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General comments 

I do acknowledge the efforts made by the authors to address my comments. However, some new elements 

have been introduced in the manuscript that call for clarifications: 

 In my previous review, I suggested using confidence intervals to evaluate the statistical significance 

of the results. The authors have computed these confidence intervals, which add value to the 

manuscript. However, the results are presented in a cumbersome way. The authors provide 9 (!) 

tables with skill scores and associated confidence intervals. The authors should pick up salient 

features in these tables and explicitly refer to them in the text to help the reader (and convince 

him/her!; see some related comments here below, which are not exhaustive). In particular, the 

most striking (and not much discussed) feature is that nearly all figures have overlapping 

confidence intervals, which definitely call for cautious interpretations and justify backing up any 

conclusion carefully. 

We agree with the reviewer that 9 tables, with 4 different skill scores and 2 thresholds of 

precipitation and related confidence intervals, could make the paper difficult to read, so we reduced 

the number of tables commenting explicitly their main peculiarities in the text. In addition, some 

results interpretations and conclusions have been cautiously reviewed and rewritten. 

 The use of a dynamical thinning in relationship with the outer loop technique needs to be clarified 

(see my comment below). In the end, are there more or less radar data ingested with this 

technique? 

We are very sorry for the misunderstanding created with the words "dynamical thinning" in 

relationship with the outer loop techinque: we didn't mean that thinning and outer loop strategy 

are the same thing, not at all! Because thinning is used to reduce the number of observations 

assimilated in NWP models, vice versa the outer loop strategy allowed the ingestion of more 

observations progressively. 

Specific comments 

 Section 2.1: It should be mentioned in the text that Figure 2 was produced with DEWETRA. 

Otherwise, the reader who overlooks Figure 2’s caption does not understand why DEWETRA is 

introduced here. 

We agree with the reviewer. The sentence has been modified as follows: " Figure 2, produced using 

DEWETRA operational platform, shows the interpolated map ....." 

 Section 3.1: The authors explain that ‘volume reflectivity radar data, for each elevation, are 

projected onto the Cartesian plane in order to find the closest radar bin for each Cartesian grid 



 

point and then they are interpolated by the 3D-Var code of WRF’. This is still unclear to me. Does it 

mean that there is a radar observation assimilated at every model grid point (that of ‘the closest 

radar bin’)? What kind of interpolation is done by the 3D-Var code? In other words, the interesting 

(and missing) piece of information here is the spatial resolution of the observations.  

We recognize that as it is written the phrase you mentioned could create a misunderstanding. 

Following we try to better explain the procedure performed on radar data and to clarify the 

sentence. 

The first step in the radar data processing for assimilation involves transformation of radar data to 

geographical coordinates. Radar data are originally given in a polar geometry in which data points 

are represented in range, azimuth and elevation. Before assimilation, weather radar data volumes 

need to be transformed into geographical (latitude, longitude, altitude) Cartesian coordinates. 

So, in this study radar observations (specifically reflectivities) have been converted from the polar 

coordinates to lat/lon and elevation, that is the observation information contained into the 

"ob.radar" file.  

As stated by WRFHELP (the email assistance service that provides user support) WRFDA does not 
have any QC or pre-processing/smoothing/interpolation built in; "ob.radar"  should contain 
observation information in terms of lat/lon and elevation. There should be no interpolation except 
to convert from the radar's native polar coordinates to lat/lon and elevation. 

Anyway the sentence aforementioned has been modified as follows: "volume reflectivity radar data 
are converted from their native polar coordinates (range, azimuth and elevation) into geographical 
Cartesian ones (latitude, longitude and elevation)". 

Table 1, on technical characteristics of the three radars, has been modified as follows: 

Features Units MM  

radar 

P55C  

radar 

SPC  

radar 

Owner  
CF Abruzzo 

Region 

ISAC-CNR of 

Rome 
Arpae Emilia Romagna 

Location  Monte Midia  Rome San Pietro Capofiume 

Latitude [deg] 42.057 41.840 44.6547 

Longitude [deg] 13.177 12.647 11.6236 

Height (a.s.l.) [m] 1760 131 31 

Doppler   YES YES YES 

Dual Polarization  NO YES YES 

Range Resolution [m] 500 75 250 

Half Power Beam Width [deg] 1.6 1 0.9 

Temporal Resolution [min] 15 5 15 

Elevations angles 

used in PPI scans 
[deg] 0, 1, 2, 3 

0.6, 1.6, 2.6, 4.4, 

6.2, 8.3, 11.0, 14.6 

0.53, 1.4, 2.3, 3.2, 4.1, 

5.0 

Maximum Range [km] 120 or 240  120 125 

 

Moreover, the missing piece of information about spatial resolution of the observations has been 
added to the manuscript as follows: "each radar has a half power beam width of 1.6, 1 and 0.9 
degree respectively for Monte Midia (MM), Polar55C (P55C) and San Pietro Capofiume (SPC) and a 
range resolution of 500, 75 and 250 metres." 
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 Section 3.1: The authors write: ‘Moreover, no observation thinning is performed because this 

procedure is not yet developed into the 3D-Var system for radar data. Nevertheless, a dynamical 

thinning has been devised that selects, for every assimilation cycle, the most influential partition of 

a particular measurement, from information based on the previous cycle: this is the multiple outer 

loops technique explained later in Section 4.’ I have a different understanding of the outer loop 

technique. I understand that it is meant to update linearised operators (such as the observation 

operator) during the minimization process. As a consequence, more observations are assimilated 

with each iteration and the quality of the analysis is improved.  

I do not see the relationship between the outer loop technique and thinning. The purpose of the 

latter is to counterbalance the use of an overly simplistic (ie, diagonal) observation error covariance 

matrix or to reduce the computational cost of the assimilation. Thinning actually results in reducing 

the amount of observations.  

So what is the ‘dynamical thinning [that] has been devised that selects, for every assimilation cycle, 

the most influential partition of a particular measurement, from information based on the previous 

cycle’? In the cited literature, Rizvi et al. (2008) pertains to the outer loop technique (in passing, it 

may be more appropriate to cite peer-reviewed articles such as Hsiao et al. 2012), and Liu and 

Rabier (2002) pertains to thinning, but no citation refers to both thinning and outer loop.  

As already anticipated in the general comments we are very sorry for creating the misunderstanding 

between thinning and outer loops, we exactly know that they are two different techniques with two 

different and opposite scopes. On one hand, data thinning techniques (like superobing) have both 

the goal to reduce the amount of data (extracting the essential information content and decreasing 

the computational cost of the assimilation) and spatial error correlations between adjacent 

observations. On the other hand, the outer loops strategy is used to solve the non-linear problems 

involved in the calculation of the observation operator: this technique results in an improvment of 

the quality of the analysis because the number of the observations assimilated increased for each 

subsequent outer loop, since the observations that were rejected in the previous outer loop can 

enter in the succeeding outer loop.  

The manuscript has been revised in the light of these last considerations. 

Lines 191-194 of the old version of the manuscript have been modified as follows: "Moreover, no 

observation thinning is performed because this procedure is not yet developed into the 3D-Var 

system for radar data. Instead, an iterative approach has been applied to extract more information 

from radar data during the assimilation procedure: this is the multiple outer loops technique 

explained later in Section 4". 

We agree with the reviewer that Hsiao et al 2012 is more appropriate to cite for the outer loops 

technique, so we replaced Rizvi et al. 2008 with Hsiao et al. 2012 and lines 280-284 of the old 

version of the manuscript have been rewritten as follows: "Finally, an experiment to assess the role 

of the outer loops is performed (CONMMPOLSPC3OL): to include non-linearities into the observation 

operator and to evaluate the impact of reflectivity data entering for each cycle, the multiple outer 

loops strategy is applied (Hsiao et al. 2012). According to this approach, the non-linear problem is 

solved iteratively as a progression of linear problems: the assimilation system is able to ingest more 

observations by running more than one analysis outer loop, allowing observations rejected in the 

previous loop to be enter into the subsequent one. Since radar data are non linearly related to the 

analysis control variables, the outer loops method is particularly helpful to extract more information 

from such data."  



 

In the "References" too, Rizvi et al. 2008 has been removed, whereas Hsiao et al. 2012 has been 

added. 

Concerning Liu and Rabier 2002 (line 387 of the old version of the manuscript), the citation in the 

paper wanted to be pertain to thinning, not to both thinning and outer loop. 

