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Abstract. The internal adjustment process of a hydrological model followed by an unusual initial condition is known as 

the model spin-up. And the time required for a complete adjustment is termed as the model spin-up time. Model results for 

the duration of this spin-up progression are greatly impacted by the initial conditions, and often impractical or erroneous. 

The speed of this adjustment process is affected by the characteristics of the input data sets and their persistence. This study 

discusses the variability and seasonality of hydrological model spin-up time against the aridity of the river basin using multi-15 

year climatologies for 18 river basins distributed relatively snow-free regions of the USA. The Xinanjiang model was run 

with each of all available year input data sets with two extreme initial conditions (saturated and unsaturated) and thereafter 

detected the model equilibrium state based on the Mahalanobis distance between the soil moisture states of two model runs. 

The seasonality of model spin-up was investigated by conducting multiple simulations that start from different time of a 

year. The basin average soil moisture memory (SMM) timescale (Rahman et al., 2015) and basin aridity index was estimated 20 

and thereafter investigated their relationship with the average model spin-up time. 

Analysis suggests that the spin-up time highly varies with the simulation starting time and the dryness of the river basin. 

Overall, in all basins, model achieves the equilibrium state quickly while the simulation starts in late autumn (October-

November). On the other hand, model equilibrates slowly while simulation starts in spring (March-May). Wet basin shows 

stronger variability of the model spin-up time (mean range 154 days) throughout the year as compared with that of dry basins 25 

(mean range 78 days). The mean spin-up time is shorter for wet basins (154 days) and longer for dry basins (233 days). The 

spin-up times are 3-7 times longer than the SMM timescale. The basin-wise mean spin-up time shows linear and exponential 

relationship with the SMM timescale and the basin aridity index respectively. The relationship offers predictability of model 

spin-up time from widely available potential evaporation and precipitation data sets. 

1 Introduction 30 

When a model is calibrated with an unusual initial condition, the model undergoes some adjustment process to reach the 

normal equilibrium state (Yang et al., 1995; Cosgrove et al., 2003; de Goncalves et al., 2006; Rahman and Lu, 2015). The 

time required to complete this model adjustments or reaching its equilibrium condition in its internal states (i.e. soil 

moisture) is called as the model spin-up time. The length and behaviour of this spin-up process is a function of chosen initial 

conditions, model parameters and the model input variables (Seck et al., 2015). The model findings for the duration of this 35 

spin-up time is vastly affected by the initial condition, and often impractical or erroneous. The model outputs after its initial 

adjustments normally shows betteragreement with the observations and responds reasonably to the model inputs (Yang et al., 

1995; Cosgrove et al., 2003; Seck et al., 2015). Consequently, it is important to pay particular attention to the model spin-up 
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process, its length and behaviour for the modellers. However, clear information about the length of spin-up time is often 

missing or model specific and cannot be applicable to all models (Rahman and Lu, 2015).  

In practice, modellers tend to reduce this spin-up period or exclude the initial model outputs for improved modelling 

accuracies mostly guided by a guess. These techniques of reducing spin-up errors hold certain limitations. Therefore, 

understanding the factors affecting the spin-up process and its behaviour is highly important for modelling communities. The 5 

effect of initial conditions in hydrological models have been investigated by several researchers (Goodrich et al., 1994; 

Senarath et al., 2000; Castillo et al., 2003; Zehe et al., 2005; Berthet et al., 2009; Nikolopoulos et al., 2011; Zhang et al., 

2011; Minet et al., 2011). However, these studies were done highlighting either an event-scale or short-term response. 

Moreover, these literatures do not necessarily estimate the spin-up time or describe the principle to specify the equilibrium 

condition of model state once it finishes the spin-up process (Seck et al., 2015).  10 

Recently, few studies have discussed about the spin-up time and behaviour of integrated hydrological model (Ajami et al., 

2014; Seck et al., 2015; Rahman and Lu, 2015).  Rahman and Lu (2015) suggested an straightforward technique to estimate 

the maximum spin-up period of the Xinanjiang model (Zhao, 1992) under any state of initial conditions using only basin 

aridity index (ratio of annual potential evaporation to precipitation) information. Estimating maximum model spin-up time 

would reduce uncertainity involves with initial conditions. In contrary, spin-up time of land surface models (LSMs) is well 15 

documented (Yang et al., 1995; Robock et al., 1998; Schlosser et al., 2000; Cosgrove et al., 2003; Rodell et al., 2005; Lim et 

al., 2012). These literatures mainly investigate the model spin-up behaviour under various settings of climate, vegetation and 

soil types. Reported spin-up time of LSMs varies from models to models and range from one to several years (de Goncalves 

et al., 2006; Yang et al., 1995; Chen and Mitchell, 1999; Cosgrove et al., 2003; Rodell et al., 2005). Despite that the 

conclusions of these literatures are often model-specific, they provide important insights and guidelines for all modelling 20 

communities about the spin-up behavior. 

