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 13 

Abstract. An analysis to evaluate the impact of multiple radar reflectivity data with a three dimensional variational 14 

(3D-Var) assimilation system on a heavy precipitation event is presented. The main goal is to build a regionally-tuned 15 

numerical prediction model and a decision-support system for environmental civil protection services and demonstrate 16 

it in the central Italian regions, distinguishing which type of observations, conventional and not (or a combination of 17 

them) is more effective in improving the accuracy of the forecasted rainfall. In that respect, during the first Special 18 

Observation Period (SOP1) of HyMeX (Hydrological cycle in the Mediterranean Experiment) campaign several 19 

Intensive Observing Periods (IOPs) were launched and nine of which occurred in Italy. Among them, IOP4 is chosen 20 

for this study because of its low predictability regarding the exact location and amount of precipitation. This event hit 21 

central Italy on 14 September 2012 producing heavy precipitation and causing several damages to buildings, 22 

infrastructures and roads. Reflectivity data taken from three C-band Doppler radars running operationally during the 23 

event are assimilated using 3D-Var technique to improve high resolution initial conditions. In order to evaluate the 24 

impact of the assimilation procedure at different horizontal resolutions and to assess the impact of assimilating 25 

reflectivity data from multiple radars, several experiments using Weather Research and Forecasting (WRF) model are 26 

performed. Finally, traditional verification scores as accuracy, equitable threat score, false alarm ratio and frequency 27 

bias, interpreted analyzing their uncertainty through bootstrap confidence intervals (CIs), are used to objectively 28 

compare the experiments, using rain gauge data as benchmark. 29 

Keywords: radar data assimilation, WRF, 3D-Var, MET, bootstrap confidence intervals, HyMeX 30 

 31 

1 Introduction 32 

In the last few years, a large number of floods caused by different meteorological events occurred in Italy. These events 33 

mainly affected small areas (few hundreds of square kilometers) making their forecast very difficult. Indeed, one of the 34 

most important factors in producing a flash flood was found to be the persistence of the meteorological system over the 35 
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same area in the presence of specific hydrological conditions (the size of the drainage basin, the topography of the 36 

basin, the amount of urban use within the basin, and so on), allowing for accumulating large amount of rain (Doswell et 37 

al., 1996). In complex orography areas, such the Italian regions, this is largely due to the barrier effect produced by the 38 

mountains, such as the Apennines. Moreover, the Mediterranean basin is affected by a complex meteorology, due to the 39 

peculiar distribution of land and water and to the Mediterranean Sea temperature, which is warmer than that of the 40 

European northern seas (Baltic Sea and North Sea). These factors may produce severe meteorological events: for 41 

example, if precipitation persists over urbanized watersheds with steep slopes, devastating floods can occur in a 42 

relatively short time. 43 

The scientific community widely recognizes the need of numerical weather prediction (NWP) models to be run at high 44 

resolution for improving very short term quantitative precipitation forecasts (QPF) during severe weather events and 45 

flash floods. The combination of NWP models and weather radar observations has shown improved skill with respect to 46 

extrapolation-based techniques (Sun et al., 2014). Nevertheless, the accuracy of the mesoscale NWP models is 47 

negatively affected by the “spin-up” effect (Daley 1991) and is mostly dependent on the errors in the initial and lateral 48 

boundary conditions (IC and BC, respectively), along with deficiencies in the numerical models themselves, and at the 49 

resolution of kilometers even more critical because of the lack of high resolution observations, beside for radar data. 50 

Several studies in the meteorological field have demonstrated that the assimilation of appropriate data into the NWP 51 

models, especially radar (Sugimoto et al., 2009) and satellite ones (Sokol, 2009), significantly reduces the "spin-up" 52 

effect and improves the IC and BC of the mesoscale models. Classical observations such as TEMP (upper level 53 

temperature, humidity, and winds observations) or SYNOP (surface synoptic observations) do not have enough density 54 

to describe for example local convection, while radar measurements can provide a sufficient density of data. Maiello et 55 

al. (2014) showed the positive effect of the assimilation of radar data into the precipitation forecast of a heavy rainfall 56 

event occurred in central Italy. The authors showed the gain by using assimilating radar data with respect to the 57 

conventional ones. Similar results are obtained for a case of severe convective storm in Croatia by Stanesic and 58 

Brewster (2016). 59 

Weather radar has a fundamental role in showing tridimensional structures of convective storms and the associated 60 

mesoscale and microscale systems (Nakatani, 2015). As an example, Xiao and Sun (2007) showed that the assimilation 61 

of radar observation at high resolution (2km) can improve convective systems prediction. Recent researches in 62 

meteorology have established that the assimilation of real-time data, especially radar measurements (radial velocities 63 

and/or reflectivities), into the mesoscale NWP models can improve predicted precipitations for the next few hours. (e.g. 64 

Xiao et al., 2005; Sokol and Rezacova, 2006; Dixon et al., 2009; Salonen et al., 2010). 65 

The aim of this study is to investigate the potential of improving NWP rainfall forecasts by assimilating multiple radar 66 

reflectivity data in combination or not with conventional observations. This may have a direct benefit also for 67 

hydrological applications, particularly for real time flash flood prediction and consequently for civil protection 68 

purposes. The novelty of the paper is in exploring the impact on the high-resolution forecast of the assimilation of 69 

multiple radar reflectivity data in a complex orography area, such as central Italian regions, to predict intense 70 

precipitation. This aim is reached by using the IOP4 of the SOP1 in the framework of the HyMeX campaign (Ducrocq 71 

et al. 2014, Ferretti et al. 2014, Davolio et al. 2015). The SOP1 was held from 5 September to 5 November 2012; the 72 

IOP4 was issued for the central Italy target area on 14 September 2012 and it was tagged both as a Heavy Precipitation 73 

Event (HPE) and a Flash Flood Event (FFE). The reflectivity measured by three C-band weather radars was ingested 74 

together with traditional meteorological observations (SYNOP and TEMP) using 3D-Var to improve WRF model 75 
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performance. So far, several studies about reflectivity data assimilation in heavy rainfall cases have been performed 76 

(e.g. Ha et al. 2011, Das et al. 2015) also including multiple radars data and in complex orography (e.g. Lee et al. 2010, 77 

Liu et al. 2013). However, this is the first experiment conducted on the Italian territory taking advantage of the 78 

reflectivity data collected by all the radars that cover central Italy.  79 

The manuscript is arranged as follows. Section 2 provides information on the flash flood event and WRF model 80 

configuration. Section 3 presents the observations to be assimilated, the WRF 3D-Var data assimilation system, and the 81 

evaluation method used. The results are showed and assessed in the fourth Section. Summary and conclusions are 82 

reflected in the last Section. 83 

2 Study area and model set up 84 
 85 

Flash floods are still one of the natural hazards producing human and economic losses (Llasat et al. 2013). Moreover, an 86 

increasing trend of the occurrence of severe events in the whole Mediterranean area has been found by several authors 87 

(Hertig et al. 2012, Martin et al. 2013, Diodato and Bellocchi, 2014). These open issues drove the HyMeX programme 88 

(http://www.hymex.org) aims at a better understanding of the water cycle in the Mediterranean with focus on extreme 89 

weather events. The observation strategy of HyMeX is organized in a long-term (4 years) Enhanced Observation 90 