The sentence in question is almost a verbatim excerpt from Cardinali (2013, 2014). Does it mean 

that the authors used a dynamical thinning based on the influence matrix, which is the topic dealt 

with by Cardinali (2013, 2014)? In that case, they should add a reference to the technique they 

used or give more details about how it works. If this is related to the outer loop technique, the 

authors should formulate this relationship more explicitly. 

The aforementioned sentence is not related to the influence matrix but to the outer loops approach. 
The sentence has been formulated more explicitly as follows: "Instead, an iterative approach has 
been applied to extract more information from radar data during the assimilation procedure: this is 
the multiple outer loops technique explained later in Section 4." 
 

 Section 5, comments on Table 4: Table 4 contains a lot of figures and the conclusions which are 

drawn from it are that the values are ‘good’ for ACC and FAR (which is expected when the 

considered events are rare) and that the experiments overestimate light precipitation. Is Table 4 

really needed?  

We agree with the reviewer that Table 4 is not strictly necessary so it has been removed. 

Conclusions which are drawn from it have been summarized in the text as follows (lines 310-316 of 

the new version of the manuscript): "At an objective comparison of the statistical indices (not shown 

here) with their relative upper and lower confidence limits for the 12 hours accumulated 

precipitation and for two thresholds (1 mm and 40 mm for light and heavy rain regimes 

respectively), we obtained likely good values for ACC and FAR for all the experiments and for heavy 

rain regimes, strengthened by a small uncertainty interval. On the other hand, for the lower 

threshold the values of FBIAS for all simulations, considering also the confidence intervals, are 

greater than one. One possible interpretation of the impact of the lower threshold is that with 95% 

confidence all the experiments are overestimating the frequency of precipitation around 1 

mm/12h." 

 Section 5: What message do the authors want to convey with the following sentence: ‘MET indices 

in Table 5 suggest that CTL and CON_HR_12KM have the widest spread between the CIs limits for 

higher thresholds’? 

With the aforementioned sentence the authors want to say that CTL and CON_HR_12KM are the 

experiments with the largest difference between the confidence intervals bounds for heavy rain 

regimes of FBIAS. This result suggests that the remaining simulations, with smallest difference in CIs 

limits and with both bounds lower than 1, surely understimate the frequency of heavy precipitating 

events. Conversevely, we don't assert the same for CTL and CON_HR_12KM. 

We modified the sentence as follows (lines 330-335 of the new version of the manuscript): "MET 

indices (not shown here) suggest that CTL and CON_HR_12KM have the largest difference between 

the CIs bounds for higher thresholds of FBIAS: this result suggests that the remaining simulations, 

with smallest difference in CIs limits and with both bounds lower than 1, surely underestimate the 

frequency of heavy precipitating events." 

 Section 5, l 327: I do not understand how the conclusion that ‘CONMMPOLSPC3OL_HR_12KM is the 

simulation with the best response’ is reached. The score values for all experiments are quite close 



 

to each other and within the uncertainty intervals, and CONMMPOLSPC3OL_HR_12KM even scores 

lower than CTL for ACC(1 mm), FBIAS and ETS(1 mm).  

We agree with the reviewer that some results interpretations have to be give with caution as in this 

case where the score values for all simulations are quite close to each other. We modified the 

sentence as follows:"Another aspect to point out is that some indices for all simulations are quite 

close to each other and within the CIs, so it is not possible to discern which is the best experiment 

over all" 

 Section 5, ll 338-339: I do not understand that ‘the frequency of rainfall overestimation for higher 

thresholds has been reduced by radar reflectivity assimilation performed only on D01’. For higher 

thresholds, FBIAS is systematically below 1, which means that the experiments underestimate the 

frequencies of large rainfall accumulations. The underestimations are even worse when radar 

reflectivity data are assimilated in D01 only: all FBIAS score values lie below .31 when radar 

reflectivity is assimilated, vs .47 and .49 for CTL and CON_HR_12KM, respectively. 

We agree with the reviewer, the sentence has been modified as follows: "the frequency of rainfall 

underestimation for higher thresholds found in the mother domain when radar reflectivity data are 

assimilated in D01 only has been reduced by switching to a higher resolution domain, moreover, the 

overestimation of the frequency for lower thresholds has been corrected because the FBIAS, 

previously systematically above 1, is found approximately 1 (indices not shown)." 

 Section 5, ll 342-344: ‘The assimilation, operated on both 12 km and 3 km, gives better results than 

the ones on column 1, but a worse response than the others on column 2 is given for higher 

thresholds.’ Could the authors please back this up? It is far from straightforward to see it.  

The aforementioned sentence has been clarified as follows: "Data assimilation, operated on both 12 

km and 3 km, shows similar performances to the experiments where assimilation is performed only 

on D01 (table 4), but a worse response for higher thresholds (tables 3 and 4) than the ones where 

assimilation is carried out on D02."  

 Section 5, ll 378-380: How can shielded radar data lead to underestimating precipitation forecasts? 

I understood that they had been filtered out (see ll 184-185 ‘all the data that are affected by partial 

beam blocking and clutter have been filtered out’). 

Radar shielding depends on the location of the radar with respect to surrounding hills and 
mountains. Consider if a beam was filtered out along some azimuth angles, only beams at higher 
elevation angles are assimilated and at longer range only the ice regions are samples, leading to a 
partial distribution of the 3D reflectivity.  

   The aforementioned sentence has been rewritten as follows: "With regard to the assimilation of   
reflectivity radar data, it should be noted that P55C radar observations of the event considered is 
shielded at the lowest elevation angles by the Apennines range and provides a limited contribution 
to reflectivity data that are assimilated." 
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Abstract. An analysis to evaluate the impact of multiple radar reflectivity data with a three dimensional variational 

(3D-Var) assimilation system on a heavy precipitation event is presented. The main goal is to build a regionally-tuned 

numerical prediction model and a decision-support system for environmental civil protection services and demonstrate 

it in the central Italian regions, distinguishing which type of observations, conventional and not (or a combination of 

them) is more effective in improving the accuracy of the forecasted rainfall. In that respect, during the first Special 

Observation Period (SOP1) of HyMeX (Hydrological cycle in the Mediterranean Experiment) campaign several 

Intensive Observing Periods (IOPs) were launched and nine of which occurred in Italy. Among them, IOP4 is chosen 

for this study because of its low predictability regarding the exact location and amount of precipitation. This event hit 

central Italy on 14 September 2012 producing heavy precipitation and causing several damages to buildings, 

infrastructures and roads. Reflectivity data taken from three C-band Doppler radars running operationally during the 



 

event are assimilated using 3D-Var technique to improve high resolution initial conditions. In order to evaluate the 

impact of the assimilation procedure at different horizontal resolutions and to assess the impact of assimilating 

reflectivity data from multiple radars, several experiments using Weather Research and Forecasting (WRF) model are 

performed. Finally, traditional verification scores as accuracy, equitable threat score, false alarm ratio and frequency 

bias, interpreted analyzing their uncertainty through bootstrap confidence intervals (CIs), are used to objectively 

compare the experiments, using rain gauge data as benchmark. 

Keywords: radar data assimilation, WRF, 3D-Var, MET, bootstrap confidence intervals, HyMeX 

 

1 Introduction 

In the last few years, a large number of floods caused by different meteorological events occurred in Italy. These events 

mainly affected small areas (few hundreds of square kilometers) making their forecast very difficult. Indeed, one of the 

most important factors in producing a flash flood was found to be the persistence of the meteorological system over the 

same area in the presence of specific hydrological conditions (the size of the drainage basin, the topography of the 

basin, the amount of urban use within the basin, and so on), allowing for accumulating large amount of rain (Doswell et 

al., 1996). In complex orography areas, such the Italian regions, this is largely due to the barrier effect produced by the 

mountains, such as the Apennines. Moreover, the Mediterranean basin is affected by a complex meteorology, due to the 

peculiar distribution of land and water and to the Mediterranean Sea temperature, which is warmer than that of the 

European northern seas (Baltic Sea and North Sea). These factors may produce severe meteorological events: for 

example, if precipitation persists over urbanized watersheds with steep slopes, devastating floods can occur in a 

relatively short time. 