Up-to-date spin-up studies are mostly done on the basis of a recursive model runs throughout a specific period (typically a 

single year) where the outputs at the end of one run turn out to be the initial conditions for the subsequent run (Yang et al., 

1995). These single year recursive model runs are claimed to be eliminating year to year climatic variability and corresponds 

any model adjustments from year to year exclusively to the spin-up process (Cosgrove et al., 2003). Recurrent annual forcing 25 

feds the identical temporal dynamics to the system and facilitates to distinguish between the effects of persistence in initial 

conditions (Seck et al., 2015). These recursive model runs actually tend to represent the actual climatology with only a single 

year forcing data (Cosgrove et al., 2003). Rahman and Lu (2015) tried to improve the representativity of this single year 

model run by analysing the model spin-up behaviour based on simulation results using three different climatological input 

data sets (mean, 5th and 95th percentile of annual rainfall). However, these recursive model runs using a single year 30 

climatology may possibly be inadequate to prepare the model to act logically against all climatological phenomenon, and 

could be missing important additional insights. Moreover, this single year recursive model run always starts the simulation 

from a particular point of a year. Since, the spin-up process is said to be highly linked with the atmospheric forcing and 

surface conditions (Yang et al., 1995; Chen and Mitchell, 1999; Cosgrove et al., 2003; Rodell et al., 2005; de Goncalves et 

al., 2006; Rahman and Lu, 2015), the spin-up behaviour would be different when the model simulations start from different 35 

times of a year. Keeping the same initial conditions and employing different starting climatology certainly affects spin-up 

process. Recently, Rahman et al. (2015) discussed about the seasonality of soil moisture memory (SMM). Therefore, it is 

intuitive for any model spin-up time to show certain seasonality.  

This study attempted to analyse the seasonality of hydrological model spin-up time using the Xinanjiang model (XAJ) 

(Zhao, 1992). The XAJ model is a conceptual hydrological model discussed in section 2.2. Unlike existing literature, this 40 

study uses multi-year climatology instead of a single year recursive model runs. This study believes that the use of multi-
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year climatologies trains the model in a better way and the outcomes are more realistic. Moreover, to detect the seasonality 

of model spin-up time, it performs series of simulations that start from different times of a year (details are given in section 

2.5). Using multi-year forcing climatology also requires the model equilibrium condition to be defined differently from the 

available spin-up literatures (Yang et al., 1995; Cosgrove et al., 2003; Rodell et al., 2005; Lim et al., 2012; Ajami et al., 

2014; Seck et al., 2015; Rahman and Lu, 2015). In recursive simulation based spin-up studies, the model equilibrium 5 

condition has been defined mainly based on the percent cutoff-based time (PC time). PC time is the time required for the 

yearly changes of model output (i.e. soil moisture state) to decline to a pre-defined threshold values (Cosgrove et al., 2003; 

de Goncalves et al., 2006). Since a single year climatology is repeated in a recursive simulation, the input value for a 

particular point of a year remains the same throughout the simulation. Therefore, the equilibrium conditions remains the 

same for a particular point. The output value of December 31st becomes the initial conditions for January 1st for the next 10 

run. While simulation continues, the model adjusts the gap between the initial and the equilibrium conditions for a particular 

point of a year. This actually allows detecting the progress of adjustment process based on user defined resolution (i.e. daily, 

monthly, yearly). In contrary, using multi-year forcing employs varying temporal dynamics and the equilibrium state could 

be different from year to year. Therefore, it performs two simulations; one initialised with completely “unsaturated” (0% soil 

moisture), and another initialised with completely “saturated” (100% soil moisture). 15 