Periods (EOP) and short-term (2 months) Special Observation Periods (SOP). During the SOP1, that was held from 5 91 

September to 5 November 2012 with the major aim of investigating still-unclear mesoscale meteorological mechanisms 92 

over the Mediterranean area, three Italian hydro-meteorological sites were identified within the Western Mediterranean 93 

Target Area (TA): Liguria–Tuscany (LT), northeastern Italy (NEI) and central Italy (CI). Several Intensive Observing 94 

Periods (IOPs) were issued during the campaign to document Heavy Precipitation Events (HPE), Flash Floods Events 95 

(FFE) and Orographic Precipitation Events (ORP). 96 

 97 
2.1 Case study 98 

During the day of 14 September 2012 a deep upper level trough entered the Mediterranean basin and deepened over the 99 

Tyrrhenian Sea slowly moving south eastward. A cut-off low developed over central Italy (Figure 1a, c) advecting cold 100 

air along the central Adriatic coast producing instability over central and southern Italy, and enhanced the Bora flow 101 

over the northern Adriatic Sea. Convection with heavy precipitations occurred in the morning of September 14 mainly 102 

along the central eastern Italian coast (Marche and Abruzzo regions), associated with the cut-off low over the 103 

Tyrrhenian Sea, producing flood in the urban area of Pescara where rainfall reached 150 mm in a few hours causing 104 

several river overflows, a landslide and many damages in the area of the city hospital. Progressive motion south-105 

eastward of the cut-off and its filling (Figure 1b, d) gradually moved phenomena over south of Italy, even if some 106 

instability still remained over medium Adriatic until the afternoon of Saturday September 15. At the same time, a ridge 107 

developed high pressure on the west part of West Mediterranean domain; this ridge slowly drifts eastwards during the 108 

weekend. 109 

Figure 2 shows the interpolated map of 24h accumulated rainfall recorded from rain gauges network from September 14 110 

to September 15 (00:00-00:00UTC) with a maximum accumulated rainfall on the highest peak of Abruzzo region 111 

(Campo Imperatore) approximately reaching 300 mm in 24 hours. DEWETRA (Italian Civil Protection 112 

Department, CIMA Research Foundation, 2014) is an operational web platform used by the Italian Civil Protection 113 

Department (DPC) and implemented by CIMA Research Foundation (http://www.cimafoundation.org/en/). DEWETRA 114 
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allows synthesis, integration and comparison of information necessary for instrumental monitoring, models forecasting 115 

and to building real-time risk scenarios and their possible evolution. Rain gauges time series of some selected stations in 116 

Marche and Abruzzo regions, where most significant amount of rainfall is accumulated are presented in Figure 3: 117 

Fermo and Pintura di Bolognola (Marche region) respectively with nearly 130 mm in 24 hours (Figure 3a) and 180 mm 118 

in 24h (Figure 3b); Campo Imperatore, Atri and Pescara Colli (Abruzzo region) with respectively nearly 300 mm 119 

(Figure 3c), 160 mm (Figure 3d) and 140 mm (Figure 3e) in 24 hours. It is clearly shown (Figure 3) that the 120 

accumulation started around 02:00UTC of 14
th
 September: in Fermo, Atri and Pescara Colli most of rainfall was 121 

concentrated in the first half of the day, whereas in Pintura di Bolognola and Campo Imperatore, precipitation fell all 122 

day long. The large amount of  hourly precipitation for Atri and Pescara Colli respectively at 06:00UTC and 05:00UTC 123 

(red ovals in Fig. 3d and 3e) reaching 45mm/h, indicating convective precipitation, whereas rainfall at Campo 124 

Imperatore rain gauge (Fig. 3c) was much weaker but lasting longer which allowed for reaching an accumulated amount 125 

of approximately 300 mm in 24h. 126 

Figure 4 shows the Vertical Maximum Intensity (VMI) reflectivity product from the Italian radar network (Vulpiani et 127 

al., 2008a) superimposed onto the Meteosat Second Generation (MSG) 10.8 µm image (in normalized inverted 128 

greyscale). A zoom over the central Italy target area highlights a line of convective cells along the Apennines in central 129 

Italy due to the western flow approaching the orographic barrier. VMI values above 45 dBZ are associated with intense 130 

precipitation that occurred during convective events. 131 

2.2 WRF model set up 132 

 133 

The numerical weather prediction experiments are performed in this work using the non-hydrostatic Advanced 134 

Research WRF (ARW) modeling system V3.4.1. It is a primitive equations mesoscale meteorological model, with 135 

terrain-following vertical coordinates and options for different physical parameterizations. Skamarock et al. (2008) 136 

provides a detailed overview of the model.  137 

In this study, a one-way nested configuration using the ndown program is used: a 12 km domain (263185) that covers 138 

central Europe and west Mediterranean basin (referred as D01) is initialized using the European Centre for Medium-139 

Range Weather Forecasts (ECMWF) analyses at 0.25 degrees of horizontal resolution; an innermost domain, that covers 140 

the whole Italy (referred as D02), with a grid space of 3 km (445449) using as BC and IC the output of the previous 141 

forecast at 12 km. Both domains run with 37 unequally spaced vertical levels, from the surface up to 100 hPa (Figure 142 

5).  143 

Taking into account that the performance of a mesoscale model is highly related to the parameterization schemes, the 144 

main physics packages used in this study are set as for the operational configuration (Ferretti et al., 2014) used at the 145 

centre of Excellence CETEMPS. They include (Skamarock et al., 2008): the “New” Thompson et al. 2004 microphysics 146 

scheme, the MYJ (Mellor-Yamada-Janjic) scheme for the PBL (planetary boundary layer), the Goddard shortwave 147 

radiation scheme and the RRTM (rapid radiative transfer model) longwave radiation scheme, the Eta similarity scheme 148 

for surface layer formulation and the Noah LSM (Land Surface Model) to parameterize physics of land surface. A few 149 

preliminary tests are performed to assess the best cumulus parameterization scheme to be used both for the coarse and 150 

finest resolution domain for this event. Hence, the following parameterizations are tested: the new Kain–Fritsch and the 151 

Grell 3D schemes. The latter is an enhanced version of the Grell-Deveneyi scheme, in our simulations only used on the 152 

lowest resolution domain, where the option cugd_avedx (subsidence spreading) is switched on. Based on the results of 153 
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these two cumulus parameterization schemes, the one producing the best precipitation forecast will be used to evaluate 154 

the impact of data assimilation. 155 

 156 

3 Data and methodology  157 

 158 

This section will be focused on the description of types of observations ingested into the assimilation procedure, namely 159 

both conventional and radar, and on the 3D-Var methodology as well as the observation operator used for the 160 

calculation of the reflectivity. Moreover, a brief overview of the evaluation method adopted to assess the performance 161 

of numerical weather predictions will be given. 162 

 163 

3.1 Observations to be assimilated 164 

Conventional observations SYNOP and TEMP were retrieved from the ECMWF Meteorological Archival and Retrieval 165 

System (MARS). They have been packed in a suitable format for ingest into the assimilation procedure using the 166 

Observation Preprocessor (OBSPROC) module provided by the 3D-Var system. Among its main functions there are 167 

also to perform a quality control check and to assign observational errors based on a pre-specified error file. In short, a 168 

total of 983 observations (967 SYNOP and 16 TEMP) are ingested into the coarse resolution domain, whereas a total of 169 