The scientific community widely recognizes the need of numerical weather prediction (NWP) models to be run at high 

resolution for improving very short term quantitative precipitation forecasts (QPF) during severe weather events and 

flash floods. The combination of NWP models and weather radar observations has shown improved skill with respect to 

extrapolation-based techniques (Sun et al., 2014). Nevertheless, the accuracy of the mesoscale NWP models is 

negatively affected by the “spin-up” effect (Daley 1991) and is mostly dependent on the errors in the initial and lateral 

boundary conditions (IC and BC, respectively), along with deficiencies in the numerical models themselves, and at the 

resolution of kilometers even more critical because of the lack of high resolution observations, beside for radar data. 

Several studies in the meteorological field have demonstrated that the assimilation of appropriate data into the NWP 

models, especially radar (Sugimoto et al., 2009) and satellite ones (Sokol, 2009), significantly reduces the "spin-up" 

effect and improves the IC and BC of the mesoscale models. Classical observations such as TEMP (upper level 

temperature, humidity, and winds observations) or SYNOP (surface synoptic observations) do not have enough density 

to describe for example local convection, while radar measurements can provide a sufficient density of data. Maiello et 

al. (2014) showed the positive effect of the assimilation of radar data into the precipitation forecast of a heavy rainfall 

event occurred in central Italy. The authors showed the gain by using assimilating radar data with respect to the 

conventional ones. Similar results are obtained for a case of severe convective storm in Croatia by Stanesic and 

Brewster (2016). 

Weather radar has a fundamental role in showing tridimensional structures of convective storms and the associated 

mesoscale and microscale systems (Nakatani, 2015). As an example, Xiao and Sun (2007) showed that the assimilation 

of radar observation at high resolution (2km) can improve convective systems prediction. Recent researches in 



 

meteorology have established that the assimilation of real-time data, especially radar measurements (radial velocities 

and/or reflectivities), into the mesoscale NWP models can improve predicted precipitations for the next few hours. (e.g. 

Xiao et al., 2005; Sokol and Rezacova, 2006; Dixon et al., 2009; Salonen et al., 2010). 

The aim of this study is to investigate the potential of improving NWP rainfall forecasts by assimilating multiple radar 

reflectivity data in combination or not with conventional observations. This may have a direct benefit also for 

hydrological applications, particularly for real time flash flood prediction and consequently for civil protection 

purposes. Major obstacles, that makes the assimilation of radar reflectivities into NWP models a challenging problem 

both mathematically and physically, lie in the non-linear relation between radar reflectivity and precipitation intensity 

as well as in the rapid evolution of mesoscale systems. While radial velocities observation operator is linear and based 

directly on prognostic model variables (i.e. wind), the simulation of radar reflectivity is more challenging than radial 

velocity, because the observation operator of radar reflectivity is highly non-linear and has a non-Gaussian error 

probability density function. 

The novelty of the paper is in exploring the impact on the high-resolution forecast of the assimilation of multiple radar 

reflectivity data in a complex orography area, such as central Italian regions, to predict intense precipitation. This aim is 

reached by using the IOP4 of the SOP1 in the framework of the HyMeX campaign (Ducrocq et al. 2014, Ferretti et al. 

2014, Davolio et al. 2015). The SOP1 was held from 5 September to 5 November 2012; the IOP4 was issued for the 

central Italy target area on 14 September 2012 and it was tagged both as a Heavy Precipitation Event (HPE) and a Flash 

Flood Event (FFE). The reflectivity measured by three C-band weather radars was ingested together with traditional 

meteorological observations (SYNOP and TEMP) using 3D-Var to improve WRF model performance. So far, several 

studies about reflectivity data assimilation in heavy rainfall cases have been performed (e.g. Ha et al. 2011, Das et al. 

2015) also including multiple radars data and in complex orography (e.g. Lee et al. 2010, Liu et al. 2013). However, this 

is the first experiment conducted on the Italian territory taking advantage of the reflectivity data collected by all the 

radars that cover central Italy.  

The manuscript is arranged as follows. Section 2 provides information on the flash flood event and WRF model 

configuration. Section 3 presents the observations to be assimilated, the WRF 3D-Var data assimilation system, and the 

evaluation method used. The results are showed and assessed in the fourth and fifth Section. Summary and conclusions 

are reflected in the last Section. 

2 Study area and model set up 

 

Flash floods are still one of the natural hazards producing human and economic losses (Llasat et al. 2013). Moreover, an 

increasing trend of the occurrence of severe events in the whole Mediterranean area has been found by several authors 

(Hertig et al. 2012, Martin et al. 2013, Diodato and Bellocchi, 2014). These open issues drove the HyMeX programme 

(http://www.hymex.org) aims at a better understanding of the water cycle in the Mediterranean with focus on extreme 

weather events. The observation strategy of HyMeX is organized in a long-term (4 years) Enhanced Observation 

Periods (EOP) and short-term (2 months) Special Observation Periods (SOP). During the SOP1, that was held from 5 

September to 5 November 2012 with the major aim of investigating still-unclear mesoscale meteorological mechanisms 

over the Mediterranean area, three Italian hydro-meteorological sites were identified within the Western Mediterranean 

Target Area (TA): Liguria–Tuscany (LT), northeastern Italy (NEI) and central Italy (CI). Several Intensive Observing 

Periods (IOPs) were issued during the campaign to document Heavy Precipitation Events (HPE), Flash Floods Events 

(FFE) and Orographic Precipitation Events (ORP). 



 

 

2.1 Case study 

During the day of 14 September 2012 a deep upper level trough entered the Mediterranean basin and deepened over the 

Tyrrhenian Sea slowly moving south eastward. A cut-off low developed over central Italy (Figure 1a, c) advecting cold 

air along the central Adriatic coast producing instability over central and southern Italy, and enhanced the Bora flow 

over the northern Adriatic Sea. Convection with heavy precipitations occurred in the morning of September 14 mainly 

along the central eastern Italian coast (Marche and Abruzzo regions), associated with the cut-off low over the 

Tyrrhenian Sea, producing flood in the urban area of Pescara where rainfall reached 150 mm in a few hours causing 

several river overflows, a landslide and many damages in the area of the city hospital. Progressive motion south-

eastward of the cut-off and its filling (Figure 1b, d) gradually moved phenomena over south of Italy, even if some 

instability still remained over medium Adriatic until the afternoon of Saturday September 15. At the same time, a ridge 

developed high pressure on the west part of West Mediterranean domain; this ridge slowly drifts eastwards during the 

weekend. 

Figure 2, produced using DEWETRA operational platform, shows the interpolated map of 24h accumulated rainfall 

recorded from rain gauges network from September 14 to September 15 (00:00-00:00UTC) with a maximum 

accumulated rainfall on the highest peak of Abruzzo region (Campo Imperatore) approximately reaching 300 mm in 24 

hours. DEWETRA (Italian Civil Protection Department, CIMA Research Foundation, 2014) is an operational web 

platform used by the Italian Civil Protection Department (DPC) and implemented by CIMA Research Foundation 

(http://www.cimafoundation.org/en/). DEWETRA allows synthesis, integration and comparison of information 

necessary for instrumental monitoring, models forecasting and to build real-time risk scenarios and their possible 

evolution. Rain gauges time series of some selected stations in Marche and Abruzzo regions, where most significant 

amount of rainfall is accumulated are presented in Figure 3: Fermo and Pintura di Bolognola (Marche region) 

respectively with nearly 130 mm in 24h (Figure 3a) and 180 mm in 24h (Figure 3b); Campo Imperatore, Atri and 

Pescara Colli (Abruzzo region) with respectively nearly 300 mm (Figure 3c), 160 mm (Figure 3d) and 140 mm (Figure 

3e) in 24h. It is clearly shown (Figure 3) that the accumulation started around 02:00UTC of 14 September: in Fermo, 

Atri and Pescara Colli most of rainfall was concentrated in the first half of the day, whereas in Pintura di Bolognola and 

Campo Imperatore, precipitation fell all day long. The large amount of hourly precipitation for Atri and Pescara Colli 

respectively at 06:00UTC and 05:00UTC (red ovals in Fig. 3d and 3e) reaching 45mm/h, indicating convective 

precipitation, whereas rainfall at Campo Imperatore rain gauge (Fig. 3c) was much weaker but lasting longer which 

allowed for reaching an accumulated amount of approximately 300 mm in 24h. 

Figure 4 shows the Vertical Maximum Intensity (VMI) reflectivity product from the Italian radar network (Vulpiani et 

al., 2008a) superimposed onto the Meteosat Second Generation (MSG) 10.8 µm image (in normalized inverted 

greyscale). A zoom over the central Italy target area highlights a line of convective cells along the Apennines in central 

Italy due to the western flow approaching the orographic barrier. VMI values above 45 dBZ are associated with intense 

precipitation that occurred during convective events. 