In XAJ model, the soil moisture is represented in three layers. When the XAJ model is run with two extreme initial 

conditions (“saturated” and “unsaturated”), the soil moisture stores of each simulation will gradually converge towards a 

common state of equilibrium, and thus would show negative correlations until it reaches the equilibrium state. This 

equilibrium model state can be detected by estimating Mahalanobis Distance (MD) (Mahalanobis, 1930) between the soil 

moisture states (prognostic variable for this study) of two simulations. MD has been applied in many fields to solve the 20 

classification problems, where there are several groups and concerns of affinities between the groups are present 

(McLachlan, 1999; De Maesschalck et al., 2000). MD has been used to detect the outliers (Martens and Naes, 1992; Leroy 

and Rousseeuw, 1987), to select the calibration samples from a large set of measurements (Shenk and Westerhaus, 1991), to 

investigate the representativity between two data sets (Jouan-Rimbaud et al., 1997; Jouan-Rimbaud et al., 1998; Wilson and 

Atkinson, 2007) and similarity between two river flow series (Corduas, 2011). MD is useful to measure the divergence or 25 

distance between groups in terms of multiple characteristics. MD weights the variables with their covariance, which 

attributes less weight to strongly correlated variables.  

Running XAJ model using multi-year forcing climatologies declaring “saturated” and “unsaturated” initial conditions, this 

study investigated the seasonality of model spin-up time for 18 river basins across the USA. This study holds at least three 

major comparative advantages over the existing spin-up literatures. Firstly, use of multi-year forcing allows to introduce 30 

inter-annual variability and overcome the limitations contains in single year recursive simulation in the sense of 

representativeness to the actual phenomenon. Secondly, it detects the model equilibrium state based on MD that is widely 

acceptable in the presence of co-linearity of datasets. Thirdly, it provides useful insights about the seasonality of model spin-

up time that is missing in the available spin-up studies.  

2 Materials and Methods 35 

2.1 Study area 

This study analyses 18 river basins across the USA. Stream gauge locations of the analysed river basins are shown in Fig. 1. 

[Figure 1] 
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For the sake of consistency, this study opted to select the same river basins studied by Rahman et al. (2015) and Rahman and 

Lu (2015). Analysing same river basins allows the comparison between the model spin-up outcomes derived from two 

different methodologies. Moreover, it enables to relate the model spin-up time and soil moisture memory. Literature (Li and 

Lu, 2014; Lu and Li, 2014; Rahman, et al., 2005; Rahman and Lu, 2005) suggests that these river basins have good data 

records, and their discharge could be simulated by the XAJ model with good accuracies. The studied river basins are situated 5 

in almost snow-free regions. On the basis of 30-year climate normals (1981-2010) published by NOAA's National Climatic 

Data Center (freely accessible at http://www.ncdc.noaa.gov/oa/climate/normals/usnormals.html; accessed on November 13, 

2013), the studied river basins do not observe more than 7 snow-days (a snow-day is a day that receives at least 2.5mm 

snow/day) and record less than 200mm of total new snow annually. Physical and hydro-climatic characteristics of the studied 

river basins' is summarized in Table 1. 10 

[Table 1] 

2.2 Xinanjiang model 

The Xinanjiang model (XAJ) is a conceptual hydrological model (Zhao, 1992). The XAJ model was developed by the Flood 

Forecast Research Laboratory of the East China Technical University of Water Resources (presently Hohai University). In 

the XAJ model the runoff is formedbased on the repletion of storage concept. The runoff starts to propagateafter the 15 

unsaturated zone reaches its field capacity(spatially distributed), and afterwards produces runoff equivalent tothe rainfall 

excess with no further loss (Zhao, 1992). Inputs to the XAJ model are areal mean precipitation and potential evaporation  

and provides discharge from the whole basin as the output. Throughout this article, the iput data sets designate time series of 

daily precipitation and potential evaporation. This XAJ model is widely used in humid and semi-arid areas of China(Lu and 

Li, 2014). The model is strong in physical meaning and its parameter (15 in total) can be estimated by basin characteristics. 20 

In addition to discharge data, the XAJ model simulates a time series of soil moisture data as the internal model state.  

