
Dear Editor and Reviewers, 

Thank you for your comments and recommendations for the revised manuscript, they were very 

helpful in presenting this research in a more robust and defensible way. In order to tell a more 

compelling story, we have made multiple changes to the revised manuscript. We focused the 

paper solely on the objective approach to improve snow observational network design, and 

therefore omitted the evaluation of the SNOTEL network under climate change. We 

acknowledge the limitation in the initial analysis conducted in 2010 which was based on data 

from 01 April 2009, with the assumption it represented maximum snow accumulation across the 

basin during an average snow year. To improve upon this in the revised manuscript we used 

data from the five days centered on the date of actual peak SWE in the McKenzie River Basin for 

an average year 2009, an above average year 2008, and a below average year 2005. Evaluating 

the BRT-derived snow classes from three years of SWE data enabled us to use a more robust 

analytical approach including omission and commission statistics of overall classification 

accuracy.  

Please see the point-by-point responses to reviews, a list of all relevant changes made in the 

manuscript, and a marked-up manuscript version included below. 

 

Point-by-point response to reviews 

Interactive comment on “Developing a representative snow monitoring network in a forested 

mountain watershed” by Kelly E. Gleason et al. 

Anonymous Referee #1 

Received and published: 7 August 2016 

The authors present a comparison of a binary regression tree (BRT) statistical model, trained 

using a distributed snow model (SnowModel), to spatially locate similar snow classes around a 

watershed which guides the siting of meteorological stations (6 stations at three sites). Two 

snapshots of spatial snow distribution are used: 2009 (training data) and 2012 (evaluation data) 

in order to evaluate the BRT and demonstrate its utility for met station siting. This concludes 

with the claims that it improves the basis for site selection over a physically based model due to 

the uncertainty propagated by parameter selection (i.e. nested sub-models) in physically-based 

models. As the manuscript is currently written, there are some substantial issues to respond to 

as well as a few minor suggestions: 

Your comments highlight the need to clarify a few key points in the revised manuscript that may 

have been initially misinterpreted. For example we conclude that the presented method of site 

selection is an improvement over more commonly used heuristic approaches, but because the 

method couples physically-based, statistically-based, and geospatial models there is uncertainty 

particularly in predicting future conditions.  Here is the revised paragraph in the discussion 



section which addresses your comment above, “We developed a snow monitoring network 

representative of the spatial variability of SWE relative to physiographic landscape 

characteristics across the MRB for an average, above average, and below average snow year; 

using a coupled BRT statistical classification model, a spatially distributed physically-based 

SnowModel, and a geospatial selection model. This objective method is a useful tool in 

classifying snow characteristics across the landscape to determine representative locations for 

intelligent snowpack monitoring particularly in physiographically complex landscapes. Although 

it is an improvement over more commonly used heuristic approaches to site selection, the 

method incorporates uncertainty as a result of compounding statistically-, physically-, and 

spatially-based models which justifies caution in implementing these estimates in management 

decisions. However, the method meets assumptions of non-parametric data analysis, is 

performed with relative ease, and if data are available for the research basin of interest, it can 

be well validated. As even physically-based models incorporate inherent empirically-based 

historically-derived assumptions, there is also uncertainty in using this approach to represent 

future spatial variability in snow accumulation.” 

1. I don’t see how this is novel science from the perspective of BRT applications. The authors 

provide six citations in the introduction to similar BRT work and explicitly mention in their 

conclusions that it is not an advance over Randin et al. (2014). 

We present a novel method in designing an objective and representative snow monitoring 

network, which promotes the opportunity for novel science. In the introduction we acknowledge 

research which has used the BRT to evaluate snow accumulation at small scales, or snow 

covered area at broad scales, however no previous work has coupled physically-based model 

output with non-parametric statistical models to improve snow monitoring network design. In 

the introduction we include the following paragraph explaining how this method goes beyond 

any previous work using BRT modeling, “Landscape characteristics have been used to predict 

snowpack conditions at hillslope scales using non-parametric binary regression tree (BRT) 

statistical classification models (Molotch et al., 2005; Anderton et al., 2004; Erxleben et al., 

2002; Winstral et al., 2002; Balk and Elder, 2000; Elder et al., 1998). Larger scale BRT 

approaches have also been conducted using remotely sensed snow-covered area and 

interpolation methods (Molotch and Meromy, 2014; Molotch and Bales, 2006b). However, no 

study to date has used landscape characteristics in conjunction with modelled and validated 

physically-based and spatially distributed SWE data to understand physiographic drivers of 

snow accumulation at broad scales (watersheds > 1000 km2) or to identify optimal locations for 

snowpack monitoring. Additionally, most of the research on the physiographic relationships to 

snow processes has been done in cold-dry continental snowpacks where mid-winter melt events 

are infrequent and wind redistribution is substantial (Molotch et al., 2005; Erxleben et al., 2002; 

Winstral et al., 2002; Balk and Elder, 2000). Much less is known about how physiographic 

conditions influence the temperature sensitive snowpacks in the forested maritime basins of the 

Pacific Northwest.” 



Also in the conclusions we include the following paragraph, which specifically describes the 

novelty of this research,” By quantifying the spatial variability in the key drivers of natural 

resource distribution, researchers can focus on sensitive areas which may not be identified 

through traditional site selection means. The use of validated model outputs as a predictor of 

the spatial variability in snow-vegetation interactions is not new (Randin et al., 2014). The 

novelty of this research stems from the application of the method, where by the coupling of a 

traditional BRT classification process with a validated physically-based spatially distributed 

model, we improved observational network design in a forested montane watershed.” 

2. This work demonstrates that a statistical BRT model that is not temporally responsive to a 

warming climate (i.e. in the same way that SNOTEL data provide temporally static statistical 

relationships to discharge), performs worse than the distributed physically-based model 

(SnowModel). Table 2 shows this performance difference is by an order of magnitude in the 

mean values for medium and low elevations. Hence the assertion in the conclusions that there 

is still a place for simple approaches is undermined. From the presented methodology of the 

BRT model it seems this is not a simple approach, and in a watershed where a physically-based 

model can (and has) been deployed, it offers no improvement. While there may be uncertainty 

in many parameterizations and process representations of physically based models, at least 

they will be responsive in outputs to changing input in a warming climate (especially relevant to 

the pacific north-west region). 

To simplify the manuscript and focus on the novelty of our method, we have removed the 

evaluation of the SNOTEL network under a warming climate.  Also, in order to make the 

validation of this approach more robust in the revised manuscript, we have included three years 

of input data and allowed the BRT model to build its own structure from an average snow year, 

an above average snow year, and a below average snow year. By including these additional 

years, we were able to use omission vs commission statistics to determine the overall accuracy 

of the models between years of current snow conditions. 

We hope this clarifies some of the confusion mentioned in the above comment. We do not 

suggest that a BRT modeling approach is more robust than a physically-based model in 

predicting snow volume across a watershed. We present a relatively simple method using 

coupled models to classify the snowpack (a normally continuous variable) across a complex 

watershed to guide objective snow monitoring network design. We have also included the 

following statement in the discussion, “As even physically-based models incorporate inherent 

empirically-based historically-derived assumptions, there is also uncertainty in using this 

approach to represent future spatial variability in snow accumulation.” 

3. The claim of a predictive system (whether BRT or a physically based model) as a tool for 

advancing the siting of met stations is very site specific and doesn’t provide wider scientific 

advancement. Local watershed knowledge of potential site access, elevation and forest/open 

areas would likely provide just as much information required as a complex statistical BRT style 

analysis. While this style of statistical analysis may have been useful to justify the location of 



met sites in the MRB watershed, in itself, it doesn’t justify either a methodological or scientific 

advance in HESS. 

Using an objective method of site selection is rarely used, and we suggest is an advancement 

over more heuristic approaches which require institutional knowledge that may not exist in 

remote rugged watersheds. Although the result of this analysis may not be particularly 

surprising, it is a useful method for objectively validating our assumptions about 

“representativeness” of any particular monitoring site location. For example, our final station 

locations may appear clustered in physical space, but from using our method we are confident 

the locations span the parameter space of the key drivers influencing the spatial variability of 

snow accumulation across the watershed. We present this method with the hope that more 

scientists will objectively distribute future monitoring locations based on actual data instead of 

going on “gut feeling”. 

4. The benefits of a BRT approach remain poorly quantified. In the abstract, elevation, 

vegetation type and vegetation density are defined as the significant drivers of SWE 

distribution. As we already know this is important in montane environments this does not come 

as a surprise, however, not providing any statistical quantification of the relative significance 

(nor on the main body of text) means such a major concluding statement adds little to the 

current body of work in the literature. 

We hope we have clarified in the final manuscript the benefits of this coupled approach to 

objective site selection. As stated above, the results of this analysis are not surprising and 

validate already known assumptions about snow-vegetation interactions in montane 

watersheds. However what is novel in this method is that it uses statistically derived 

relationships to classify the spatial distribution of snow by its primary drivers to improve 

observational network design. Also, because we included three years of input data in the final 

manuscript, we include a more robust statistical validation of the BRT model between years. 

Minor comments: 

Abstract: this could be condensed substantially. Ln 9-14 and 24-27 could be 

shortened/removed. No quantified results are presented. The reader is left unaware how 

representative (i.e. quantified) this BRT model actually is. 

As suggested, we have condensed the abstract to focus more simply on the method of site 

selection, and included a basic statistic of the final BRT model in the revised manuscript. The 

revised abstract now reads, “A challenge in establishing new ground-based stations for 

monitoring snowpack accumulation is to locate the sites in areas that represent the key 

processes affecting snow accumulation and ablation. This is especially challenging in forested 

montane watersheds where the combined effects of terrain, climate, and land cover affect 

seasonal snowpack. We present a coupled modelling approach used to identify a parsimonious 

set of monitoring sites in a forested watershed in the western Oregon Cascades mountain 

range. We used a binary regression tree (BRT) non-parametric statistical model to classify peak 



SWE based on physiographic landscape characteristics in a normal year, an above average year, 

and a below average year. Training data for the BRT classification were derived using spatially 

distributed estimates of SWE from a validated physically-based model of snow evolution. The 

optimal BRT model showed that elevation and vegetation type were the most significant drivers 

of SWE in the watershed (R2 = 0.93, p-value < 0.01). Geospatial elevation and land cover data 

were used to map the BRT-derived snow classes across the watershed. Specific snow monitoring 

sites were selected randomly within the BRT-derived snow classes to capture the range of 

spatial variability in snowpack conditions in the McKenzie River Basin. The Forest Elevational 

Snow Transect (ForEST) is a result of the BRT modelling and represents combinations of forested 

and open land cover types at low, mid, and high elevations. After five years of snowpack 

monitoring, the ForEST network provides a valuable and detailed dataset of snow accumulation, 

snow ablation, and snowpack energy balance in forested and open sites from the rain-snow 

transition zone to upper seasonal snow zone in the western Oregon Cascades.” 

Pg 1, Ln27: The idea this paper tests the MCB snow network within a projected warming 

climate (from 2009 to 2012) suggests something that is not adequately delivered by this paper. 

As suggested this evaluation of the MRB SNOTEL network within a projected warming climate 

(from 2009 to 2009 + 2° C) was removed from this revised manuscript to focus on the objective 

method of site selection to capture the spatial variability in SWE during current years. We have 

also included three years of data to evaluate the accuracy of the model between years in the 

revised manuscript, but this is not intended to suggest anything about climate change. 

Pg 4, Ln 7 & 19 – don’t need ‘Description of the’ in either sub heading. 

This change was made. 

Pg4, ln 12 – ‘which’ is grammatically correct after a comma rather than ‘that’.  

This change was made. 

Pg 4, Ln 25-27 – following Winstral et al., (2002) and subsequent papers by Winstral et al., was 

this used to calculate redistribution of snow (especially above tree line) in drifts which are very 

important hydrological areas to get SWE correct in a watershed? 

Yes, these methods were used to calculate the upwind contributing area to calculate 

redistribution of snow in drifts across the landscape. Although snow redistribution is not as 

important in the warm maritime low elevation snowpacks characteristic of the Pacific 

Northwest, than in drier higher elevation continental snowpacks, we still felt it important to 

include wind as a driver of spatial variability in SWE. We have included the following sentence to 

clarify your question in the revised manuscript, “Upwind contributing area data, which captures 

the variability in snow deposition as a result of wind redistribution for each cell throughout the 

watershed (Winstral et al., 2002), was calculated following Molotch et al., (2005).” 



Pg 5, Ln 18-21 – while Sproles et al. (2013) is often cited, as this is such a key foundation to this 

work it needs greater explanation in this paper – in particular how the future SWE conditions 

are calculated, and especially the change to precipitation rates and phase (rain/snow) as well as 

temperature. 