2.2 WRF model set up 

 

The numerical weather prediction experiments are performed in this work using the non-hydrostatic Advanced 

Research WRF (ARW) modeling system V3.4.1. It is a primitive equations mesoscale meteorological model, with 



 

terrain-following vertical coordinates and options for different physical parameterizations. Skamarock et al. (2008) 

provides a detailed overview of the model.  

In this study, a one-way nested configuration using the ndown program is used: a 12 km domain (263185) that covers 

central Europe and west Mediterranean basin (referred as D01) is initialized using the European Centre for Medium-

Range Weather Forecasts (ECMWF) analyses at 0.25 degrees of horizontal resolution; an innermost domain, that covers 

the whole Italy (referred as D02), with a grid space of 3 km (445449) using as BC and IC the output of the previous 

forecast at 12 km. Both domains run with 37 unequally spaced vertical levels, from the surface up to 100 hPa (Figure 

5).  

Taking into account that the performance of a mesoscale model is highly related to the parameterization schemes, the 

main physics packages used in this study are set as for the operational configuration (Ferretti et al., 2014) used at the 

centre of Excellence CETEMPS. They include (Skamarock et al., 2008): the “New” Thompson et al. 2004 microphysics 

scheme, the MYJ (Mellor-Yamada-Janjic) scheme for the PBL (planetary boundary layer), the Goddard shortwave 

radiation scheme and the RRTM (rapid radiative transfer model) longwave radiation scheme, the Eta similarity scheme 

for surface layer formulation and the Noah LSM (Land Surface Model) to parameterize physics of land surface. A few 

preliminary tests are performed to assess the best cumulus parameterization scheme to be used both for the coarse and 

finest resolution domain for this event. Hence, the following parameterizations are tested: the new Kain–Fritsch and the 

Grell 3D schemes. The latter is an enhanced Dudhia of the Grell-Deveneyi scheme, in our simulations only used on the 

lowest resolution domain, where the option cugd_avedx (subsidence spreading) is switched on. Based on the results of 

these two cumulus parameterization schemes, the one producing the best precipitation forecast will be used to evaluate 

the impact of data assimilation. 

 

3 Data and methodology  

 

This section will be focused on the description of types of observations ingested into the assimilation procedure, namely 

both conventional and radar, and on the 3D-Var methodology as well as the observation operator used for the 

calculation of the reflectivity. Moreover, a brief overview of the evaluation method adopted to assess the performance 

of numerical weather predictions will be given. 

 

3.1 Observations to be assimilated 

Conventional observations SYNOP and TEMP were retrieved from the ECMWF Meteorological Archival and Retrieval 

System (MARS). They have been packed in a suitable format for ingest into the assimilation procedure using the 

Observation Preprocessor (OBSPROC) module provided by the 3D-Var system. Among its main functions there are 

also to perform a quality control check and to assign observational errors based on a pre-specified error file. In short, a 

total of 983 observations (967 SYNOP and 16 TEMP) are ingested into the coarse resolution domain, whereas a total of 

338 (333 SYNOP and 5 TEMP) observations into the high resolution one.  

Reflectivities taken from three C-band Doppler radars operational during the IOP4 have been assimilated to improve IC. 

The radars have different technical characteristics and were operated with different scanning strategies and operational 

settings as shown in Table 1: each radar has a half power beam width of 1.6, 1 and 0.9 degree respectively for Monte 

Midia (MM), Polar55C (P55C) and San Pietro Capofiume (SPC) and a range resolution of 500, 75 and 250 metres.  



 

MM and SPC radars are included in the Italian weather radar network, while P55C radar is a research radar working on 

demand, but was operational during the IOPs of the HyMeX campaign  (Roberto et al., 2016). 

It is worth mentioning that radar data can be affected by numerous sources of errors, mainly due to ground clutter, 

attenuation due to propagation or beam blocking, anomalous propagation and radio interferences. This is the reason 

why a preliminary "cleaning" procedure is applied to the measured radar reflectivity from the three radars before the 

assimilation process, consisting of the following 3 steps: 

 a first quality check of radar volumes to filter out radar pixels affected by ground clutter and anomalous 

propagation. Furthermore, Z was corrected for attenuation using a methodology based on the specific 

differential phase shift (Kdp) available for dual polarization radars (Vulpiani et al, 2015); moreover, reflectivity 

is not corrected for partial beam blocking: all the data that are affected by partial beam blocking and clutter 

have been filtered out; 

 volume reflectivity radar data are converted from their native polar coordinates (range, azimuth and elevation) 

into geographical Cartesian ones (latitude, longitude and elevation); 

 the minimum assimilated reflectivity is set to -20 dBZ. 

Moreover, no observation thinning is performed because this procedure is not yet developed into the 3D-Var system for 

radar data. Instead, an iterative approach has been applied to extract more information from radar data during the 

assimilation procedure: this is the multiple outer loops technique explained later in Section 4. 

 

3.2 3D-Var data assimilation method 

 

Data assimilation (DA) is a technique employed in many fields of geosciences perhaps most importantly in weather 

forecasting and hydrology. In this context it is the procedure by which observations are combined with the product (first 

guess or background forecast) of a NWP model and their corresponding error statistics, to produce a bettered estimate 

(the analysis) of the true state of the atmosphere (Skamarock et al., 2008). The variational DA method realizes this 

through the iterative minimization of a penalty function (Ide et al., 1997): 

 

                 
 

 
                                                                                                 (1) 

 

where x
b
 is the first guess state vector, y

0 
is the assimilated observation vector, H is the observation operator that links 

the model variables to the observation variables and x is the unknown analysis state vector to be found by minimizing 

J(x). Finally, B and R are the background covariance error matrix and the observation covariance error matrix, 

respectively. 

The minimization of the penalty function J(x), displayed by Equation (1), is the a posteriori maximum likelihood 

estimate of the true atmosphere state, given the two sources of a priori data that are x
b
 and y

0 
(Lorenc, 1986).  

In this study the 3D-Var system developed by Barker et al. (2003, 2004) is used for assimilating radar reflectivity and 

conventional observations SYNOP and TEMP. The penalty function minimization is performed in a preconditioned 

control variable space, where the preconditioned control variables are pseudo relative humidity, stream function, 

unbalanced temperature, unbalanced potential velocity and unbalanced surface pressure. Because of radar reflectivity 

assimilation is considered, the total water mixing ratio qt  is chosen as the moisture control variable. The following 

https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Weather_forecasting
https://en.wikipedia.org/wiki/Hydrology


 

equation presents the observation operator used by the 3D-Var to calculate reflectivity for the comparison with the 

observed one (Sun and Crook, 1997): 

 

                                                                                                                                                                                       (2) 

where ρ and qr are the air density in kg/m
3
 and the rainwater mixing ratio in g/kg, respectively, while Z is the co-polar 

radar reflectivity factor expressed in dBZ. Since the total water mixing ratio qt  is used as the control variable, a warm 

rain process (Dudhia, 1989) is introduced into the WRF-3D-Var system to allow for producing the increments of moist 

variables linked to the hydrometeors.  

The performance of the DA system strongly depends on the quality of the   matrix in Equation (1). In this study, a 

specific background error statistics is computed for both domains for the entire SOP1 duration using the National 

Meteorological Center (NMC) method (Parrish and Derber, 1992). This technique estimates the initial state error using 

differences of couples of forecasts valid at the same time, but with one of them having a delayed start time. One of the 

advantage of this method is that it maintains information on the dynamic of the model itself, but it may not give the 

proper correlation structure on data-sparse observations. Commonly, for regional applications and to remove the diurnal 

cycle, a delay of 24 hours between the forecasts (T+24 minus T+12) is used; nevertheless, this delay can produce 

overestimated correlation length scales compared to those needed by a variational data assimilation technique, because 

of too dynamically evolved structures (Sadiki et al., 2000). Since 3D-Var is applied to the Mediterranean area, B has to 

take into account the scale of the motions of this orographic and meteorologically complex area: the model grid 

resolution ranges between 12 km and 3km, therefore the errors have to describe the physical phenomena relative to 

these scales. 

