producing pasture disturbance (<i>D_{HG}</i>)	Percent of high-producing grasslands within catchment that is disturbed (%), based on aggregate of 463-m pixels within catchment	de Beurs et al., 2016 (463 m; 8-day)
Plantation forestry disturbance (<i>D_{PF}</i>)	Percent of plantation forestry within catchment that is disturbed (%), based on aggregate of 463-m pixels within catchment	de Beurs et al., 2016 (463 m; 8-day)
Catchment disturbance (D_C)	Percent of catchment that is disturbed (%), based on aggregate of 463-m pixels within catchment	de Beurs et al., 2016 (463 m; 8-day)
Stock unit density (SUD)	Catchment-averaged stock unit density for dairy ($_{da}$), beef ($_{be}$), deer ($_{de}$), and sheep ($_{sh}$) in 2011 (SU/ha); subscripts are used to isolate SUD by livestock type	Ausseil et al., 2013 (1 ha)
Change in stock unit density (<i>SUD</i> ₂₀₁₂₋₁₉₉₀)	Difference between SUD in 2012 and 1990 (SU/ha)	Statistics NZ (territorial authority)

1223	Table 3. Land use classification used in this study, aggregated from the LUCAS (v11) and
1224	LCDB (v4.1) land use/cover datasets.

Class (abbreviation)	Description	LUCAS classes	LCDB classes	2012 national coverage (%) LUCAS / LCDB
Non-plantation forest (NF)	All non-plantation forests \geq 5m; does not include Manuka/Kanuka	71	68, 69	29.2 / 23.9
Plantation forest (PF)	All forests that are planted for the purpose of harvesting	72,73	64, 71	7.9 / 7.6
Shrub/Grassland (SG)	All shrubs < 5m and grasses that are not intensively managed	74, 76	41-44, 50-58	33.0 / 25.4
High-producing grassland (HG)	High-quality pasture grasses that are intensively managed	75	40	21.6/33.0
Perennial cropland (PC)	Orchards and vineyards	77	33	0.4 / 0.4
Annual cropland (AC)	All annual crops and cultivated bare ground	78	30	1.4 / 1.4
Open water (OW)	Rivers, lakes/reservoirs, ponds, and estuaries	79	20-22	1.9 / 2.0
Vegetated wetland (VW)	Herbaceous or woody vegetation periodically flooded; includes mangroves	80	45-47, 70	0.5 / 0.7
Urban (UR)	Built-up areas, infrastructure, transportation networks, and urban parks/open spaces	81	1-5	0.8 / 0.9
Barren/Other (BO)	Bare rock, sand, gravel and other areas not dominated by vegetation; includes mining and permanent ice/snow	82	6-16	3.3 / 4.8

Table 4. Statistical description of landscape variables for the 77 NRWQN catchments. Refer toTables 2 and 3 for variable descriptions.

Variable	Units	Minimum	Median	Maximum	Mean ± SD
			Morphometric	Variables	
Area (A)	km ²	26	1126	20539	2639 ± 3714
Drainage density	KIII	20	1120	20337	2007 2071
(D_d)	km/km ²	1.30	1.59	2.61	1.60 ± 0.16
Catchment slope					
(S_c)	degrees	3.4	15.9	30.3	16.3 ± 6.8
Ruggedness (R_r)	degrees	3.4	10.8	15.8	10.6 ± 2.4
	0		Soil Varia	ablac	
Silt-clay			5011 v al 1	ables	
percentage					
SC%)	%	0	47.3	98.7	44.0 ± 31.6
Soil depth (Z_s)	m	0.55	0.96	1.50	1.02 ± 0.22
-					
Soil pH (<i>pH</i>)	$-\log_{10}[H^+]$	4.8	5.6	6.5	5.6 ± 0.3
Cation exchange capacity (CEC)	cmoles [+]/kg	11.6	18.7	33.5	18.8 ± 4.6
Organic matter	emotes [+]/kg	11.0	10./	55.5	10.0 ± 4.0
bercentage					
OM%)	%	2.8	6.7	23.2	7.2 ± 2.9
Phosphate	70	2.0	0.7	23.2	7.2 ± 2.7
retention (P_{ret})	%	19.9	39.0	77.8	41.5 ± 12.2
Median annual		п	ydro-climatologi	ical variables	
precipitation					
(MAP)	mm/y	533	1652	7044	1778 ± 873
Median annual	IIIII/ y	555	1052	7044	1770 ± 075
emperature					
(MAT)	°C	5.0	9.9	15.1	9.9 ± 2.4
Median annual	e	5.0		1.5.1	<i>).)</i> <u>-</u> 2. 1
sunshine (MAS)	hours/y	1325	1856	2116	1841 ± 146
Median		1020	1000		1011 = 140
lischarge (Q_{50})	m ³ /s	0.4	26.0	515.0	69.6 ± 112.6
Relative water					
storage (RWS)	m ³ /m ³	0	0	29.2	1.1 ± 3.7
			Land Use V	ariables	
Non-plantation	64	0.1	20.5	04.1	067 000
orest (NF)	%	0.1	20.5	94.1	26.7 ± 23.3
Plantation forest	0/	0	2.2	60.9	0.0 . 10.2
(PF) Shrub/Grassland	%	0	3.3	69.8	8.2 ± 12.3
(SG)	%	0.4	21.7	82.3	26.6 ± 20.2
High-producing	70	0.4	21.1	02.3	20.0 ± 20.2
grassland (HG)	%	0	21.6	91.2	30.9 ± 26.2
Perennial	/0	U	21.0	/1.2	50.7 ± 20.2
cropland (PC)	%	0	0	1.3	0.1 ± 0.2
	70	0	5	1.0	0.1 = 0.2
Annual cropland	%	0	0.1	7.9	0.6 ± 1.4
	%	0	0.1	7.9	0.6 ± 1.4