A fairly detailed paragraph describing the methodology used for the modelled input SWE data 

was included in the data sources section of the methods. For the sake of brevity, we would 

prefer to cite Sproles et al 2013, and not reiterate what has already been published. We include 

the following paragraph in the methods, “Modelled and gridded SWE data across the MRB 

(Figure 2) were provided by Sproles et al., (2013). These data were developed using a physically-

based spatially distributed snow mass and energy balance model, SnowModel (Liston and Elder, 

2006). SnowModel uses micrometeorological and topographic data to distribute snow across 

the landscape accounting for climatic, topographic, and vegetation variability. The model was 

modified by Sproles et al., (2013) to account for rain/snow precipitation phase partitioning, and 

snow albedo decay in forested landscapes. This model was calibrated and validated using data 

from the four SNOTEL sites, meteorological data from the HJ Andrews Long Term Ecological 

Research site and National Weather Service stations and Landsat fractional snow covered area 

data over the sampling period 1989-2009 (Sproles et al., 2013). The model was run at 100-m 

spatial resolution on a daily time step. We used modelled peak SWE data as the predicted 

variable in the BRT model. Sproles et al., (2013) showed that 2009 was considered an average 

snow year so we used peak SWE from 2009 (five days centred on 04 April 2009) as our reference 

year. Additionally we used peak SWE from 2008 (five days centred on 24 April 2008) as an above 

average snow year, and peak SWE from 2005 (five days centred on 20 April 2005) as a below 

average snow year.”  

Pg 5, ln 24 – can more be said about issues of up-scaling (aggregation) and downscaling 

(disaggregation) of different data sets? 

We have included additional information about the method used in scaling the input data 

following, “All spatial data were masked to the McKenzie River Basin and converted to the same 

projection and spatial resolution: NAD83, UTM Zone 10, and a 100-m grid cell size. Spatial data 

were processed using ArcGIS 10.1 using bilinear interpolation for continuous data and nearest 

neighbour interpolation for discrete data.” 

Pg5, Ln 25 – why concentrate on areas defined as ‘bulk’ rather than fully spatially distributed 

models? Locating big drifts, often above tree line, are key to understanding the timing and 

magnitude of discharge. This seems to have been neglected under this BRT model. 

The bulk snowpack was evaluated for current and future (+ 2° C) conditions to quantify the area 

on the landscape where the majority of the snowpack lies from the physically-based spatially-

distributed modelled SWE data. Although we have removed this analysis from this revised 

manuscript to focus on the novel method of coupling physically-based and statistical models to 

improve observational network design. 



Pg 6, Ln 5-10 – The way that SnowModel is combined or used to evaluate BRT is presented in a 

very confusing fashion. Where is the independent data to evaluate BRT? 

Within the CART statistical software, we have reserved 20,000 random cells within the 

modelling domain to test the final BRT statistical model. The modelled SWE data was used as 

the dependent variable in the BRT statistical model, and we hope this is now less confusing in 

the revised manuscript. We have included this additional information in the statement, “Within 

the CART software, the final BRT model was validated using reserved data from an independent 

set of 20,000 randomly selected grid cells from within the MRB.” 

Pg 6, ln 12 – 20 BRT snow classes? Wasn’t one removed due to logistics and finance? This adds 

confusion to the methods. 

We have revised our analysis in this revised manuscript in a few key ways including, a) using 

peak SWE instead of 01 April, and b) pruning the optimal model to just the two main drivers to 

prevent overfitting and multi-collinearity brought up by reviewer #3. In the revised manuscript, 

the optimal model is defined by 21 BRT snow classes, none of which were removed. We hope 

this is clear in this revised manuscript. 

Pg 6, ln 14-16 – Why were lower elevation extents removed? This is done without any 

quantification nor real justification. 

The BRT model did not set bounds on lower elevation limits for SWE, although SWE did not exist 

below approximately 600 m in the modelled data as well as anecdotally from observations. As 

stated in the manuscript, “Because the BRT-model did not determine a lower elevation limit on 

snow extent, we excluded areas with an elevation less than 600 m to prevent over-prediction of 

snow-covered area below elevations where it was observed in the modelled data.” 

Pg 6, ln 16-17 – what proportion of the basin was removed? Why do this if it is a SWE 

contributing area to discharge, why would this cause over prediction? 

This removed 26.5% of the area in the basin during the evaluation of the volume of SWE in the 

BRT classes, although this area held 0.068% of the SWE in the basin (or 0.0009 km3 of 1.48 km3 

SWE). If we had not set a lowest extent of snow covered area in the basin, it would be the 

equivalent of drawing a regression line beyond the range of the input data. We set this 

boundary were it was observed in the modelled data to prevent extrapolation of the model 

beyond the bounds of the input data. 

Pg 6, ln 21 – add ‘a’ between ‘create’ and ‘set’. 

This change was made. 

Pg 6, ln 24 – why is 500m threshold applied? In practice one would expect field locations for 

met sites to be closer or further away from transport links depending on local conditions (i.e. 

how potential met site locations have always previously been evaluated). 



Your question highlighted a typo in the manuscript which we have revised, as well as included 

additional information for clarity. The following statement was included in the revised 

manuscript, “To prevent contamination from the road network, but still define accessible site 

locations, we also identified areas within 100-500 m of a snowmobile-accessible road.” 

Pg 7, Ln 8 – the ‘final’ BRT model. How many BRT models were evaluated? The rest of this 

paragraph has already been discussed and is providing repetition. 

In the revised manuscript, we developed the optimal model based on an average year 

snowpack, which was then paired down to a more parsimonious final optimal model, which was 

then applied to an above average and below average snowpack. In the revised manuscript, we 

have rewritten the methods for clarity, including the following text in the analysis section, “An 

optimal tree was produced to minimize the standard error of the model, which was then pruned 

down to the simplest tree possible within one standard error of the optimal tree, and so each 

terminal node represented at least 1% of the variability in peak SWE. The resultant tree 

identified 21 terminal nodes that characterized the spatial variability in SWE through 

combinations of independent drivers into 21 BRT-derived snow classes (Table 1). The BRT model 

identified elevation, land cover, NDVI, insolation, percent canopy cover, slope, and wind as 

significant explanatory drivers of the spatial variability of peak SWE (all selected variables had 

p-values < 0.05 and are listed above in order of significance). Although elevation and land cover 

were the dominant predictive variables where the other physiographic variables each explained 

less than 1% of the variability in peak SWE. In order to reduce the multi-collinearity between 

related variables and reduce the risk of overfitting the model, we simplified the final optimal 

model to only include elevation and land cover. Within the CART software, the final optimal BRT 

model was validated using reserved data from an independent set of 20,000 randomly selected 

grid cells from within the MRB. The final parameters developed in this optimal tree for peak 

SWE in an average year 2009, were used to develop equivalent BRT models using peak SWE 

input for an above average year 2008, as well as for peak SWE during a below average year 

2005.” 

Pg 7, Ln 14 – why does latitude matter? 

Good point, particularly over a 3000 km2 watershed it should not matter, and therefore we have 

removed it from the analysis in this revised manuscript. 

Pg7, Ln 15 – why does aspect not matter? Especially for snowmelt rates, this goes against 

conventional wisdom. 

In this study we sought to classify the spatial distribution of snow water volume on the 

landscape, and therefore focused on the peak snow accumulation across the watershed. Aspect 

should matter, as well as insolation and slope, during snow ablation, but we did not expect it to 

be important in accumulation processes. Because we focused on snow accumulation, we did not 

expect aspect to be an important driver in the spatial distribution of peak SWE. 



Pg 7, Ln 18 – why were BRT and SnowModel not used in conjunction with each other. When 

both are available it is confusing that they are not used together to optimize estimation of SWE 

distribution. 

We coupled SnowModel, BRT, and a geospatial model to classify snow across the watershed. 

They are used in conjunction and hope we clarified this issue in the revised manuscript. 

Pg 7, Ln 20 – BRT estimation of mass should be good in 2009 as it is tuned with SnowModel, but 

poor prediction of SCA (64% SCA over prediction) suggests it’s not getting SWE right for the 

right spatial reasons (i.e. at low elevation). 

We were previously using the static BRT-derived snow classes based on 2009 SWE and applying 

them to 2012. This method implies there is no inter-annual variability in SWE, and therefore 

does not properly evaluate the accuracy of the BRT model between years. In order to improve 

upon this, we included three years of SWE input data to develop three equivalent BRT models, 

and using omission and commission statistics we evaluated the overall accuracy of BRT models 

between years in the revised manuscript.  We don’t expect the BRT model to predict actual SWE 

volume on the landscape, but to predict the spatial distribution of similar SWE characteristics 

across the landscape, and we believe we have achieved this goal in this revised manuscript. 

Pg 7, Ln 23 – Increasing elevation does not increase accumulation, it is increases with elevation 

(i.e. not a cause in itself). 

We have included the following statement to address this comment, “Snowpack accumulation 

increased with increasing elevation, resulting in a greater mean SWE per unit area at the 

highest elevations. Although deep snowpack at the highest elevations only cover a small aerial 

extent of the MRB, which resulted in decreasing contribution of total basin-wide SWE above 

approximately 1700 m during the average and above average snow years. In contrast, during 

the low snow year, the highest elevation classes contributed the most to total basin-wide SWE 

(Figure 5).” 

Pg7, Ln 26-31 – could this information be put into a table? 

This information has been refined and added to Table 1 in the revised manuscript. 

Pg 8, Ln 1 – comma needed after ‘Whereas’. 

This change was made. 

Pg 8, ln 4-5 – How does BRT adapt to changes in winter precipitation inter-annually? If it can’t, 

what advantages does it have over running SnowModel? 

I hope this confusion has been clarified in this revised manuscript. We used the BRT model to 

classify the modelled SWE output of continuous data based on physiographic landscape 

characteristics. In order to address how the BRT model adapts to interannual variability in SWE, 



we included an above average snow year, and a below average snow year in the analysis of this 

revised manuscript. 

Pg 8, Ln 7 – SnowModel derived estimates were NOT captured well by BRT. They were an order 

of magnitude different at low and medium elevations. Need a much better quantified argument 

to justify this. 

We aim to capture the spatial variability in SWE characteristics across the landscape, not the 

actual volume of SWE. In the revised manuscript, we have rerun the BRT models using three 

years of data to more robustly evaluate the spatial variability in snow classes across the 

landscape between years. 

Pg 8, Ln 13 – Need to provide more about how accessibility is determined as a criteria. 

These criteria have been described in the methods section including the following statement, 

“To create a set of feasible locations for the in situ snow monitoring network we evaluated the 

accessibility of locations within the MRB. Using a GIS-based binary selection model, we masked 

out all private lands and public lands where the presence of endangered Northern Spotted Owl 

prevented permitted access. To prevent contamination from the road network, but still define 

accessible site locations, we also identified areas within 100-500 m of a snowmobile-accessible 

road. From these accessible areas, the final sites were then randomly selected from each of the 

dominant BRT-derived snow classes within the seasonal snow zone.” Also to clarify this in the 

results section we included the following statement, “The geospatial selection model identified 

16 of the 21 classes as being accessible (following criteria explained in the above methods) 

during winter.” 

Pg 8, ln 19 – six met stations is a bit misleading, rather there are three sites, each with adjacent 

open/forest met stations. 

Although the six met stations are paired by elevation and appear to be in the same site on the 

map, they are approximately 1 km from each another. They are grouped by elevation but 

distinct in the land cover characteristics. The following statement has been included which 

clarifies that the six stations are grouped by three elevation ranges and two land cover types, 

“Within the area covered by these 16 classes, random site locations were selected within the six 

most abundant classes across the MRB to capture low, medium, and high elevations, with 

forested and open land cover classes. The resultant Forest Elevation Snow Transect (ForEST) 

monitoring network site locations were thus objectively selected to sample across the range of 

spatial variability in SWE. The ForEST network, composed of six meteorological stations and 

snow survey transects, was deployed in November 2011, and continues to provide high quality 

snow and climate data to evaluate snow-forest-climate interactions in the MRB (Figure 4).” 

Pg 8, Ln 17-26 – this isn’t a scientific result unless you then go on to do something with these 

met data. 



The ForEST network of snow monitoring stations is the result of the coupled modeling approach, 

and therefore we believe it should be included in the results section. We have moved any 

qualitative evaluation of the network to the discussion section. We could fill an entire 

manuscript evaluating the met data, but in this manuscript we aim to focus on the novel 

method of objective site selection. 

Pg 8, Ln 26 – how has this been stringently validated with the BRT model? 

