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2 

 

Abstract. Drought frequently occurs in North China and is the most damaging disaster in this region 22 

owing to its large-scale impact on hydrology and ecosystems. This is the main reason that China 23 

implemented the world-famous South-to-North Water Diversion (SNWD) project. However, quantifying 24 

the drought-induced water deficit at a regional scale is still a significant challenge. Gravity Recovery and 25 

Climate Experiment (GRACE) satellites monitor temporal variations in the Earth’s gravitational potential 26 

and provide quality data sets for water storage analysis. In this study, we quantify the water deficit over 27 

North China in the context of the implementation of the SNWD project by focusing on a recent drought 28 

event, the 2009/10 drought, and identifying its onset, persistence, and recovery. As confirmed with 29 

ground-measured and land surface modelling data sets, GRACE can successfully capture temporal 30 

variations in total water storage. Total water storage shows a declining trend, reaching a low point during 31 

the 2009/10 drought with a water storage deficit of up to 25 km
3
 (~22 mm). Groundwater storage shows a 32 

similar pattern, with a trend of −6.97 mm/yr. Together with the water deficit, vegetation growth is 33 

substantially restricted, as indicated by a reduction in the leaf area index. The amount of water transfer by 34 

the SNWD project can roughly meet the water deficit in North China but the effectiveness of the SNWD 35 

will depends on specific water configuration strategies. 36 
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1 Introduction  38 

The global climate system has significantly changed in recent years, leading to an increased 39 

frequency of extreme weather and other disaster events (Palmer, 2002). As a typical weather-related 40 

phenomenon, drought causes various problems such as the shortage of water resources (Lehner et al., 41 

2006), crop damage (Deng, 2011), and ecological deterioration (Lewis, 2011), thereby imposing a direct 42 

threat to long-term security and social stability (R. García-Herreraa, 2010;Jinsong Wang, 2012;Hsiang). 43 

Recently, drought has become one of the dominant factors limiting regional economic and social 44 

developments under the combined impacts of climate change and intensified human activities (Feng et al., 45 

2014). With increasing water demand, population explosion, and uncertain water supply in the context of 46 

climate change, drought is expected to become more frequent and severe (Smith, 2013). Therefore, it is 47 

imperative to pay greater attention to drought events.  48 

Drought frequently occurs in most areas of China and accounts for 35% of all economic losses from 49 

disasters. North China is an area with the most severe water shortage in China, particularly in arid and 50 

semi-arid regions (Feng et al., 2014); this area has shown significant sensitivity to drought events (Ju, 51 

2006;Wei, 2003). To ease this situation, China has undertaken the South-to-North Water Diversion 52 

(SNWD) project to divert water from the Yangtze and Han Rivers from South to North China. The middle 53 

route of SNWD has been in service since December 2014 and provides water to hundreds of millions of 54 
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people on the North China Plain (NCP). Despite long-term planning and design of the SNWD project, 55 

further demonstration and research is still needed to evaluate its actual resistance to drought. 56 

During 2009/2010, a mega drought swept across the North China, causing a serious water shortage in 57 

industry and agriculture as well as restrictions on vegetation growth (Barriopedro et al., 2012). A few 58 

studies have focused on the drought in terms of meteorology, ecology, and economy. Gao and Yang 59 

(2009) indicated that the La Niña event of 2008–2009 increased the differences in temperature and 60 

atmospheric pressure between the Indo-Pacific Oceans and the Asian continent, causing severe 61 

winter-time droughts in northern China. The drought might have been the main driving force behind the 62 

decreasing trend in vegetation activity in North China: the summer droughts in 2007 and 2009 reduced the 63 

vegetation cover by more than 13% (Wu et al., 2014). Moreover, the drought led to price fluctuation of 64 

agricultural products in North China, despite the minor impact on main agricultural products (Lin et al., 65 