338 (333 SYNOP and 5 TEMP) observations into the high resolution one.  170 

 Reflectivity volumes taken from three C-band Doppler radars operational during the IOP4 have been assimilated to 171 

improve IC. The radars have different technical characteristics and were operated with different scanning strategies and 172 

operational settings as shown in Table 1. 173 

Monte Midia (MM) and San Pietro Capofiume (SPC) radars are included in the Italian weather radar network, while 174 

Polar 55C (P55C) radar is a research radar working on demand, butwas operational during the IOPs of the HyMeX 175 

campaign  (Roberto et al., 2016). 176 

It is worth mentioning that radar data can be affected by numerous sources of errors, mainly due to ground clutter, 177 

attenuation due to propagation or beam blocking, anomalous propagation and radio interferences. This is the reason 178 

why a preliminary "cleaning" procedure is applied to the measured radar reflectivity from the three radars before the 179 

assimilation process, consisting of the following 3 steps: 180 

 a first quality check of radar volumes to filter out radar pixels affected by ground clutter and anomalous 181 

propagation. Furthermore, Z was corrected for attenuation using a methodology based on the specific 182 

differential phase shift (Kdp) available for dual polarization radars (Vulpiani et al, 2015); moreover, reflectivity 183 

is not corrected for partial beam blocking: all the data that are affected by partial beam blocking and clutter 184 

have been filtered out; 185 

 volume reflectivity radar data, for each elevation, are projected onto the Cartesian plane in order to find the 186 

closest radar bin for each Cartesian grid point and then they are interpolated by the 3D-Var code of WRF; 187 

 the minimum assimilated reflectivity is set to -20 dBZ; 188 

After the pre-processing procedure, a conversion from the native radar format into the one requested for the ingestion 189 

into the 3D-Var is applied to all radars reflectivity data. 190 
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 Moreover, no observation thinning is performed because this procedure is not yet developed into the 3D-Var system for 191 

radar data. Nevertheless, a dynamical thinning has been devised that selects, for every assimilation cycle, the most 192 

influential partition of a particular measurement, from information based on the previous cycle: this is the multiple outer 193 

loops technique explained later in Section 4. 194 

3.2 3D-Var data assimilation method 195 
 196 

Data assimilation (DA) is a technique employed in many fields of geosciences perhaps most importantly in weather 197 

forecasting and hydrology. In this context it is the procedure by which observations are combined with the product (first 198 

guess or background forecast) of a NWP model and their corresponding error statistics, to produce a bettered estimate 199 

(the analysis) of the true state of the atmosphere (Skamarock et al., 2008). The variational DA method realizes this 200 

through the iterative minimization of a penalty function (Ide et al., 1997): 201 

 202 

                 
 

 
                                                                                                 (1) 203 

 204 

where x
b
 is the first guess state vector, y

0 
is the assimilated observation vector, H is the observation operator that links 205 

the model variables to the observation variables and x is the unknown analysis state vector to be found by minimizing 206 

J(x). Finally, B and R are the background covariance error matrix and the observation covariance error matrix, 207 

respectively. 208 

The minimization of the penalty function J(x), displayed by Equation (1), is the a posteriori maximum likelihood 209 

estimate of the true atmosphere state, given the two sources of a priori data that are x
b
 and y

0 
(Lorenc, 1986).  210 

In this study the 3D-Var system developed by Barker et al. (2003, 2004) is used for assimilating radar reflectivity and 211 

conventional observations SYNOP and TEMP. The penalty function minimization is performed in a preconditioned 212 

control variable space, where the preconditioned control variables are pseudo relative humidity, stream function, 213 

unbalanced temperature, unbalanced potential velocity and unbalanced surface pressure. Because of radar reflectivity 214 

assimilation is considered, the total water mixing ratio qt  is chosen as the moisture control variable. The following 215 

equation presents the observation operator used by the 3D-Var to calculate reflectivity for the comparison with the 216 

observed one (Sun and Crook, 1997): 217 

 218 

                                                                                                                                                                                       (2) 219 

where ρ and qr are the air density in kg/m
3
 and the rainwater mixing ratio in g/kg, respectively, while Z is the co-polar 220 

radar reflectivity factor expressed in dBZ. Since the total water mixing ratio qt  is used as the control variable, a warm 221 

rain process (Dudhia, 1989) is introduced into the WRF-3D-Var system to allow for producing the increments of moist 222 

variables linked to the hydrometeors.  223 

The performance of the DA system strongly depends on the quality of the   matrix in Equation (1). In this study, a 224 

specific background error statistics is computed for both domains for the entire SOP1 duration using the National 225 

Meteorological Center (NMC) method (Parrish and Derber, 1992). This technique estimates the initial state error using 226 

differences of couples of forecasts valid at the same time, but with one of them having a delayed start time. One of the 227 

advantage of this method is that it maintains information on the dynamic of the model itself, but it may not give the 228 

proper correlation structure on data-sparse observations. Commonly, for regional applications and to remove the diurnal 229 

https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Hydrology
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cycle, a delay of 24 hours between the forecasts (T+24 minus T+12) is used; nevertheless, this delay can produce 230 

overestimated correlation length scales compared to those needed by a variational data assimilation technique, because 231 

of too dynamically evolved structures (Sadiki et al., 2000). Since 3D-Var is applied to the Mediterranean area, B has to 232 

take into account the scale of the motions of this orographic and meteorologically complex area: the model grid 233 

resolution ranges between 12 km and 3km, therefore the errors have to describe the physical phenomena relative to 234 

these scales. 235 

  236 

3.3 Evaluation 237 
 238 

The Point-Stat Tool of MET (Model Evaluation Tools) application (DTC, 2013), developed at the DTC (Developmental 239 

Testbed Center, NCAR), has been used to objectively evaluate the 12 hours accumulated precipitation produced by 240 

WRF on both domains. The interpolation method used to match the gridded model output to the point observation is the 241 

distance weighted mean in a 3 x 3 square of grid points. The observations used for the statistical evaluation were 242 

obtained from the DEWETRA platform of the Department of Civil Protection and the comparison has been performed 243 

over central Italy target area using about 3000 rain gauges with a good coverage throughout the Italian territory. 244 

Moreover, for interpreting results from the verification analysis bootstrap, confidence intervals (CIs) have been used to 245 

analyze the uncertainty associated with the score's values. Bootstrapping is a non parametric, computationally 246 

expensive, statistical technique (Efron & Tibshirani, 1993) for estimating parameters and uncertainty information, that 247 

allows to make inferences from data without making strong distributional assumptions about the data or the statistic 248 

being calculated. Therefore, the idea was to estimate CIs to set some bounds (bootstrap upper and lower confidence 249 

limits) on the expected value of the verification score helping to assess whether differences between competing 250 

forecasts are significant. 251 

 252 

4 Design of the numerical experiments: discussion of the results 253 
 254 

The simulations on the coarser resolution domain (D01) are run from 12:00UTC of 13 September 2012 and integrated 255 

for the following 96 hours, whereas runs on the finest resolution domain started at 00:00UTC of September 14 for a 256 

total of 48 hours of integration. The previous coarser resolution WRF forecast at 00:00UTC is used as the first guess  in 257 

the 3D-Var experiment, because 00:00UTC has been selected as the "analysis time" of the assimilation procedure. After 258 

assimilation, the lateral and lower boundary conditions are updated for the high resolution forecast. Finally, the new IC 259 

and BC are used for the model initialization (in a warm start regime) at 00:00UTC. As already pointed out a set of 260 

preliminary experiments are performed using different cumulus convective scheme to assess the best one to be used. 261 

