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Dear Reviewer,

Thank you for your comments and recommendations for the revised manuscript, they
were very helpful in presenting this research in a more robust and defensible way. In
order to tell a more compelling story, we have made multiple changes to the revised
manuscript. We focused the paper solely on the objective approach to improve snow
observational network design, and therefore omitted the evaluation of the SNOTEL
network under climate change. We acknowledge the limitation in the initial analysis
conducted in 2010 which was based on data from 01 April 2009, with the assumption
it represented maximum snow accumulation across the basin during an average snow
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year. To improve upon this in the revised manuscript we used data from the five days
centered on the date of actual peak SWE in the McKenzie River Basin for an average
year 2009, an above average year 2008, and a below average year 2005. Evaluating
the BRT-derived snow classes from three years of SWE data enabled us to use a
more robust analytical approach including omission and commission statistics of overall
classification accuracy.

Interactive comment on “Developing a representative snow monitoring network in a
forested mountain watershed” by Kelly E. Gleason et al. Anonymous Referee #1 Re-
ceived and published: 7 August 2016

The authors present a comparison of a binary regression tree (BRT) statistical model,
trained using a distributed snow model (SnowModel), to spatially locate similar snow
classes around a watershed which guides the siting of meteorological stations (6 sta-
tions at three sites). Two snapshots of spatial snow distribution are used: 2009 (training
data) and 2012 (evaluation data) in order to evaluate the BRT and demonstrate its utility
for met station siting. This concludes with the claims that it improves the basis for site
selection over a physically based model due to the uncertainty propagated by param-
eter selection (i.e. nested sub-models) in physically-based models. As the manuscript
is currently written, there are some substantial issues to respond to as well as a few
minor suggestions:

Your comments highlight the need to clarify a few key points in the revised manuscript
that may have been initially misinterpreted. For example we conclude that the pre-
sented method of site selection is an improvement over more commonly used heuris-
tic approaches, but because the method couples physically-based, statistically-based,
and geospatial models there is uncertainty particularly in predicting future conditions.
Here is the revised paragraph in the discussion section which addresses your com-
ment above, “We developed a snow monitoring network representative of the spatial
variability of SWE relative to physiographic landscape characteristics across the MRB
for an average, above average, and below average snow year; using a coupled BRT
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statistical classification model, a spatially distributed physically-based SnowModel, and
a geospatial selection model. This objective method is a useful tool in classifying snow
characteristics across the landscape to determine representative locations for intelli-
gent snowpack monitoring particularly in physiographically complex landscapes. Al-
though it is an improvement over more commonly used heuristic approaches to site
selection, the method incorporates uncertainty as a result of compounding statistically-
, physically-, and spatially-based models which justifies caution in implementing these
estimates in management decisions. However, the method meets assumptions of non-
parametric data analysis, is performed with relative ease, and if data are available
for the research basin of interest, it can be well validated. As even physically-based
models incorporate inherent empirically-based historically-derived assumptions, there
is also uncertainty in using this approach to represent future spatial variability in snow
accumulation.”

1. | don’t see how this is novel science from the perspective of BRT applications.
The authors provide six citations in the introduction to similar BRT work and explicitly
mention in their conclusions that it is not an advance over Randin et al. (2014).

We present a novel method in designing an objective and representative snow moni-
toring network, which promotes the opportunity for novel science. In the introduction
we acknowledge research which has used the BRT to evaluate snow accumulation
at small scales, or snow covered area at broad scales, however no previous work
has coupled physically-based model output with non-parametric statistical models to
improve snow monitoring network design. In the introduction we include the follow-
ing paragraph explaining how this method goes beyond any previous work using BRT
modeling, “Landscape characteristics have been used to predict snowpack conditions
at hillslope scales using non-parametric binary regression tree (BRT) statistical clas-
sification models (Molotch et al., 2005; Anderton et al., 2004; Erxleben et al., 2002;
Winstral et al., 2002; Balk and Elder, 2000; Elder et al., 1998). Larger scale BRT ap-
proaches have also been conducted using remotely sensed snow-covered area and
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interpolation methods (Molotch and Meromy, 2014; Molotch and Bales, 2006b). How-
ever, no study to date has used landscape characteristics in conjunction with modelled
and validated physically-based and spatially distributed SWE data to understand phys-
iographic drivers of snow accumulation at broad scales (watersheds > 1000 km2) or to
identify optimal locations for snowpack monitoring. Additionally, most of the research
on the physiographic relationships to snow processes has been done in cold-dry conti-
nental snowpacks where mid-winter melt events are infrequent and wind redistribution
is substantial (Molotch et al., 2005; Erxleben et al., 2002; Winstral et al., 2002; Balk
and Elder, 2000). Much less is known about how physiographic conditions influence
the temperature sensitive snowpacks in the forested maritime basins of the Pacific
Northwest.”