2013). 66 

However, few of these studies have studied this drought event from the hydrological perspective. The 67 

state of water storage in an area of interest is a direct hydrological response to the degree of drought, and 68 

water storage anomalies can affect the hydrological cycle (Li et al., 2012). Regional-scale water storage 69 

can be well quantified using data from the Gravity Recovery and Climate Experiment (GRACE). The 70 

GRACE data have been successfully applied for water resources analysis in many areas such as central 71 

North America (Wang et al., 2012) and North China (Feng et al., 2013). 72 
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In this study, we aim to explore the drought condition of North China during the past decade, 73 

especially focusing on the 2009/10 drought, and to discuss whether GRACE can capture the typical 74 

drought in North China. Moreover, we roughly evaluate the amount of water transferred by the SNWD in 75 

remediation of the drought.  76 

This paper is organized as follows: Section 2 describes the study area, data sets, and methods. Section 77 

3 presents the results for SPI values and temporal and spatial changes in water storage. Groundwater and 78 

surface water changes are also described. Sections 4 and 5 list the discussions and draw conclusions, 79 

respectively. 80 

2 Data and Methods 81 

2.1 Study area 82 

The region of interest in this study is North China (Fig. 1), which frequently experiences drought 83 

events. North China covers an area of about 1.16 million km
2
, is located in the region between 35–45° N 84 

and 110–125° E, and has a climate predominantly influenced by the Asian monsoon. This region is in a 85 

semi-arid environment with annual precipitation of around 500 mm (Fig. 1(a)), with most precipitation 86 

occurring in summer; annual relative humidity of 53.6 %; and wind speed of 2.9 m s
−1

 (Feng, 2012). 87 

North China is an important area of grain production (Barriopedro et al., 2012); the main land cover 88 
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(39.5%) is cropland, with 33.6% grassland and 18.1% forest. Agricultural irrigation in the region is 89 

heavily reliant on groundwater (Yang, 2010).  90 

The topography of North China includes plains, mountains, and plateaus, with a declining slope from 91 

northwest to southeast (Fig. 1(b)). The Inner Mongolian Plateau and the Tai-hang Mountain lie in the 92 

north and west of the area; the NCP is in the center and southeast. The area contains drought-prone basins, 93 

i.e., the Hai River basin and part of the Yellow River basin (Qin et al., 2015). Due to the large population 94 

(~168 million), the average per capita water resource is only 23% of the Chinese average. In the NCP, 95 

more than 70% of fresh water comes from groundwater (Zheng et al., 2010), which means that 96 

groundwater plays an important role in local normal life, agriculture, and industry. Because of the uneven 97 

spatial–temporal distribution of water resources, the economic losses and ecological disruption caused by 98 

drought events can be more severe than in other regions.  99 

2.2 Data sets 100 

2.2.1 GRACE data 101 

The GRACE satellite mission was launched by the National Aeronautics and Space Administration 102 

(NASA) and the German Aerospace Center in March 2002. The GRACE project monitors temporal 103 

variations in the Earth’s gravitational potential. After atmospheric and oceanic effects have been 104 

accounted for, the remaining signal on monthly to inter-annual timescales is mostly related to variations 105 
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in terrestrial water storage (Landerer and Swenson, 2012). Although its spatial resolution (~160,000 km
2
) 106 

and temporal resolution (ten-day to monthly) are low in comparison with other satellites, GRACE has the 107 

attractive advantage that it senses water stored at all levels, including groundwater (Rodell et al., 2009). 108 

Many studies have evaluated the use of GRACE satellites to monitor the hydrologic impacts of droughts 109 

(Long et al., 2013) and long-term total water changes. 110 

The GRACE data used in this study were processed by the University of Texas Center for Space 111 

Research (CSR) using a Gaussian filter with a 300km smoothing radius to remove the stripes observed in 112 

the spherical harmonic coefficient fields (Swenson, 2006). Data from the German Research Centre for 113 