Vegetated					
wetland (VW)	%	0	0.1	2.2	0.3 ± 0.4
Urban (<i>UR</i>) Barren/Other	%	0	0.1	5.8	0.4 ± 0.7
(BO)	%	0	1.3	30.0	4.4 ± 6.5
			Land Disturband	e Variables	
Catchment					
disturbance (D_C)	%	0	3.4	10.5	3.6 ± 2.1
HG disturbance					
(D_{HG})	%	0	4.4	34.9	6.0 ± 6.4
PF disturbance					
(D_{PF})	%	0	9.9	27.8	10.4 ± 6.7
Stock unit					
density (SUD)	SU/ha	0	2.2	16.1	3.2 ± 3.1
Dairy SUD					
(SUD_{da})	SU/ha	0	0.2	15.4	1.2 ± 2.4
Beef SUD					
(SUD_{be})	SU/ha	0	0.5	3.5	0.7 ± 0.8
Sheep SUD					
(SUD_{sh})	SU/ha	0	0.6	4.5	1.2 ± 1.3
Deer SUD					
(SUD_{de})	SU/ha	0	0	0.2	0 ± 0

1229

1230

1232	Table 5. Statistical description of medians of water quality variables for the 77 NRWQN
1233	catchments. Note that the ratio of mean/median can be used as an index of data skewness.

Variable	Units	Minimum	Median	Maximum	Mean ± SD
T_w	°C	7.2	12.2	16.9	12.4 ± 2.4
DO	%	75.5	100.8	113.1	100.0 ± 4.7
COND	µS/cm	39	92	528	113 ± 83
pH_W	$-\log_{10}[H^+]$	6.9	7.7	8.5	7.7 ± 0.3
CLAR	m	0.1	1.5	9.8	2.1 ± 1.8
TURB	NTU	0.3	2.1	82	4.2 ± 9.4
CDOM	m ⁻¹	0.1	0.7	4.6	0.9 ± 0.8
TN	mg/m ³	40	259	2162	369 ± 361
NO_x	mg/m ³	1	107	1852	230 ± 302
TP	mg/m ³	3	15	115	24 ± 24
DRP	mg/m ³	0.5	5.0	66.2	8.6 ± 11.2

Table 6. River water quality trends from 1989-2014. The table reports numbers of sites (out of 77) in different categories of water quality time trend. All variables were flow-adjusted except flow and water temperature. Significant trends were taken to be those with a p-value < 0.05 in the Seasonal Kendall test. Meaningful trends were taken to be those which also had a magnitude (RSKSE) greater than 1% per year.

Direction	River Water Quality Variable (1989-2014)											
of trend	Q	Tw	DO	COND	pНw	CLAR	TURB	CDOM	ТР	DRP	ΤN	NOx
Meaningful	1	0	0	4	0	29	17	1	8	17	27	24
Increase												
Significant	1	21	6	48	12	5	1	1	6	3	6	3
Increase												
No	67	54	42	19	48	39	50	56	52	49	39	37
Significant												
Trend												
Significant	3	2	29	6	17	2	0	13	4	5	3	1
Decrease												
Meaningful	5	0	0	0	0	2	9	6	7	3	2	12
Decrease												

Table 7. Correlations of water quality (median values) vs. the major land uses, livestock densities, and median catchment disturbance of the 77 NRWQN catchments. All values represent Spearman correlation coefficients (r_s). Nonsignificant relationships ($p \ge 0.05$) are denoted by *NS*. T_w was not included because of its strong latitudinal trend. *DO* and pH_w were not included because they had no significant relationships with land use. SUD_{cattle} is the combination of dairy and beef cattle.