Also in the conclusions we include the following paragraph, which specifically describes
the novelty of this research,” By quantifying the spatial variability in the key drivers
of natural resource distribution, researchers can focus on sensitive areas which may
not be identified through traditional site selection means. The use of validated model
outputs as a predictor of the spatial variability in snow-vegetation interactions is not
new (Randin et al., 2014). The novelty of this research stems from the application
of the method, where by the coupling of a traditional BRT classification process with
a validated physically-based spatially distributed model, we improved observational
network design in a forested montane watershed.”

2. This work demonstrates that a statistical BRT model that is not temporally respon-
sive to a warming climate (i.e. in the same way that SNOTEL data provide tempo-
rally static statistical relationships to discharge), performs worse than the distributed
physically-based model (SnowModel). Table 2 shows this performance difference is
by an order of magnitude in the mean values for medium and low elevations. Hence
the assertion in the conclusions that there is still a place for simple approaches is un-
dermined. From the presented methodology of the BRT model it seems this is not a
simple approach, and in a watershed where a physically-based model can (and has)

C4



been deployed, it offers no improvement. While there may be uncertainty in many pa-
rameterizations and process representations of physically based models, at least they
will be responsive in outputs to changing input in a warming climate (especially relevant
to the pacific north-west region).

To simplify the manuscript and focus on the novelty of our method, we have removed
the evaluation of the SNOTEL network under a warming climate. Also, in order to
make the validation of this approach more robust in the revised manuscript, we have
included three years of input data and allowed the BRT model to build its own struc-
ture from an average snow year, an above average snow year, and a below average
snow year. By including these additional years, we were able to use omission vs com-
mission statistics to determine the overall accuracy of the models between years of
current snow conditions. We hope this clarifies some of the confusion mentioned in
the above comment. We do not suggest that a BRT modeling approach is more ro-
bust than a physically-based model in predicting snow volume across a watershed.
We present a relatively simple method using coupled models to classify the snow-
pack (a normally continuous variable) across a complex watershed to guide objective
snow monitoring network design. We have also included the following statement in the
discussion, “As even physically-based models incorporate inherent empirically-based
historically-derived assumptions, there is also uncertainty in using this approach to
represent future spatial variability in snow accumulation.”

3. The claim of a predictive system (whether BRT or a physically based model) as a
tool for advancing the siting of met stations is very site specific and doesn’t provide
wider scientific advancement. Local watershed knowledge of potential site access,
elevation and forest/open areas would likely provide just as much information required
as a complex statistical BRT style analysis. While this style of statistical analysis may
have been useful to justify the location of met sites in the MRB watershed, in itself, it
doesn't justify either a methodological or scientific advance in HESS.

Using an objective method of site selection is rarely used, and we suggest is an ad-
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vancement over more heuristic approaches which require institutional knowledge that
may not exist in remote rugged watersheds. Although the result of this analysis may
not be particularly surprising, it is a useful method for objectively validating our as-
sumptions about “representativeness” of any particular monitoring site location. For
example, our final station locations may appear clustered in physical space, but from
using our method we are confident the locations span the parameter space of the key
drivers influencing the spatial variability of snow accumulation across the watershed.
We present this method with the hope that more scientists will objectively distribute
future monitoring locations based on actual data instead of going on “gut feeling”.