2.3 Data 

The basin scale daily precipitation, P (calculated based on the ground based daily mean aerial precipitation), potential 

evaporation, PE (estimated from NOAA Evaporation Atlas) and discharge, Q data (estimated from USGS hydro-climatic 

data) acquired from the U.S. Model Parameter Estimation Project (MOPEX) data set (Schaake et al., 2006) were used in this 25 

study. The data set is freely available at ftp://hydrology.nws.noaa.gov/ (accessed on 19 October 2013). 

2.4 XAJ model parameters, calibration and validation 

The XAJ model was run with the support of a web-based application (accessible at http://lmj.nagaokaut.ac.jp/~khin/; last 

accessed on May 09, 2016) (Kyi, 2016). This web interface assists the user to calibrate and run the XAJ model in a user 

friendly environment. Additionally, it provides helpful suggestion in parameter settings for calibration based on Li and Lu 30 

(2014). Moreover,it enables to visualise the hydrograph and calculates Nash-Sutcliffe (NASH) efficiency (Nash and 

Sutcliffe, 1970). NASH efficiency was calculated based on Eq. (1). The XAJ model parameters and their calibrated values 

are presented in Table 2.  

𝑁𝐴𝑆𝐻 = 1 −
 (𝑄𝑜 𝑡 − 𝑄𝑠 𝑡 )2𝑛

𝑡=1

 (𝑄𝑜 𝑡 − 𝑄 𝑜)2𝑛
𝑡=1

                                                                                                 (1) 

Where, 𝑄𝑜 , 𝑄𝑠 and 𝑄 𝑜  are the observed discharge, simulated discharge and average observed discharge respectively. 

[Table 2] 35 
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2.5 Simulation design 

Unlike recursive simulation with a single year climatologies, this study run the XAJ model using full length available 

observed data sets with two initial conditions (saturated and unsaturated). To detect the seasonality of model spin-up time, 

this study performs a series of XAJ model runs with varying simulation starting time. The first simulation started from the 

1st of January, 1st year and the successive simulations were done with a simulation loop that shifts the simulation starting 5 

time by 10-days forward until it completes the loop (in this study, the loop completes at 21st December of last year). To 

maintain the consistency in length of the input data sets among the simulations, the shifted climatologies are placed at the 

end of the input climatologies, thus total number of data records remains the same for every simulation. Figure 2 explains the 

input data loop that shifts 10-days climatology for a data records from 1st January 1948 to 31st December 1999. In every 

step, the model was run twice using the same input file with two different initial conditions (saturated and unsaturated). 10 

Initially, the XAJ model was calibrated with saturated initial condition and thereafter the daily  streamflow was validated 

against  those of  the  observed by taking spin-up time long enough to avoid the effects of the initial condition. Finally, the 

calibrated parameter values were exercised for the subsequent simulations. NASH efficiency reported in Table 3 represents 

only the first simulation. 

[Figure 2] 15 

2.6 Definition of model spin-up time 

This study assumes that the model achieves its equilibrium state when two sets of soil moisture state (from “saturated” and 

“unsaturated” simulation) become similar. The similarity is measured based on MD. The model is said to be in equilibrium 

state when the MD score is zero (0). The spin-up time is defined as the number of days required for the MD to approach zero 

(0). The MD is calculated based on Eq. (2).  20 

𝑀𝐷 
𝑥𝑠
 ,

𝑥𝑢𝑠
   =    

𝑥𝑠
 −

𝑥𝑢𝑠
   

𝑇

𝑆−1  
𝑥𝑠
 −

𝑥𝑢𝑠
          2  

where  𝑀𝐷 
𝑥𝑠
 ,

𝑥𝑢𝑠
    is the Mahalanobis Distance between the random vectors 

𝑥𝑠
   (states of three soil moisture layers from 

“saturated” simulation) and 
𝑥𝑢𝑠
    (states of three soil moisture layers from “unsaturated” simulation). T and S is the matrix 

transpose operator and covariance matrix (non-singular) between 
𝑥𝑠
  and   

𝑥𝑢𝑠
   respectively. 

2.7 Calculation of monthly and basin scale model spin-up time   

A basin that has 52-year (1948-1999) long observed data requires approximately 1899 simulations which include two model 25 

runs each. The spin-up time was estimated for every simulation and grouped into months based on the simulation starting 

time. The monthly spin-up time was then computed by averaging all the spin-up times for the respective months. The basin 

average spin-up time is the arithmetic mean of all months (January to December).  