  

3.3 Evaluation 

 

The Point-Stat Tool of MET (Model Evaluation Tools) application (DTC, 2013), developed at the DTC (Developmental 

Testbed Center, NCAR), has been used to objectively evaluate the 12 hours accumulated precipitation produced by 

WRF on both domains. The interpolation method used to match the gridded model output to the point observation is the 

distance weighted mean in a 3 x 3 square of grid points. The observations used for the statistical evaluation were 

obtained from the DEWETRA platform of the Department of Civil Protection and the comparison has been performed 

over central Italy target area using about 3000 rain gauges with a good coverage throughout the Italian territory. 

Moreover, for interpreting results from the verification analysis bootstrap, confidence intervals (CIs) have been used to 

analyze the uncertainty associated with the score's values. Bootstrapping is a non parametric, computationally 

expensive, statistical technique (Efron & Tibshirani, 1993) for estimating parameters and uncertainty information, that 

allows to make inferences from data without making strong distributional assumptions about the data or the statistic 

being calculated. Therefore, the idea was to estimate CIs to set some bounds (bootstrap upper and lower confidence 

limits) on the expected value of the verification score helping to assess whether differences between competing 

forecasts are significant. 

 

4 Design of the numerical experiments: discussion of the results 

 



 

The simulations on the coarser resolution domain (D01) are run from 12:00UTC of 13 September 2012 and integrated 

for the following 96 hours, whereas runs on the finest resolution domain started at 00:00UTC of September 14 for a 

total of 48 hours of integration. The previous coarser resolution WRF forecast at 00:00UTC is used as the first guess in 

the 3D-Var experiment, because 00:00UTC has been selected as the "analysis time" of the assimilation procedure. After 

assimilation, the lateral and lower boundary conditions are updated for the high resolution forecast. Finally, the new IC 

and BC are used for the model initialization (in a warm start regime) at 00:00UTC. As already pointed out a set of 

preliminary experiments are performed using different cumulus convective scheme to assess the best one to be used. 

The following experiments are performed without assimilation and using the convective scheme on the coarser 

resolution domain only: KAIN-FRITSCH (KF_MYJ); GRELL3D (GRELL3D_MYJ); GRELL3D associated with the 

CUGD factor (GRELL3D_MYJ_CUGD). The best performance is obtained by Grell3D scheme which is able to 

simulate the peak precipitation cumulated in 24h over Campo Imperatore, whereas KAIN-FRITSCH completely misses 

it (not shown here). The MET statistical analysis support the previous finding and the simulation with cugd_avedx 

activated shows a significant performance in terms of uncertainty of the calculated scores than the other two simulations 

(not shown). Here after GRELL3D_MYJ_CUGD is referred as the control experiment (CTL) performed without any 

data assimilation.  

At this point analysis of a new set of simulations is performed allowing to establish the best model configuration for the 

radar reflectivity assimilation. The DA experiments aim to investigate: 

1. the impact of the assimilation at low and high resolution by assimilating both conventional and non-

conventional data at both resolutions; 

2. the impact of the assimilation of different types of observations; 

3. the impact of the different radars, which is investigated by performing experiment by assimilating conventional 

data and then adding radar one by one.  

Therefore in Table 2, together with CTL simulation, the following DA experiments are summarized: i) the assimilation 

of conventional data only (CON); ii) the assimilation of reflectivity data from MM only (CONMM) are added; iii) the 

assimilation of P55C radar reflectivity is added to the previous experiments (CONMMPOL); iv) the assimilation of the 

third radar reflectivity data is added to the previous (CONMMPOLSPC). Finally, an experiment to assess the role of the 

outer loops is performed (CONMMPOLSPC3OL): to include non-linearities into the observation operator and to 

evaluate the impact of reflectivity data entering for each cycle, the multiple outer loops strategy is applied (Hsiao et al. 

2012). According to this approach, the non-linear problem is solved iteratively as a progression of linear problems: the 

assimilation system is able to ingest more observations by running more than one analysis outer loop, allowing 

observations rejected in the previous loop to be enter into the subsequent one. Since radar data are non linearly related 

to the analysis control variables, the outer loops method is particularly helpful to extract more information from such 

data.  

In the following section the results will be presented and discussed following the rationale of the previously introduced 

experiments and analyzing the uncertainty (confidence level of 95%) in the realized scores (Forecast Accuracy (ACC), 

Frequency Bias (FBIAS), Equitable Threat Score (ETS), False Alarm Ratio (FAR)) for performance quantitative 

assessment.  

5 Impact of conventional measurements and radar reflectivity assimilation on rainfall forecast: low versus high 

resolution 



 

In figure 6, a preliminary comparison among low resolution (LR) simulations is shown. The control simulation (CTL) 

without data assimilation is shown in Figure 6a; whereas the other panels (b, c, d, e, f) show the experiments performed 

using the data assimilation.  

The outputs of different experiments in Fig. 6 have been eyeballed and we found that CONMMPOLSPC_LR_12KM 

(black arrow in Fig. 6e) shows the most encouraging performance compared to the observed accumulated rainfall of 

Figure 2: the rainfall maximum over Campo Imperatore is very well simulated, however a slight cell displacement at the 

border between Marche and Abruzzo regions is noticeable. The rain cumulated by the gauges in 24h related to this cell 

is around 300 mm (Fig. 3c); in the simulations shown in Figures 6b and 6f this cell is reproduced, although its position 

is shifted in another region. Furthermore, the precipitation pattern along the northern coasts of Abruzzo (black oval in 

Fig. 6e) is also quite well forecasted.  At an objective comparison of the statistical indices (not shown here) with their 

relative upper and lower confidence limits for the 12 hours accumulated precipitation and for two thresholds (1 mm and 

40 mm for light and heavy rain regimes respectively), we obtained likely good values for ACC and FAR for all the 

experiments and for heavy rain regimes, strengthened by a small uncertainty interval. On the other hand, for the lower 

threshold the values of FBIAS for all simulations, considering also the confidence intervals, are greater than one. One 

possible interpretation of the impact of the lower threshold is that with 95% confidence all the experiments are 

overestimating the frequency of precipitation around 1 mm/12h.  

Similarly to the above comparison, in figure 7 high resolution results (HR) obtained performing reflectivity assimilation 

on 12 km domain (column 1), on 3 km (column 2) and on 12 km and 3 km together (column 3) are presented; to the top 

of figure 7 the CTL experiment on D02 is shown. Figure 7 is organized as follows: viewing panels by line, on line 1 all 

the simulations with conventional data assimilation only (CON*) are found; on line 2 all the experiments with the 

assimilation of the reflectivity data from MM radar added (CONMM*); on line 3 all the experiments with the 

assimilation of the reflectivity data from 2 C-band radars added (CONMMPOL*); on line 4 all the experiments with the 

assimilation of the reflectivity data from all 3 C-band radars added (CONMMPOLSPC*); on line 5 the simulations 

where the strategy of outer loops is adopted (CONMMPOLSPC3OL*). In order to quantify the uncertainty associated to  

these experiments, the bootstrap 95% confidence intervals for verification statistics ACC, FBIAS, ETS, FAR have been 

summarized over tables (from 3 to 9) reporting the two thresholds of precipitation for light and heavy rain regimes: 1 

mm/12h and 40 mm/12h, respectively.  

In order to investigate the impact of the assimilation at different resolutions, we examine figure 7 by column and 

comparing it with the available observations (Fig. 2) using also the statistical analysis:  

 column 1 (12KM): CTL produces an overestimation of the rainfall that is not corrected by the assimilation of 

conventional data, but assimilating the reflectivity from the 3 radars (column 1 line 4) and also introducing the 

3 outer loops (column 1 line 5) the main cells are better reproduced. MET indices (not shown here) suggest 

that CTL and CON_HR_12KM have the largest difference between the CIs bounds for higher thresholds of 

FBIAS: this result suggests that the remaining simulations, with smallest difference in CIs limits and with both 

bounds lower than 1, surely underestimate the frequency of heavy precipitating events. Another aspect to point 

out is that some indices for all simulations are quite close to each other and within the CIs, so it is not possible 

to discern which is the best experiment over all;  

 column 2 (3KM): a partial correction of the rainfall overestimation compared to column 1 is observed 

especially if reflectivity from all the radars are assimilated together with conventional data and the outer loops 



 

strategy is applied (column 2 line 5); the statistical indices in Table 3 show as the most competitive experiment 

among the assimilated ones the CONMMPOLSPC3OL_3KM for lower threshold of rain for ACC (0.83) and 

FBIAS (0.96), on the other hand CONMM_3KM is the most promising simulation for heavy rain threshold for 

the indices FBIAS (0.31) and ETS (0.13); 

 column 3 (12KM_3KM): rainfall overestimation was partially corrected compared to columns 1 and 2 by all 

the experiments; the MET statistics in Table 4 shows that CTL and CONMMPOLSPC3OL_12KM_3KM are 

the experiments with encouraging values and small uncertainty for ACC and ETS especially for light rain 

regimes, although there is a quite broad spread in FBIAS for CTL experiment (score 0.47, with a lower and 

upper CIs limit of respectively 0.14 and 1.61) if we consider higher thresholds.  