The following experiments are performed without assimilation and using the convective scheme on the coarser 262 

resolution domain only: KAIN-FRITSCH (KF_MYJ); GRELL3D (GRELL3D_MYJ); GRELL3D associated with the 263 

CUGD factor (GRELL3D_MYJ_CUGD). A summary of these numerical experiments is given in Table 2: the best 264 

performance is obtained by Grell3D scheme which is able to simulate the peak precipitation cumulated in 24 hours over 265 

Campo Imperatore, whereas KAIN-FRITSCH completely misses it (not shown here). The MET statistical analysis 266 

support the previous finding and the simulation with cugd_avedx activated shows a significant performance in terms of 267 
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uncertainty of the calculated scores than the other two simulations (not shown). Here after GRELL3D_MYJ_CUGD is 268 

referred as the control experiment (CTL) performed without any data assimilation.  269 

At this point analysis of a new set of simulations is performed allowing to establish the best model configuration for the 270 

radar reflectivity assimilation. The DA experiments aim to investigate: 271 

1. the impact of the assimilation at low and high resolution by assimilating both conventional and non-272 

conventional data at both resolutions; 273 

2. the impact of the assimilation of different types of observations; 274 

3. the impact of the different radars, which is investigated by performing experiment by assimilating conventional 275 

data and then adding radar one by one.  276 

Therefore in Table 3, together with CTL simulation, the following DA experiments are summarized: i) the assimilation 277 

of conventional data only (CON); ii) the assimilation of reflectivity data from MM only (CONMM) are added; iii) the 278 

assimilation of P55C radar reflectivity is added to the previous experiments (CONMMPOL); iv) the assimilation of the 279 

third radar reflectivity data is added to the previous (CONMMPOLSPC). Finally, an experiment to assess the role of the 280 

outer loop is performed (CONMMPOLSPC3OL): to include non-linearity into the observation operator and to evaluate 281 

the impact of reflectivity data entering for each cycle, the multiple outer loops strategy is applied (Rizvi et al., 2008). 282 

According to this approach, the non-linear problem is solved iteratively as a progression of linear problems: the 283 

assimilation system is able to ingest more observations by running more than one analysis outer loop.  284 

In the following section the results will be presented and discussed following the rationale of the previously introduced 285 

experiments and analyzing the uncertainty (confidence level of 95%) in the realized scores (Forecast Accuracy (ACC), 286 

Frequency Bias (FBIAS), Equitable Threat Score (ETS), False Alarm Ratio (FAR)) for performance quantitative 287 

assessment.  288 

 289 

5 Impact of conventional measurements and radar reflectivity assimilation on rainfall forecast: low versus high 290 
resolution 291 

In figure 6, a preliminary comparison among low resolution (LR) simulations is shown. The control simulation (CTL) 292 

without data assimilation is shown in Figure 6a; whereas the other panels (b, c, d, e, f) show the experiments performed 293 

using the data assimilation.  294 

Observing the outputs of different experiments (Fig. 6), best simulation is found for CONMMPOLSPC_LR_12KM 295 

(black arrow in Fig.6e): the rainfall maximum over Campo Imperatore is very well simulated, however a slight cell 296 

displacement at the border between Marche and Abruzzo regions is noticeable. The rain cumulated in 24 hours related 297 

to this cell is around 300 mm. In the simulations shown in Figures 6b and 6f, this cell is reproduced,  although its 298 

position is shifted in another region. Furthermore, the precipitation pattern along the northern coasts of Abruzzo (black 299 

oval) is also quite well forecasted.   300 

In Table 4 statistical indices ACC, FBIAS, ETS and FAR are reported, with their relative upper and lower confidence 301 

limits for the 12 hours accumulated precipitation and for two thresholds of precipitation, namely 1 mm and 40 mm, for 302 
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light and heavy rain regimes, respectively. These two thresholds have been chosen due to their higher statistical 303 

significance than the other ones. 304 

We obtained likely good values for ACC and FAR for all the experiments and for heavy rain regimes, strengthened by a 305 

small uncertainty interval. On the other hand, for the lower threshold it can be seen that for all simulations the values of 306 

FBIAS considering also the confidence intervals are greater than one. One possible interpretation of the impact of the 307 

lower threshold, is that with 95% confidence all the experiments are overestimating the frequency of precipitation 308 

around 1 mm/12h.  309 

Similarly to the above comparison, presented in figure 7 are high resolution results (HR) obtained performing 310 

reflectivity assimilation on 12 km domain (column 1), on 3 km (column 2) and on 12 km and 3 km together (column 3); 311 

to the top of figure 7 the CTL experiment on D02 is shown. Figure 7 is organized as follows: viewing panels by line, on 312 

line 1 all the simulations with conventional data assimilation only (CON*) are found; on line 2 all the experiments with 313 

the assimilation of the reflectivity data from MM radar added (CONMM*); on line 3 all the experiments with the 314 

assimilation of the reflectivity data from 2 C-band radars added (CONMMPOL*); on line 4 all the experiments with the 315 

assimilation of the reflectivity data from all 3 C-band radars added (CONMMPOLSPC*); on line 5 the simulations 316 

where the strategy of outer loop is adopted (CONMMPOLSPC3OL*). In order to quantify the uncertainty associated to  317 

these experiments, the bootstrap 95% confidence intervals for verification statistics ACC, FBIAS, ETS, FAR have been 318 

summarized over tables (from 5 to 12) reporting again the two thresholds of precipitation: 1 mm/12h and 40 mm/12h 319 

(light and heavy rain regimes respectively).  320 

In order to investigate the impact of the assimilation at different resolutions, we analyze figure 7 by column and 321 

comparing it with the available observations (Fig. 2) using also the statistical analysis:  322 

 column 1 (12KM): CTL produces an overestimation of the rainfall that is not corrected by the assimilation of 323 

conventional data, but assimilating the reflectivity from the 3 radars and introducing the 3 outer loops (Fig. 7 324 

column 1 line 5) the main cells are better reproduced. MET indices in Table 5 suggest that CTL and 325 

CON_HR_12KM have the widest spread between the CIs limits for higher thresholds, whereas 326 

CONMMPOLSPC3OL_HR_12KM is the simulation with the best response, secondly CONMM_HR_12KM, 327 

if we consider both the estimate of the scores and their uncertainty; 328 

 column 2 (3KM): a partial correction of the rainfall overestimation compared to column 1 is observed 329 

especially if reflectivity from all the radars are assimilated and the outer loop strategy is applied; the statistical 330 

indices in Table 6 show CONMMPOLSPC3OL_3KM as the best experiment among the assimilated ones 331 

because of competitive values of ACC at both thresholds and FBIAS and FAR for the light and heavy rain 332 

thresholds, respectively; 333 

 column 3 (12KM_3KM): rainfall overestimation was partially corrected compared to columns 1 and 2 by all 334 

the experiments; the MET statistics in Table 7 shows that CTL and CONMMPOLSPC3OL_12KM_3KM are 335 

the experiments with better values and small uncertainty, especially for ACC and ETS scores, although there is 336 

a quite broad spread in FBIAS of CTL experiment if we consider higher thresholds.  337 