2.8 Calculation of corresponding aridity index, basin aridity index and SMM timescale 

The monthly spin-up time calculation was followed by the computation of aridity index for the corresponding spin-up 30 

period. The aridity index, ζ was calculated based on Li and Lu (2014). Aridity index of the corresponding spin-up period for 

all simulations were calculated, Eq. (3). Monthly means were calculated from the corresponding aridity index based on the 
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simulation starting time, Eq. (4). Finally, yearly corresponding aridity index was calculated by averaging monthly aridity 

index of a particular year, Eq. (5): 

𝜁𝑐 =
𝑃𝐸𝑐

𝑃𝑐
                                                                                                                                                3  

Where, ζc, PEc and Pc are the corresponding aridity index, corresponding potential evaporation and corresponding ground 

based areal precipitation during the model spin-up time respectively. 

𝜁𝑚,𝑝 =
 𝜁𝑐𝑝 ,𝑖

𝑛
𝑖=1

𝑛
                                                                                                                                      4  

Where, ζm,p, ζcp,i  and n are the monthly aridity index of month p, corresponding aridity index of ith simulation starting at 5 

month p and number of simulations that started at month p respectively. 

𝜁𝑦,𝑞 =
 𝜁𝑚𝑞 ,𝑖

𝑛
𝑖=1

𝑛
                                                                                                                                      5  

Where, ζy,q, ζmq,i and n are the yearly aridity index of year q, monthly aridity index of ith month of year q and number of 

months in a year respectively. 

Since the basin scale PE and P data have been used as the input to the XAJ model, the same data were not utilized for 

calculating the basin aridity index to avoid any inherent correlation with the model spin-up time. Aridity indices of the 10 

studied river basins„were approximated  from an independent data sets. The aridity indices of 400 MOPEX river basins 

spread over the USA were interpolated to approximate the aridity index values ofthe studied river basins. This basin aridity 

index has been used to discuss the relationship with the model spin-up time. Consistent with Rahman et al. (2015) and 

Rahman and Lu (2015), the analysed river basins are grouped as “dry” and “wet” according to their aridity index values. 

Basins that show  aridity value of less than 0.9 are referred to as wet basins while, the reminder are called as dry basins in the 15 

following sections.  

Basin-wise SMM timescale was computed after Rahman et al. (2015), Eq. (6). 

𝜏𝑆𝑀𝑀 = 24.76  𝑒1.25 𝜁 − 1                                                                                                                   (6) 

Where, τSMM and ζ are the soil moisture memory timescale in days and basin aridity index respectively. 

3 Results and discussions 

3.1 NASH efficiency and SMM timescale 20 

The daily NASH efficiencies of the analysed basins suggest that the simulated streamflow has a good agreement with that of 

observed data sets. Basin-wise NASH efficiency and SMM timescales are reported in Table 3. 

[Table 3] 

3.2 XAJ model spin-up time and corresponding aridity index 

The spin-up time ranged from 1 to 1265 days. The corresponding aridity index ranged from 0.002 to 2.16. On the basis of 25 

simulation starting time, spin-up times are plotted against the corresponding aridity index of that spin-up period in Fig. 3. 

Figure 3 suggests an an exponential relationship between spin-up time and the corresponding aridity index. Although the 

relationship looks weaker in summer months, all the relationships are statistically significant at 0.0001% (N>2600). The 
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regression equations representing the relationship between month-wise spin-up times and corresponding aridity index are 

presented in Table 4. 

[Figure 3] 

[Table 4] 

Mean monthly spin-up times disclose a distinct variations in wet (ζ<0.9) and dry (ζ>0.9) basins (Fig. 4). In wet basins, the 5 

XAJ model required longer time to be equilibrated when the model simulation started from the spring months (March-May), 

while it achieved equilibrium quickly for late autumn or early winter (October-December). In contrast, in dry basins, the 

XAJ equilibrated quickly in early spring (March-April) and autumn (August-October) and it took longer time for the 

equilibrium in late spring to summer (May-June). Overall in all basins spin-up time is highest in Spring (March-May) and 

lowest in late autumn (October-November). This implies that starting simulation from the beginning of a hydrological year 10 

(1 October for the US river basins) could save the spin-up time. 