Geosciences (GFZ) and the NASA Jet Propulsion Laboratory (JPL) (http://grace.jpl.nasa.gov/data/) were 114 

also used. Atmospheric and oceanic circulations had already been removed from mass distributions, and a 115 

correction had been made (Rasums Houborg, 2010). Our GRACE time series included 120 approximately 116 

monthly data points from January 2003 to December 2012. Anomalous fields were obtained by 117 

subtracting out the multi-year mean field and converted to equivalent water heights including changes 118 

regarding surface water, soil moisture, and groundwater, with a spatial resolution of 1°. We also isolated 119 

groundwater changes by distracting the soil moisture and canopy storage changes from the total water 120 

anomalies (Castle et al., 2014) to compare with the groundwater water change (GWC).  121 
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2.2.2 Simulation data 122 

To diagnose the dryness of the 2009/10 drought and to validate the terrestrial water storage 123 

measurements of GRACE, water fluxes (i.e., runoff and evapotranspiration) and soil moisture from two 124 

land surface models were used in this study. The first is the Variable Infiltration Capacity (VIC) model 125 

(Liang, 1994). VIC is a semi-distributed macroscale hydrologic model which solves full water and 126 

energy balances. A number of improvements have been made to VIC so that it can deal with 127 

complicated hydrological processes. Besides natural hydrological processes, VIC can consider water 128 

management impacts associated with reservoir operations, and sprinkle irrigation (Haddeland et al., 129 

2006;Haddeland et al., 2007). The model’s meteorological driving data mainly include precipitation, 130 

wind speed and air temperature. The VIC model has been widely applied to analyze drought events at 131 

regional and global scales (Andreadis, 2005;Sheffield and Wood, 2007;Xie et al., 2015). In this study, 132 

The VIC daily simulation data at 0.25-degree resolution were obtained from Zhang et al. (2014) which 133 

produced a long-term hydrological dataset for China specially. The model has been successfully 134 

calibrated and validated using ground-measured streamflow and soil moisture, and remote-sensing 135 

evapotranspiration (Zhang et al., 2014).  136 

To perform a more extensive examination, we also used the simulated hydrological data from the 137 

Global Land Data Assimilation System (GLDAS; (Rodell et al., 2004)), which incorporates four land 138 

hydrological models (LSM, CLM, VIC, and NOAH). The NOAH model has more than 30-year history 139 
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(Chen et al., 1996). The model is driven by near-surface atmospheric forcing data including air 140 

temperature, air humidity, and precipitation (Charusombat et al., 2012). It simulates surface water and 141 

energy balances such as soil moisture, soil temperature, canopy content, and water and energy flux terms 142 

(Yang et al., 2013). The NOAH model has undergone continuous improvement (Ingwersen et al., 2011), 143 

and it has been included in the GLDAS in which ground-based and space-based observations were used 144 

to estimate the land surface states (Fang et al., 2009). To verify the GRACE measurements, in this study, 145 

we used the NOAH simulated data from GLDAS because the data were widely applied (Rodell et al., 146 

2009;Long et al., 2013;Syed et al., 2008) and they have also been evaluated in North China with 147 

acceptable uncertainties (Feng et al., 2013;Huang et al., 2015). 148 

Please note the VIC and the NOAH simulation data of water fluxes and soil moisture were from other 149 

studies, and we did not perform the simulations. Their daily data at 0.25-degree resolution were 150 

aggregated to monthly and one-degree scale to compare with GRACE.  151 

2.2.3 Ground-based measurements and other data 152 

In this study, ground-based measurements of precipitation, groundwater, and surface water storage 153 

were used. Ground-based measured precipitation data from the Chinese Meteorological Administration 154 

were applied to derive gridded precipitation at a spatial resolution of 0.25° using the synergraphic 155 

mapping system algorithm (Shepard, 1984). The gridded precipitation data have been extensively verified 156 
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for runoff, evapotranspiration, and soil moisture (Zhang et al., 2014). These gridded precipitation data can 157 

be used to identify the spatial coverage of meteorological droughts.  158 

In order to detect the impact of the drought on the groundwater system, groundwater table 159 

observations were acquired from 95 observation wells. The distribution of these wells is shown in Fig. 160 