The frequency of rainfall underestimation for higher thresholds found in the mother domain when radar reflectivity data 

are assimilated in D01 only has been reduced by switching to a higher resolution domain, moreover, the overestimation 

of the frequency for lower thresholds has been corrected because the FBIAS, previously systematically above 1 is found 

approximately 1 (indices not shown). Furthermore, general improvements (especially for FBIAS and ETS) come out for 

heavy rain regimes when radar reflectivity assimilation has been performed on the highest resolution domain, whereas 

the ingestion of conventional observations produces the worst results for FBIAS and ETS since a smaller number of 

them were assimilated into the finest resolution domain (for instance one sounding on five total) than that the coarser 

one. Data assimilation, operated on both 12 km and 3 km, shows similar performances to the experiments where 

assimilation is performed only on D01 (table 4), but a worse response for higher thresholds (tables 3 and 4) than the 

ones where assimilation is carried out on D02. 

In order to examine the impact of the assimilation of different data and radars, we can now analyze the experiments 

showed in figure 7 line by line. The results are compared with the observations of Fig. 2. The following considerations 

are worth discussing: 

 line 1 (CON): a strong reduction of the rainfall is found with respect to CTL if conventional data are 

assimilated, but the rainfall pattern remains unchanged. Statistical indices of CON experiment (Table 5) do not 

improve the performances of CTL (despite a reduction in some cases of the spread between the CIs limits for 

higher thresholds of the FBIAS). Some indices values suggest a slightly better performance when the 

conventional observations are assimilated only on the bigger domain and for higher thresholds (FBIAS 0.49), 

together with an improvement of FAR index for heavy rain regime (FAR 0.001); 

 line 2 (CONMM): a further reduction in the precipitation overestimation is found as well as some variations in 

the pattern of the rainfall; the scores in Table 6, together with their bootstrap upper and lower limits, show that 

MM radar reflectivity and conventional observations assimilation,  improves  the model performance above all 

for lower thresholds respect to the experiments where only SYNOP and TEMP were ingested (comparing 

scores of Table 6 with ones of Table 5). It applies also for some of the scores at higher thresholds (for example 

for ETS);  

 line 3 (CONMMPOL): a quite strong improvement in the rainfall amount is found for all simulations. 

However, from the statistics of Table 7, compared to the one in Table 6, we found a general worsening of the 

results both for light and heavy rain regimes when POL is added (especially for FBIAS and ETS, in some 

cases also for ACC and FAR at lower thresholds);  



 

 line 4 (CONMMPOLSPC): a clear correction of the rainfall pattern is found; the overestimation produced by 

the simulation where the reflectivity from all the radars are assimilated on the 3 km domain has been corrected 

by the experiment in which the reflectivity is assimilated both on D01 and D02; the uncertainty in the realized 

scores of Table 8 suggests that the addition of SPC radar improves the results, furthermore they are not better 

than those where only MM is ingested;  

 line 5 (CONMMPOLSPC3OL): the outer loops experiment confirms the strong overestimation reduction by 

*12KM_3KM; from Table 9 it seems that the introduction of 3OL improves the indices estimate and bounds 

above all when the 12 km domain is considered (see FBIAS and ETS for both rain regimes and FAR for lower 

thresholds). 

In summary, simulations results show that assimilation of conventional data is better to perform on the lowest resolution 

domain because more observations were used in the coarser domain, whereas when the assimilation is performed on the 

highest resolution domain only few SYNOP and even less TEMP fell down in the 3 km domain at the analysis time of 

the assimilation procedure. The impact of the conventional observations are expected to be lower than those of the non 

conventional ones, because most of them have already been used by ECMWF to produce their analysis and that they are 

here used as first guess, even if at lower resolution (0.25°). Therefore, they result to be correlated to the background and 

the improvements of those experiments where they are assimilated are expected to be low.  

With regard to the assimilation of reflectivity radar data, it should be noted that P55C radar observations of the event 

considered is shielded at the lowest elevation angles by the Apennines range and provides a limited contribution to 

reflectivity data that are assimilated. Also the outer loops strategy could have an important role in the assimilation 

procedure, but this latter needs a further investigation (for example an additional work has to be dedicated to testing the 

different tuning factors for both observation and background during each outer loop) because a general rainfall 

underestimation for higher thresholds is found.  

The results of this section confirm that when there is a correlation between the observations and the first guess used, the 

results of the data assimilation are poor, especially if no "special" observation is available on a wide area. The 

assimilation of a large amount of surface data together with the radiosonde ones decreases the quality of the final 

analysis produced. It probably depends on the different density of the surface and the three dimensional data of 

radiosondes, as assessed by Liu and Rabier (2002), being the former much larger than the latter. 

 

6 Conclusions 

In this manuscript the effects of multiple radar reflectivity data assimilation on a heavy precipitation event occurred 

during the SOP1 of the HyMeX campaign have been evaluated: the aim is to build a regionally-tuned numerical 

prediction model and decision-support system for environmental civil protection services within the central Italian 

regions. A sensitivity study at different domain resolution and using different types of data to improve initial conditions 

has been performed by assimilating into the WRF model radar reflectivity measurements, collected by three C-band 

Doppler weather radars operational during the event that hit central Italy on 14 September  2012. The 3D-Var and MET 

are the WRF tools used to assess this purpose. The study is performed on the complex basin, both for the orography and 

physical phenomena, of the Mediterranean area. First of all, WRF model responses to different types of cumulus 

parameterizations have been tested to establish the best configuration and to obtain the control simulation. The latter has 



 

been compared with observations and other experiments performed using 3D-Var. The set of assimilation experiments 

have been conducted following two different strategies: i) data assimilation at low and high resolution or at both 

resolutions simultaneously; ii) conventional data against radar reflectivity data assimilation. Both have been examined 

to assess the impact on rainfall forecast. 

The major findings of this work have been the following: 

 Grell 3D parameterization improves the simulations both on D01and D02 and the use of the spreading factor is 

an added value in properly predict heavy rainfall over inland of Abruzzo and the rainfall pattern along the 

northeast coast; 

 investigating the impact of the assimilation at different resolutions, positive results are showed by the 

experiments where the data assimilation is performed on both domains 12 km and 3 km; 

 the impact of the assimilation using different types of observations shows improvements if reflectivity from all 

the radars, along with SYNOP and TEMP are assimilated; furthermore, MM is the one that gives more 

optimistic results due to its excellent monitoring of the whole event; 

 the outer loops strategy allows for further improving positive impact of the assimilation of multiple reflectivity 

radars data. Moreover, a deeper investigation of this approach is required to well assess its impact, above all 

concerning the running time in an operational context; 

 we have seen that there are thresholds where the WRF 3D-Var is statistically significant, with 95% confidence, 

while for other thresholds we have to be careful in drawing conclusions above all in the face of large 

uncertainty or when the score values are quite close to each other. 

From the results obtained in this study, it is not possible to assess, in general terms, which is the best model 

configuration. In fact, this analysis should be performed systematically with a significant number of flash flood case 

studies before one can claim with certainty the positive impact of multiple reflectivity radar observations assimilation 

upon the forecast skill. Nevertheless, this work has pointed out aspects in 3D-Var reflectivity data assimilation that 

encourages to investigate more flash flood events occurred over central Italy, in order to make the proposed approach 

suitable to provide a realistic prediction of possible flash floods both for the timing and localization of such events. To 

confirm and consolidate these initial findings, apart from analyzing more case studies, a deeper analysis of the 

meteorology of the region and of the performance of the data assimilation system throughout longer trials in a "pseudo-

operational" procedure is necessary. Moreover, a more sophisticated spatial verification technique (MODE, Method for 

Object-Based Diagnostic Evaluation, Davis et al., 2006a, 2006b) which focuses on the realism of the forecast, by 

comparing features or ‘objects’ that characterize both forecast and observation fields, could be investigated in the 

future. In fact, spatial verification methods are particularly suitable to address the model capability to reproduce 

structures like the convective systems responsible for the high precipitation events as considered in the present research, 

which, because of their typical dimensions, need high resolution simulations to be predicted (Gilleland et al., 2009). 

