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Abstract. A challenge in establishing new ground-based stations for monitoring snowpack accumulation and 

ablation is to locate the sites in areas that represent the key processes affecting snow accumulation and ablation. 

This is especially challenging in forested montane watersheds where the combined effects of terrain, climate, and 

land cover affect seasonal snowpack. We present a coupled modelling approach used to objectively identify 

representative snow monitoring locations in a forested watershed in the western Oregon Cascades mountain 10 

range. We used a binary regression tree (BRT) non-parametric statistical model to classify peak snow water 

equivalent (SWE) based on physiographic landscape characteristics in a average snow year, an above average 

snow year, and a below average snow year. Training data for the BRT classification were derived using spatially 

distributed estimates of SWE from a validated physically-based model of snow evolution. The optimal BRT 

model showed that elevation and land cover type were the most significant drivers of spatial variability in peak 15 

SWE across the watershed (R2 = 0.93, p-value < 0.01). Geospatial elevation and land cover data were used to 

map the BRT-derived snow classes across the watershed. Specific snow monitoring sites were selected randomly 

within the dominant BRT-derived snow classes to capture the range of spatial variability in snowpack conditions 

in the McKenzie River Basin. The Forest Elevational Snow Transect (ForEST) is a result of this coupled 

modelling approach and represents combinations of forested and open land cover types at low, mid, and high 20 

elevations. After five years of snowpack monitoring, the ForEST network provides a valuable and detailed 

dataset of snow accumulation, snow ablation, and snowpack energy balance in forested and open sites from the 

rain-snow transition zone to the upper seasonal snow zone in the western Oregon Cascades.  
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1 Introduction 

Mountain snowpack is declining as a result of the warming climate (Kunkel et al., 2016; Knowles, 2015; 

Pederson et al., 2013; Rupp et al., 2013; Pederson et al., 2011; Mote, 2006), subsequently shifting timing (Fritze 

et al., 2011; Clow, 2010) and volume of streamflow (Woodhouse et al., 2016; Berghuijs et al., 2014; Luce and 5 

Holden, 2009) across the western United States. Luce et al., (2013) argue that the declining snowpack is also the 

result of weakening westerlies leading to a decline in mountain precipitation in the interior West. The volume and 

seasonality of water produced from these snow-dominated watersheds varies spatially and temporally as a 

function of precipitation and temperature (Tennant et al., 2015; Barnett et al., 2005; Regonda et al., 2005), as well 

as local physiographic effects of topography, geology, and vegetation dynamics (Molotch and Meromy, 2014; 10 

Clark et al., 2011; Jefferson et al., 2008; Ffolliott et al., 1989). 

Montane snow-dominated river basins are topographically complex. Elevation, slope, aspect, and 

exposure influence snowpack dynamics across a watershed through alterations of precipitation amount and phase 

(rain vs. snow), wind speed, temperature, and humidity. The degrees to which these physiographic variables 

control snow persistence vary as functions of snow accumulation and snow ablation, from the plot to regional 15 

spatial scales (López‐Moreno et al., 2015; Biederman et al., 2014; López-Moreno et al., 2013; Deems et al., 

2006; Molotch and Bales, 2005), and from daily to seasonal scales (Fassnacht et al., 2012; Jepsen et al., 2012). In 

the Pacific Northwest, montane basins are a successional patchwork of variable forest cover driven by forest 

harvest and replanting, pest infestations, and fire disturbance. In forested regions, snow accumulation and 

ablation processes are strongly influenced by vegetation structure (Veatch et al., 2009; Musselman et al., 2008; 20 

Jost et al., 2007; Trujillo et al., 2007; Sicart et al., 2004; Murray and Buttle, 2003; Pomeroy et al., 2002; Link and 

Marks, 1999). Both vegetation and topography influence the distribution of solar radiation (Musselman et al., 

2015; Musselman et al., 2012; Davis et al., 1997; Dozier, 1980;), snow-surface albedo (Gleason and Nolin, 2016; 

Gleason et al., 2013; Molotch et al., 2004; Melloh et al., 2002), net longwave radiation (Lundquist et al., 2013; 

Sicart et al., 2004) , wind speed (Winstral and Marks, 2002) and turbulent fluxes (Burns et al., 2014; Garvelmann 25 

et al., 2014; Marks et al., 2008).  