4. The benefits of a BRT approach remain poorly quantified. In the abstract, eleva-
tion, vegetation type and vegetation density are defined as the significant drivers of
SWE distribution. As we already know this is important in montane environments this
does not come as a surprise, however, not providing any statistical quantification of
the relative significance (nor on the main body of text) means such a major conclud-
ing statement adds little to the current body of work in the literature. We hope we
have clarified in the final manuscript the benefits of this coupled approach to objec-
tive site selection. As stated above, the results of this analysis are not surprising and
validate already known assumptions about snow-vegetation interactions in montane
watersheds. However what is novel in this method is that it uses statistically derived
relationships to classify the spatial distribution of snow by its primary drivers to improve
observational network design. Also, because we included three years of input data in
the final manuscript, we include a more robust statistical validation of the BRT model
between years.

Minor comments:

Abstract: this could be condensed substantially. Ln 9-14 and 24-27 could be short-
ened/removed. No quantified results are presented. The reader is left unaware how
representative (i.e. quantified) this BRT model actually is.
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As suggested, we have condensed the abstract to focus more simply on the method
of site selection, and included a basic statistic of the final BRT model in the revised
manuscript. The revised abstract now reads, “A challenge in establishing new ground-
based stations for monitoring snowpack accumulation is to locate the sites in areas
that represent the key processes affecting snow accumulation and ablation. This is
especially challenging in forested montane watersheds where the combined effects of
terrain, climate, and land cover affect seasonal snowpack. We present a coupled mod-
elling approach used to identify a parsimonious set of monitoring sites in a forested
watershed in the western Oregon Cascades mountain range. We used a binary re-
gression tree (BRT) non-parametric statistical model to classify peak SWE based on
physiographic landscape characteristics in a normal year, an above average year, and
a below average year. Training data for the BRT classification were derived using spa-
tially distributed estimates of SWE from a validated physically-based model of snow
evolution. The optimal BRT model showed that elevation and vegetation type were the
most significant drivers of SWE in the watershed (R2 = 0.93, p-value < 0.01). Geospa-
tial elevation and land cover data were used to map the BRT-derived snow classes
across the watershed. Specific snow monitoring sites were selected randomly within
the BRT-derived snow classes to capture the range of spatial variability in snowpack
conditions in the McKenzie River Basin. The Forest Elevational Snow Transect (For-
EST) is a result of the BRT modelling and represents combinations of forested and
open land cover types at low, mid, and high elevations. After five years of snowpack
monitoring, the ForEST network provides a valuable and detailed dataset of snow ac-
cumulation, snow ablation, and snowpack energy balance in forested and open sites
from the rain-snow transition zone to upper seasonal snow zone in the western Oregon
Cascades.”

Pg 1, Ln27: The idea this paper tests the MCB snow network within a projected warm-

ing climate (from 2009 to 2012) suggests something that is not adequately delivered

by this paper. As suggested this evaluation of the MRB SNOTEL network within a

projected warming climate (from 2009 to 2009 + 2° C) was removed from this revised
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manuscript to focus on the objective method of site selection to capture the spatial
variability in SWE during current years. We have also included three years of data to
evaluate the accuracy of the model between years in the revised manuscript, but this
is not intended to suggest anything about climate change.

Pg 4, Ln 7 & 19 — don’t need ‘Description of the’ in either sub heading.

This change was made.

Pg4, In 12 —‘which’ is grammatically correct after a comma rather than ‘that’.
This change was made.

Pg 4, Ln 25-27 — following Winstral et al., (2002) and subsequent papers by Winstral
et al., was this used to calculate redistribution of snow (especially above tree line) in
drifts which are very important hydrological areas to get SWE correct in a watershed?

Yes, these methods were used to calculate the upwind contributing area to calculate
redistribution of snow in drifts across the landscape. Although snow redistribution is not
as important in the warm maritime low elevation snowpacks characteristic of the Pacific
Northwest, than in drier higher elevation continental snowpacks, we still felt it important
to include wind as a driver of spatial variability in SWE. We have included the following
sentence to clarify your question in the revised manuscript, “Upwind contributing area
data, which captures the variability in snow deposition as a result of wind redistribution
for each cell throughout the watershed (Winstral et al., 2002), was calculated following
Molotch et al., (2005).”