We aimed to objectively distribute a representative snow monitoring network using this coupled 

modeling approach. Instead of heuristically deciding where stations should be located, we used 

physically based SWE data and a non-parametric statistical model to define the spatial 

variability across the watershed. We hope in the revised manuscript we have clarified this and 

include the following statement in the discussion section, “The paired forest-open land cover site 

selection process has already led to important understanding of key sub-canopy snow processes 

(Storck et al., 2002; Golding and Swanson, 1986). But here, the assumptions driving paired site 

selection process has been further validated using coupled physically-based spatially-distributed 

snow model input data and non-parametric BRT statistical modelling across a forested montane 

watershed.” 

Pg 8, Ln 26-28 – Consistency in the pattern of measured snow course SWE doesn’t corroborate 

energy balance and snow-veg interactions.  

We have removed this statement to allow the reader to form his/her own conclusions about the 

measured data resulting from this project. 

Pg 9, Ln 15-16 – This study doesn’t explicitly demonstrate the impact of timber harvest/ fire 

disturbance impact on SWE distribution. 

We have included the following statement in the discussion to clarify this point, “By 

distinguishing snow classes based on forest vs. open land cover across a range of elevations, this 

study emphasizes the watershed-scale control that vegetation and particularly land cover 

change relative to timber harvest (and potentially fire disturbance) has on snowpack 

accumulation in the maritime western Oregon Cascades.” 

Pg 9, Ln 20-21 – If BRT and SnowModel are coupled (as stated) then what does this combination 

give us that SnowModel doesn’t give us as a stand-alone product? This is not providing added 

information on hydrological response units (HRU), it is not a new idea in snow hydrology (e.g. 

CRHM), and doesn’t provide an obvious robust advancement in inter-annual transferability. 

We use this coupled approach to classify snow characteristics across the landscape and to 

improve upon traditional methods of observational network design. The Snowmodel output 

data is continuous by nature, and doesn’t provide any guidance for which specific locations in a 

watershed may be representative of greater landscape scale processes. We did not expect to 

advance scientific knowledge, but to provide an objective technique for distributing point based 

monitoring locations which represent the spatial variability across the watershed.  



Pg 9, Ln 26 – Yes, inter-annually transferability really needs to be more robustly tested by this 

methodology, rather than one 1 April snapshot in 2012. Currently this evaluation/validation has 

not been sufficiently done with independent data. 

We included three years of data from the actual date of peak SWE in this revised manuscript to 

provide a more robust evaluation of the accuracy of the BRT models between years. 

Table 1 – What percentage of SCA was above 1546m (was it 40%)? If these data were rejected 

can this be demonstrated that this is not a problem? While thin SWE and scour is likely in Alpine 

areas above tree line drifts in these areas can contribute substantially to the timing of increased 

discharge through melt-out. 

We aim to capture the spatial variability in SWE characteristics across the watershed to improve 

observational network design, not to accurately capture any watershed discharge 

characteristics. We do need more observation stations at higher elevations, although within the 

resource limitations of this study we were restricted to locations we could reach with a 

snowmobile and must accept the related uncertainty. 

Table 2 – no units. Can low, medium and high be classified? Which sites were the forest and 

open sites – can these be related to a map or specifically described? 

Table 2 has been omitted from this revised manuscript in lieu of more robust accuracy 

assessment tables included in the supplementary tables. 

Fig 2 – put yellow circles in legend. Cite Sproles in caption (see previous comment about more 

explicit explanation of future precipitation scenario in Sproles data). 

Figure 2 has been omitted from the revised manuscript as described in the above text. 

Fig 3 – I am surprised that mean SWE by elevation increased above tree-line, would have 

expected some thinning of SWE due to scour, can this be explained? The hypsometry of the 

basin would be a very useful (essential?) addition to this figure. 

As mentioned above, snow redistribution is not as important in warm maritime snowpacks as it 

is in cold dry continental snowpacks, and therefore we are not surprised by this result. In order 

to make the connection between volumetric SWE and mean SWE across the elevation gradient 

we have included the hypsometry on Figure 3.  

Fig 4 – relate snow classes to the Table otherwise they make no sense. 

Table 1 has been altered in the revised manuscript to explicitly describe each snow class for each 

year. The BRT snow class numbers in Table 1 match those used in the legend of Figure 4 in order 

for readers to make the connection between the statistics and spatial distribution of each snow 

class. 



Fig 5 – How does forest and open relate to the ‘all’ classification? What is additional to ‘all’ 

other than forest and open? Why is mean SWE so different to SnowModel? Which year is this 

for? Don’t put descriptive results in caption, put them in the main body of the text. Caption says 

it’s statistically important, where is this statistical analysis? 

The information for each BRT-derived snow class is now consistent between Table 1, Figure 4 

and Figure 5 in the revised manuscript. The BRT model distinguishes snow classes across the 

middle elevations into forest vs. open land cover types, but only by elevation across the high 

elevations. All land covers includes both forest and open land covers as opposed to forest or 

open land covers. Mean SWE here is defined for each BRT snow class, where as in Figure 3 mean 

SWE is defined for each 100 m elevation band. We hope these questions are addressed in the 

revised manuscript. The BRT model selected statistically significant drivers of SWE across the 

landscape and is the analysis we refer to here, although these “descriptive results” have been 

removed from the figure caption. 

Fig 6 – This is just measured SWE, how is it use to quantitatively evaluate the new modelling 

framework? Need to define the high, mid and low elevations in the caption. Error bars seem to 

be the range rather than any calculation of error.  

We are not evaluating the modeling framework using these measured SWE data, but we 

present the measured SWE data to show there are consistent differences in peak SWE between 

forests and open areas that seem to evolve across the elevational gradient. We have included 

the elevations within the caption, and also state in the caption that, “Error bars indicate the 

maximum and minimum measured SWE (cm) from 2012, 2013, and 2014.” We are unaware of 

another name to refer to these bars and hope they are clearly defined in the revised manuscript. 

 

Anonymous Referee #2 

Received and published: 15 September 2016 

General Comments 

Gleason et al. present a case study detailing how a binary regression tree (BRT) model can be 

used to identify major statistical classes of snow accumulation based on readily observable 

physiography. This regression tree classification/ model subsequently is used to inform a 

detailed snowpack monitoring array/ network. The specific application is in the MacKenzie 

River basin in the Cascade Mountains of Oregon, an area subject to strong elevation gradients 

in snowpack accumulation and potential quite susceptible to climate change. The result of this 

effort was the establishment of the Forest Elevational Snow Transect (ForEST) which has been 

operational for five years. The case is made that an objective approach like the BRT is 

preferable to errors associated with a subjective siting based on heuristics or experience. 

Specifically, the drivers are: elevation, land cover, percent canopy cover, slope, NDVI, and 

latitude. Not terribly surprising, but nice to see objectively defined.  



Although technically sound, the paper could do a better job of closing the circle on a compelling 

story or novel contribution. Discussion of climate change, monitoring, and site selection are 

mixed making it difficult to determine exactly what is the contribution of this effort beyond 

adding another site at slightly higher elevation. A clearer analysis of how the BRT guided siting 

resulting in a more representative/ predictive/ useful network in a climate change scenario is 

needed. For example, how can others use this approach without physically validated SWE 

distributions? Should we expect this classification to hold elsewhere or even here under climate 

change? Indeed, should we move the discussion beyond April 1st to better inform water 

resource management? That date is a compromise after all and it very well may be that a more 

representative/ useful for water resources monitoring network is not wedded to that date 

(heresy I know). I can’t say which of the above (or others) are most worthwhile avenues to 

pursue, but after reading the manuscript several times, I am left with the sense that something 

is missing. 

Specific Comments 

Although there is a certain level of objectivity in the BRT, I suggest that the modeling approach 

carries its own set of biases first in the physical model which must scale point observations to a 

3-D snow cover while only the wind redistribution part of the model operates in 3-D including 

non-local effects. A number of papers suggest that edge effects of vegetation on energy 

balance as well as remote topographical vs local vegetation shading influence snowpack mass 

and energy balance. These are difficult to include, especially at the scale of this exercise, but 

they clearly may be relevant for future scenarios. Instead, the strength (of using the BRT and 

physical model) is being able to accurately evaluate these assumptions by making them explicit, 

rather than suggesting they don’t exist. No model is perfect. 

In the discussion we acknowledge the many potential sources of uncertainty in this method, in 

the following statement, “This objective method is a useful tool in classifying snow 

characteristics across the landscape to determine representative locations for intelligent 

snowpack monitoring particularly in physiographically complex landscapes. Although it is an 

improvement over more commonly used heuristic approaches to site selection, the method 

incorporates uncertainty as a result of compounding statistically-, physically-, and spatially-

based models which justifies caution in implementing these estimates in management decisions. 

However, the method meets assumptions of non-parametric data analysis, is performed with 

relative ease, and if data are available for the research basin of interest, it can be well validated. 

As even physically-based models incorporate inherent empirically-based historically-derived 

assumptions, there is also uncertainty in using this approach to represent future spatial 

variability in snow accumulation.” 

Second, the statistical approach used in the BRT assumes stationairity in the processes from 

year to year for your comparisons as well as for future predictions under climate change. This 

leaves me confused by the 50% difference in BRT vs physical model SWE for 2012. How was the 



BRT initialized for 2012? Did you force the tree structure to replicate that from 2009 or did you 

let the model form its own structure? 

 

Yes, good point. We reran the BRT models using peak SWE for three years of data to develop a 

more robust comparison of the spatial distribution in BRT-derived snow classes between years. 

In the revised manuscript we used the average year SWE data to build an optimal BRT model, 

then used the same parameter conditions with SWE data from an above average year and 

below average year and let the model form its own structure. We then used omission and 

commission statistics to compare the accuracy in the spatial distribution of these BRT-derived 

snow classes between years. 

The observation that patterns persist is nice, but it seems that there is information in the 

differences between the two estimates of SWE volume. I suggest showing the tree and order/ 

strength of nodes. This would strengthen the presentation of the BRT relative to the table. 

In the revised manuscript, we simplified the final BRT model to just two predictive variables to 

reduce multi-collinearity between variables and prevent overfitting the final model. It is a good 

suggestion to show the BRT tree for clarity, however now that the final BRT model has been 

simplified, we think it is redundant to show the associated tree. 

Figure 3 – At first glance (and second) it seems that only one of the new locations is in the area 

of volumetric SWE accumulation. In other words, one location is too low in elevation and there 

is a large volume higher in elevation that your highest site. Just eyeballing it perhaps 30 to 40% 

of SWE is above that location. 

To address comments on the stationarity assumptions and to simplify the overall manuscript we 

have excluded the discussion of climate change throughout the revised manuscript. We 

acknowledge that the ForEST station locations are not distributed in space, but span the 

parameter space in the spatial variability of SWE across the MRB for an average year, above 

average, and below average year. There is a large area of SWE above our highest site which was 

not feasible for us to monitor.  

Figure 5 - I find this confusing - the classes open, forest, and all don’t seem to make sense. 

perhaps you are trying to communicate too many messages? area, volume, and controls all in 

one figure with no indication that the volume differences between forest and open are due to 

area or depth 

We have modified this figure in the revised manuscript, and hope it is easier to understand. Also 

we included a discussion of how interrelated the volume differences between forest and open 

areas are a function as both area and depth. The following has been included in the revised 

manuscript in the caption for Figure 5, “In the mid-elevations, the forest vs. open distinction is 

statistically important in distinguishing snow classes. In the high-elevations, above treeline, only 



elevation significantly drives variability in snow accumulation. Mean SWE increases but 

volumetric SWE decreases as the land area decreases at the highest elevations.” 

Figure 6 why show max and minimum as it muddies the difference between location and year. 

We think it is important to show the variability as well as the average snow accumulation 

between sites and across years. 

Technical comments 

Page 1, Lines 22-26 – It seems that the current ForEST network of sites is the result of the BRT 

modeling exercise, if so, say that directly rather than back in to it as currently written 

We included the following statement to address this comment, “The Forest Elevational Snow 

Transect (ForEST) is a result of the BRT modelling and represents combinations of forested and 

open land cover types at low, mid, and high elevations.” 

Page 4, Line 25 and on to next page - Unclear how NLCD, 30m LANDFIRE, and 250m NDVI were 

used (what data from each source) and/ or aggregated to reach 100m spatial resolution. Specify 

this up front so the reader doesn’t need to go back and forth between results and methods 

We included the following statement in the methods section to specify how the data were 

aggregated, “All spatial data were masked to the McKenzie River Basin and converted to the 

same projection and spatial resolution: NAD83, UTM Zone 10, and a 100-m grid cell size. Spatial 

data were processed using ArcGIS 10.1 using bilinear interpolation for continuous data and 

nearest neighbour interpolation for discrete data.” 

Land cover is variously referred to as forest or open, and is synonymous with veg class, correct? 

This should be clarified. 

Land cover is used throughout the revised manuscript, and veg class has been omitted. 

Table 2 – what are units? 

Table 2 has been removed from the revised manuscript. 