Snow water equivalent (SWE) is a critical hydrologic resource in the montane western US that has been 

actively monitored for decades by the Natural Resources Conservation Service (NRCS). The NRCS currently 

manages approximately 858 Snowpack Telemetry (SNOTEL) stations across the western US 
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(http://www.wcc.nrcs.usda.gov/snotel/SNOTEL_brochure.pdf). These stations provide near real-time 

measurements of SWE, temperature, and precipitation; essential data for operational streamflow forecasts used 

by water managers who balance a wide range of needs including irrigation, aquatic habitat, hydropower, 

recreation, and municipal water use. While most SNOTEL sites have been operating since the early 1980s, the 

data are meant to be used as indices to forecast discharge. These records are valuable but the stations were not 5 

designed to be nor are they representative of the total snow volume across a basin (Meromy et al., 2013; Molotch 

and Bales, 2006a). The SNOTEL monitoring stations in the Oregon Cascades are located within a narrow 

elevation range (1140–1510 m) that may not capture the inherent variability in the spatial distribution of snow 

under present day or warmer climate conditions (Nolin, 2012; Brown, 2009).  

Modelling has been shown to be an effective means of augmenting remote sensing, and a valuable tool 10 

for predicting spatially distributed snow conditions in the rugged, forested, and frequently cloud-covered 

montane watersheds of the Pacific Northwest (Sproles et al., 2013; Tague and Grant, 2009; Veatch et al., 2009; 

Luce et al., 1999; Cline et al., 1998). Landscape characteristics have been used to predict snowpack conditions at 

hillslope scales using non-parametric binary regression tree (BRT) statistical classification models (Molotch et 

al., 2005; Anderton et al., 2004; Erxleben et al., 2002; Winstral et al., 2002; Balk and Elder, 2000; Elder et al., 15 

1998). Larger scale BRT approaches have also been conducted using remotely sensed snow-covered area and 

interpolation methods (Molotch and Meromy, 2014; Molotch and Bales, 2006b). However, no study to date has 

used landscape characteristics in conjunction with modelled and validated physically-based and spatially 

distributed SWE data to understand physiographic drivers of snow accumulation at broad scales (watersheds > 

1000 km2) or to identify optimal locations for snowpack monitoring. Additionally, most of the research on the 20 

physiographic relationships to snow processes has been done in cold-dry continental snowpacks where mid-

winter melt events are infrequent and wind redistribution is substantial (Molotch et al., 2005; Erxleben et al., 

2002; Winstral et al., 2002; Balk and Elder, 2000). Much less is known about how physiographic conditions 

influence the temperature sensitive snowpacks in the forested maritime basins of the Pacific Northwest.  

To objectively identify optimal site locations to distribute a snow monitoring network which explicitly 25 

captures the spatial variability of snow accumulation relative to the physiographic landscape we used a 

combination of physically-based, statistical, and geospatial models. This paper presents this objective and 

relatively simple methodology to distribute a snow monitoring network which captures landscape driven spatial 

variability in snow accumulation and includes four major objectives: 

1. Determine the key physiographic drivers of spatial variability in snow accumulation;  30 
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2. Classify snow classes in the watershed based on key physiographic drivers using a non-parametric 

statistical model;  

3. Spatially distribute these snow classes across the watershed using a geospatial model; 

4. Select site locations for a snow monitoring network which spans the spatial variability in snow water 

equivalent in the McKenzie River Basin. 5 

2 Methods 

2.1 Study Site 

The McKenzie River, located in the western Oregon Cascades, is a major tributary of the Willamette 