These new-generation spatial verification methods, through the identification and the geometrical description of 

‘objects’ in forecast and observation fields (e.g. accumulated precipitation or radar reflectivity), permit an evaluation of 

the forecast skill in a more consistent way. 
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Figure 1. ECMWF (European Center for Medium-Range Weather Forecasts) analyses at 12:00UTC on 14 

September 2012: a) mean sea level pressure, c) temperature (color shades) and geopotential height (black isolines) at 

500 hPa; ECMWF analyses at 12:00UTC on 15 September 2012: b) mean sea level pressure, d) temperature (black 

isolines) and geopotential height (color shades) at 500 hPa. 

 

 

 
 

Figure 2: Interpolated map of 24h accumulated rainfall from 00:00UTC of 14 September 2012 over Abruzzo and Marche 

regions taken from DEWETRA system from rain gauges measurements. 

Black contours are the administrative boundaries of regions, while the colored circles represent the warning pluviometric 

thresholds. 
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Figure 3: Rain gauges time series of some selected stations in Marche (a, Fermo and b, Pintura di Bolognola) and Abruzzo (c, 

Campo Imperatore, d, Atri and e, Pescara Colli) regions during the event of 14 September 2012. The green histogram 

represents the hourly accumulated precipitation (scale on the left); the blue line represents the incremental accumulation 

within the 24h (scale on the right).  (courtesy of Italian Civil Protection Department) 

 

 

Figure 4: Zoom over central Italy of the reflectivity on 14 September 2012 at 08:00UTC from the Italian radar network 

overlapped with the MSG (IR 10.8) at 07:30UTC. (courtesy of Italian DPC) 
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Figure 5: WRF ndown domains configuration: the two domains have respectively resolution of 12km and 3km. The high 

resolution D02 over Italy includes Mt. Midia (MM), ISAC-CNR (P55C) and San Pietro Capofiume (SPC) radars (red dots in 

the figure). 
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Figure 6: WRF D01 accumulated 24h rainfall forecast over central Italy from 00:00UTC of 14 September 2012: a) WRF D01 

CTL; b) WRF D01 CON_LR_12KM; c) WRF D01 CONMM_LR_12KM;d)WRF D01 CONMMPOL_LR_12KM; e) WRF 

D01 CONMMPOLSPC_LR_12KM; f) WRF D01 CONMMPOLSPC3OL_LR_12KM. 
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Figure 7: WRF D02 accumulated 24h rainfall forecast over central Italy from 00:00UTC of 14 September 2012: CTL 

simulation (top center); on each column simulations obtained performing reflectivity assimilation at different resolutions 

(*12KM, *3KM, *12KM_3KM); on each line simulations performed assimilating different kinds of data (CON*, CONMM*, 

CONMMPOL*,CONMMPOLSPC*, CONMMPOLSPC3OL*). 

 

Table 1: Technical characteristics of the three radars whose reflectivity have been assimilated during IOP4. 

Features Units 
MM  

radar 
P55C  
radar 

SPC  
radar 

Owner  
CF Abruzzo 

Region 

ISAC-CNR of 

Rome 
Arpae Emilia Romagna 

Location  Monte Midia  Rome San Pietro Capofiume 

Latitude [deg] 42.057 41.840 44.6547 

Longitude [deg] 13.177 12.647 11.6236 

Height (a.s.l.) [m] 1760 131 31 

Doppler   YES YES YES 

Dual Polarization  NO YES YES 

Range Resolution [m] 500 75 250 

Half Power Beam Width [deg] 1.6 1 0.9 

Temporal Resolution [min] 15 5 15 

Elevations angles 

used in PPI scans 
[deg] 0, 1, 2, 3 

0.6, 1.6, 2.6, 4.4, 

6.2, 8.3, 11.0, 14.6 

0.53, 1.4, 2.3, 3.2, 4.1, 

5.0 

Maximum Range [km] 120 or 240  120 125 

 

Table 2: List of experiments to test the impact of data assimilation. 

Experiment Cumulus Grid Resolution Assimilation 

Synop+Temp 

Assimilation 

Radar 

CTL GRELL3D+CUGD 12KM/3KM NO NO 

CON GRELL3D+CUGD 12KM/3KM/BOTH YES NO 

CONMM GRELL3D+CUGD 12KM/3KM/BOTH YES  MM 

CONMMPOL GRELL3D+CUGD 12KM/3KM/BOTH YES MM+POL 

CONMMPOLSPC GRELL3D+CUGD 12KM/3KM/BOTH YES MM+POL+SPC 

Line5 

callto:0.53,%201.4,%202.3,%203.2,%204


 

CONMMPOLSPC3OL GRELL3D+CUGD 12KM/3KM/BOTH YES MM+POL+SPC 

with 3 outer loops 

 

Table 3: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 

Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in column 2. They are considered as a 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CON_3KM, CONMM_3KM, 

CONMMPOL_3KM, CONMMPOLSPC_3KM, CONMMPOLSPC3OL_3KM.  

 

Experiment 

ACC 

Thresholds  

mm/12h 

1               40 

FBIAS 

Thresholds  

mm/12h 

1               40 

ETS 

Thresholds  

mm/12h 

1               40 

FAR 

Thresholds  

mm/12h 

1               40 

CTL (0.80) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.015) 

CON_3KM (0.78) 

0.82 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.65) 

0.80 

(0.98) 

(0.08) 

0.18 

(0.42) 

(0.14) 

0.24 

(0.35) 

(0.03) 

0.06 

(0.12) 

(0.17) 

0.22 

(0.28) 

(0.001) 

0.004 

(0.009) 

CONMM_3KM (0.78) 

0.82 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.79) 

0.96 

(1.17) 

(0.14) 

0.31 

(0.68) 

(0.17) 

0.26 

(0.37) 

(0.05) 

0.13 

(0.26) 

(0.18) 

0.24 

(0.29) 

(0.001) 

0.005 

(0.11) 

CONMMPOL_3KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.76) 

0.94 

(1.16) 

(0.12) 

0.28 

(0.65) 

(0.13) 

0.23 

(0.33) 

(0.03) 

0.09 

(0.14) 

(0.18) 

0.24 

(0.30) 

(0.001) 

0.006 

(0.11) 

CONMMPOLSPC_3KM (0.78) 

0.82 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.85) 

1.03 

(1.25)  

(0.10) 

0.27 

(0.83) 

(0.18) 

0.28 

(0.39) 

(0.03) 

0.07 

(0.13)  

(0.19) 

0.24 

(0.31) 

(0.001) 

0.005 

(0.012) 

CONMMPOLSPC3OL_3KM (0.79) 

0.83 
(0.86) 

(0.97) 

0.98 
(0.99) 

(0.81) 

0.96 
(1.17) 

(0.10) 

0.24 

(0.64) 

(0.17) 

0.27 

(0.39) 

(0.05) 

0.12 

(0.19) 

(0.21) 

0.27 

(0.33) 

(0.000) 

0.003 

(0.007) 

 

Table 4: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 

Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in column 3. They are considered as a 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CON_12KM_3KM, CONMM_12KM_3KM, 

CONMMPOL_12KM_3KM, CONMMPOLSPC_12KM_3KM, CONMMPOLSPC3OL_12KM_3KM.  