 

Anonymous Referee #3  

Received and published: 27 September 2016 

SUMMARY OF THE PAPER 

This paper (1) investigates which physiographic factors influence modeled spatial SWE 

distributions on 1 April in the McKenzie River Basin of the western Oregon Cascades and (2) 

demonstrates how this knowledge can be used to locate new snow studies sites in an objective 

way for resolving physiographic influences on SWE. The work is motivated to inform 



observational network design in snow-dominated watersheds where forest change and climate 

change present challenges. They use binary regression trees (BRT) to predict 1 April SWE in an 

average year based on predictors such as elevation, forest cover, NDVI, and latitude. This is a 

unique application of BRT because they use 1 April SWE output from a spatially distributed 

physically-based model (SnowModel) at the watershed scale, whereas most previous BRT snow 

studies have been at smaller scales and with observational data. The analysis examines 20 snow 

classes from BRT in average snow years in current and future (+2 C degree) conditions. The 

study compares differences in SWE in forest and clearings at different elevations, as sampled in 

the ForREST network. I think the most major contribution of the paper is that it demonstrates a 

method for utilizing physically-based model output to improve observational network design. 

The method is novel and the results should garner decent interest from the community. I think 

the writing/figures are of especially high quality. This paper should be published in HESS after 

addressing a variety of major and minor comments (below). 

MAJOR SPECIFIC COMMENTS 

1. The most glaring weakness of the analysis is that it does not address collinearity of the 

predictors anywhere. Certainly some of the predictors in the BRT co-evolve in space. For 

example, forest cover decreases with elevation (seen in Figure 3). How can one disentangle the 

unique influence of covarying predictors within the adopted regression framework, let alone 

assert which predictors dominate SWE (Page 7, Line 12)? 

In order to reduce the multi-collinearity of the predictors and prevent overfitting the model we 

excluded predictors which explained less than 1% of the variability in SWE to develop a more 

parsimonious model. Elevation and land cover type explained 93% of the variability in SWE, 

which justified excluding the less important more correlated variables. We have confidence in 

this final model as it captures different patterns of influence from elevation and land cover to 

the spatial variability in snow accumulation between years. Across the basin, SWE increases 

predictably with elevation, but in the most forested regions of the river basin (mid-elevations) 

land cover also drives variability in SWE. Open areas tend to accumulate more SWE than 

forested areas at the same elevation, and forested areas tend to have more variability in SWE 

accumulation than open areas across elevation gradients. We have included the following 

statement to address this comment, “The BRT model identified elevation, land cover, NDVI, 

insolation, percent canopy cover, slope, and wind as significant explanatory drivers of the 

spatial variability of peak SWE (all selected variables had p-values < 0.05 and are listed above in 

order of significance). Although elevation and land cover were the dominant predictive variables 

where the other physiographic variables each explained less than 1% of the variability in peak 

SWE. In order to reduce the multi-collinearity between related variables and reduce the risk of 

overfitting the model, we simplified the final model to only include elevation and land cover. The 

final BRT model was validated using data for an independent set of 20,000 randomly selected 

grid cells from within the MRB. The final parameters developed in this optimal tree for peak 

SWE in an average year 2009, were used to develop equivalent BRT models using peak SWE 



input for an above average year 2008, as well as to peak SWE during a below average year 

2005.” 

2. The analysis implies that current observational sites may not be representative of snow 

conditions in a future climate and that physically-based model outputs are valid irrespective of 

climate conditions. However, SnowModel (and other models with the physically-based label) do 

have embedded routines/parameterizations that are empirical in nature and tuned to historical 

conditions (e.g., atmospheric longwave radiation). There is a general lack of discussion about 

the reliability of models in projecting changes outside of historical conditions. These 

approximations of the real-world are further muddied here because the study is advancing a 

model (BRT) of a model (Liston/ Elder SnowModel). 

To focus the paper, we have removed the evaluation of SNOTEL sites under future climate 

change, and therefore removed the implication you mention “that physically-based model 

outputs are valid irrespective of climate conditions”. We also included the following in the 

discussion at page 9, line 22, “As physically-based models incorporate inherent empirically-

based historically-derived assumptions, there is also uncertainty in using this approach to 

represent future spatial variability in snow accumulation.” 

3. Comparing basin SWE on 1 April for the current climate and a warmer +2 degree climate may 

be misleading/inappropriate, as the basin may be well into the melt season by 1 April in the 

warmer climate. 1 April is historically significant only because it has been (on a mean basis) 

near peak SWE timing. Arguably, the date of peak SWE will advance earlier in the year with 

climate warming. So analyzing 1 April in a future warmer climate is like analyzing a date in mid- 

or late- April in the current climate, and we might say that SNOTEL sites are unrepresentative of 

basin conditions once melt conditions have advanced to that date in late April. However, that is 

not a fair comparison, as the SNOTEL sites may have been more representative of mean 

conditions earlier in the season (i.e., near peak conditions). To address this potential issue, the 

authors should consider not only the spatial distribution of SWE but also the temporal 

evolution. Are the SNOTEL sites more representative of basin SWE at an earlier date (e.g., 

March 15) in the warmer climate? 

We have removed this analysis in the final manuscript as discussed above in the general 

comments. 

MINOR SPECIFIC COMMENTS 

1. The “Future year (1 April 2012)” terminology versus +2 degree C year terminology is 

inconsistent and confusing at times. How can April 2012 be “a future year” when it is now (in 

2016) well in the past (e.g., Page 6, Lines 19-20)? This needs better explanation. Also, please 

consider revising the language throughout the manuscript. 

We have removed this analysis in the final manuscript as discussed above in the general 

comments. 



2. The “high inter-annual variability in SWE” is offered as a reason for differences in SWE 

volume from BRT vs. SnowModel in the future scenario (page 8, line 4). However, this does not 

make sense, given that only average years are considered in the analysis, effectively precluding 

any influences of inter-annual variability. The authors go on to contradict the above assertion 

about inter-annual variability in the discussion: “This method could be improved by including 

more years of input data to fully capture the inter-annual temporal variability in the spatial 

distribution of SWE.” Please revise. 

To make the analysis more robust in this revised manuscript we included additional years of 

data for an above average year and a below average year to run the BRT model, in addition to 

the average snow year data we used in the first analysis. This has enabled us to use more robust 

quantitative evaluation of model accuracy between years using omission and commission 

statistics. We included the following describing these results, “The final optimal BRT model from 

the normal snow year (2009) applied to the high snow year (2008) demonstrated an overall 

accuracy of 63%, whereas the BRT model applied to the low snow year (2005) demonstrated an 

overall accuracy of 26% (Table S1, S2). The BRT model performed well across the low and high 

elevations, where errors of omission and commission were generally lowest (Table S1, S2). 

Although across the mid-elevations which consist of a patchwork of forest harvest and fire 

disturbance, were the areas with the greatest error between the BRT models. The high 

elevations above tree line, were the most consistently classified areas with low error between 

BRT models. The high error across the mid-elevations was due at least in part to the 

renumbering of classes when the model is rerun for each year, and therefore these statistics 

may underrepresent the accuracy of the BRT-model in predicting overall spatial patterns of 

physiographically derived snow classes between years. The BRT-modelled snow classes captured 

the spatial variability in SWE across the MRB relative to elevation and land cover during an 

average, above average, and below average snow year and were used to objectively inform the 

site selection of a snow monitoring network.” 

3. Was this analysis actually conducted prior to the installation of the ForEST network in 

November 2011? Or is this a retrospective analysis to test the representativeness of the 

established network? The connection between the presented work and the design of the 

ForEST network is never really made clear. This distinction has implications for the title and 

tone of the manuscript. Currently, the manuscript implies that the analysis was used to inform 

the design of the ForEST network (page 10, lines 5-7). The current title is appropriate if the 

analysis with April 2009 was conducted first. However, if this is a retrospective analysis of the 

adequacy of the network, then the title may be better stated as “Testing the representativeness 

of a snow monitoring network in a forested mountain watershed”. 

Yes, this analysis was conducted prior to the installation of the ForEST network in 2010. Now I 

realize the need to emphasize the main narrative in this research, presenting the integrated 

objective method for informing snow observation network design. In the introduction and 

throughout the paper we have emphasized the connection between the presented work and the 



design of the ForEST network. We have augmented this original analysis in the revised 

manuscript by including two additional years of data, but this does not alter the conclusions 

from the original analysis. 

TECHNICAL CORRECTIONS 

- Page 2, Line 28: Add “currently” before manages (the number of SNOTEL stations changes in 

time). 

Sentence changed to, “The NRCS currently manages approximately 858 Snowpack Telemetry 

(SNOTEL) stations across the western US 

(http://www.wcc.nrcs.usda.gov/snotel/SNOTEL_brochure.pdf).” 

- Page 4, Line 9: “In the heart of” is somewhat colloquial; consider rephrasing this sentence. 

Sentence changed to, “The McKenzie River, located in the western Oregon Cascades, is a major 

tributary of the Willamette River (Figure 1).” 

- Page 4, Lines 21-22: There is some overlap between these variables and at this point it is 

unclear how they are uniquely distinguished. For example, incoming solar radiation will vary 

with slope, aspect, and vegetation, all of which are variables listed here. Is there something 

unique about “solar radiation” that you should list it here? Does it vary with atmospheric 

conditions? Please clarify. 

There is clear multi-collinearity between the correlated variables, however we used all of them 

initially in the model to select which were the most powerful predictive variables. Solar radiation 

was initially included because mid-winter snow melt events are very common in the warm 

maritime snowpacks and we thought perhaps solar radiation (a strong driver of snow ablation) 

would be more significant than slope and aspect alone. Although we have only included the two 

most dominant explanatory variables in this final analysis to prevent overfitting the BRT model.  

- Page 5, Line 16: Presumably the model was run at a sub-daily time step (necessary for physical 

models), but the model provided outputs on a daily basis. Please rephrase. 

The SnowModel input data were developed from model runs at a daily time step using data 

which were collected hourly and integrated to the daily time step. The specific methods for 

these model outputs are described in this paper referenced in the manuscript, Sproles, E. A., 

Nolin, A. W., Rittger, K., and Painter, T. H.: Climate change impacts on maritime mountain 

snowpack in the Oregon Cascades, Hydrology and Earth System Sciences, 17, 2581-2597, 

10.5194/hess-17-2581-2013, 2013. 

- Page 5, Line 24: Please provide more information about how finer resolution spatial data (e.g., 

10-m elevation, 30-m land cover data, etc.) were aggregated to 100-m, and how coarser 

resolution spatial data (e.g., the 250-m NDVI data) were resampled/downscaled to 100-m. 



The following information was included, “All spatial data were converted to the same projection 

and spatial resolution: NAD83, UTM Zone 10, and a 100-m grid cell size using bilinear 

interpolation for continuous data and nearest neighbor interpolation for discrete data. Spatial 

data were processed using ArcGIS 10.1.” 

- Page 5, Line 24: You already cited the maker/city of ArcGIS, so I am unsure if you need to do it 

again. 

Yes thank you, this change was made. 

- Page 5, Line 27: Did you use the publically available locations of the SNOTEL sites? The 

publically available coordinates are imprecise. 

No, we used locations obtained from the Oregon NRCS resource managers. 

- Page 6, Lines 2-4: Again, I question the independence of the physiographic predictor variables. 

We have addressed the multi-collinearity of the physiographic predictor variables by only using 

the most powerful explanatory variables and excluding all other potentially correlated variables 

with weak predictive capacity even if they were considered significant in the original model. 

- Page 6, Line 21: Add “a” before “set”. 

This change was made, thank you for catching this error. 

- Page 6, Line 23: Revise to say “and public lands where the presence. . .”. 

This change was made. 

- Page 6, Line 27: Did you test for normality? Perhaps include the skew and kurtosis. There is a 

bit of a skew toward higher SWE volume at the higher elevations, which is why I ask. 

We have included the skewness and kurtosis values for the SWE distribution across the 

elevational gradient in the McKenzie River Basin. 

- Page 7, Lines 1-2: Consider including a separate SWE volume line in Figure 3 for the climate 

change scenario. This will provide another way of showing the shift toward higher elevations 

above the SNOTEL sites (in addition to the spatial plots in Figure 2). 

We have excluded this analysis for this revised manuscript. 

- Page 7, Line 3: Is this SWE range measured or modeled at the SNOTEL sites? Please state. 

This analysis and associated results were removed from this revised manuscript. 

- Page 7, Line 11: Please include units on the RMSE. 

RMSE units now included. 

- Page 7, Line 12: How much variance did elevation explain? Please quantify. 



The following statement was included in the revised manuscript, “Elevation explained the most 

variance in modeled SWE across the basin, and is the primary driver of all snow classes (2009 

BRT model with only elevation; R2 = 0.91, p-value < 0.01).” 