Pg 5, Ln 18-21 — while Sproles et al. (2013) is often cited, as this is such a key founda-
tion to this work it needs greater explanation in this paper — in particular how the future
SWE conditions are calculated, and especially the change to precipitation rates and
phase (rain/snow) as well as temperature. A fairly detailed paragraph describing the
methodology used for the modelled input SWE data was included in the data sources
section of the methods. For the sake of brevity, we would prefer to cite Sproles et
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al 2013, and not reiterate what has already been published. We include the following
paragraph in the methods, “Modelled and gridded SWE data across the MRB (Figure 2)
were provided by Sproles et al., (2013). These data were developed using a physically-
based spatially distributed snow mass and energy balance model, SnowModel (Liston
and Elder, 2006). SnowModel uses micrometeorological and topographic data to dis-
tribute snow across the landscape accounting for climatic, topographic, and vegetation
variability. The model was modified by Sproles et al., (2013) to account for rain/snow
precipitation phase partitioning, and snow albedo decay in forested landscapes. This
model was calibrated and validated using data from the four SNOTEL sites, meteo-
rological data from the HJ Andrews Long Term Ecological Research site and National
Weather Service stations and Landsat fractional snow covered area data over the sam-
pling period 1989-2009 (Sproles et al., 2013). The model was run at 100-m spatial
resolution on a daily time step. We used modelled peak SWE data as the predicted
variable in the BRT model. Sproles et al., (2013) showed that 2009 was considered
an average snow year so we used peak SWE from 2009 (five days centred on 04 April
2009) as our reference year. Additionally we used peak SWE from 2008 (five days
centred on 24 April 2008) as an above average snow year, and peak SWE from 2005
(five days centred on 20 April 2005) as a below average snow year.”

Pg 5, In 24 — can more be said about issues of up-scaling (aggregation) and downscal-
ing (disaggregation) of different data sets?

We have included additional information about the method used in scaling the input
data following, “All spatial data were masked to the McKenzie River Basin and con-
verted to the same projection and spatial resolution: NAD83, UTM Zone 10, and a
100-m grid cell size. Spatial data were processed using ArcGIS 10.1 using bilinear
interpolation for continuous data and nearest neighbour interpolation for discrete data.”

Pg5, Ln 25 — why concentrate on areas defined as ‘bulk’ rather than fully spatially
distributed models? Locating big drifts, often above tree line, are key to understanding
the timing and magnitude of discharge. This seems to have been neglected under this
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BRT model.

The bulk snowpack was evaluated for current and future (+ 2° C) conditions to quantify
the area on the landscape where the majority of the snowpack lies from the physically-
based spatially-distributed modelled SWE data. Although we have removed this anal-
ysis from this revised manuscript to focus on the novel method of coupling physically-
based and statistical models to improve observational network design.

Pg 6, Ln 5-10 — The way that SnowModel is combined or used to evaluate BRT is
presented in a very confusing fashion. Where is the independent data to evaluate
BRT?

Within the CART statistical software, we have reserved 20,000 random cells within the
modelling domain to test the final BRT statistical model. The modelled SWE data was
used as the dependent variable in the BRT statistical model, and we hope this is now
less confusing in the revised manuscript. We have included this additional information
in the statement, “Within the CART software, the final BRT model was validated using
reserved data from an independent set of 20,000 randomly selected grid cells from
within the MRB.”

Pg 6, In 12 — 20 BRT snow classes? Wasn’t one removed due to logistics and finance?
This adds confusion to the methods.

We have revised our analysis in this revised manuscript in a few key ways including, a)
using peak SWE instead of 01 April, and b) pruning the optimal model to just the two
main drivers to prevent overfitting and multi-collinearity brought up by reviewer #3. In
the revised manuscript, the optimal model is defined by 21 BRT snow classes, none of
which were removed. We hope this is clear in this revised manuscript. Pg 6, In 14-16
— Why were lower elevation extents removed? This is done without any quantification
nor real justification.

The BRT model did not set bounds on lower elevation limits for SWE, although SWE did
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not exist below approximately 600 m in the modelled data as well as anecdotally from
observations. As stated in the manuscript, “Because the BRT-model did not determine
a lower elevation limit on snow extent, we excluded areas with an elevation less than
600 m to prevent over-prediction of snow-covered area below elevations where it was
observed in the modelled data.”