River (Figure 1). The McKenzie River Basin (MRB) drains an area of 3,041 km2, and covers about 12% of the 

land area in the greater Willamette River Basin. The MRB is a densely forested mountainous watershed, ranging 10 

in elevation from 150 m to 3150 m, which is a managed for timber production throughout much of the seasonal 

snow zone. Brooks et al., (2012), determined that 60-80 % of summer flow in the Willamette River originated 

from elevations above 1200 m in the Oregon Cascades. The porous basalts in this geologically young landscape 

allow much of the snowmelt to percolate into groundwater systems (Tague and Grant, 2009; Jefferson et al., 

2008; Tague and Grant, 2004). The groundwater-fed McKenzie River provides 25 % of the late season 15 

volumetric base flow to the Willamette River at its confluence with the Columbia River (Hulse et al., 2002). 

2.2 Data Sources 

Gridded data were obtained for physiographic variables shown in the literature to influence snow 

accumulation and ablation, including elevation, slope, aspect, incoming solar radiation, wind, and three 

vegetation variables from the following sources for the extent of the MRB. A Digital Elevation Model (DEM) 20 

was obtained from the National Elevation Dataset at a 10-m resolution. Slope, aspect, and incoming solar 

radiation were calculated from the DEM using the Spatial Analyst and Solar Radiation toolboxes in ArcGIS 10.1 

(ESRI, Redlands, CA). Upwind contributing area data, which captures the variability in snow deposition as a 

result of wind redistribution for each cell throughout the watershed (Winstral et al., 2002), was calculated 

following Molotch et al., (2005). The 2006 National Land Cover Data (NLCD) was used to classify land cover 25 

across the watershed (Fry et al., 2011). Land cover data were reclassified into a binary product of forest and open 

land cover classes. The US Geological Survey (USGS) LANDFIRE Data Distribution Site provided the Existing 
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Vegetation – Percent Canopy Cover (EVC) data at 30-m spatial resolution. Normalized Difference Vegetation 

Index (NDVI) data were obtained from the Moderate Resolution Imaging SpectroRadiometer (MODIS) 

MOD13Q1 – Vegetation Indices, 16-day Land Product for the earliest date possible in April 2009, at a 250-m 

spatial resolution. Watershed boundaries were defined using the USGS National Hydrography Dataset. Public 

land ownership data were provided by the Oregon Department of Forestry, and obtained from the website, 5 

http://www.oregon.gov/odf/pages/gis/gisdata.aspx. All spatial data were masked to the McKenzie River Basin 

and converted to the same projection and spatial resolution: NAD83, UTM Zone 10, and a 100-m grid cell size. 

Spatial data were processed using ArcGIS 10.1 using bilinear interpolation for continuous data and nearest 

neighbour interpolation for discrete data. 

Modelled and gridded SWE data across the MRB (Figure 2) were provided by Sproles et al., (2013). 10 

These data were developed using a physically-based spatially distributed snow mass and energy balance model, 

SnowModel (Liston and Elder, 2006). SnowModel uses micrometeorological and topographic data to distribute 

snow across the landscape accounting for climatic, topographic, and vegetation variability. The model was 

modified by Sproles et al., (2013) to account for rain/snow precipitation phase partitioning, and snow albedo 

decay in forested landscapes. This model was calibrated and validated using data from the four SNOTEL sites, 15 

meteorological data from the HJ Andrews Long Term Ecological Research site and National Weather Service 

stations, and Landsat fractional snow covered area data over the sampling period 1989-2009 (Sproles et al., 

2013). The model was run at 100-m spatial resolution on a daily time step. We used modelled peak SWE data as 

the predicted variable in the BRT model. Sproles et al., (2013) showed that 2009 was considered an average snow 

year (normal snow year) so we used peak SWE from 2009 (five days centred on 04 April 2009) as our reference 20 

year. Additionally we used peak SWE from 2008 (five days centred on 24 April 2008) as an above average snow 

year (high snow year), and peak SWE from 2005 (five days centred on 20 April 2005) as a below average snow 

year (low snow year). 