Summarizing, the previous analysis suggests that the frequency of rainfall overestimation for higher thresholds has been 338 

reduced by radar reflectivity assimilation performed only on D01. Furthermore, improvements come out for heavy rain 339 

regimes when radar reflectivity assimilation has been performed on the highest resolution domain, whereas the 340 

ingestion of conventional observations produces the worst results since a smaller number of them were assimilated into 341 
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the finest resolution domain (for instance one sounding on five total) than that the coarser one. The assimilation, 342 

operated on both 12 km and 3 km, gives better results than the ones on column 1, but a worse response than the others 343 

on column 2 is given for higher thresholds.  344 

In order to examine the impact of the assimilation of different data and radars, we can now analyze the experiments 345 

showed in figure 7 line by line. The results are compared with the observations of Fig. 2. The following considerations 346 

are worth discussing: 347 

 line 1 (CON): a strong reduction of the rainfall is found with respect to CTL if conventional data are 348 

assimilated, but the rainfall pattern remains unchanged. Statistical indices of CON experiment (Table 8) do not 349 

improve the performances of CTL (despite a reduction in some cases of the spread between the CIs limits for 350 

higher thresholds of the FBIAS). The indices values suggest a slightly better performance when the 351 

conventional observations are assimilated only on the bigger domain and for higher thresholds, together with 352 

an improvement of FAR index for heavy rain regime; 353 

 line 2 (CONMM): a further reduction in the precipitation overestimation is found as well as some variations in 354 

the pattern of the rainfall; the scores in Table 9, together with their bootstrap upper and lower limits, show that 355 

MM radar reflectivity and conventional observations assimilation,  improves  the model performance above all 356 

for lower thresholds respect to the experiments where only SYNOP and TEMP were ingested. It applies also 357 

for some of the scores at higher thresholds;  358 

 line 3 (CONMMPOL): a quite strong improvement in the rainfall amount is found for all simulations. 359 

However, from the statistics of Table 10 we found a general worsening of the results both for light and heavy 360 

rain regimes when POL is added (ACC, FBIAS and ETS);  361 

 line 4 (CONMMPOLSPC): a clear correction of the rainfall pattern is found; the overestimation produced by 362 

the simulation where the reflectivity from all the radars are assimilated on the 3 km domain has been corrected 363 

by the experiment in which the reflectivity is assimilated both on D01 and D02; the uncertainty in the realized 364 

scores of Table 11 suggests that the addition of SPC radar improves the results, furthermore they are not better 365 

than those where only MM is ingested;  366 

 line 5 (CONMMPOLSPC3OL): the outer loop experiment confirms the strong overestimation reduction by 367 

*12KM_3KM; from Table 12 it seems that the introduction of 3OL improves the indices estimate and bounds 368 

above all when the 12 km domain is considered; CONMMPOLSPC3OL_12KM_3KM can be seen as the best 369 

simulation taking into account all the verification scores at both rainfall thresholds. 370 

In summary, simulations results show that assimilation of conventional data is better to perform on the lowest resolution 371 

domain because more observations were used in the coarser domain, whereas when the assimilation is performed on the 372 

highest resolution domain only few SYNOP and even less TEMP fell down in the 3 km domain at the analysis time of 373 

the assimilation procedure. The impact of the conventional observations are expected to be lower than those of the non 374 

conventional ones, because most of them have already been used by ECMWF to produce their analysis and that they are 375 

here used as first guess, even if at lower resolution (0.25°). Therefore, they result to be correlated to the background and 376 

the improvements of those experiments where they are assimilated are expected to be low.  377 

With regard to the assimilation of reflectivity radar data, should be noted that P55C radar observation is shielded at the 378 

lowest elevations by the Apennines. This leads to an underestimation of the precipitation, especially when the peak 379 
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occurs; as a consequence a wrong estimation is given to the WRF model worsening the assimilation results. Also the 380 

outer loop strategy could have an important role in the assimilation procedure, but this latter needs a further 381 

investigation because a general rainfall underestimation for higher thresholds is found.  382 

The results of this section confirm that when there is a correlation between the observations and the first guess used, the 383 

results of the data assimilation are poor, especially if no "special" observation is available on a wide area. The 384 

assimilation of a large amount of surface data together with the radiosonde ones decreases the quality of the final 385 

analysis produced. It probably depends on the different density of the surface and the three dimensional data of 386 

radiosondes, as assessed by Liu and Rabier (2002), being the former much larger than the latter. 387 

 388 

6 Conclusions 389 

In this manuscript the effects of multiple radar reflectivity data assimilation on a heavy precipitation event occurred 390 

during the SOP1 of the HyMeX campaign have been evaluated: the aim is to build a regionally-tuned numerical 391 

prediction model and decision-support system for environmental civil protection services within the central Italian 392 

regions. A sensitivity study at different domain resolution and using different types of data to improve initial conditions 393 

has been performed by assimilating into the WRF model radar reflectivity measurements, collected by three C-band 394 

Doppler weather radars operational during the event that hit central Italy on 14 September  2012. The 3D-Var and MET 395 

are the WRF tools used to assess this purpose. The study is performed on the complex basin, both for the orography and 396 

physical phenomena, of the Mediterranean area. First of all, WRF model responses to different types of cumulus 397 

parameterizations have been tested to establish the best configuration and to obtain the control simulation. The latter has 398 

been compared with observations and other experiments performed using 3D-Var. The set of assimilation experiments 399 

have been conducted following two different strategies: i) data assimilation at low and high resolution or at both 400 

resolutions simultaneously; ii) conventional data against radar reflectivity data assimilation. Both have been examined 401 

to assess the impact on rainfall forecast. 402 

The major findings of this work have been the following: 403 

 Grell 3D parameterization improves the simulations both on D01and D02 and the use of the spreading factor is 404 

an added value in properly predict heavy rainfall over inland of Abruzzo and the rainfall pattern along the 405 

northeast coast; 406 

 investigating the impact of the assimilation at different resolutions, best results are showed by the experiments 407 

where the data assimilation is performed on both domains 12 km and 3 km; 408 

 the impact of the assimilation using different types of observations shows improvements if reflectivity from all 409 

the radars, along with SYNOP and TEMP are assimilated; furthermore, MM is the one that gives better results 410 

due to its excellent monitoring of the whole event; 411 

 the outer loop strategy allows for further improving positive impact of the assimilation of multiple reflectivity 412 

radars data. Moreover, a deeper investigation of multiple outer loops strategy is required to well assess its 413 

impact, above all concerning the running time in an operational context; 414 
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 we have seen that there are thresholds where the WRF 3D-Var is statistically significant, with 95% confidence, 415 

while for other thresholds we have to be careful in drawing conclusions above all in the face of large 416 

uncertainty. 417 

From the results obtained in this study, it is not possible to assess, in general terms, which is the best model 418 

configuration. In fact, this analysis should be performed systematically with a significant number of flash flood case 419 

studies. Nevertheless, this work has pointed out aspects in 3D-Var reflectivity data assimilation that encourages to 420 

investigate more flash flood cases occurred over central Italy, in order to make the proposed approach suitable to 421 

provide a realistic prediction of possible flash floods both for the timing and localization of such events. To confirm and 422 

consolidate these initial findings, apart from analyzing more case studies, a deeper analysis of the meteorology of the 423 

region and of the performance of the data assimilation system throughout longer trials in a "pseudo-operational" 424 

procedure is necessary. Moreover, a more sophisticated spatial verification technique (MODE, Method for Object-425 