Pg 6, In 16-17 — what proportion of the basin was removed? Why do this if it is a SWE
contributing area to discharge, why would this cause over prediction?

This removed 26.5% of the area in the basin during the evaluation of the volume of
SWE in the BRT classes, although this area held 0.068% of the SWE in the basin (or
0.0009 km3 of 1.48 km3 SWE). If we had not set a lowest extent of snow covered area
in the basin, it would be the equivalent of drawing a regression line beyond the range
of the input data. We set this boundary were it was observed in the modelled data to
prevent extrapolation of the model beyond the bounds of the input data.

Pg 6, In 21 — add ‘a’ between ‘create’ and ‘set’.
This change was made.

Pg 6, In 24 — why is 500m threshold applied? In practice one would expect field loca-
tions for met sites to be closer or further away from transport links depending on local
conditions (i.e. how potential met site locations have always previously been evalu-
ated).

Your question highlighted a typo in the manuscript which we have revised, as well as
included additional information for clarity. The following statement was included in the
revised manuscript, “To prevent contamination from the road network, but still define
accessible site locations, we also identified areas within 100-500 m of a snowmobile-
accessible road.”

Pg 7, Ln 8 — the ‘final’ BRT model. How many BRT models were evaluated? The rest
of this paragraph has already been discussed and is providing repetition.
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In the revised manuscript, we developed the optimal model based on an average year
snowpack, which was then paired down to a more parsimonious final optimal model,
which was then applied to an above average and below average snowpack. In the re-
vised manuscript, we have rewritten the methods for clarity, including the following text
in the analysis section, “An optimal tree was produced to minimize the standard error of
the model, which was then pruned down to the simplest tree possible within one stan-
dard error of the optimal tree, and so each terminal node represented at least 1% of
the variability in peak SWE. The resultant tree identified 21 terminal nodes that char-
acterized the spatial variability in SWE through combinations of independent drivers
into 21 BRT-derived snow classes (Table 1). The BRT model identified elevation, land
cover, NDVI, insolation, percent canopy cover, slope, and wind as significant explana-
tory drivers of the spatial variability of peak SWE (all selected variables had p-values <
0.05 and are listed above in order of significance). Although elevation and land cover
were the dominant predictive variables where the other physiographic variables each
explained less than 1% of the variability in peak SWE. In order to reduce the multi-
collinearity between related variables and reduce the risk of overfitting the model, we
simplified the final optimal model to only include elevation and land cover. Within the
CART software, the final optimal BRT model was validated using reserved data from an
independent set of 20,000 randomly selected grid cells from within the MRB. The final
parameters developed in this optimal tree for peak SWE in an average year 2009, were
used to develop equivalent BRT models using peak SWE input for an above average
year 2008, as well as for peak SWE during a below average year 2005.”

Pg 7, Ln 14 — why does latitude matter?

Good point, particularly over a 3000 km2 watershed it should not matter, and therefore
we have removed it from the analysis in this revised manuscript.

Pg7, Ln 15 — why does aspect not matter? Especially for snowmelt rates, this goes
against conventional wisdom.
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In this study we sought to classify the spatial distribution of snow water volume on the
landscape, and therefore focused on the peak snow accumulation across the water-
shed. Aspect should matter, as well as insolation and slope, during snow ablation, but
we did not expect it to be important in accumulation processes. Because we focused
on snow accumulation, we did not expect aspect to be an important driver in the spatial
distribution of peak SWE.

Pg 7, Ln 18 — why were BRT and SnowModel not used in conjunction with each other.
When both are available it is confusing that they are not used together to optimize
estimation of SWE distribution.

We coupled SnowModel, BRT, and a geospatial model to classify snow across the
watershed. They are used in conjunction and hope we clarified this issue in the revised
manuscript.

Pg 7, Ln 20 — BRT estimation of mass should be good in 2009 as it is tuned with
SnowModel, but poor prediction of SCA (64% SCA over prediction) suggests it's not
getting SWE right for the right spatial reasons (i.e. at low elevation).