	HG	SG	NF	PF	OW	SUD _{da}	SUD _{be}	SUD _{cattle}	SUD _{sh}	SUD _{de}	D_{C}	D_{HG}	D_{PF}
COND	0.57	-0.53	NS	0.53	NS	0.44	0.63	0.60	0.35	NS	NS	-0.25	NS
CLAR	-0.45	NS	0.28	-0.31	NS	-0.41	-0.49	-0.49	-0.40	NS	NS	NS	-0.27
TURB	0.46	NS	-0.27	0.28	NS	0.38	0.50	0.48	0.40	NS	NS	NS	NS
CDOM	0.56	-0.55	NS	0.24	-0.29	0.48	0.53	0.57	0.24	NS	NS	-0.33	NS
TN	0.82	-0.56	-0.37	0.46	-0.25	0.79	0.75	0.85	0.60	0.26	NS	-0.40	NS
NO_x	0.70	-0.53	-0.25	0.44	-0.25	0.77	0.65	0.79	0.51	0.28	NS	-0.39	NS
TP	0.66	-0.54	-0.32	0.48	NS	0.58	0.66	0.72	0.42	NS	NS	-0.24	NS
DRP	0.59	-0.65	NS	0.50	-0.43	0.58	0.58	0.66	0.31	NS	NS	-0.32	NS

Table 8. Stepwise regressions of water quality variables (median values) on landscape descriptors (forward selection, p < 0.05). Signs of coefficients indicate whether the relationship is proportional (+) or inverse (-). Int is model intercept.

Water Quality Variable	Step	Landscape Variable	Model Estimate	Multivariate sequential r ²
CLAR	1	HG	-0.03	0.17
	2	OW	0.18	0.27
	3	Q_{50}	-0.01	0.35
	4	PF	-0.03	0.39
	Int		3.16	
TN	1	SUD_{cattle}	77.05	0.62
	2	HG	4.26	0.68
	3	PF	5.16	0.69
	4	SC%	1.80	0.72
	Int		-33.95	
NO _x	1	SUD _{cattle}	86.15	0.58
	Int		62.65	
TP	1	SUD _{cattle}	5.47	0.41
	2	PF	0.64	0.52
	Int		7.75	
DRP	1	SUD_{cattle}	2.23	0.31
	2	PF	0.38	0.48
	Int		1.14	

Figures

Figure 1. Land use and location of the 77 National River Water Quality Network (NRWQN) catchments. Catchment ID colors refer to dominant land use (>50%). Catchments with no dominant land use are black.

Figure 2. Disturbance frequency of North Island per 463-m pixel, based on interpretation of MODIS data 2000-2013.

Figure 3. Disturbance frequency of South Island per 463-m pixel, based on interpretation of MODIS data 2000-2013.

Figure 4. Multivariate relationships between major water quality variables (median value for each site) and land use variables. For each plot, the primary explanatory variable from the stepwise regression (Table 8) is the x-axis, with bubble color representing the secondary explanatory variable. Note that oxidized nitrogen (NO_x) did not have a secondary explanatory variable. Selected catchments discussed in the text are labeled.

Figure 5. River water quality classes for upland (A) and lowland (B) catchments in New Zealand: I. clean river with high visual water clarity (CLAR) and low dissolved inorganic nutrients (DIN); II. sediment-impacted river with low CLAR and low DIN; III. nutrient-impacted river with high CLAR and high DIN; and IV. sediment- and nutrient-impacted river with low CLAR and high DIN. Classes are organized by ANZECC (2000) trigger values. DIN trigger values can be discriminated for NO_x (y-axis) and DRP (grey-filled markers). Arrows indicate whether the trend from 1989-2014 was significant (dashed) or meaningful (solid). No arrow means the trend was not significant.

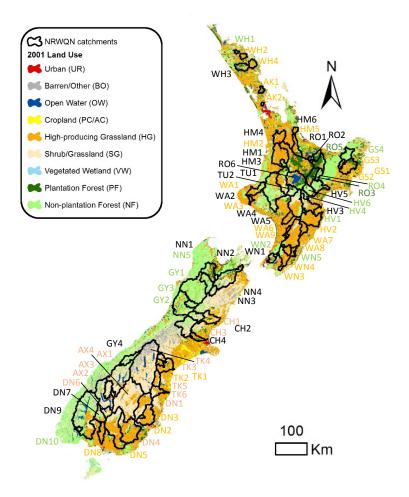


Figure 1. Land use and location of the 77 National River Water Quality Network (NRWQN) catchments. Catchment ID colors refer to dominant land use (>50%). Catchments with no dominant land use are black.