[Figure 4] 

Figure 5 represents the association between yearly model spin-up times and corresponding aridity index of three river basins 

with different aridity indices. Yearly spin-up time is strongly correlated with the corresponding aridity index. The 

relationship is consistent in all years and under different climatic conditions. This implies that model spin-up process is 15 

mainly influenced by the aridity index during the corresponding spin-up period. 

[Figure 5] 

Since the model equilibrium state is defined on the basis of the model internal soil moisture state, theoretically, it is believed 

that the model spin-up time is principally influenced by the persistence characteristics of soil moisture. A low SMM is 

indicative towards a shorter lived soil moisture anomalies and fades away quickly to reach in equilibrium state. The shorter 20 

the memory the shorter the spin-up period. Basin-wise SMM timescale and the model spin-up time shows strong 

correspondence with R2=0.79 (Fig. 6).  

[Figure 6] 

Both spin-up time and SMM timescale represent the behaviour of soil moisture. Analysis indicates that model spin-up times 

are much longer than SMM timescales. In this study spin-up time was estimated as 3-7 times longer than SMM timescale. 25 

Yang et al. (1995) showed that the spin-up time of PILPS (Project for Intercomparison of Land Surface Parameterization 

Scheme) experiment is three times larger than the e-folding time (SMM as defined in this article) at 0.1% PC threshold. In 

another LSM study, Cosgrove et al. (2003) provided that the spin-up times are 2-17 times larger than SMM depending on the 

nature of initialisation and PC threshold. Although the methodologies and studied models are completely different, these 

literature agrees the overall comparative weight of SMM timescale and the spin-up time. The SMM timescale accounts the 30 

number of lag days that required for the soil moisture autocorrelations to drop below the threshold significance at 95% 

confidence level. Therefore, in SMM timescale calculation, a complete shedding of soil moisture anomalies is not counted. 

On the other hand, in this spin-up analysis a complete equilibrium was achieved, thus required longer times.  

The model spin-up time is shorter and varies largely (mean range is 154 days) for wet basins throughout the year. On the 

other hand, in dry basins, the spin-up time is relatively long and varies moderately (mean range 78 days) from month to 35 

month. Basin-wise monthly mean spin-up times are presented in Table 3. The overall spin-up time is shorter in wet basins 

(wet basins mean 148 days) than those of dry basins (dry basins mean 233 days). This is consistent with Rahman et al. 

(2015); Rodell et al. (2005); Lim et al. (2012); Cosgrove et al. (2003).  
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Although the relationship of model spin-up time with corresponding aridity index has been revealed, this study also choose 

to investigate the connection with the basin aridity index. Because of the implicit nature of corresponding aridity index, it is 

difficult to use in hydrological modeling practice. On the other hand, basin scale annual PE and P data sets are widely 

available and basin aridity index could easily be estimated.  The XAJ model spin-up time discloses an exponential 

association with basin aridity index (interpolated from separatedata sets) with a R2= 0.93 (Fig. 7). Equation 7 shows the 5 

mathematical relationship between the model spin-up time and the basin aridity index .  

𝜏𝑆𝑃 = 64.88  𝑒1.44 𝜁 − 1                                                                                                                    (7) 

where  τSP is the XAJ model spin-up time in days and ζ is the basin  aridity index.  

[Figure 7] 

Rahman et al. (2015) and Rahman and Lu (2015) argued that model reaches its equilibrium state rapidlyunder relatively 

wetter or low SMM condition. This study also consider that the XAJ model will achieve its equilibrium state very quickly 10 

and take little or no timeunder extremely wet conditions (aridity index approaches zero). Based on this assumption, the 

regression equation, Eq. (7) was optimised for further knowledge  of model's behaviour under climatic conditions outside the 

studied basins. This relationship could be handy for a rough guess of the XAJ model spin-up time and may possibly be 

useful for simulations with wider confidence.  

4. Conclusions 15 

When a model is calibrated with an unusual initial condition, the model goes through  some spin-up process to achieve its 

normal equilibrium state. Model results for the duration of this spin-up progression are greatly impacted by the initial 

conditions, and often impractical or erroneous. Therefore, understanding this spin-up period has been the interest of 

modelling communities, particularly for the LSMs. Most spin-up studies are done based on a recursive simulations using a 

single year climatologies. Arguably, conclusions based on this recursive model runs might be erroneous due the lack of 20 

representativeness in the climatological extremes within the single year climatology. Moreover, researchers used different 

thresholds to define the model equilibrium conditions, and thus lost the comparability or uniformity. Furthermore, recursive 

simulations based spin-up outcomes does not provide any insight about the seasonality of spin-up time.  