- Page 7, Line 15: Recommend using a different word than “believed”. Also, it is possible to test 

the influence of the Three Sisters – just exclude those points in the BRT anaylsis and compare 

the resulting regression trees. 

Latitude explains less than 1% of the variability in the final BRT model and therefore was 

removed to prevent overfitting of the final model. 

- Page 7, Line 20: Should this be 6%? 1.05/0.99 = 1.061 or 6.1%. 

These statistics are now changed because we used input data from the actual date of peak SWE 

instead of using assuming peak SWE was 01 April. 

- Page 7, Lines 24-25: Check the sentence: “Although these areas. . .. Above 1791 m.” This does 

not appear to be a complete sentence. 

The sentence was changed to the following, “Deep snowpack at the highest elevations only 

cover a small aerial extent of the MRB, which resulted in decreasing contribution of total basin-

wide SWE above approximately 1700 m during the average and above average snow years.  In 

contrast, during the low snow year, the highest elevation classes contributed the most to total 

basin-wide SWE (Figure 5).” 

- Page 8, Line 1: Please clarify which model when you state “greatest error in the model”. I think 

it is the BRT model. Also, the use of the term “error” implies that the SnowModel output is 

“truth” in the comparison, which may be tenuous. Consider using some language like 

“difference between models” in this context. 

We included three years of input data in this revised manuscript and compared the BRT models 

using omission and commission statistics to compute overall accuracy between years. The 

language has been changed throughout the manuscript to evaluate “differences between 

models”. We included the following statement, “The final optimal BRT model from the normal 

snow year (2009) applied to the high snow year (2008) demonstrated an overall accuracy of 

63%, whereas the BRT model applied to the low snow year (2005) demonstrated an overall 

accuracy of 26% (Table S1, S2). The BRT model performed well across the low and high 

elevations, where errors of omission and commission were generally lowest (Table S1, S2). 

Although across the mid-elevations which consist of a patchwork of forest harvest and fire 

disturbance, were the areas with the greatest error between the BRT models…” 

- Page 8, Lines 22-28: This is more appropriate for the discussion section, not the results 

section. 

This was moved to the discussion section which now includes the following, “The ForEST 

network contributes to the existing SNOTEL network to explicitly investigate snow-vegetation-



climate interactions across the range of elevations and forest types in the watershed. The 

ForEST network is unique in that the monitoring site locations were selected based on statistical 

classification and geospatial analysis, rather than subjective methods that may incorporate bias. 

The paired forest-open land cover site selection process alone is not unusual, and has already 

led to important understanding of key sub-canopy snow processes (Storck et al., 2002; Golding 

and Swanson, 1986), but here, it has been further validated using coupled physically-based 

spatially-distributed snow model input data and non-parametric BRT statistical modeling. After 

five consecutive years of snow monitoring, we have created a valuable and detailed dataset of 

snow accumulation, snow ablation, and snowpack energy balance that spans the spatial 

variability in forest and open land cover types across an elevational gradient. The inter-annual 

consistency in patterns of snow surface energy budget and snow-vegetation interactions across 

the elevational gradient of the ForEST network suggest that the data are representative of key 

snow accumulation processes in the MRB (Figure 6). “ 

- Page 9, Line 12: Add “a” before “key role”. 

This change was made. 

- Page 9, Line 20: Improper semi-colon usage. You can safely remove it, or break the sentence 

into two here. 

This change was made. 

- Page 9, Line 23: Replace “does incorporate” with “incorporates”. 

This change was made. 

- Page 9, Lines 23-26: This is a long and overly complicated sentence. Please rephrase and/or 

revise into shorter sentences. 

The following sentence has been included instead,” The paired forest-open land cover site 

selection process has already led to important understanding of key sub-canopy snow processes 

(Storck et al., 2002; Golding and Swanson, 1986). But here, it has been further validated using 

coupled physically-based spatially-distributed snow model input data and non-parametric BRT 

statistical modelling across a forested montane watershed.” 

- Page 10, Line 19: If a hypothesis is validated, is it still a “working hypothesis”? The word choice 

is puzzling here. 

The sentence has been changed to the following, “However in the rugged and densely forested 

mountain regions of the western Cascade Mountains where there are few alternatives to 

modeling spatially distributed SWE, this approach provides a validated hypothesis to guide 

representative and objective snow monitoring efforts.” 

TABLE AND FIGURE COMMENTS 



- Figure 2 caption: Replace “in shown” with “is shown”. 

This change was made. 

- Figure 2 caption: Please define the units of SWE. 

This change was made. 

- Figure 2: If April 2009 is an average year (page 5, line 19) and the climate change scenario is a 

2 degree C perturbation to an average year, why is the maximum SWE lower in April 2009 

(4.31) than in the climate change scenario (5.03)? 

This analysis was omitted from this revised manuscript.  

- Table 1: What is the logic of the organization of snow classes in Table 1? It generally goes from 

low to high elevation, except the 977 to 1199 elevations are not in order. Please rectify. 

Table 1 has been simplified by elevation and includes all three years of BRT-derived snow 

classes. 

- Table 1: Should snow class 1 read “977-1199” instead of “977-199”? 

This change was made. 

- Table 1: Consider showing statistics with each snow class to record how well the regression 

works in that group. 

Table 1 is already very busy, and would we prefer to not include additional information that may 

make the table more difficult to interpret. 

- Table 1: What is the purpose of having a binary vegetation class (forest vs. open) and forest 

canopy cover (CC) predictor variables? Would it not be more straightforward to just include CC 

and let the BRT tell us when/where the binary distinction dominates the SWE response? 

To define a parsimonious and interpretable final BRT model we have only included elevation and 

land cover in the final BRT model. Land cover type was only slightly more predictive than NDVI in 

the BRT model, which may be because BRT models tend to optimize categorical variables. Also 

the slight variability between the BRT classes in the ranges of a continuous variable like NDVI or 

% canopy cover is confusing when comparing between years. Therefore we decided to only 

include the binary land cover data in the final BRT model that is clearly defined across all snow 

classes. 

- Table 1: In some (but not all) cases, there is an overlap in the elevation. Is a location at 1426 m 

elevation in the open in snow class 11 or snow class 13? 

The previous snow classes have been slightly redefined because we are using data from the 

actual date of peak SWE instead of 01 April. There is no overlap in the elevation between 

classes. 



- Figure 3: Please use a superscript for cubic km on the left y-axis. 

This change was made. 

- Table 2: It is unconventional to have negative standard deviation or coefficient of variation. 

Please make these positive. Also, are the CV numbers correct? They should be the SD/Mean, 

but that does not appear to be the case here. 

Table 2 was omitted from the revised manuscript. Instead of comparing CV numbers we are 

using omission vs commission statistics to evaluate the accuracy of spatial variability of SWE 

between years. The results of this accuracy assessment are discussed in the text, and included in 

the supplementary tables 1 and 2. 

- Table 2 caption: Please include the units of SWE differences here. 

Table 2 was omitted from the revised manuscript. 

 

Thank you very much for your considerate review of our manuscript. 

Sincerely, 

Kelly Gleason 

 

List of all relevant changes made to manuscript 

1. We omitted the evaluation of the SNOTEL network under climate change, and focused 

the paper solely on the objective approach to improve snow observational network 

design. 

2. Instead of using April 1 SWE input data to represent peak SWE, we are using the input 

data averaged over the five days centered on the actual date of peak SWE in the revised 

manuscript. 

3. Instead of using evaluating one average year to another average year as was done in the 

initial analysis in 2010, we evaluated an average year 2009, an above average year 

2008, and a below average year 2005 in the revised manuscript. 

4. We used a more robust analytical approach including omission and commission statistics 

of overall classification accuracy. These are included as tables in the supplementary 

material. 

5. In the revised manuscript, we refined the research story to emphasize why the work is 

novel, how robust and transferable are the results and, how they are useful to others. 
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Developing a representative snow monitoring network in a forested mountain watershed 
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Correspondence to: Kelly E. Gleason (kgleason@usgs.com) 5 

Abstract. Current snow monitoring networks may not be representative of basin-scale distributions of snow 

water equivalent (SWE), especially in areas where forests and snowpacks are changing. A challenge in 

establishing new ground-based stations for monitoring snowpack accumulation and ablation is to locate the sites 

in areas that represent the key processes affecting snow accumulation and ablation and ablation. This is especially 

challenging in forested montane watersheds where the combined effects of terrain, climate, and land cover affect 10 

seasonal snowpack. We present a coupled modelling approach used The objectives of this research were to 

identify the key physiographic drivers of SWE, classify the landscape based on those physiographic drivers, and 

use that classification to identify a parsimonious set of monitoring sites in a forested watershed in the western 

Oregon Cascades mountain range. We used a binary regression tree (BRT) non-parametric statistical model to 

classify 1 Aprilpeak snow water equivalent (SWE) based on physiographic landscape characteristics in a normal 15 

year, an above average year, and a below average year. Training data for the BRT classification were derived 

using spatially distributed estimates of SWE from a validated physically-based model of snow evolution. The 

optimal BRT model showed that elevation and, vegetation land cover type , and vegetation density were the most 

significant drivers of spatial variability in peak SWE in across the watershed (R2 = 0.93, p-value < 0.01). 

Geospatial elevation and land cover data were used to map the BRT-derived snow classes across the watershed. 20 

Specific snow monitoring sites were selected randomly within the dominant BRT-derived snow classes to capture 

the range of spatial variability in snowpack conditions in the McKenzie River Basin. The Forest Elevational 

Snow Transect (ForEST) is a result of this coupled modelling approach and represents combinations of forested 

and open land cover types at low, mid, and high elevations. After five years of snowpack monitoring, the ForEST 

network provides a valuable and detailed dataset of snow accumulation, snow ablation, and snowpack energy 25 

balance in forested and open sites from the rain-snow transition zone to the upper seasonal snow zone in the 

western Oregon Cascades.  
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1 Introduction 

Mountain snowpack is declining as a result of the warming climate (Kunkel et al., 2016; Knowles, 2015; 

Pederson et al., 2013; Rupp et al., 2013; Pederson et al., 2011; Mote, 2006), subsequently shifting timing (Fritze 

et al., 2011; Clow, 2010) and volume of streamflow (Woodhouse et al., 2016; Berghuijs et al., 2014; Luce and 5 

Holden, 2009) across the western United States. Luce et al., (2013) argue that the declining snowpack is also the 

result of weakening westerlies leading to a decline in mountain precipitation in the interior West. The volume and 

seasonality of water produced from these snow-dominated watersheds varies spatially and temporally as a 

function of precipitation and temperature (Tennant et al., 2015; Barnett et al., 2005; Regonda et al., 2005), as well 

as local physiographic effects of topography, geology, and vegetation dynamics (Molotch and Meromy, 2014; 10 

Clark et al., 2011; Jefferson et al., 2008; Ffolliott et al., 1989). 

Montane snow-dominated river basins are topographically complex. Elevation, slope, aspect, and 

exposure influence snowpack dynamics across a watershed through alterations of precipitation amount and phase 

(rain vs. snow), wind speed, temperature, and humidity. The degrees to which these physiographic variables 

control snow persistence vary as functions of snow accumulation and snow ablation, from the plot to regional 15 

spatial scales (López‐Moreno et al., 2015; Biederman et al., 2014; López-Moreno et al., 2013; Deems et al., 

2006; Molotch and Bales, 2005), and from daily to seasonal scales (Fassnacht et al., 2012; Jepsen et al., 2012). In 

the Pacific Northwest, montane basins are a successional patchwork of variable forest cover driven by forest 

harvest and replanting, pest infestations, and fire disturbance. In forested regions, snow accumulation and 

ablation processes are strongly influenced by vegetation structure (Veatch et al., 2009; Musselman et al., 2008; 20 

Jost et al., 2007; Trujillo et al., 2007; Sicart et al., 2004; Murray and Buttle, 2003; Pomeroy et al., 2002; Link and 

Marks, 1999). Both vegetation and topography influence the distribution of solar radiation (Musselman et al., 

2015; Musselman et al., 2012; Davis et al., 1997; Dozier, 1980;), snow-surface albedo (Gleason and Nolin, 2016; 

Gleason et al., 2013; Molotch et al., 2004; Melloh et al., 2002), net longwave radiation (Lundquist et al., 2013; 

Sicart et al., 2004) , wind speed (Winstral and Marks, 2002) and turbulent fluxes (Burns et al., 2014; Garvelmann 25 

et al., 2014; Marks et al., 2008).    