We were previously using the static BRT-derived snow classes based on 2009 SWE
and applying them to 2012. This method implies there is no inter-annual variability in
SWE, and therefore does not properly evaluate the accuracy of the BRT model be-
tween years. In order to improve upon this, we included three years of SWE input data
to develop three equivalent BRT models, and using omission and commission statis-
tics we evaluated the overall accuracy of BRT models between years in the revised
manuscript. We don’t expect the BRT model to predict actual SWE volume on the
landscape, but to predict the spatial distribution of similar SWE characteristics across
the landscape, and we believe we have achieved this goal in this revised manuscript.

Pg 7, Ln 23 — Increasing elevation does not increase accumulation, it is increases with
elevation (i.e. not a cause in itself).
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We have included the following statement to address this comment, “Snowpack accu-
mulation increased with increasing elevation, resulting in a greater mean SWE per unit
area at the highest elevations. Although deep snowpack at the highest elevations only
cover a small aerial extent of the MRB, which resulted in decreasing contribution of
total basin-wide SWE above approximately 1700 m during the average and above av-
erage snow years. In contrast, during the low snow year, the highest elevation classes
contributed the most to total basin-wide SWE (Figure 5)”

Pg7, Ln 26-31 — could this information be put into a table?

This information has been refined and added to Table 1 in the revised manuscript.
Pg 8, Ln 1 — comma needed after ‘Whereas’.

This change was made.

Pg 8, In 4-5 — How does BRT adapt to changes in winter precipitation inter-annually?
If it can’t, what advantages does it have over running SnowModel?

I hope this confusion has been clarified in this revised manuscript. We used the BRT
model to classify the modelled SWE output of continuous data based on physiographic
landscape characteristics. In order to address how the BRT model adapts to interan-
nual variability in SWE, we included an above average snow year, and a below average
snow year in the analysis of this revised manuscript.

Pg 8, Ln 7 — SnowModel derived estimates were NOT captured well by BRT. They
were an order of magnitude different at low and medium elevations. Need a much
better quantified argument to justify this.

We aim to capture the spatial variability in SWE characteristics across the landscape,
not the actual volume of SWE. In the revised manuscript, we have rerun the BRT
models using three years of data to more robustly evaluate the spatial variability in
snow classes across the landscape between years.
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Pg 8, Ln 13 — Need to provide more about how accessibility is determined as a criteria.

These criteria have been described in the methods section including the following state-
ment, “To create a set of feasible locations for the in situ snow monitoring network we
evaluated the accessibility of locations within the MRB. Using a GIS-based binary se-
lection model, we masked out all private lands and public lands where the presence of
endangered Northern Spotted Owl prevented permitted access. To prevent contamina-
tion from the road network, but still define accessible site locations, we also identified
areas within 100-500 m of a snowmobile-accessible road. From these accessible ar-
eas, the final sites were then randomly selected from each of the dominant BRT-derived
snow classes within the seasonal snow zone.” Also to clarify this in the results section
we included the following statement, “The geospatial selection model identified 16 of
the 21 classes as being accessible (following criteria explained in the above methods)
during winter.”

Pg 8, In 19 — six met stations is a bit misleading, rather there are three sites, each with
adjacent open/forest met stations.

Although the six met stations are paired by elevation and appear to be in the same site
on the map, they are approximately 1 km from each another. They are grouped by el-
evation but distinct in the land cover characteristics. The following statement has been
included which clarifies that the six stations are grouped by three elevation ranges and
two land cover types, “Within the area covered by these 16 classes, random site loca-
tions were selected within the six most abundant classes across the MRB to capture
low, medium, and high elevations, with forested and open land cover classes. The
resultant Forest Elevation Snow Transect (ForEST) monitoring network site locations
were thus objectively selected to sample across the range of spatial variability in SWE.
The ForEST network, composed of six meteorological stations and snow survey tran-
sects, was deployed in November 2011, and continues to provide high quality snow
and climate data to evaluate snow-forest-climate interactions in the MRB (Figure 4).”
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Pg 8, Ln 17-26 —this isn’t a scientific result unless you then go on to do something with
these met data.

The ForEST network of snow monitoring stations is the result of the coupled modeling
approach, and therefore we believe it should be included in the results section. We
have moved any qualitative evaluation of the network to the discussion section. We
could fill an entire manuscript evaluating the met data, but in this manuscript we aim to
focus on the novel method of objective site selection.