1(b). Reservoir storage constitutes a major part of surface water, so water stored in reservoirs in the Hai 161 

River basin in 2003–2012 Hai River Water Resources Bulletin (HRWRB) were also used to examine this 162 

drought. Moreover, the data of annual groundwater withdraw from the HRWRB were applied to reflect 163 

the human activity on groundwater storage.  164 

2.3 Methods  165 

We first characterized the 2009/10 drought in a long perspective based on the 53-year precipitation. 166 

The Standardized Precipitation Index (SPI) and the probability of yearly precipitation are used to 167 

represent the status of the drought in the 53 years. Then we identify the water storage condition, including 168 

the total water storage, surface water and groundwater. In order to evaluate the GRACE data, we 169 

compared net recharge from GRACE and the simulated data. Moreover, the groundwater storage 170 

calculated from GRACE was also evaluated using in-situ observations. Here we specially present the 171 

methods used to calculate the SPI, net recharge, and groundwater storage.  172 
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2.3.1 SPI 173 

The severity of a drought can be quantified with a drought index. The SPI was used to reflect the 174 

meteorological drought, which was proposed by McKee (1993) and is a widely used drought index. The 175 

index is a statistical monthly indicator that compares the accumulated precipitation during a period of 176 

specific months with the long-term cumulative rainfall distribution for an accumulated period (Nam et al., 177 

2015). The timescales of SPI vary from 1 month to 24 months. When the time periods are small (1 or 6 178 

months), the SPI frequently fluctuates above and below zero (McKee, 1993). In this study, 53-year 179 

monthly precipitation data were used to calculate the SPI, thereby diagnosing the severity of the 180 

2009/10 drought.   181 

2.3.2 Net recharge of total water storage 182 

As the same to many satellite data, uncertainties in GRACE are inevitable caused by atmosphere, 183 

sensor and other factors. The GRACE data need evaluation for the area of interest. Therefore, we 184 

calculated the monthly net recharge of total water storage (∆S) from two independent sources: the model 185 

simulations (i.e., from NOAH and VIC) and the GRACE data (Famiglietti et al., 2011). As the GRACE 186 

monthly data represent the mass anomaly, the difference of the GRACE data in two successive months is 187 

equivalent to the monthly net recharge (Wang et al., 2014): 188 

∆𝑆𝑖 = 𝑆𝑖 − 𝑆𝑖−1                                               (1) 189 
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where the subscript i stands for the ith month and 𝑆𝑖 represents the ith month total water storage anomaly. 190 

With the model simulation data (from NOAH and VIC), the net recharge can be computed based on 191 

the monthly basin-scale water balance (Syed et al., 2008): 192 

∆𝑆𝑖 = 𝑃𝑖 − 𝐸𝑖 − 𝑅𝑖                                            (2) 193 

where P, E, and R denote precipitation, evapotranspiration, and runoff, respectively.  194 

Therefore, the agreement of net recharge calculated from Eqs. (1) and (2) is a useful indicator for the 195 

accuracy of GRACE in capturing the total water storage change, because the model simulation and 196 

GRACE are independent approaches (Syed et al., 2008).  197 

2.3.3 Groundwater storage  198 

Groundwater is an important part in the total water storage in North China. To detect groundwater 199 

changes during recent years, the storage variation is discussed. There are two methods for calculation of 200 

groundwater storage change (GWC). The first method is based on ground measurement by multiplying 201 

the measured groundwater level anomalies by the specific yield of each well (Huang et al., 2015): 202 