2.3 Analysis 

A BRT model was developed to characterize the spatial variability of snow accumulation across the 25 

MRB based on independent physiographic variables using the Classified and Regression Trees (CART) software 

(Salford Systems, San Diego, CA). The BRT model is a hierarchical non-parametric statistical model that 

characterizes the mean and variance of a dependent variable using a suite of independent explanatory variables. 

Modelled SWE and physiographic variable data were used as input data for each cell where snow was present 

http://www.oregon.gov/odf/pages/gis/gisdata.aspx
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during peak SWE in 2009 (5 day average centred on 04 April 2009). An optimal tree was produced to minimize 

the standard error of the model, which was pruned to the simplest tree possible within one standard error of the 

optimal tree and so each terminal node represented at least 1% of the variability in peak SWE. The resultant tree 

identified 21 terminal nodes that characterized the spatial variability in snow accumulation through combinations 

of independent drivers into 21 BRT-derived snow classes (Table 1). The BRT model identified elevation, land 5 

cover, NDVI, insolation, percent canopy cover, slope, and wind as significant explanatory drivers of the spatial 

variability of peak SWE (all selected variables had p-values < 0.05 and are listed above in order of significance). 

Although elevation and land cover were the dominant predictive variables, and all other physiographic variables 

each explained less than 1% of the variability in peak SWE. In order to reduce the multi-collinearity between 

related variables and reduce the risk of overfitting the model, we simplified the final optimal model to only 10 

include elevation and land cover. Within the CART software, the final optimal BRT model was validated using 

reserved data from an independent set of 20,000 randomly selected grid cells from within the MRB. The final 

parameters developed in this optimal tree for peak SWE in a normal snow year (2009), were used to develop 

equivalent BRT models using peak SWE input for a high snow year (2008), as well as to peak SWE during a low 

snow year (2005).  15 

Using a Geographic Information Systems (GIS) geospatial model and statistically-derived parameters, 

the 21 BRT-derived snow classes were spatially distributed across the MRB. The geospatial model used 

physiographic data to distribute the areal extent of each BRT class across the MRB by assigning cells that met the 

statistically-derived criteria for each BRT class. Because the BRT-model did not determine a lower elevation 

limit on snow extent, we excluded areas with an elevation less than 600 m to prevent over-prediction of snow-20 

covered area below elevations where it was observed in the modelled data. Total volumetric SWE (SWE depth × 

area) was calculated for each BRT class across the watershed, using the mean and variance of SWE, and the 

spatial extent of each BRT class. To validate the spatial distribution of the BRT derived snow classes, we 

calculated the overall accuracy of the high snow year (2008) and low snow year (2005) relative to the reference 

year (2009) snow classes using an error matrix of omission vs. commission statistics (Campbell and Wynne, 25 

2011). 

To create a set of feasible locations for the in situ snow monitoring network we evaluated the 

accessibility of locations within the MRB. Using a GIS-based binary selection model, we masked out all private 

lands and public lands where the presence of endangered Northern Spotted Owl prevented permitted access. To 

prevent contamination from the road network, but still define accessible site locations, we also identified areas 30 
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within 100-500 m of a snowmobile-accessible road. From these accessible areas, the final sites were then 

randomly selected from each of the dominant BRT-derived snow classes within the seasonal snow zone.  

3 Results 

Modelled peak SWE for all years had a positively skewed distribution across the range of elevations 

throughout the MRB (2009; kurtosis=1.8, skewness=1.62; 2008, kurtosis=2.1, skewness=1.7; 2005, kurtosis=1.5, 5 

skewness=1.7) with the greatest volume of snow located in the mostly forested area between 1300 and 1500 m in 

elevation (Figure 3). The final optimal BRT model from the normal snow year (2009) identified elevation and 

land cover as the dominant drivers of the spatial variability of SWE, and characterized SWE across the MRB into 

21 distinct snow classes (2009 BRT model; R2 = 0.93, p-value < 0.01, RMSE = 0.16 m). The final BRT model 

applied to the high snow year (2008) characterized SWE across the MRB into 21 snow classes with similar 10 

spatial extent as during the normal snow year (2008 BRT model; R2 = 0.95, p-value < 0.01, RMSE = 0.18 m) 