Pg 8, Ln 26 — how has this been stringently validated with the BRT model?

We aimed to objectively distribute a representative snow monitoring network using this
coupled modeling approach. Instead of heuristically deciding where stations should be
located, we used physically based SWE data and a non-parametric statistical model to
define the spatial variability across the watershed. We hope in the revised manuscript
we have clarified this and include the following statement in the discussion section,
“The paired forest-open land cover site selection process has already led to important
understanding of key sub-canopy snow processes (Storck et al., 2002; Golding and
Swanson, 1986). But here, the assumptions driving paired site selection process has
been further validated using coupled physically-based spatially-distributed snow model
input data and non-parametric BRT statistical modelling across a forested montane
watershed.”

Pg 8, Ln 26-28 — Consistency in the pattern of measured snow course SWE doesn’t
corroborate energy balance and snow-veg interactions.

We have removed this statement to allow the reader to form his/her own conclusions
about the measured data resulting from this project.

Pg 9, Ln 15-16 — This study doesn’t explicitly demonstrate the impact of timber harvest/
fire disturbance impact on SWE distribution.

We have included the following statement in the discussion to clarify this point, “By
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distinguishing snow classes based on forest vs. open land cover across a range of
elevations, this study emphasizes the watershed-scale control that vegetation and par-
ticularly land cover change relative to timber harvest (and potentially fire disturbance)
has on snowpack accumulation in the maritime western Oregon Cascades.”

Pg 9, Ln 20-21 — If BRT and SnowModel are coupled (as stated) then what does
this combination give us that SnowModel doesn’t give us as a stand-alone product?
This is not providing added information on hydrological response units (HRU), it is not
a new idea in snow hydrology (e.g. CRHM), and doesn’t provide an obvious robust
advancement in inter-annual transferability.

We use this coupled approach to classify snow characteristics across the landscape
and to improve upon traditional methods of observational network design. The Snow-
model output data is continuous by nature, and doesn’t provide any guidance for which
specific locations in a watershed may be representative of greater landscape scale pro-
cesses. We did not expect to advance scientific knowledge, but to provide an objective
technique for distributing point based monitoring locations which represent the spatial
variability across the watershed.

Pg 9, Ln 26 — Yes, inter-annually transferability really needs to be more robustly tested
by this methodology, rather than one 1 April snapshot in 2012. Currently this evalua-
tion/validation has not been sufficiently done with independent data.

We included three years of data from the actual date of peak SWE in this revised
manuscript to provide a more robust evaluation of the accuracy of the BRT models
between years.

Table 1 — What percentage of SCA was above 1546m (was it 40%)? If these data
were rejected can this be demonstrated that this is not a problem? While thin SWE
and scour is likely in Alpine areas above tree line drifts in these areas can contribute
substantially to the timing of increased discharge through melt-out.
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We aim to capture the spatial variability in SWE characteristics across the watershed
to improve observational network design, not to accurately capture any watershed dis-
charge characteristics. We do need more observation stations at higher elevations,
although within the resource limitations of this study we were restricted to locations we
could reach with a snowmobile and must accept the related uncertainty.

Table 2 — no units. Can low, medium and high be classified? Which sites were the
forest and open sites — can these be related to a map or specifically described?

Table 2 has been omitted from this revised manuscript in lieu of more robust accuracy
assessment tables included in the supplementary tables.

Fig 2 — put yellow circles in legend. Cite Sproles in caption (see previous comment
about more explicit explanation of future precipitation scenario in Sproles data).

Figure 2 has been omitted from the revised manuscript as described in the above text.

Fig 3 — | am surprised that mean SWE by elevation increased above tree-line, would
have expected some thinning of SWE due to scour, can this be explained? The hyp-
sometry of the basin would be a very useful (essential?) addition to this figure.

As mentioned above, snow redistribution is not as important in warm maritime snow-
packs as it is in cold dry continental snowpacks, and therefore we are not surprised by
this result. In order to make the connection between volumetric SWE and mean SWE
across the elevation gradient we have included the hypsometry on Figure 3.

Fig 4 — relate snow classes to the Table otherwise they make no sense.

Table 1 has been altered in the revised manuscript to explicitly describe each snow
class for each year.