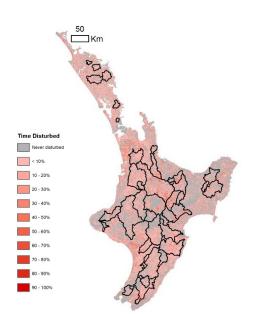
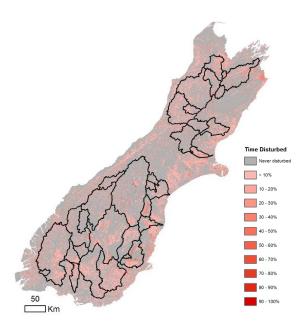
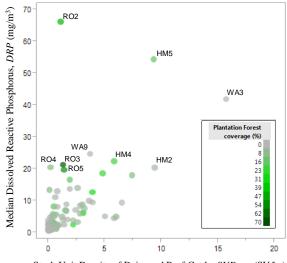
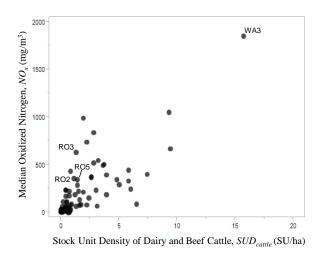
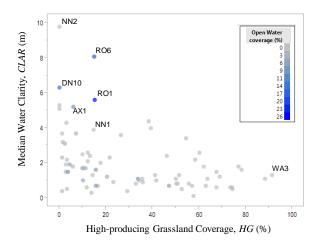
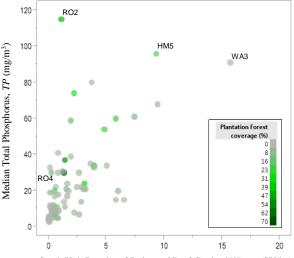


Figure 2. Disturbance frequency of North Island per 463-m pixel, based on MODIS data 2000-2013.


Figure 3. Disturbance frequency of South Island per 463-m pixel, based on MODIS data 2000-2013.





Stock Unit Density of Dairy and Beef Cattle, SUD_{cattle} (SU/ha)

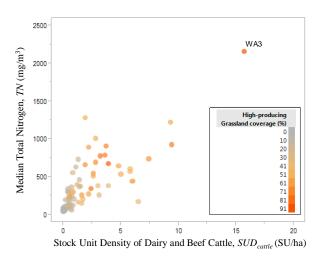


Figure 4. Multivariate relationships between major water quality variables (median value for each site) and land use variables. For each plot, the primary explanatory variable from the stepwise regression (Table 8) is the x-axis, with bubble color representing the secondary explanatory variable. Note that oxidized nitrogen (NO_x) did not have a secondary explanatory variable. Selected catchments discussed in the text are labeled. Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-323, 2016 Manuscript under review for journal Hydrol. Earth Syst. Sci. Published: 21 July 2016

© Author(s) 2016. CC-BY 3.0 License.

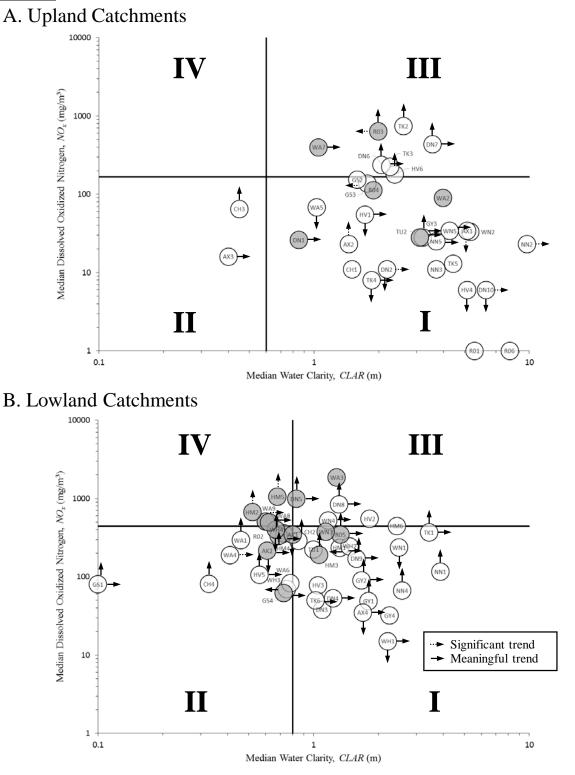


Figure 5. River water quality classes for upland (A) and lowland (B) catchments in New Zealand: I. clean river with high water clarity (CLAR) and low dissolved inorganic nutrients (DIN); II. sediment-impacted river with low CLAR and low DIN; III. nutrient-impacted river with high CLAR and high DIN; and IV. sediment- and nutrient-impacted river with low CLAR and high DIN. Classes are organized by ANZECC (2000) trigger values. DIN trigger values can be discriminated for NO_x (y-axis) and DRP (grey-filled markers). Arrows indicate whether the trend from 1989-2014 was significant (dashed) or meaningful (solid). No arrow means the trend was not significant.