(Figure 4; Table S1). The final BRT model applied to the low snow year (2005) characterized SWE across the 

MRB into 21 snow classes with similar spatial variability relative to land cover but differing extents relative to 

elevation than during the normal snow year (2005 BRT model; R2 = 0.895, p-value < 0.01, RMSE = 0.09 m) 

(Figure 4; Table S2).  15 

Elevation explained the most variance in modelled SWE across the basin, and was the primary driver of 

all snow classes (2009 BRT model with only elevation; R2 = 0.91, p-value < 0.01). In the middle elevations, land 

cover was also statistically important in distinguishing snow classes between forested and open land cover types 

(Figure 4, 5). During the normal snow year (2009), snow classes were distinguished by forest vs. open land cover 

types across the elevation range from 951-1442 m. This elevation range where the forest vs. open distinction was 20 

statistically important was lower during the high snow year (2008) from 949-1299 m, but much higher during the 

low snow year (2005) from 1193-1747 m. In the high-elevations, above treeline, only elevation was statistically 

important in classifying the spatial variability in snow accumulation. Snowpack accumulation increased with 

increasing elevation, resulting in a greater mean SWE per unit area at the highest elevations. Although deep 

snowpack at the highest elevations only covers a small aerial extent of the MRB, which resulted in decreasing 25 

contribution of total basin-wide SWE above approximately 1700 m during the normal and high snow years. In 

contrast, during the low snow year, the highest elevation classes contributed the most to total basin-wide SWE 

(Figure 5). 
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The BRT-derived volumetric SWE estimates had a similar positively skewed distribution across the 

elevational gradient as the SnowModel-derived SWE data in the MRB (Figure 5). The BRT-derived estimate of 

1.49 km3 total SWE stored in the snowpack on 04 April 2009 within the MRB was less than 1% greater than the 

SnowModel-derived estimate of 1.48 km3. The BRT-derived estimate of 1.94 km3 total SWE stored in the 

snowpack on 24 April 2008 within the MRB was less than 1% greater than the SnowModel-derived estimate of 5 

1.93 km3. The BRT-derived estimate of 0.38 km3 total SWE stored in the snowpack on 20 April 2005 within the 

MRB was 2.6% less than the SnowModel-derived estimate of 0.39 km3. The final optimal BRT model from the 

normal snow year (2009) applied to the high snow year (2008) demonstrated an overall accuracy of 63%, 

whereas the BRT model applied to the low snow year (2005) demonstrated an overall accuracy of 26% (Table 

S1, S2). The BRT model performed well across the low and high elevations, where errors of omission and 10 

commission were generally lowest (Table S1, S2). Although across the mid-elevations which consist of a 

patchwork of forest harvest and fire disturbance, were the areas with the greatest error between the BRT models. 

The high elevations above tree line, were the most consistently classified areas with low error between BRT 

models. The high error across the mid-elevations was due at least in part to the renumbering of classes when the 

model is rerun for each year, and therefore these statistics may underrepresent the accuracy of the BRT-model in 15 

predicting overall spatial patterns of physiographically derived snow classes between years. The BRT-modelled 

snow classes captured the spatial variability in peak SWE across the MRB relative to elevation and land cover 

during an average, above average, and below average snow year and were used to objectively inform the site 

selection of a snow monitoring network. 