Based Diagnostic Evaluation, Davis et al., 2006a, 2006b) which focuses on the realism of the forecast, by comparing 426 

features or ‘objects’ that characterize both forecast and observation fields, could be investigated in the future. In fact, 427 

spatial verification methods are particularly suitable to address the model capability to reproduce structures like the 428 

convective systems responsible for the high precipitation events as considered in the present research, which, because of 429 

their typical dimensions, need high resolution simulations to be predicted (Gilleland et al., 2009). These new-generation 430 

spatial verification methods, through the identification and the geometrical description of ‘objects’ in forecast and 431 

observation fields (e.g. accumulated precipitation or radar reflectivity), permit an evaluation of the forecast skill in a 432 

more consistent way. 433 
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 559 

 560 

 561 

  562 

 563 

Figure 1. ECMWF (European Center for Medium-Range Weather Forecasts) analyses at 12:00UTC on 14 564 
September 2012: a) mean sea level pressure, c) temperature (color shades) and geopotential height (black isolines) at 565 
500 hPa; ECMWF analyses at 12:00UTC on 15 September 2012: b) mean sea level pressure, d) temperature (black 566 

isolines) and geopotential height (color shades) at 500 hPa. 567 

 568 
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 570 
 571 

Figure 2: Interpolated map of 24h accumulated rainfall from 00:00UTC of 14 September 2012 over Abruzzo and Marche 572 
regions taken from DEWETRA system from rain gauges measurements. 573 

Black contours are the administrative boundaries of regions, while the colored circles represent the warning pluviometric 574 
thresholds. 575 

 576 
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 579 

 580 

Figure 3: Rain gauges time series of some selected stations in Marche (a, Fermo and b, Pintura di Bolognola) and Abruzzo (c, 581 
Campo Imperatore, d, Atri and e, Pescara Colli) regions during the event of 14 September 2012. The green histogram 582 

represents the hourly accumulated precipitation (scale on the left); the blue line represents the incremental accumulation 583 
within the 24h (scale on the right).  (courtesy of Italian Civil Protection Department) 584 

 585 

 586 

Figure 4: Zoom over central Italy of the reflectivity on 14 September 2012 at 08:00UTC from the Italian radar network 587 
overlapped with the MSG (IR 10.8) at 07:30UTC. (courtesy of Italian DPC) 588 
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 590 

Figure 5: WRF ndown domains configuration: the two domains have respectively resolution of 12km and 3km. The high 591 
resolution D02 over Italy includes Mt. Midia (MM), ISAC-CNR (P55C) and San Pietro Capofiume (SPC) radars (red dots in 592 

the figure). 593 
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 597 

Figure 6: WRF D01 accumulated 24h rainfall forecast over central Italy from 00:00UTC of 14 September 2012: a) WRF D01 598 
CTL; b) WRF D01 CON_LR_12KM; c) WRF D01 CONMM_LR_12KM;d)WRF D01 CONMMPOL_LR_12KM; e) WRF 599 

D01 CONMMPOLSPC_LR_12KM; f) WRF D01 CONMMPOLSPC3OL_LR_12KM. 600 
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 608 

 609 

Figure 7: WRF D02 accumulated 24h rainfall forecast over central Italy from 00:00UTC of 14 September 2012: CTL 610 
simulation (top center); on each column simulations obtained performing reflectivity assimilation at different resolutions 611 

(*12KM, *3KM, *12KM_3KM); on each line simulations performed assimilating different kinds of data (CON*, CONMM*, 612 
CONMMPOL*,CONMMPOLSPC*, CONMMPOLSPC3OL*). 613 

 614 

Table 1: Technical characteristics of the three radars whose reflectivity have been assimilated during IOP4. 615 

Features Units MM  

radar 

P55C  

radar 

SPC  

radar 

Owner  
CF Abruzzo 

Region 

ISAC-CNR of 

Rome 
Arpa Emilia Romagna 

Location  Monte Midia  Rome San Pietro Capofiume 

Latitude [deg] 42.057 41.840 44.6547 

Longitude [deg] 13.177 12.647 11.6236 

Height (a.s.l.) [m] 1760 130 31 

Doppler   YES YES YES 

Dual Polarization  NO YES YES 

Range Resolution [m] 500 75 250 

Temporal Resolution [min] 15 5 15 

Number of PPI scans [°] 4 (0, 1, 2, 3) 

6 or 8 (0.6, 1.6, 2.6, 

4.4, 6.2, 8.3, 11.0, 

14.6) 

6 (0.53, 1.4, 2.3, 3.2, 

4.15, 5.0) 

Maximum Range [km] 120 or 240  125 125 

 616 

Table 2: List of experiments to assess the cumulus parameterization. 617 

Experiment Cumulus Grid 

Resolution 

Assimilation 

Synop+Temp 

Assimilation 

Radar 

KF_MYJ KAIN-FRITSCH 12KM/3KM NO NO 

GRELL3D_MYJ GRELL3D 12KM/3KM NO NO 

GRELL3D_MYJ_CUGD 

(CTL) 

GRELL3D+CUGD 12KM/3KM NO NO 

 618 

Line5 

callto:0.53,%201.4,%202.3,%203.2,%204
callto:0.53,%201.4,%202.3,%203.2,%204


22 
 

Table 3: List of experiments to test the impact of data assimilation. 619 

Experiment Cumulus Grid Resolution Assimilation 

Synop+Temp 

Assimilation 

Radar 

CTL GRELL3D+CUGD 12KM/3KM NO NO 

CON GRELL3D+CUGD 12KM/3KM/BOTH YES NO 

CONMM GRELL3D+CUGD 12KM/3KM/BOTH YES  MM 

CONMMPOL GRELL3D+CUGD 12KM/3KM/BOTH YES MM+POL 

CONMMPOLSPC GRELL3D+CUGD 12KM/3KM/BOTH YES MM+POL+SPC 

CONMMPOLSPC3OL GRELL3D+CUGD 12KM/3KM/BOTH YES MM+POL+SPC 

with 3 outer loops 

 620 

Table 4: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 621 
Equitable Threat Score (ETS), False Alarm Ratio (FAR). They are considered as a function of thresholds (1mm/12h and 622 

40mm/12h). The experiments are: CTL, CON_LR_12KM, CONMM_LR_12KM, CONMMPOL_LR_12KM, 623 
CONMMPOLSPC_LR_12KM, CONMMPOLSPC3OL_LR_12KM. 624 
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Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.78) 

0.82 

(0.86) 

(0.96) 

0.98 

(0.99) 

(1.21) 

1.40 

(1.68) 

(0.03) 

0.07 

(0.12) 

(0.20) 

0.29 

(0.39) 

(0.01) 

0.03 

(0.05) 

(0.31) 

0.37 

(0.43) 

(0) 

0.002 

(0.004) 

CON_LR_12KM (0.81) 

0.85 

(0.88) 

(0.96) 

0.98 

(0.99) 

(1.22) 