𝐺𝑖 = 𝐻𝑖 ∙ 𝜇                                                 (3) 203 

where Hi represents the groundwater level measured in situ for the ith month and 𝜇 stands for the specific 204 

yield. In this study, the value of 𝜇 for each site was prescribed based on the soil properties according to 205 

Huang et al. (2015).  206 
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The other method for GWC computation is subtraction of soil water storage from the GRACE total 207 

water storage changes: 208 

𝐺𝑖 = 𝑆𝑖 − 𝑀𝑖 − 𝐶𝑖 − 𝑊𝑖                         (4) 209 

Where G is the GWC, S and M denote the GRACE total water anomalies and the soil moisture changes 210 

simulated by the hydrologic model, respectively. The C and W represent canopy water storage and 211 

surface water (i.e., water storage in reservoirs), respectively.  212 

Through the two methods, groundwater storage is obtained so that to evaluate the GRACE data 213 

and to quantify groundwater changes.      214 

3 Results  215 

3.1 Precipitation deficit 216 

Precipitation is a direct indicator of drought. We used monthly precipitation data to analyze the water 217 

balance input during 2009 and 2010 (Fig. 2) and diagnosed the dryness. As illustrated in Fig. 2, the 218 

regional average accumulated precipitation is less than the climatological mean values calculated for the 219 

period 1960–2012. Especially in the summer and the fall of 2009, the precipitation only accounts for 78% 220 

of the climatologically mean. The spring of 2010 is slightly wet due to a near-normal monsoon season 221 

(Barriopedro et al., 2012). The regional precipitation deficit reaches 14 mm throughout 2009/10 and 47 222 

mm from May 2009 to April 2010.  223 
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To characterize this drought well, 53-year monthly precipitation data (from 1960 to 2012) were used 224 

to calculate the SPI. Three timescales of SPI are shown in Fig. 3(a), indicating different drought situations. 225 

Meteorological and soil moisture conditions respond to precipitation anomalies on relatively short 226 

timescales, whereas streamflow, reservoirs, and groundwater respond to long-term precipitation 227 

anomalies on the order of 6 to 24 months or longer. According to the SPI classification (Nam et al., 228 

2015;Qin et al., 2015), the 12-month SPI (approximately −1.0) indicates a moderate drought during May 229 

2009 to April 2010, the 1-month SPI represents a severe drought in August and October 2009, and the 230 

6-month SPI indicates a severe drought from October to December 2009 with the lowest SPI value of 231 

approximately −1.63. Overall, there is an obvious drought event in North China from May 2009 to April 232 

2010. 233 

In addition to the SPI, the probability of yearly precipitation can also reflect the water input 234 

conditions with respect to North China. To compute the probability, we first defined the hydrological year 235 

as being the period between this May and the next April. We sorted the 52 years of precipitation from high 236 

to low and calculated the probability of each year using the Weibull equation (Helsel D, 2002). Figure 3(b) 237 

shows the results: the precipitation of 2009 was ranked 43rd, and the probability of precipitation during 238 

this drought period was only about 84%, indicating that 2009 was a severely dry episode during the 52 239 

years, which is consistent with the SPI results.  240 
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3.2 Total water storage  241 

The lack of water input (i.e., precipitation) during the drought period probably induces a decrease in 242 

water storage. As shown in Fig. 4(a), the GRACE data from CSR, JPL, and GFZ have similar trends and 243 

match quite well. Overall, there is a notable decrease of total water storage in North China from 2003 to 244 

2013, indicating recurrence of the drought. The total water storage anomalies in 2009 and 2010 are below 245 

zero with a mean value of approximately −21 mm and a minimum value of −40 mm, which means that 246 

water storage is less than normal. The storage shows a small increase in the winter of 2009 and spring of 247 

2010: this trend is consistent with the precipitation change. 248 

There will be uncertainties in the GRACE data, so we verified the data by comparing with the net 249 

recharge of water storage (∆S) from the NOAH and VIC simulations. To make the comparison, the 250 

average GRACE values from CSR, JPL, and GFZ were computed. From Fig. 4(b), the ∆S series of 251 