The geospatial selection model identified 16 of the 21 classes as being accessible during winter (on 20 

public land without permit restrictions and within 100-500m of a snowmobile accessible road). The highest 

elevations in the MRB are far from winter-accessible roads and difficult to monitor due to steep and avalanche 

prone slopes. Within the area covered by these 16 classes, random site locations were selected within the six most 

abundant classes across the MRB to capture low, medium, and high elevations, with forested and open land cover 

classes. The resultant Forest Elevation Snow Transect (ForEST) monitoring network site locations were thus 25 

objectively selected to sample across the range of spatial variability in SWE (Figure 4). The ForEST network, 

composed of six meteorological stations and snow survey transects, was deployed in November 2011, and 

continues to provide high quality snow and climate data to evaluate snow-forest-climate interactions in the MRB 

(Figure 6).  
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4 Discussion 

With warming winter temperatures, mountain snowpack in the western US will likely continue to decline 

with potential impacts to forest health (Albright and Peterson, 2013) and streamflow (Jung and Chang, 2011; 

Cayan et al., 2010), as well as snow-related recreation and tourism (Gilaberte-Búrdalo et al., 2014; Nolin and 

Daly, 2006). There remains uncertainty around the magnitude of these impacts (Warren et al., 2011; Maurer, 5 

2007; Xu et al., 2005) thus, it is important that monitoring networks not only capture normal snowpack 

conditions, but capture the range of variability in peak SWE across the landscape and through time.  

Pacific Northwest forests play a key role in affecting snow accumulation and ablation across multiple 

scales however, most research has been conducted at the stand scale (Storck et al., 2002) or in areas with cold-dry 

continental snowpacks (Ellis et al., 2013; Pomeroy et al., 2012). By distinguishing snow classes based on forest 10 

vs. open land cover across a range of elevations, this study emphasizes the watershed-scale control that 

vegetation and particularly land cover change relative to timber harvest (and potentially fire disturbance) has on 

snowpack accumulation in the maritime western Oregon Cascades. During low snow years, the significant 

influence of forest cover on the spatial variability in snow accumulation moved up in elevation from a normal 

snow year, suggesting that forest effects may have a more profound influence at higher elevations under future 15 

warming climate conditions. Understanding the forest structure effects on snow accumulation and ablation across 

elevation gradients is increasingly important to help guide decision making by local and regional water and forest 

managers in response to a changing climate.  

We developed a snow monitoring network representative of the spatial variability of peak SWE relative 

to physiographic landscape characteristics across the MRB for an average, above average, and below average 20 

snow year, by coupling a spatially distributed physically-based SnowModel, a BRT statistical classification 

model, and a geospatial selection model. This objective method is a useful tool in classifying snow characteristics 

across the landscape to determine representative locations for intelligent snowpack monitoring particularly in 

physiographically complex landscapes. Although it is an improvement over more commonly used heuristic 

approaches to site selection, the method incorporates uncertainty as a result of compounding physically-, 25 

statistically-, and spatially-based models which justifies caution in implementing these estimates in management 

decisions. However, the method meets assumptions of non-parametric data analysis, is performed with relative 

ease, and if data are available for the research basin of interest, it can be well validated. As even physically-based 

models incorporate inherent empirically-based historically-derived assumptions, there is also uncertainty in using 

this approach to represent future spatial variability in snow accumulation. 30 
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The ForEST network contributes to the existing SNOTEL network to explicitly investigate snow-

vegetation-climate interactions across the range of elevations and forest types in the watershed. The ForEST 

network is unique in that the monitoring site locations were selected based on statistical classification and 

geospatial analysis, rather than subjective methods that may incorporate bias. The paired forest-open land cover 

site selection process has already led to important understanding of key sub-canopy snow processes (Storck et al., 5 

2002; Golding and Swanson, 1986). But here, the assumptions driving paired site selection process have been 

validated using coupled physically-based spatially-distributed snow model input data and non-parametric BRT 

statistical modelling across a forested montane watershed. After five consecutive years of snow monitoring, we 

have created a valuable and detailed dataset of snow accumulation, snow ablation, and snowpack energy balance 

that spans the spatial variability in forest and open land cover types across an elevational gradient (Figure 6).  10 

5 Conclusions 

The BRT model characterized peak SWE conditions in an average year, an above average year, and 

below average year to provide spatially-distributed SWE volume estimates based on physiographic landscape 

characteristics. This integrated approach informed the distribution of an objective and representative monitoring 

network that spans the spatial variability in the seasonal snowpack across the MRB (Figure 4). Throughout the 15 

maritime Pacific Northwest, it is critical we monitor snow-vegetation interactions across the elevation gradient, 

particularly at higher elevations where snow-vegetation interactions may be more relevant in low snow years and 

under a warming climate. 