Snow water equivalent (SWE) is a critical hydrologic resource in the montane western US that has been 

actively monitored for decades by the Natural Resources Conservation Service (NRCS). The NRCS currently 

manages approximately 858 Snowpack Telemetry (SNOTEL) stations across the western US 
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(http://www.wcc.nrcs.usda.gov/snotel/SNOTEL_brochure.pdf). These stations provide near real-time 

measurements of SWE, temperature, and precipitation; essential data for operational streamflow forecasts used 

by water managers who balance a wide range of needs including irrigation, aquatic habitat, hydropower, 

recreation, and municipal water use. While most SNOTEL sites have been operating since the early 1980s, the 

data are meant to be used as indices to forecast discharge. These records are valuable but the stations were not 5 

designed to be nor are they representative of the total snow volume in a basin total snow in a basin (Meromy et 

al., 2013; Molotch and Bales, 2006a). Also, they may not be representative of snow conditions under future 

climate. In the Oregon Cascades, the SNOTEL monitoring network stations are located within a narrow elevation 

range (1140–1510 m) that may not capture the inherent variability in the spatial distribution of snow under 

present day or warmer climate conditions (Nolin, 2012; Brown, 2009).  10 

 

In the rugged, forested, and frequently cloud-covered montane watersheds of the Pacific Northwest, 

modelingmodelling has been shown to be an effective means of augmenting remote sensing, and a valuable tool 

for predicting spatially distributed snow conditions under climate change (Sproles et al., 2013; Tague and Grant, 

2009; Veatch et al., 2009; Luce et al., 1999; Cline et al., 1998). Landscape characteristics have been used to 15 

predict snowpack conditions at hillslope scales using non-parametric binary regression tree (BRT) statistical 

classification models (Molotch et al., 2005; Anderton et al., 2004; Erxleben et al., 2002; Winstral et al., 2002; 

Balk and Elder, 2000; Elder et al., 1998). Larger scale BRT approaches have also been conducted using remotely 

sensed snow-covered area and interpolation methods (Molotch and Meromy, 2014; Molotch and Bales, 2006b). 

However, no study to date has used landscape characteristics in conjunction with modeledmodelled and validated 20 

physically-based and spatially distributed SWE data to understand physiographic drivers of snow accumulation at 

broad scales (watersheds > 1000 km2) and or to identify optimal locations for snowpack monitoring. 

Additionally, most of the research on the physiographic relationships to snow processes has been done in cold-

dry continental snowpacks where mid-winter melt events are infrequent and wind redistribution is substantial 

(Molotch et al., 2005; Erxleben et al., 2002; Winstral et al., 2002; Balk and Elder, 2000). Much less is known 25 

about how physiographic conditions influence the temperature sensitive snowpacks in the forested maritime 

basins of the Pacific Northwest.  

In order to objectively identify optimal site locations to distribute a snow monitoring network in a 

montane forested watershed in the western Oregon Cascades which explicitly captures the spatial variability of 

snow accumulation relative to the physiographic landscape, we used a combination of physically-based, 30 

statistical, and geo-analytical models. This paper presents this objective and relatively simple methodology to 
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distribute a snow monitoring network which captures landscape driven spatial variability in snow accumulation 

and includes four main steps including to:This paper evaluates the existing snow monitoring network in the 

McKenzie River Basin within the context of a projected future warming climate, and presents an objective 

methodology for site selection of a snow monitoring network that captures the spatial variability in snow 

accumulation in a montane forested watershed in the western Oregon Cascades. 5 

In order to develop a representative snow monitoring network, the objectives of this research were the 

following: 

1. Determine the key physiographic drivers of spatial variability in snow accumulation;  

2. Classify snow classes in the watershed based on key physiographic drivers using a non-parametric 

statistical model;  10 

3. Spatially distribute these snow classes across the watershed using a geospatial model; 

4. Select site locations for a snow monitoring network which spans the spatial variability in snow water 

equivalent in the McKenzie River Basin. 

2 Methods 

2.1 Description of the Study Site 15 

In the heart of the western Oregon Cascades, tThe McKenzie River, located in the western Oregon 

Cascades, is a major tributary of the Willamette River (Figure 1).   The McKenzie River Basin (MRB) drains an 

area of 3,041 km2, and covers about 12% of the land area in the greater Willamette River Basin. The MRB is a 

densely forested mountainous watershed, ranging in elevation from 150 m to 3150 m, whichthat is a managed for 

timber production throughout much of the seasonal snow zone. Brooks et al., (2012), determined that 60-80 % of 20 

summer flow in the Willamette River originated from elevations above 1200 m in the Oregon Cascades. The 

porous young volcanic geology in these mountains allows much of the snowmelt to percolate into groundwater 

systems (Tague and Grant, 2009; Jefferson et al., 2008; Tague and Grant, 2004). The snowmelt-fed groundwater-

supplied McKenzie River provides 25 % of the late season volumetric base flow to the Willamette River at its 

confluence with the Columbia River (Hulse et al., 2002). 25 
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2.2 Description of the Data Sources 

Gridded data were obtained for physiographic variables shown in the literature to influence snow 

accumulation and ablation, including elevation, slope, aspect, incoming solar radiation, wind, and three 

vegetation variables from the following sources for the extent of the MRB. A Digital Elevation Model (DEM) 

was obtained from the National Elevation Dataset at a 10-m resolution. Slope, aspect, and incoming solar 5 

radiation were calculated from the DEM using the Spatial Analyst and Solar Radiation toolboxes in ArcGIS 10.1 

(ESRI, Redlands, CA). Upwind contributing area data, which captures the variability in snow deposition as a 

result of wind redistribution for each cell throughout the watershed (Winstral et al., 2002), was calculated 

following Molotch et al., (2005).   The 2006 National Land Cover Database (NLCD) was used to classify land 

cover across the watershed (Fry et al., 2011). Land cover data was reclassified into a binary product of forest and 10 

open land cover classes. The US Geological Survey (USGS) LANDFIRE Data Distribution Site provided the 

Existing Vegetation – Percent Canopy Cover (EVC) data at 30-m spatial resolution. Normalized Difference 

Vegetation Index (NDVI) data were obtained from the Moderate Resolution Imaging SpectroRadiometer 

(MODIS) MOD13Q1 – Vegetation Indices, 16-day Land Product for the earliest date possible in April 2009, at a 

250-m spatial resolution. Watershed boundaries were defined using the USGS National Hydrography Dataset. 15 

Public land ownership data were provided by the Oregon Department of Forestry, and obtained from the website, 

http://www.oregon.gov/odf/pages/gis/gisdata.aspx. All spatial data were masked to the McKenzie River Basin 

and converted to the same projection and spatial resolution, NAD83, UTM Zone 10, and a 100-m grid cell size, 

using bilinear interpolation for continuous data and nearest neighbour interpolation for discrete data. Spatial data 

were processed using ArcGIS 10.1. 20 

ModeledModelled and gridded SWE data across the MRB (Figure 2) were provided by (Sproles et al., 

(2013). These data were developed using a physically-based spatially distributed snow mass and energy balance 

model, SnowModel (Liston and Elder, 2006). SnowModel uses micrometeorological and topographic data to 

distribute snow across the landscape accounting for climatic, topographic, and vegetation variability. The model 

was modified by Sproles et al., (2013) to account for rain/snow precipitation phase partitioning, and snow albedo 25 

decay in forested landscapes. This model was calibrated and validated using data from the four SNOTEL sites, 

meteorological data from the HJ Andrews Long Term Ecological Research site and National Weather Service 

stations and Landsat fractional snow covered area data over the sampling period 1989-2009 (Sproles et al., 2013). 

The model was run at 100-m spatial resolution on a daily time step. We used Because 1 April has historically 

been the date that water managers have used to represent peak SWE (Stewart et al., 2004; Serreze et al., 1999) we 30 

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Field Code Changed

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman

http://www.oregon.gov/odf/pages/gis/gisdata.aspx


6 

 

used that modelled peak SWE data SWE data from that date as the predicted variable in the BRT model.   Sproles 

et al., (2013) showed that 2009 was considered an average snow year so we used 1 April 2009so we used peak 

SWE from 2009 (five days centred on 04 April 2009) as our reference year. Additionally we used peak SWE 

from 2008 (five days centred on 24 April 2008) as an above average snow year, and peak SWE from 2005 (five 

days centred on 20 April 2005) as a below average snow year. (averaged over 5 days centered on 1 April). We 5 

also used the Sproles et al., (2013) SWE data for the +2°C conditions to represent the spatial distribution of snow 

for a future average year snowpack. 

2.3 Analysis 

All spatial data were converted to the same projection and spatial resolution: NAD83, UTM Zone 10, and 

a 100-m grid cell size. Spatial data were processed using ArcGIS 10.1 (ESRI, Redlands, CA). The “snowpack 10 

bulk” across the MRB was defined as all cells with SWE values within one standard deviation of the basin-wide 

mean SWE. The area of the snowpack bulk holds the majority of the snow-water volume across the basin. The 

locations of the SNOTEL sites in the MRB were evaluated relative to the present day and future area of the 

snowpack bulk for 1 April SWE. 

A BRT model was developed to characterize the spatial variability of snow accumulation modeled SWE 15 

variability across the MRB based on independent physiographic variables using the Classified and Regression 

Trees (CART) software (Salford Systems, San Diego, CA). The BRT model is a hierarchical non-parametric 

statistical model that characterizes the mean and variance of a dependent variable using a suite of independent 

explanatory variables. ModeledModelled SWE and physiographic variable data were used as input data for each 

cell where snow was present during peak SWE in 2009 (5 day average centred on 04 April 2009on 01 April 20 

2009). An optimal tree was produced to minimize the standard error of the model, which was then pruned down 

to the simplest tree possible within one standard error of the optimal tree and so each terminal node represented at 

least 1% of the variability in peak SWE. The resultant tree identified 210 terminal nodes that characterized the 

spatial variability in SWE snow accumulation through combinations of independent drivers into 210 BRT-

derived snow classes (Table 1). The BRT model identified elevation, land cover, NDVI, insolation, percent 25 

canopy cover, slope, and wind as significant explanatory drivers of the spatial variability of peak SWE (all 

selected variables had p-values < 0.05 and are listed above in order of significance). Although elevation and land 

cover were the dominant predictive variables, and all other physiographic variables each explained less than 1% 

of the variability in peak SWE. In order to reduce the multi-collinearity between related variables and reduce the 
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risk of overfitting the model, we simplified the final optimal model to only include elevation and land cover. 

Within the CART software, the finalThe final optimal BRT model was validated using reserved data from for all 

variables from an independent set of 210,000 randomly selected grid cells from within the MRB.. The final 

parameters developed in this optimal tree for peak SWE in an average year 2009, were used to develop 

equivalent BRT models using peak SWE input for an above average year 2008, as well as to peak SWE during a 5 

below average year 2005.  

Using a Geographic Information Systems (GIS) geospatial model and statistically-derived parameters, 

the 210 BRT-derived snow classes were spatially distributed across the MRB. The geospatial model used 

physiographic data to distribute the areal extent of each BRT class across the MRB by assigning cells that met the 

statistically-derived criteria for each BRT class.   Because the BRT-model did not determine a lower elevation 10 

limit on snow extent,t, we excluded areas with an elevation less than 600 m to prevent over-prediction of snow-

covered area (SCA)below elevations where it was observed in the modelled data. Total volumetric SWE (SWE 

depth × area) was calculated for each BRT class across the watershed, using the mean and variance of SWE, and 

the spatial extent of each BRT class. Total volumetric SWE, mean SWE, and the coefficient of variation for each 

BRT class was used to evaluate the magnitude and spatial variability of BRT-derived SWE estimates relative to 15 

modeled estimates for a future average snow year for 1 April 2012 (averaged over five days centered on 1 

April).To validate the spatial distribution of the BRT derived snow classes, we calculated the overall accuracy of 

2008 and 2005 relative to 2009 reference year snow classes using an error matrix of omission vs. commission 

statistics (Campbell, 2007). 

To create a set of feasible locations for the in situ snow monitoring network we evaluated the 20 

accessibility of locations within the MRB. Using a GIS-based binary selection model, we masked out all private 

lands and those public lands where the presence of endangered Northern Spotted Owl prevented permitted access. 

To prevent contamination from the road network, but still define accessible site locations, wWe also identified 

areas within 100-500 -m of a snowmobile-accessible road. From these accessible areas, the final sites were then 

randomly selected from each of the dominant BRT-derived snow classes within the seasonal snow zone.     25 

3 Results 

Modelled peak SWE for all years had a positively skewed distribution across the range of elevations 

throughout the MRB (2009; kurtosis=1.8, skewness=1.62; 2008, kurtosis=2.1, skewness=1.7; 2005, kurtosis=1.5, 

skewness=1.7) with the greatest volume of snow located in the mostly forested area between 1300 and 1500 m in 
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elevation (Figure 3). The final optimal BRT model from the normal snow year (2009) identified elevation and 

land cover as the dominant drivers of the spatial variability of SWE, and characterized SWE across the MRB into 

21 distinct snow classes (2009 BRT model; R2 = 0.93, p-value < 0.01, RMSE = 0.16 m). The final BRT model 

applied to the high snow year (2008) characterized SWE across the MRB into 21 snow classes with similar 

spatial extent as during the normal snow year (2008 BRT model; R2 = 0.95, p-value < 0.01, RMSE = 0.18 m) 5 

(Figure 4; Table S1). The final BRT model applied to the low snow year (2005) characterized SWE across the 

MRB into 21 snow classes with similar spatial variability relative to land cover but differing extents relative to 

elevation than during the normal snow year (2005 BRT model; R2 = 0.895, p-value < 0.01, RMSE = 0.09 m) 

(Figure 4; Table S2).  