GRACE agrees well with the values from VIC and NOAH, although ∆S of GRACE displays larger 252 

fluctuations. The correlation coefficient between GRACE and NOAH is 0.53 and the correlation of 253 

GRACE with VIC is 0.52, whereas the correlation between VIC and NOAH is about 0.85, suggesting a 254 

certain degree of consistency between the three sources of data.  255 

The spatial distributions of total water storage anomalies for this drought event are presented in Fig. 5. 256 

From May 2009 to April 2010, the south of the region that contains Shanxi, Shandong, and Hebei 257 

provinces suffered a much more severe drought than the north, especially in the summer and fall of 2009 258 
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and spring of 2010. Although the spatial distribution is uneven, total water storage is still below zero and 259 

the south of North China is the main affected area.  260 

Furthermore, we computed the relative departure of water storage for 2009/10 from the average. 261 

From Fig. 6, we can see that drought events mainly occur in the south of North China, where the water 262 

resources are very poor. The regional average water storage deficits are up to 22 mm, about 25.5 km
3
 263 

relative to the normal water storage condition. 264 

3.3 Response of surface water and groundwater 265 

3.3.1 Surface water storage 266 

Due to data availability, data for yearly reservoir storage were used to reflect surface water storage. 267 

According to Water Resources Bulletin of Hai River Basin (http://www.hwcc.gov.cn/), the number of 268 

reservoirs slightly increased from 137 in 2003 to 146 in 2012, so the total water storage of reservoirs 269 

increased from 61.1 km
3
 in 2003 to 95.81 km

3
 in 2012 (Fig. 7). To derive the surface water storage 270 

changes, we use the average storage of the reservoirs. Long-term average water storage is about 0.16 mm, 271 

but the storage reaches its lowest levels in 2009 (~0.13 mm) and 2010 (~0.14 mm), reflecting the 272 

influence of the drought. 273 
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3.3.2 Groundwater change 274 

Groundwater is a vital source of fresh water for agriculture, industry, public supply, and ecosystems 275 

in North China (Feng et al., 2013). To quantify the influence of droughts on groundwater storage, in 276 

addition to the GRACE data, we used the ground observations from the 95 wells. Figure 8(a) presents the 277 

average variations of groundwater tables of the 95 wells. There is a gradual decline of approximately 278 

−0.41 m/yr, despite substantial uncertainties. For the 95 wells, the trends in the groundwater table range 279 

from −2.5 to 2.0 m/yr, and the decreases are mainly apparent in the south of North China (Fig. 8(b)). 280 

Figure 9 shows the groundwater storage change derived from the in situ observations and GRACE, and 281 

groundwater storage is described as the equivalent water height. Both of these data sets indicate a 282 

downward trend, of 4.68 mm/yr for GRACE and 6.97 mm/yr for ground observations. This difference 283 

may be attributable to the uncertainties within GRACE and ground observations and the spatial 284 

representation of the 95 ground observations. Despite such differences, the changes in groundwater 285 

storage from GRACE and ground observations have a strong correlation, with a Pearson correlation 286 

coefficient of approximately 0.71.  287 
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4 Discussion 288 

4.1 Further evidence and impact of the drought 289 

Climate change in North China during past decades can be characterized as an increase in air 290 

temperature and a decrease in precipitation (Ming et al., 2015). Moreover, the frequency and intensity of 291 

drought over North China has significantly increased during the last five decades (Qin et al., 2015), 292 

mainly caused by the dramatic decrease in precipitation (Xu et al., 2015). In this study, we focus on the 293 

2009/10 drought event in the context of the environmental changes in the past decade. Given the SPI 294 

values and the probability of precipitation, this drought was a severe event. The drought started in May 295 