By quantifying the spatial variability in the key drivers of natural resource distribution, researchers can 

focus on sensitive areas which may not be identified through traditional site selection means. The use of validated 20 

model outputs as a predictor of the spatial variability in snow-vegetation interactions is not new (Randin et al., 

2014). The novelty of this research stems from the application of the method, where by the coupling of a 

traditional BRT classification process with a validated physically-based spatially distributed model, we improved 

snow observational network design in a forested montane watershed.  

As the scientific community turns to more complex models to predict ecosystem responses to change, 25 

there is still a place for simple modelling approaches to inform scientific research priorities as well as natural 

resource monitoring and management. Particularly in rugged and densely forested mountain regions, such as the 

western Oregon Cascades, where there are few alternatives to modelling spatially distributed SWE, this coupled 
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modelling approach provides a validated hypothesis to guide representative and objective snow monitoring 

efforts. 
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8 Tables 

Table 1. The binary regression tree (BRT) model characterized SWE within the McKenzie River Basin into 21 

snow classes defined using the physiographic parameters elevation (m) and land cover grouped by all land covers 

(A), forested land cover (F), and open/clear-cut land cover (O) types. The bold lines represent the BRT snow 

classes used for the ForEST network of snow monitoring stations which have been continuously monitoring snow 5 

processes in paired forest and open sites at low, medium and high elevations since November 2011.  

BRT 

Snow 

class 

Normal Snow Year 

(2009) 

High Snow Year 

(2008) 

Low Snow Year 

(2005) 

Elevation Land  Mean SWE 

/ St. Dev. 

Elevation Land  Mean SWE 

/ St. Dev. 

Elevation Land  Mean SWE 

/ St. Dev. 