Elevation explained the most variance in modelled SWE across the basin, and was the primary driver of 10 

all snow classes (2009 BRT model with only elevation; R2 = 0.91, p-value < 0.01). In the middle elevations, land 

cover was also statistically important in distinguishing snow classes between forested and open land cover types 

(Figure 4, 5). During the normal snow year (2009), snow classes were distinguished by forest vs. open land cover 

types across the elevation range from 951-1442 m. This elevation range where the forest vs. open distinction was 

statistically important was lower during the high snow year (2008) from 949-1299 m, but much higher during the 15 

low snow year (2005) from 1193-1747 m. In the high-elevations, above treeline, only elevation was statistically 

important in classifying the spatial variability in snow accumulation. Snowpack accumulation increased with 

increasing elevation, resulting in a greater mean SWE per unit area at the highest elevations. Although deep 

snowpack at the highest elevations only covers a small aerial extent of the MRB, which resulted in decreasing 

contribution of total basin-wide SWE above approximately 1700 m during the normal and high snow years. In 20 

contrast, during the low snow year, the highest elevation classes contributed the most to total basin-wide SWE 

(Figure 5). 

The BRT-derived volumetric SWE estimates had a similar positively skewed distribution across the 

elevational gradient as the SnowModel-derived SWE data in the MRB (Figure 5). The BRT-derived estimate of 

1.49 km3 total SWE stored in the snowpack on 04 April 2009 within the MRB was less than 1% greater than the 25 

SnowModel-derived estimate of 1.48 km3. The BRT-derived estimate of 1.94 km3 total SWE stored in the 

snowpack on 24 April 2008 within the MRB was less than 1% greater than the SnowModel-derived estimate of 

1.93 km3. The BRT-derived estimate of 0.38 km3 total SWE stored in the snowpack on 20 April 2005 within the 

MRB was 2.6% less than the SnowModel-derived estimate of 0.39 km3. The final optimal BRT model from the 

normal snow year (2009) applied to the high snow year (2008) demonstrated an overall accuracy of 63%, 30 

whereas the BRT model applied to the low snow year (2005) demonstrated an overall accuracy of 26% (Table 
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S1, S2). The BRT model performed well across the low and high elevations, where errors of omission and 

commission were generally lowest (Table S1, S2). Although across the mid-elevations which consist of a 

patchwork of forest harvest and fire disturbance, were the areas with the greatest error between the BRT models. 

The high elevations above tree line, were the most consistently classified areas with low error between BRT 

models. The high error across the mid-elevations was due at least in part to the renumbering of classes when the 5 

model is rerun for each year, and therefore these statistics may underrepresent the accuracy of the BRT-model in 

predicting overall spatial patterns of physiographically derived snow classes between years. The BRT-modelled 

snow classes captured the spatial variability in peak SWE across the MRB relative to elevation and land cover 

during an average, above average, and below average snow year and were used to objectively inform the site 

selection of a snow monitoring network. 10 

The geospatial selection model identified 16 of the 21 classes as being accessible during winter (on 

public land without permit restrictions and within 100-500m of a snowmobile accessible road). The highest 

elevations in the MRB are far from winter-accessible roads and difficult to monitor due to steep and avalanche 

prone slopes. Within the area covered by these 16 classes, random site locations were selected within the six most 

abundant classes across the MRB to capture low, medium, and high elevations, with forested and open land cover 15 

classes. The resultant Forest Elevation Snow Transect (ForEST) monitoring network site locations were thus 

objectively selected to sample across the range of spatial variability in peak SWE (Figure 4). The ForEST 

network, composed of six meteorological stations and snow survey transects, was deployed in November 2011, 

and continues to provide high quality snow and climate data to evaluate snow-forest-climate interactions in the 

MRB (Figure 6).  20 

Modeled SWE for 1 April 2009 was normally distributed across the range of elevations throughout the 

MRB, with the greatest volume of snow located in the mostly forested area between 1300 and 1500 m in 

elevation (Figure 3).  The four SNOTEL sites in the MRB were located within the area of the snowpack bulk 

under current climate conditions (Figure 2a). However, under +2°C conditions, the overall SCA, as well as the 

area of the snowpack bulk, increased in elevation out of the range of the SNOTEL network (Figure 2b). The area 25 

of the current snowpack bulk ranged from 843–1845 m in elevation and contained SWE values from 0.41-0.87 m. 

The area of the future snowpack bulk ranged from 986 – 1866 m in elevation and contained SWE values from 

0.2–0.8 m. Of the 1510 km2 of SCA present on 01 April 2009, 16% was below the lowest SNOTEL site (below 

1140 m), 54% of the SCA was within the elevational range sampled by the four SNOTEL sites (between 1140 

and 1510 m), and 40% was above the highest SNOTEL site (above 1510 m) in the MRB.  30 
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The final BRT model identified elevation, land cover, percent canopy cover, slope, NDVI, and latitude as 

significant explanatory drivers of the spatial variability of SWE (all selected variables had p-values < 0.05 and 

are listed above in order of significance). These explanatory variables characterized SWE across the MRB into 20 

distinct snow classes (final BRT model; R2 = 0.95, p-value < 0.01, RMSE = 0.11). Elevation explained the most 

variance in modeled SWE across the basin, and is the primary driver of all snow classes. In the lower and middle 5 

elevations, the BRT model also distinguished snow classes into forested and open/clear-cut vegetation types 

(Figure 4). Latitude above or below 44.0537° was separated into two classes within the elevation range from 

1426–1545 m, however these classes were lumped in the final analysis because we believed the topography of the 

Three Sisters Mountains in the southeast portion of modeling domain was skewing the statistical distinction of 

latitude in this analysis. Aspect was not identified as a significant variable driving snow accumulation. 10 

The BRT-derived volumetric SWE estimates had a similar distribution across the elevational gradient as 

the SnowModel-derived SWE data in the MRB (Figure 5). The BRT-derived estimate of 1.05 km3 total SWE 

stored in the snowpack on 01 April 2009 within the MRB was 5% greater than the SnowModel-derived estimate 

of 0.99 km3. The BRT-derived SCA over-predicted the extent of SWE by 64% compared with SnowModel-

derived SCA across the MRB. However 90% of this error was concentrated in the two lowest elevation snow 15 

classes. Increasing elevation increased snowpack accumulation, resulting in a greater mean SWE per unit area at 

the highest elevations. Although these areas only cover a small aerial extent of the MRB, which resulted in 

decreasing contribution of total basin-wide SWE above 1791 m. The BRT model performed well across the low, 

mid, and high elevations.  At the lowest elevations, below the snowpack bulk (600–842 m), the BRT-model over-

predicted mean SWE by approximately 10%, with a volumetric estimate of 0.054 km3, as compared to 0.049 km3 20 

of SWE as estimated by SnowModel.  At the mid-elevations, across the area of the snowpack bulk (843–1845 m), 

the BRT-model estimated 0.48 km3 of SWE, 11% greater than the SnowModel-derived estimate of 0.43 km3 

SWE.  At the highest elevations above the snowpack bulk (> 1845 m), the BRT-model estimated 0.516 km3 of 

SWE, 0.08% less than the SnowModel-derived estimate of 0.52 km3.  The low and mid-elevations which consist 

of a patchwork of forest harvest and fire disturbance were the areas with the greatest error in the model.  Whereas 25 

the high elevations above tree line, were the areas with very low error in the model. For a future average year (1 

April 2012), the total SnowModel-derived SWE volume across the MRB was 1.64 km3, 50% greater than the 

total BRT-derived estimate. Due to the high inter-annual variability in SWE, it is not surprising that the basin-

wide BRT-derived SWE estimate showed poor agreement with the SnowModel-derived estimate. However the 

relative differences in SWE volume and spatial variability between the forested and open land cover types in the 30 

2009 and 2012 SnowModel-derived estimates were captured well by the BRT model at low, mid, and high 
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elevations (Table 2). SWE volume was consistently less in forests compared to open land covers at low, mid, and 

high elevations in both BRT-derived and SnowModel-derived estimates for 2009 and 2012. The spatial 

variability (coefficient of variation) was consistently greater in forests than open areas at the lowest elevations, 

but relatively similar at the mid and high elevations, in both BRT-derived and SnowModel-derived estimates for 

2009 and 2012. 5 

The geospatial selection model identified 16 of the 20 classes as being accessible during winter. The 

highest elevations in the MRB are far from winter-accessible roads and difficult to monitor due to steep and 

avalanche prone slopes. Within the area covered by these 16 classes, random site locations were selected within 

the six most abundant classes across the MRB to capture low, medium, and high elevations, with forested and 

open land cover classes. The resultant Forest Elevation Snow Transect (ForEST) monitoring network site 10 

locations were thus objectively selected to sample across the range of spatial variability in SWE.  The ForEST 

network, composed of six meteorological stations and snow survey transects, was deployed in November 2011, 

and continues to provide high quality snow and climate data to evaluate snow-forest-climate interactions in the 

MRB (Figure 4).  

The ForEST network is unique in that the monitoring site locations were selected based on statistical 15 

classification and geospatial analysis, rather than subjective methods that may incorporate bias. The 

paired forest-open land cover site selection process alone is not unusual, and has already led to important 

understanding of key sub-canopy snow processes (Storck et al., 2002; Golding and Swanson, 1986) but 

here, it has been further validated with the BRT model. The inter-annual consistency in patterns of snow 

surface energy budget and snow-vegetation interactions across the elevational gradient of the ForEST 20 

network suggest that the data are representative of key snow accumulation and ablation processes in the 

MRB (Figure 6).  

4 Discussion 

As a result of warming winter temperatures, mountain snowpack in the western US will likely continue 

to decline with potential impacts to forest health (Albright and Peterson, 2013) and streamflow (Jung and Chang, 25 

2011; Cayan et al., 2010), as well as snow-related recreation and tourism (Gilaberte-Búrdalo et al., 2014; Nolin 

and Daly, 2006).   There remains uncertainty around the magnitude of these impacts (Warren et al., 2011; 

Maurer, 2007; Xu et al., 2005) thus, it is important that monitoring networks not only capture normal snowpack 

Formatted: Font: Times New Roman, Not Highlight

Formatted: Font: Times New Roman



12 

 

conditions, but capture the range of variability in SWE peak SWE across the landscape and through time. The 

SNOTEL sites within the MRB are located within the present day area of snowpack bulk for 1 April SWE, but do 

not capture the spatial variability of SWE associated with topography and forest cover. The current snow 

monitoring network was designed based on a historical climate that is not likely to represent future average 

conditions, it is therefore imperative to evaluate the distribution of SNOTEL sites and consider modification to 5 

the network.  

Pacific Northwest forests play a key role in affecting snow accumulation and ablation across multiple 

scales however, most research has been conducted at fine scales (Storck et al., 2002) or in areas with cold-dry 

continental snowpacks (Ellis et al., 2013; Pomeroy et al., 2012). By distinguishing snow classes based on forest 

vs. open land cover across a range of elevations, thisThis study emphasizes the watershed-scale control that 10 

vegetation and particularly land cover change relative to timber harvest (and potentially fire disturbance) has on 

snowpack accumulation in the maritime western Oregon Cascades. Understanding the forest structure effects on 

snow accumulation and ablation across elevation gradients is increasingly important to help guide decision 

making by local and regional water and forest managers in response to a changing climate.  

We developed a snow monitoring network representative of the spatial variability of peak SWE relative 15 

to physiographic landscape characteristics across the MRB for an average, above average, and below average 

snow year,; using a coupledby coupling  a spatially distributed physically-based SnowModel, a BRT statistical 

classification model, a spatially distributed physically-based SnowModel, and a geospatial selection model.  This 

objective method is a useful tool in classifying snow characteristics across the landscape to determineing 

representative locations for intelligent snowpack monitoring particularly in physiographically complex 20 

landscapes.   Although it is an improvement over more commonly used heuristic approaches to site selection, 

tThe method of site selection does incorporates uncertainty as a result of compounding statistically-, physically-, 

statistically-, and spatially-based models. ; hHowever, it meets assumptions of non-parametric data analysis, is 

performed with relative ease, and if data are available for the research basin of interest, it can be well validated. 