 

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.80) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.015) 

CON_12KM_3KM (0.77) 

0.81 

(0.84) 

(0.96) 

0.98 

(0.99) 

(0.68) 

0.84 

(1.03) 

(0.02) 

0.10 

(0.34) 

(0.11) 

0.20 

(0.30) 

(0.01) 

0.04 

(0.007) 

(0.21) 

0.27 

(0.33) 

(0) 

0.001 

(0.004) 
 

CONMM_12KM_3KM (0.79) 

0.83 

(0.96) 

0.98 

(0.79) 

0.96 

(0.09) 

0.31 

(0.18) 

0.28 

(0.03) 

0.07 

(0.17) 

0.23 

(0.001) 

0.006 



 

(0.86) (0.99) (1.18) (1.02) (0.40) (0.13) (0.29) (0.013) 

CONMMPOL_12KM_3KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.96 

(1.19) 

(0.11) 

0.26 

(0.65) 

(0.14) 

0.23 

(0.33) 

(0.03) 

0.08 

(0.14) 

(0.19) 

0.25 

(0.31) 

(0.001) 

0.006 

(0.011) 

CONMMPOLSPC_12KM_3KM (0.77) 

0.81 

(0.85) 

(0.97) 

0.98 

(0.99) 

(0.87) 

1.04 

(1.28) 

(0.09) 

0.25 

(0.70) 

(0.16) 

0.26 

(0.37) 

(0.04) 

0.08 

(0.14) 

(0.22) 

0.28 

(0.34) 

(0) 

0.004 

(0.009) 

CONMMPOLSPC3OL_12KM_3KM (0.79) 

0.83 
(0.86) 

(0.97) 

0.98 
(0.99) 

(0.82) 

0.98 
(1.18) 

(0.08) 

0.15 

(0.24) 

(0.19) 

0.30 
(0.41) 

(0.05) 

0.11 
(0.18) 

(0.19) 

0.25 
(0.31) 

(0) 

0.002 
(0.003) 

 

Table 5: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 

Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in line 1. They are considered as a 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CON_3KM, CON_HR_12KM, 

CON_12KM_3KM.  

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.80) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.014) 

CON_3KM (0.78) 

0.82 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.65) 

0.80 

(0.98) 

(0.08) 

0.18 

(0.42) 

(0.14) 

0.24 

(0.35) 

(0.03) 

0.06 

(0.12) 

(0.17) 

0.22 

(0.28) 

(0.001) 

0.004 

(0.009) 

CON_HR_12KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.97 

(0.99) 

(0.75) 

0.91 

(1.11) 

(0.21) 

0.49 

(1.61) 

(0.15) 

0.25 

(0.36) 

(0.03) 

0.07 

(0.13) 

(0.20) 

0.26 

(0.31) 

(0.005) 

0.0011 

(0.19) 

CON_12KM_3KM (0.77) 

0.81 

(0.84) 

(0.96) 

0.98 

(0.99) 

(0.68) 

0.84 

(1.03) 

(0.02) 

0.10 

(0.34) 

(0.11) 

0.20 

(0.30) 

(0.01) 

0.04 

(0.07) 

(0.21) 

0.27 

(0.33) 

(0) 

0.001 

(0.004) 

 

Table 6: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 

Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in line 2. They are considered as a 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CONMM_3KM, CONMM_HR_12KM, 

CONMM_12KM_3KM.  

 

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.80) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.15) 

CONMM_3KM (0.78) 

0.82 

(0.97) 

0.98 

(0.79) 

0.96 

(0.14) 

0.31 

(0.17) 

0.26 

(0.05) 

0.13 

(0.18) 

0.24 

(0.001) 

0.005 



 

(0.86) (0.99) (1.17)  (0.68) (0.37) (0.26) (0.29) (0.011) 

CONMM_HR_12KM (07.8) 

0.82 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.79) 

0.95 

(1.16) 

(0.15) 

0.29 

(0.64) 

(0.18) 

0.28 

(0.39) 

(0.07) 

0.14 

(0.21) 

(0.19) 

0.24 

(0.31)  

(0) 

0.004 

(0.008) 

CONMM_12KM_3KM (0.79) 

0.83 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.96 

(1.18) 

(0.09) 

0.31 

(1.01) 

(0.18) 

0.28 

(0.40) 

(0.03) 

0.07 

(0.13) 

(0.17) 

0.23 

(0.29) 

(0.001) 

0.006 

(0.013) 

 

Table 7: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 

Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in line 3. They are considered as a 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CONMMPOL_3KM, 

CONMMPOL_HR_12KM, CONMMPOL_12KM_3KM. 

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.79) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.015) 

CONMMPOL_3KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.76) 

0.94 

(1.16) 

(0.12) 

0.28 

(0.65)  

(0.13) 

0.23 

(0.33) 

(0.03) 

0.09 

(0.14) 

(0.18) 

0.24 

(0.30) 

(0.001) 

0.006 

(0.011) 

CONMMPOL_HR_12KM (0.76) 

0.80 

(0.84) 

(0.97) 

0.98 

(0.99) 

(0.66) 

0.82 

(1.01) 

(0.07) 

0.14 

(0.25) 

(0.10) 

0.20 

(0.30) 

(0.03) 

0.006 

(0.11) 

(0.20) 

0.25 

(0.31) 

(0.001) 

0.003 

(0.006) 

CONMMPOL_12KM_3KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.96 

(1.19) 

(0.11) 

0.26 

(0.65) 

(0.14) 

0.23 

(0.33) 

(0.03) 

0.08 

(0.13) 

(0.19) 

0.25 

(0.31) 

(0.01) 

0.005 

(0.011) 

 

Table 8: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 

Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in line4. They are considered as a 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CONMMPOLSPC_3KM, 

CONMMPOLSPC_HR_12KM, CONMMPOLSPC_12KM_3KM.  

 

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.79) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.45) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.015) 

CONMMPOLSPC_3KM (0.78) 

0.82 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.85) 

1.03 

(1.25) 

(0.10) 

0.27 

(0.83) 

(0.18) 

0.28 

(0.39) 

(0.03) 

0.07 

(0.13) 

(0.19) 

0.25 

(0.31) 

(0.001) 

0.005 

(0.012) 

CONMMPOLSPC_HR_12KM (0.78) 

0.82 

(0.96) 

0.98 

(0.71) 

0.86 

(0.08) 

0.22 

(0.17) 

0.28 

(0.02) 

0.06 

(0.16) 

0.21 

(0.001) 

0.005 

 



 

(0.86) (0.99) (1.05) (0.59) (0.39) (0.12) (0.27) (0.11) 

CONMMPOLSPC_12KM_3KM (0.77) 

0.81 

(0.85) 

(0.96) 

0.98 

(0.99) 

(0.87) 

1.04 

(1.28) 

(0.09) 

0.25 

(0.70) 

(0.16) 

0.26 

(0.36) 

(0.04) 

0.08 

(0.14) 

(0.22) 

0.28 

(0.34) 

(0) 

0.004 

(0.009) 

 

Table 9: Bootstrap 95% confidence intervals for verification statistics Forecast Accuracy (ACC), Frequency Bias (FBIAS), 

Equitable Threat Score (ETS), False Alarm Ratio (FAR) and referred to experiments in line 5. They are considered as a 

function of thresholds (1mm/12h and 40mm/12h). The experiments are: CTL, CONMMPOLSPC3OL_3KM, 

CONMMPOLSPC3OL_HR_12KM, CONMMPOLSPC3OL_12KM_3KM. 

 

 

Experiment 

ACC 

Thresholds 

mm/12h 

1               40 

FBIAS 

Thresholds 

mm/12h 

1               40 

ETS 

Thresholds 

mm/12h 

1               40 

FAR 

Thresholds 

mm/12h 

1               40 

CTL (0.79) 

0.83 

(0.87) 

(0.96) 

0.98 

(0.99) 

(0.79) 

0.94 

(1.13) 

(0.14) 

0.47 

(1.61) 

(0.23) 

0.33 

(0.44) 

(0.04) 

0.10 

(0.16) 

(0.16) 

0.21 

(0.27) 

(0.001) 

0.007 

(0.015) 

CONMMPOLSPC3OL_3KM (0.79) 

0.83 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.81) 

0.96 

(1.17) 

(0.10) 

0.24 

(0.64) 

(0.17) 

0.27 

(0.39) 

(0.05) 

0.12 

(0.19) 

(0.21) 

0.27 

(0.33) 

(0) 

0.003 

(0.007) 

CONMMPOLSPC3OL_HR_12KM (0.78) 

0.82 

(0.86) 

(0.96) 

0.98 

(0.99) 

(0.77) 

0.93 

(1.13) 

(0.13) 

0.31 

(0.86) 

(0.20) 

0.30 

(0.41) 

(0.004) 

0.10 

(0.17) 

(0.14) 

0.20 

(0.26) 

(0.002) 

0.006 

(0.012) 

CONMMPOLSPC3OL_12KM_3KM (0.79) 

0.83 

(0.86) 

(0.97) 

0.98 

(0.99) 

(0.82) 

0.98 

(1.18) 

(0.08) 

0.15 

(0.24) 

(0.19) 

0.30 

(0.41) 

(0.04) 

0.11 

(0.18) 

(0.19) 

0.25 

(0.31) 

(0) 

0.002 

(0.003) 

 

 

    