The BRT snow class numbers in Table 1 match those used in the legend of Figure 4 in
order for readers to make the connection between the statistics and spatial distribution
of each snow class.
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Fig 5 — How does forest and open relate to the ‘all’ classification? What is additional to
‘all’ other than forest and open? Why is mean SWE so different to SnowModel? Which
year is this for? Don'’t put descriptive results in caption, put them in the main body of
the text. Caption says it’s statistically important, where is this statistical analysis?

The information for each BRT-derived snow class is now consistent between Table 1,
Figure 4 and Figure 5 in the revised manuscript. The BRT model distinguishes snow
classes across the middle elevations into forest vs. open land cover types, but only by
elevation across the high elevations. All land covers includes both forest and open land
covers as opposed to forest or open land covers. Mean SWE here is defined for each
BRT snow class, where as in Figure 3 mean SWE is defined for each 100 m elevation
band. We hope these questions are addressed in the revised manuscript. The BRT
model selected statistically significant drivers of SWE across the landscape and is the
analysis we refer to here, although these descriptive results have been removed from
the figure caption.

Fig 6 — This is just measured SWE, how is it use to quantitatively evaluate the new
modelling framework? Need to define the high, mid and low elevations in the caption.
Error bars seem to be the range rather than any calculation of error.

We are not evaluating the modeling framework using these measured SWE data, but
we present the measured SWE data to show there are consistent differences in peak
SWE between forests and open areas that seem to evolve across the elevational gra-
dient. We have included the elevations within the caption, and also state in the caption
that, “Error bars indicate the maximum and minimum measured SWE (cm) from 2012,
2013, and 2014.” We are unaware of another name to refer to these bars and hope
they are clearly defined in the revised manuscript.

Thank you very much for your considerate review of our manuscript.

Please also note the supplement to this comment:

C19

http://www.hydrol-earth-syst-sci-discuss.net/hess-2016-317/hess-2016-317-AC1-
supplement.pdf

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., doi:10.5194/hess-2016-317, 2016.
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Table S1. Accuracy assessment matrix comparing the BRT classes derived from the normal snow year 2009 with those from the high snow year
2008. Overall there is less error in the lowest and highest elevation BRT classes, whereas the mid- elevations there is more error between models.
Many classes were reassigned when the BRT model was rerun between years, underestimating the accuracy of the overall spatial variability
between models.

BRT Class
2009 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 Comission
2008 error (%)
1 55402 6035 10
2 16467 0
3 369 22960 2
4 52 3930 1
5 9879 0
6 5486 100
7 3232 3232 50
8 4667 0
9 2524 0
10 2053 4007 34
11 5276 5740 48
12 486 2900 14
13 1965 339 5421 30
14 5252 4338 617 57
15 13692 1948 719 88
16 10260 14155 58
17 23580 100
18 5931 705 100
19 1850 100
20 1057 1025 51
21 2039 0
Omission 0 28 [ 0 36 100 0 31 16 57 26 10 49 76 24 7 100 100 100 71 33
error (%) Overall accuracy 63

Fig. 1. Supplemental Table 1_Accuracy Accessment
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Table S2. Accuracy assessment matrix comparing the BRT classes derived from the normal snow year 2005 with those from the high snow year
2008. Overall there is less error in the lowest and highest elevation BRT classes, whereas the mid- elevations there is more error between
models. Many classes were reassigned when the BRT model was rerun between years, underestimating the accuracy of the overall spatial
variability between models.

BRT Class
2009 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Comission
2005 error (%)
1 55402 22923 22960 3930 15365 3232 6013 3365 2243 59
2 3355 9283 5840 100
3 767 2900 100
4 1965 9212 12939 100
5 5091 757 3973 100
6 339 1461 1808 879 100
7 3718 100
8 2194 100
9 3622 100
10 2697 100
11 3702 100
12 1815 100
13 7239 100
14 4776 100
15 4045 100
16 2347 100
17 3253 100
18 1923 512 21
19 3857 0
20 1562 3612 421 35
21 2643 0
Omission 0 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 92 35 0 14
error (%) Overall accuracy 28

Fig. 2. Supplemental Table 2_Accuracy Accessment
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