Aiming to solve these limitations, this study detects and analyses the seasonality of spin-up time using multi-year 

climatologies adopting new techniques of model equilibrium definition. The spin-up time shows high seasonality and mainly 25 

controlled by the aridity index of model forcing. This analysis suggests that model spin-up time could vary based on the 

simulation starting time of a year. The simulation that starts from month of January might achieves the equilibrium quickly 

as compared that starts from the month of May. However, this conclusions are based on the American climatic conditions 

and it might show different seasonal cycles elsewhere.  

The XAJ model spin-up time discloses an exponential association with the basin aridity index. This relationship permits 30 

approximating the XAJ model spin-up time utilising precipitation and potential evaporation data only. However, it is 

important to be noticed that this equation was derived on the basis of a daily scale model simulation, therefore the XAJ 

model spin-up time for different time scale could not be the same. Approximating the XAJ model spin-up time would 

eliminate the  uncertainty linked with guessing, simply banking on feeling or experience. An advance hint of model spin-up 

time could enable us fullyutilization of the information contained in a shorter data records under inadequate data availability. 35 
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Table1: Studied MOPEX basins, locations and basic characteristics. Dry basins (ζ> 0.9) are marked with bold face, Italic 

font style. 

 

MOPEX ID 
Location Ave. P 

(mm/year) 

Ave. PE 

(mm/year) 

Ave.    snow-

days 

(day/year) 

Ave. total 

new snow 

(mm/year) 

Ave. soil 

moisture 

saturation 

(%) Long. Lat. State 

11532500 -124.05 41.79 CA 2687 740 0.00 0 82 

12027500 -123.03 46.78 WA 1599 579 3.00 127 75 

03504000 -83.62 35.13 NC 1893 762 3.90 193 90 

03410500 -84.53 36.63 TN 1389 817 6.20 160 74 

02387500 -84.94 34.58 GA 1480 901 0.70 18 73 

03574500 -86.31 34.62 AL 1467 941 0.80 41 74 

07378500 -90.99 30.46 LA-MS 1594 1077 0.60 23 63 

07375500 -90.36 30.51 LA-MS 1633 1074 0.60 23 64 

02492000 -89.90 30.63 LA-MS 1583 1071 0.60 23 47 

02456500 -86.98 33.71 AL 1425 982 0.80 41 66 

02472000 -89.41 31.71 MS 1492 1060 0.60 23 64 

07290000 -90.70 32.35 MS 1435 1073 0.60 23 57 

07056000 -92.75 35.98 AR 1180 916 3.80 132 68 

07288500 -90.54 33.55 MS 1381 1112 0.60 23 62 

07072000 -91.11 36.35 AR 1114 964 3.80 132 62 

07197000 -94.84 35.92 OK 1162 1113 5.6 198 58 

08033500 94.40 31.02 TX 1100 1308 1.30 4 60 

06914000 -95.25 38.33 KS 957 1206 10.00 373 61 
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Table 2. Calibrated parameter values in the Xinanjiang model. 

 

Parameter Physical meaning Range 

Cp Ratio of measured precipitation to actual precipitation 0.92-1.1 

Cep Ratio of potential evapotranspiration to pan evaporation 0.9-1.29 

b Exponent of the tension water capacity curve 0.1-0.3 

imp Ratio of the impervious to the total area of the basin 0-0.0001 

WUM Water capacity in the upper soil layer (mm) 20 

WLM Water capacity in the lower soil layer (mm) 50-90 

WDM Water capacity in the deeper soil layer (mm) 20-80 

C Coefficient of deep evapotranspiration 0.1-0.3 

SM Areal mean free water capacity of the surface soil layer (mm) 5-55 

EX Exponent of the free water capacity curve 0.5-1.5 

KI Outflow coefficient of the free water storage to interflow 0.1-0.65; KI+KG=0.7 

KG Outflow coefficient of the free water storage to groundwater 0.08-0.6; KI+KG=0.7 

cs Recession constant for channel routing 0.5-0.88 

ci Recession constant for the lower interflow storage 0.3-0.82 

cg Daily recession constant of groundwater storage 0.982-0.998 
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Table 3. Summary of the XAJ model spin-up time analysis. Dry basins (ζ> 0.9) are marked with bold face, Italic font style. 