1.41 

(1.66) 

(0.06) 

0.12 

(0.23) 

(0.26) 

0.36 

(0.46) 

(0.02) 

0.04 

(0.07) 

(0.26) 

0.32 

(0.38) 

(0.001) 

0.004 

(0.007) 

CONMM_LR_12KM (0.79) 

0.83 

(0.87) 

(0.97) 

0.98 

(0.99) 

(1.18) 

1.37 

(1.62) 

(0.12) 

0.20 

(0.28) 

(0.21) 

0.30 

(0.41) 

(0.09) 

0.16 

(0.22) 

(0.31) 

0.37 

(0.43)  

(0) 

0.002 

(0.003) 

CONMMPOL_LR_12KM (0.79) 

0.83 

(0.87) 

(0.97) 

0.98 

(0.99) 

(1.23) 

1.43 

(1.70) 

(0.13) 

0.21 

(0.28) 

(0.21) 

0.31 

(0.41) 

(0.10) 

0.16 

(0.23) 

(0.29) 

0.36 

(0.42) 

(0) 

0.002 

(0.003) 

CONMMPOLSPC_LR_12KM (0.79) 

0.83 

(0.87)  

(0.97) 

0.98 

(0.99) 

(1.25) 

1.44 

(1.73) 

(0.08) 

0.15 

(0.24) 

(0.23) 

0.32 

(0.43) 

(0.05) 

0.11 

(0.18) 

(0.28) 

0.35 

(0.41) 

(0) 

0.002 

(0.003) 

CONMMPOLSPC3OL_LR_12KM (0.78) 

0.82 

(0.97) 

0.98 

(1.21) 

1.39 

(0.10) 

0.18 

(0.21) 

0.30 

(0.06) 

0.13 

(0.32) 

0.38 

(0) 

0.002 
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(0.86) (0.99) (1.65) (0.27) (0.40) (0.20) (0.44) (0.004) 

  626 
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Table 5: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 628 
Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in column 1. They are considered as a 629 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CON_HR_12KM, CONMM_HR_12KM, 630 
CONMMPOL_HR_12KM, CONMMPOLSPC_HR_12KM, CONMMPOLSPC3OL_HR_12KM. 631 

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.79) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.15) 

CON_HR_12KM (0.77) 

0.81 

(0.84) 

(0.96) 

0.97 

(0.99) 

(0.75) 

0.91 

(1.11) 

(0.21) 

0.49 

(1.61) 

(0.15) 

0.25 

(0.36) 

(0.03) 

0.07 

(0.13) 

(0.20) 

0.26 

(0.31) 

(0.005) 

0.011 

(0.019) 

CONMM_HR_12KM (0.78) 

0.82 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.79) 

0.95 

(1.16) 

(0.15) 

0.29 

(0.64) 

(0.18) 

0.28 

(0.39) 

(0.07) 

0.14 

(0.21) 

(0.19) 

0.24 

(0.31)  

(0.000) 

0.004 

(0.008) 

CONMMPOL_HR_12KM (0.76) 

0.80 

(0.84) 

(0.96) 

0.98 

(0.99) 

(0.66) 

0.82 

(1.01) 

(0.07) 

0.14 

(0.25) 

(0.10) 

0.20 

(0.30) 

(0.03) 

0.06 

(0.12) 

(0.20) 

0.25 

(0.31) 

(0.001) 

0.003 

(0.006) 

CONMMPOLSPC_HR_12KM (0.78) 

0.82 

(0.86)  

(0.96) 

0.98 

(0.99) 

(0.71) 

0.86 

(1.05) 

(0.08) 

0.22 

(0.59) 

(0.18) 

0.28 

(0.39) 

(0.02) 

0.06 

(0.12) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.005 

(0.011) 

CONMMPOLSPC3OL_HR_12KM (0.78) 

0.82 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.77) 

0.93 

(1.13) 

(0.13) 

0.31 

(0.86) 

(0.20) 

0.30 

(0.41) 

(0.04) 

0.10 

(0.17) 

(0.14) 

0.20 

(0.26) 

(0.002) 

0.006 

(0.012) 

 632 

Table 6: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 633 
Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in column 2. They are considered as a 634 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CON_3KM, CONMM_3KM, 635 
CONMMPOL_3KM, CONMMPOLSPC_3KM, CONMMPOLSPC3OL_3KM.  636 

 

Experiment 

ACC 

Thresholds  

mm/12h 

1               40 

FBIAS 

Thresholds  

mm/12h 

1               40 

ETS 

Thresholds  

mm/12h 

1               40 

FAR 

Thresholds  

mm/12h 

1               40 

CTL (0.80) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.015) 

CON_3KM (0.78) 

0.82 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.65) 

0.80 

(0.98) 

(0.08) 

0.18 

(0.42) 

(0.14) 

0.24 

(0.35) 

(0.03) 

0.06 

(0.12) 

(0.17) 

0.22 

(0.28) 

(0.001) 

0.004 

(0.009) 
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CONMM_3KM (0.78) 

0.82 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.79) 

0.96 

(1.17) 

(0.14) 

0.31 

(0.68) 

(0.17) 

0.26 

(0.37) 

(0.05) 

0.13 

(0.26) 

(0.18) 

0.24 

(0.29) 

(0.001) 

0.005 

(0.11) 

CONMMPOL_3KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.76) 

0.94 

(1.16) 

(0.12) 

0.28 

(0.65) 

(0.13) 

0.23 

(0.33) 

(0.03) 

0.09 

(0.14) 

(0.18) 

0.24 

(0.30) 

(0.001) 

0.006 

(0.11) 

CONMMPOLSPC_3KM (0.78) 

0.82 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.85) 

1.03 

(1.25)  

(0.10) 

0.27 

(0.83) 

(0.18) 

0.28 

(0.39) 

(0.03) 

0.07 

(0.13)  

(0.19) 

0.24 

(0.31) 

(0.001) 

0.005 

(0.012) 

CONMMPOLSPC3OL_3KM (0.79) 

0.83 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.81) 

0.96 

(1.17) 

(0.10) 

0.24 

(0.64) 

(0.17) 

0.27 

(0.39) 

(0.05) 

0.12 

(0.19) 

(0.21) 

0.27 

(0.33) 

(0.000) 

0.003 

(0.007) 

 637 

Table 7: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 638 
Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in column 3. They are considered as a 639 
function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CON_12KM_3KM, CONMM_12KM_3KM, 640 

CONMMPOL_12KM_3KM, CONMMPOLSPC_12KM_3KM, CONMMPOLSPC3OL_12KM_3KM.  641 

 642 

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.80) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.015) 

CON_12KM_3KM (0.77) 

0.81 

(0.84) 

(0.96) 

0.98 

(0.99) 

(0.68) 

0.84 

(1.03) 

(0.02) 

0.10 

(0.34) 

(0.11) 

0.20 

(0.30) 

(0.01) 

0.04 

(0.007) 

(0.21) 

0.27 

(0.33) 

(0) 

0.001 

(0.004) 
 

CONMM_12KM_3KM (0.79) 

0.83 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.96 

(1.18) 

(0.09) 

0.31 

(1.02) 

(0.18) 

0.28 

(0.40) 

(0.03) 

0.07 

(0.13) 

(0.17) 

0.23 

(0.29) 

(0.001) 

0.006 

(0.013) 