As even physically-based models incorporate inherent empirically-based historically-derived assumptions, there 25 

is also uncertainty in using this approach to represent future spatial variability in snow accumulation. This 

method could be improved by including more years of input data to fully capture the inter-annual temporal 

variability in the spatial distribution of SWE.   

 

The ForEST network contributes to the existing SNOTEL network to explicitly investigate snow-30 

vegetation-climate interactions across the range of elevations and forest types in the watershed. The ForEST 
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network is unique in that the monitoring site locations were selected based on statistical classification and 

geospatial analysis, rather than subjective methods that may incorporate bias. The paired forest-open land cover 

site selection process has already led to important understanding of key sub-canopy snow processes (Storck et al., 

2002; Golding and Swanson, 1986). But here, the assumptions driving paired site selection process has been 

validated using coupled physically-based spatially-distributed snow model input data and non-parametric BRT 5 

statistical modelling across a forested montane watershed. After five consecutive years of snow monitoring, we 

have created a valuable and detailed dataset of snow accumulation, snow ablation, and snowpack energy balance 

that spans the spatial variability in forest and open land cover types across an elevational gradient (Figure 6). . 

5 Conclusions 

Theis BRT models characterized peak SWE conditions in an average year, an above average year, and 10 

below average year to, and  provided spatially-distributed SWE volume estimates based on physiographic 

landscape characteristics. This integrated approach informed the distribution of an objective and representative 

monitoring network that spans the spatial variability in the seasonal snowpack across the MRB (Figure 4).     

By quantifying the spatial variability in the key drivers of natural resource distribution, researchers can 

focus on sensitive areas which may not be identified through traditional site selection means. The use of validated 15 

model outputs as a predictor of the spatial variability in snow-vegetation interactions is not new (Randin et al., 

2014). The novelty of this research stems from the application of the method, where by from the coupling of a 

traditional BRT classification process, with a validated physically-based spatially distributed model, we improved 

snow observational network design in a forested montane watershed. 

to drive a site selection process by its principle parameters across a physiographically complex 20 

landscape.    

As the scientific community turns to more complex, rescaled, and nested parameterized models to predict 

ecosystem responses to change, there is still a place for simple approaches to inform scientific research priorities. 

The uncertainty propagated in nesting multiple models justifies caution in implementing these estimates in 

management decisions.   However in the rugged and densely forested mountain regions of the western Cascade 25 

Mountains where there are few alternatives to modelingmodelling spatially distributed SWE, this approach 

provides a validated working hypothesis to guide representative and objective snow monitoring efforts. 
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8 Tables 

 

Table 1. The binary regression tree (BRT) model characterized SWE within the McKenzie River Basin into 210 

snow classes defined by the followingusing the physiographic parameters : elevation (m), and land cover grouped 5 

by all land covers (A),  (forested land cover (F), and open/clear-cut land cover (O) typesvs. open/clearcu. t), 

percent forest canopy cover (CC), slope, NDVI, and latitude (Y). The bold bold lines represent the BRT snow 

classes used for the ForEST network of snow monitoring stations which have been continuously monitoring snow 

processes in paired forest and open sites at low, medium and high elevations since 2012November 2011. The 

monitoring site in snow class 15 also collected continuous data for 2012 and 2013 but then was removed due to 10 

logistical and financial restraints.  

BRT 

Snow 

class 

Average year 

(2009) 

High Year 

(2008) 

Low Year 

(2005) 

Elevation Land  Mean SWE 

/ St. Dev. 

Elevation Land  Mean SWE 

/ St. Dev. 

Elevation Land  Mean SWE 

/ St. Dev. 

1 ≤ 834 A 0.002 / 0.2 ≤865 A 0.002 / 0.03 ≤1193 A 0.001 / 0.01 

2 834-951 A 0.04 / 0.12 865-949 A 0.06 / 0.16 1193-1299 F 0.02 / 0.07 

3 951-1067 F 0.11 / 0.21 949-1067 F 0.14 / 0.26 1193-1299 O 0.08 / 0.15 

4 951-1067 O 0.24 / 0.28 949-1067 O 0.31 / 0.36 1299-1422 F 0.04 / 0.12 

5 1067-1142 F 0.26 / 0.28 1067-1115 F 0.31 / 0.34 1422-1470 F 0.09 / 0.16 

6 1067-1142 O 0.45 / 0.35 1115-1142 F 0.45 / 0.36 1299-1390 O 0.16 / 0.22 

7 1142-1174 F 0.41 / 0.3 1067-1142 O 0.59 / 0.43 1390-1470 O 0.29 / 0.28 

8 1174-1212 F 0.51 / 0.3 1142-1200 F 0.64 / 0.36 1470-1496 F 0.16 / 0.18 

9 1142-1212 O 0.68 / 0.34 1142-1200 O 0.91 / 0.4 1496-1517 F 0.23 / 0.19 

10 1212-1265 F 0.64 / 0.29 1200-1235 F 0.83 / 0.33 1517-1536 F 0.28 / 0.19 

11 1265-1310 F 0.79 / 0.27 1235-1299 F 1.0 / 0.3 1536-1563 F 0.34 / 0.2 

12 1212-1310 O 0.95 / 0.31 1200-1299 O 1.21 / 0.34 1470-1563 O 0.54 / 0.29 

13 1310-1364 A 0.96 / 0.24 1299-1338 A 1.23 / 0.27 1563-1620 F 0.44 / 0.19 

14 1364-1442 F 1.07 / 0.58 1338-1385 A 1.37 / 0.21 1620-1663 F 0.59 / 0.18 

15 1364-1442 O 1.18 / 0.17 1385-1445 A 1.49 / 0.14 1663-1713 F 0.63 / 0.19 

16 1442-1486 A 1.28 / 0.13 1445-1563 A 1.62 / 0.1 1713-1747 F 0.75 / 0.19 

17 1486-1563 A 1.24 / 0.12 1563-1779 A 1.73 / 0.09 1563-1747 O 0.84 / 0.19 

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...

Formatted ...



23 

 

18 1563-1779 A 1.31 / 0.09 1779-1931 A 1.89 / 0.1 1747-1787 A 0.91 / 0.19 

19 1779-1910 A 1.43 / 0.09 1931-2016 A 2.17 / 0.15 1787-1866 A 1.04 / 0.12 

20 1910-2101 A 1.64 / 0.1 2016-2226 A 2.38 / 0.74 1866-2152 A 1.14 / 0.05 

21 >2101 A 1.89 / 0.09 >2226 A 2.66 / 0.12 >2152 A 1.29 / 0.05 

 

 

Snow 

Class 
Elevation 

Veg 

Class 
Other 

Snow 

Class 
Elevation 

Veg 

Class 
Other 

1 <1121 Forest 

 

11 1333-1426 Open  

2 1122-1199 Forest CC<20% 12 1426-1545 Forest  

3 1122-1199 Forest CC>20% 13 1426-1545 Open  

4 <977 Open 

 

14 1546-1791 

 

Y<44.1°  

5 977-1199 Open Slope<27° 15 1546-1791 

 

Y>44.1°  

6 977-199 Open Slope>27° 16 1792-1919 

 

 

7 1200-1255 

 

NDVI<0.2 17 1920-2039 

 

 

8 1200-1255 

 

NDVI>0.2 18 2040-2371 

 

 

9 1255-1332 

  

19 2372-2788 

 

 

10 1332-1426 Forest  20 >2788   

 

  

Formatted: Font: Times New Roman, Bold

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman, Bold

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman, Bold

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman, Bold

Formatted: Font: Times New Roman



24 

 

 

Table 2. Differences in volume (mean), standard deviation (SD), and coefficient of variation (CV) of SWE 

between forested and open sites (forest minus open) for low, medium, and high elevations (BRT classes 

where we have installed micrometeorological towers at the same elevation in forest and open sites).  Values 

were derived from the BRT-derived estimates and the 2009 and 2012 SnowModel-derived estimates. 5 

 

 

 

 

 10 

 

 

 

 

Mean Low Low Medium Medium High High 

Forest 

- Open 

Mean StDev Mean StDev Mean StDev 

BRT -0.231 -0.061 -0.202 -0.002 -0.158 -0.011 

2009 -0.0119 -

0.01551 

-

0.07722 

-

0.03119 

-

0.09038 

-0.02684 

2012 0.017106 -

0.05195 

-

0.15447 

-

0.00539 

-

0.11391 

0.019293 

 15 
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9 Figures 

 

 
Figure 1.   McKenzie River Basin is nested in the Willamette River Basin within the greater Columbia River 

Basin.  5 
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Figure 2. SnowModel-derived snow water equivalent (SWE) (m) is shown in blue for the date of peak SWE 

from Sproles et al., (2013) for, a) an average snow year 2009, b) an above average snow year 2008, and c) a 5 

below average snow year 2005, for the modelling domain around the McKenzie River Basin. The locations of the 

current SNOTEL sites are shown in black circles. The locations of the ForEST sites are shown in grey squares for 

open sites and green triangles for forested sites. 
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Figure 2. SnowModel-derived SWE in shown in blue and the area of the snowpack bulk shown in purple 

(+/- 1 standard deviation around mean basin-wide SWE) for (a) 1 April 2009 (average snow year) and (b) 1 

April for +2° C conditions (future average snow year).  Four SNOTEL sites present in the MRB in 2009 5 

(shown in black) are located in the area of the snowpack bulk for 2009, but not under +2° C conditions. 

Two new SNOTEL sites (shown in yellow) were installed in 2012. 
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Figure 3. Elevation distribution of SnowModel-derived SWE data in the McKenzie River Basin for 01 April 

2009. The area of greatest SWE volume persists in a narrow elevation range which is monitored by four 

historical and two newly installed (as of 2012) SNOTEL stations (elevations of historical stations shown as 5 

as purple stars and new stations as orange stars).  
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Figure 3. Elevation distribution (using 100 m elevation bands) of SnowModel-derived snow water equivalent 

(SWE) in the McKenzie River Basin for peak SWE during an average snow year, an above average snow year, 5 

and a below average snow year including 04 April 2009, 24 April 2008, and 20 April 2005. Mean SWE for each 

elevation band is shown in greyscale, and total basin wide volumetric SWE is shown in blue scale for 2009, 2008, 

and 2005. The green line indicates the elevation distribution of the percent canopy cover. The dashed grey line 

indicates the % / 100 of the area represented by each 100 m elevation band. The area of the greatest volumetric 

SWE persists in a narrow elevation range which is monitored by four historical and two newly installed (as of 10 

2012) SNOTEL stations (elevations of historical stations shown in purple stars and new stations as orange stars). 
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Figure 4. BRT-derived snow classes distributed across the McKenzie River Basin. The selected locations for 

the snow monitoring sites were not evenly distributed in space, but were selected to span the range of 

spatial variability in snow-vegetation-climate interactions.  5 
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Figure 4. Spatially distributed snow classes derived from the binary regression tree model and geospatial model 

for an average snow year 2009, an above average snow year 2008, and a below average snow year 2005. 

Blue/purple colours represent snow classes distributed by elevation for all land covers, green colours represent 5 

snow classes distributed by elevation and forest land covers, and orange/yellow colours represent snow classes 

distributed by elevation and open land covers. The selected locations for the snow monitoring sites were not 

evenly distributed in space, but were selected to span the range of spatial variability in snow-vegetation-climate 

interactions. 
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Figure 5. Volumetric SWE (km3) (shown as bar height), across the elevation range where the classes are located 

(shown as bar width), of the 21 binary regression tree (BRT) derived snow classes for a) 2009, b) 2008, and c) 

2005 (the minimum elevation for each class labelled on x-axis). Mean SWE (m) (shown in coloured circles), 5 

standard deviation (shown as error bars), and area (shown as black x) within each BRT-derived snow class across 

the elevation range where the classes are located.  
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Figure 5. BRT-derived volumetric SWE (km3) across the McKenzie River Basin for each BRT class stacked 

along the elevation range where the classes are located (minimum elevation for each class labeled on x-

axis). In the low-, and mid-elevations, the forest vs. open distinction is statistically important in 5 

distinguishing snow classes. In the high-elevations, above treeline, only elevation significantly drives 

variability in snow accumulation.  Mean SWE increases but volumetric SWE decreases as the land area 

decreases at the highest elevations. 
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Figure 6. Mean SWE (cm) from snow course measurements collected at the paired openopen and forestforested 

snow monitoring sites in the ForESTForEST network at, (a) high- (1483 and 1467 m), (b) mid- (1335 and 1332 5 

m), and (c) low- (1113 and 1139 m) elevations during the winters of 2012, 2013, and 2014. OrangeLight blue 

bars represent mean SWE (cm) in openopen sites. Green bars represent mean SWE (cm) in forestforested sites. 

Error bars indicate the maximum and minimum measured SWE (cm) from 2012, 2013, and 2014. 
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