 

MOPEX ID 
Area 

(sq.km) 

Data length 

(year) Daily 

NASH  

Basin aridity 

index (ζ) 

τSMM   

(day) 

τSP (day) 

Min. 

(month) 

Max. 

(month) 
Mean 

11532500 1577 52 0.79 0.29 11 18 (Nov) 156 (May) 72 

12027500 2318 52 0.81 0.39 16 25 (Nov) 205 (Apr) 98 

03504000 135 52 0.81 0.40 16 36 (Dec) 147 (Apr) 83 

03410500 2471 52 0.65 0.58 26 51 (Nov) 227 (Mar) 137 

02387500 4144 52 0.78 0.61 28 58 (Dec) 224 (Dec) 135 

03574500 829 52 0.65 0.64 30 48 (Nov) 216 (Apr) 121 

07378500 3315 51 0.66 0.70 35 100 (Nov) 154 (Apr) 185 

07375500 1673 51 0.67 0.71 35 134 (Oct) 295 (Mar) 216 

02492000 3142 52 0.61 0.71 36 69 (Nov) 222 (May) 155 

02456500 2292 52 0.80 0.72 36 74 (Dec) 246 (Apr) 153 

02472000 1924 52 0.71 0.76 39 69 (Nov) 215 (Apr) 144 

07290000 7283 50 0.67 0.80 43 116 (Nov) 258 (Mar) 197 

07056000 2147 52 0.66 0.81 43 82 (Oct) 230 (Mar) 169 

07288500 1987 42 0.70 0.86 48 135 (Oct) 272 (Mar) 206 

07072000 1134 46 0.71 0.90 52 184 (Oct) 257 (Jun) 216 

07197000 795 52 0.65 0.94 55 145 (Sep) 232 (Jun) 193 

08033500 9417 52 0.61 1.19 85 205 (Nov) 305 (May) 250 

06914000 865 52 0.62 1.34 108 237 (Aug) 290 (Jan) 273 
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Table 4. Relationships between month-wise model spin-up time and corresponding aridity index. 

 

Month 
Equation 

(𝜏𝑠𝑝= model spin-up time, 𝜁 =aridity index) 

Coefficient of 

determination 

(R2) 

Number of data 

points 

 (N) 

January 𝜏𝑠𝑝 = 26.22 𝑒2.17 𝜁  0.77 3052 

February 𝜏𝑠𝑝 = 22.34 𝑒2.16 𝜁  0.70 2749 

March 𝜏𝑠𝑝 = 30.97 𝑒1.85 𝜁  0.53 2953 

April 𝜏𝑠𝑝 = 55.97 𝑒1.24 𝜁  0.30 2706 

May 𝜏𝑠𝑝 = 98.23 𝑒0.67 𝜁  0.13 2658 

June 𝜏𝑠𝑝 = 86.24 𝑒0.76 𝜁  0.16 2617 

July 𝜏𝑠𝑝 = 78.08 𝑒0.76 𝜁  0.16 2806 

August 𝜏𝑠𝑝 = 41.50 𝑒1.48 𝜁  0.37 2822 

September 𝜏𝑠𝑝 = 31.10 𝑒1.97 𝜁  0.54 2874 

October 𝜏𝑠𝑝 = 30.37 𝑒2.17 𝜁  0.67 3050 

November 𝜏𝑠𝑝 = 29.36 𝑒2.23 𝜁  0.69 3005 

December 𝜏𝑠𝑝 = 29.91 𝑒2.12 𝜁  0.75 3052 
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Figure 1: Stream gauge location map of studied river basins over USA mainland. 
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Figure 2: Illustration of the input data loop for XAJ model simulation. 
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Figure 3: XAJ model spin-up times and their corresponding aridity index plotted based on the simulation starting time. 
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Figure 4: Mean monthly model spin-up time and the corresponding aridity index for wet basins (ζ< 0.9) and dry basins (ζ>0.9). 
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Figure 5: Yearly model spin-up time and the aridity index. r is the correlation coefficient between yearly model spin-up time and 

aridity index. 
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Figure 6: SMM timescale and the model spin-up time. 
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Figure 7: Relationship between XAJ model spin-up time and basin aridity index. 
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