CONMMPOL_12KM_3KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.96 

(1.19) 

(0.11) 

0.26 

(0.65) 

(0.14) 

0.23 

(0.33) 

(0.03) 

0.08 

(0.14) 

(0.19) 

0.25 

(0.31) 

(0.001) 

0.006 

(0.011) 

CONMMPOLSPC_12KM_3KM (0.77) 

0.81 

(0.85) 

(0.97) 

0.98 

(0.99) 

(0.87) 

1.04 

(1.28) 

(0.09) 

0.25 

(0.70) 

(0.16) 

0.26 

(0.37) 

(0.04) 

0.08 

(0.14) 

(0.22) 

0.28 

(0.34) 

(0) 

0.004 

(0.009) 

CONMMPOLSPC3OL_12KM_3KM (0.79) 

0.83 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.82) 

0.98 

(1.18) 

(0.08) 

0.15 

(0.24) 

(0.19) 

0.30 

(0.41) 

(0.05) 

0.11 

(0.18) 

(0.19) 

0.25 

(0.31) 

(0) 

0.002 

(0.003) 

 643 

Table 8: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 644 
Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in line 1. They are considered as a 645 
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function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CON_3KM, CON_HR_12KM, 646 
CON_12KM_3KM.  647 

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.80) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.014) 

CON_3KM (0.78) 

0.82 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.65) 

0.80 

(0.98) 

(0.08) 

0.18 

(0.42) 

(0.14) 

0.24 

(0.35) 

(0.03) 

0.06 

(0.12) 

(0.17) 

0.22 

(0.28) 

(0.001) 

0.004 

(0.009) 

CON_HR_12KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.97 

(0.99) 

(0.75) 

0.91 

(1.11) 

(0.21) 

0.49 

(1.61) 

(0.15) 

0.25 

(0.36) 

(0.03) 

0.07 

(0.13) 

(0.20) 

0.26 

(0.31) 

(0.005) 

0.0011 

(0.19) 

CON_12KM_3KM (0.77) 

0.81 

(0.84) 

(0.96) 

0.98 

(0.99) 

(0.68) 

0.84 

(1.03) 

(0.02) 

0.10 

(0.34) 

(0.11) 

0.20 

(0.30) 

(0.01) 

0.04 

(0.07) 

(0.21) 

0.27 

(0.33) 

(0) 

0.001 

(0.004) 

 648 

Table 9: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 649 
Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in line 2. They are considered as a 650 
function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CONMM_3KM, CONMM_HR_12KM, 651 

CONMM_12KM_3KM.  652 

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.80) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.15) 

CONMM_3KM (0.78) 

0.82 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.79) 

0.96 

(1.17)  

(0.14) 

0.31 

(0.68) 

(0.17) 

0.26 

(0.37) 

(0.05) 

0.13 

(0.26) 

(0.18) 

0.24 

(0.29) 

(0.001) 

0.005 

(0.011) 

CONMM_HR_12KM (07.8) 

0.82 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.79) 

0.95 

(1.16) 

(0.15) 

0.29 

(0.64) 

(0.18) 

0.28 

(0.39) 

(0.07) 

0.14 

(0.21) 

(0.19) 

0.24 

(0.31)  

(0) 

0.004 

(0.008) 

CONMM_12KM_3KM (0.79) 

0.83 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.96 

(1.18) 

(0.09) 

0.31 

(1.01) 

(0.18) 

0.28 

(0.40) 

(0.03) 

0.07 

(0.13) 

(0.17) 

0.23 

(0.29) 

(0.001) 

0.006 

(0.013) 

 653 

Table 10: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 654 
Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in line 3. They are considered as a 655 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CONMMPOL_3KM, 656 
CONMMPOL_HR_12KM, CONMMPOL_12KM_3KM. 657 
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Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.79) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.015) 

CONMMPOL_3KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.76) 

0.94 

(1.16) 

(0.12) 

0.28 

(0.65)  

(0.13) 

0.23 

(0.33) 

(0.03) 

0.09 

(0.14) 

(0.18) 

0.24 

(0.30) 

(0.001) 

0.006 

(0.011) 

CONMMPOL_HR_12KM (0.76) 

0.80 

(0.84) 

(0.97) 

0.98 

(0.99) 

(0.66) 

0.82 

(1.01) 

(0.07) 

0.14 

(0.25) 

(0.10) 

0.20 

(0.30) 

(0.03) 

0.006 

(0.11) 

(0.20) 

0.25 

(0.31) 

(0.001) 

0.003 

(0.006) 

CONMMPOL_12KM_3KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.96 

(1.19) 

(0.11) 

0.26 

(0.65) 

(0.14) 

0.23 

(0.33) 

(0.03) 

0.08 

(0.13) 

(0.19) 

0.25 

(0.31) 

(0.01) 

0.005 

(0.011) 

 658 

Table 11: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 659 
Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in line4. They are considered as a 660 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CONMMPOLSPC_3KM, 661 
CONMMPOLSPC_HR_12KM, CONMMPOLSPC_12KM_3KM.  662 

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.79) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.015) 

CONMMPOLSPC_3KM (0.78) 

0.82 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.85) 

1.03 

(1.25) 

(0.10) 

0.27 

(0.83) 

(0.18) 

0.28 

(0.39) 

(0.03) 

0.07 

(0.13) 

(0.19) 

0.25 

(0.31) 

(0.001) 

0.005 

(0.012) 

CONMMPOLSPC_HR_12KM (0.78) 

0.82 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.71) 

0.86 

(1.05) 

(0.08) 

0.22 

(0.59) 

(0.17) 

0.28 

(0.39) 

(0.02) 

0.06 

(0.12) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.005 

(0.11) 

CONMMPOLSPC_12KM_3KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.87) 

1.04 

(1.28) 

(0.09) 

0.25 

(0.70) 

(0.16) 

0.26 

(0.36) 

(0.04) 

0.08 

(0.14) 

(0.22) 

0.28 

(0.34) 

(0) 

0.004 

(0.009) 

 663 

Table 12: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 664 
Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in line 5. They are considered as a 665 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CONMMPOLSPC3OL_3KM, 666 
CONMMPOLSPC3OL_HR_12KM, CONMMPOLSPC3OL_12KM_3KM. 667 
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Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.79) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.44) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.015) 

CONMMPOLSPC3OL_3KM (0.79) 

0.83 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.81) 

0.96 

(1.17) 

(0.10) 

0.24 

(0.64) 

(0.17) 

0.27 

(0.39) 

(0.05) 

0.12 

(0.19) 

(0.21) 

0.27 

(0.33) 

(0) 

0.003 

(0.007) 

CONMMPOLSPC3OL_HR_12KM (0.78) 

0.82 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.77) 

0.93 

(1.13) 

(0.13) 

0.31 

(0.86) 

(0.20) 

0.30 

(0.41) 

(0.004) 

0.10 

(0.17) 

(0.14) 

0.20 

(0.26) 

(0.002) 

0.006 

(0.012) 

CONMMPOLSPC3OL_12KM_3KM (0.79) 

0.83 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.82) 

0.98 

(1.18) 

(0.08) 

0.15 

(0.24) 

(0.19) 

0.30 

(0.41) 

(0.04) 

0.11 

(0.18) 

(0.19) 

0.25 

(0.31) 

(0) 

0.002 

(0.003) 

 669 