1 ≤ 834 A 0.002 / 0.2 ≤865 A 0.002 / 0.03 ≤1193 A 0.001 / 0.01 

2 834-951 A 0.04 / 0.12 865-949 A 0.06 / 0.16 1193-1299 F 0.02 / 0.07 

3 951-1067 F 0.11 / 0.21 949-1067 F 0.14 / 0.26 1193-1299 O 0.08 / 0.15 

4 951-1067 O 0.24 / 0.28 949-1067 O 0.31 / 0.36 1299-1422 F 0.04 / 0.12 

5 1067-1142 F 0.26 / 0.28 1067-1115 F 0.31 / 0.34 1422-1470 F 0.09 / 0.16 

6 1067-1142 O 0.45 / 0.35 1115-1142 F 0.45 / 0.36 1299-1390 O 0.16 / 0.22 

7 1142-1174 F 0.41 / 0.3 1067-1142 O 0.59 / 0.43 1390-1470 O 0.29 / 0.28 

8 1174-1212 F 0.51 / 0.3 1142-1200 F 0.64 / 0.36 1470-1496 F 0.16 / 0.18 

9 1142-1212 O 0.68 / 0.34 1142-1200 O 0.91 / 0.4 1496-1517 F 0.23 / 0.19 

10 1212-1265 F 0.64 / 0.29 1200-1235 F 0.83 / 0.33 1517-1536 F 0.28 / 0.19 

11 1265-1310 F 0.79 / 0.27 1235-1299 F 1.0 / 0.3 1536-1563 F 0.34 / 0.2 

12 1212-1310 O 0.95 / 0.31 1200-1299 O 1.21 / 0.34 1470-1563 O 0.54 / 0.29 

13 1310-1364 A 0.96 / 0.24 1299-1338 A 1.23 / 0.27 1563-1620 F 0.44 / 0.19 

14 1364-1442 F 1.07 / 0.58 1338-1385 A 1.37 / 0.21 1620-1663 F 0.59 / 0.18 

15 1364-1442 O 1.18 / 0.17 1385-1445 A 1.49 / 0.14 1663-1713 F 0.63 / 0.19 

16 1442-1486 A 1.28 / 0.13 1445-1563 A 1.62 / 0.1 1713-1747 F 0.75 / 0.19 

17 1486-1563 A 1.24 / 0.12 1563-1779 A 1.73 / 0.09 1563-1747 O 0.84 / 0.19 

18 1563-1779 A 1.31 / 0.09 1779-1931 A 1.89 / 0.1 1747-1787 A 0.91 / 0.19 

19 1779-1910 A 1.43 / 0.09 1931-2016 A 2.17 / 0.15 1787-1866 A 1.04 / 0.12 

20 1910-2101 A 1.64 / 0.1 2016-2226 A 2.38 / 0.74 1866-2152 A 1.14 / 0.05 

21 >2101 A 1.89 / 0.09 >2226 A 2.66 / 0.12 >2152 A 1.29 / 0.05 
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9 Figures 

 

 
Figure 1. McKenzie River Basin is nested in the Willamette River Basin within the greater Columbia River 

Basin.  5 
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Figure 2. SnowModel-derived snow water equivalent (SWE) (m) is shown in blue for the date of peak SWE 

from Sproles et al., (2013) for, a) a normal snow year (2009), b) a high snow year (2008), and c) a low snow year 5 

(2005), for the modelling domain around the McKenzie River Basin. The locations of the current SNOTEL sites 

are shown in black circles. The locations of the ForEST sites are shown in grey squares for open sites and green 

triangles for forested sites. 
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Figure 3. Elevation distribution (using 100 m elevation bands) of SnowModel-derived snow water equivalent 

(SWE) in the McKenzie River Basin for peak SWE during an average snow year (04 April 2009), an above 

average snow year (24 April 2008), and a below average snow year (20 April 2005). Mean SWE for each 5 

elevation band is shown in greyscale, and total basin wide volumetric SWE is shown in blue scale for 2009, 2008, 

and 2005. The green line indicates the elevation distribution of the percent canopy cover. The dashed grey line 

indicates the % / 100 of the area represented by each 100 m elevation band. The area of the greatest volumetric 

SWE persists in a narrow elevation range which is monitored by four historical and two newly installed (as of 

2012) SNOTEL stations (elevations of historical stations shown in purple stars and new stations in yellow stars). 10 
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Figure 4. Spatially distributed snow classes derived from the binary regression tree model and geospatial model 

for, a) a normal snow year (2009), b) a high snow year (2008), and c) a low snow year (2005). Blue/purple 5 

colours represent snow classes distributed by elevation for all land covers, green colours represent snow classes 

distributed by elevation and forest land covers, and orange/yellow colours represent snow classes distributed by 

elevation and open land covers. The selected locations for the snow monitoring sites were not evenly distributed 

in space, but were selected to span the range of spatial variability in snow-vegetation-climate interactions. 
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Figure 5. Volumetric SWE (km3) (shown as bar height), across the elevation range where the classes are located 

(shown as bar width), of the 21 binary regression tree (BRT) derived snow classes for, a) a normal snow year 

(2009), b) a high snow year (2008), and c) a low snow year (2005)  with the minimum elevation for each class 5 

labelled on x-axis. Mean SWE (m) (shown in coloured circles), standard deviation (shown as error bars), and area 

(shown as black x) within each BRT-derived snow class across the elevation range where the classes are located. 

The elevations of ForEST station locations are shown in orange stars for open sites and green stars for forested 

sites. 
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Figure 6. Mean SWE (cm) from snow course measurements collected at the paired open and forested snow 

monitoring sites in the ForEST network at, (a) high- (1483 and 1467 m), (b) mid- (1335 and 1332 m), and (c) 

low- (1113 and 1139 m) elevations during the winters of 2012, 2013, and 2014. Orange bars represent mean 

SWE (cm) in open sites. Green bars represent mean SWE (cm) in forested sites. Error bars indicate the maximum 20 

and minimum measured SWE (cm) from 2012, 2013, and 2014. 
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