2009 and ended in April 2010, as shown by Barriopedro et al. (2012). In contrast to existing studies 296 

focusing on the drought from the viewpoint of meteorology or ecology, we addressed this drought event 297 

from a hydrological perspective in order to analyze the influence on water storage, which is essential for 298 

ecosystem and agricultural production. 299 

With decreasing precipitation, water storage depletion has taken place during the past decade in 300 

North China (Moiwo, 2013). In this study, we found that surface water storage reached a low level in 301 

2009 and 2010. The responsiveness of the groundwater system is important for hydrological drought 302 

development (Van Loon and Laaha, 2015). The groundwater table has displayed a continuous decline at a 303 

rate of ~0.3 m/yr since 1960 (Cao et al., 2016).  304 
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One may wonder the role of human over-use of the water resources. Figure 10 shows total 305 

groundwater withdraws for 2003-2013. Although the groundwater withdraws continuously decreased 306 

during the past decade, it primarily contributed to the groundwater decline in North China, because there 307 

is no significant trend in the net recharge (Fig 4b). Similar results were also shown in Zheng et al. (2010). 308 

However, the water deficit during the 2009/10 drought is dominated by the inadequate precipitation input, 309 

so that the groundwater storage is at the low level during the period (Fig 9). Moreover, our study shows 310 

that the rate of groundwater decline is approximately 0.41 m/yr from 2005 to 2014, indicating an 311 

accelerating depletion, which may be attributable to the reoccurrence of drought events. 312 

4.2 Impact on vegetation 313 

In addition to the water storage depletion, the typical 2009/10 drought induced negative impacts on 314 

vegetation growth (Wang et al., 2015;Zhang et al., 2016). Wu et al. (2014) indicated that this drought 315 

probably reduced the normalized difference vegetation index by 6.68% in 2009 in the Beijing–Tianjin 316 

sand source region.  317 

To investigate the impact of this drought further, we calculated the average leaf area index (LAI) 318 

within the growing season (from May to October) for three types of land cover (grass, crop and forest), as 319 

LAI is an important indicator of crop growth and plant productivity (Liang et al., 2015). As shown in Fig. 320 

11, LAI reaches its lowest level during 2009. Especially for crop land, LAI in 2009 is less than its 321 

multi-year mean of approximately 0.11. An area of more than 0.3 million km
2
 of North China shows a 322 
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substantial LAI reduction. It should be noted that the spatial distribution of the LAI reduction (Fig. 11(b)) 323 

is approximately consistent with the area of water storage deficit (Fig. 6). Thus, this drought event has a 324 

negative effect on vegetation growth, and especially causes the reduction of agricultural production.  325 

4.3 Implications for the SNWD project 326 

The SNWD project supplies water resources from the Yangtze River basin to North China, and it is 327 

expected to transfer approximately 27.8 km
3
 of water annually. In this study, we demonstrated that the 328 

2009/10 drought was a severe episode with precipitation ranking 84%, and the water storage deficit is 329 

about 22 mm (~25 km
3
). Therefore, the SNWD project can probably replenish the water deficit at this 330 

level of drought. Certainly, the efficiency of the SNWD in combating drought will depend on the water 331 

configuration strategy (Dong et al., 2012). However, the amount of water transfer by the SNWD is not a 332 

constant, it depends on precondition of water resource regions and requirement of receiving water 333 

regions (Zhang et al., 2011). During the summer monsoon rainy season in South China, the SNWD is 334 

expected to provide a large amount of water resources to replenish the surface water and groundwater 335 

storage in North China when a drought event occurs. In combating droughts and relieving the stress of 336 

water resources, moreover, the SNWD project requires additional evaluations of water quality regarding 337 

surface and ground water and the effect on ecosystems (Tang et al., 2014;Zhu et al., 2008). 338 
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5. Conclusions 339 

In this study, the hydrological effects of the 2009/10 drought in North China are discussed using 340 

multi-source data, including satellite data, ground measurements, and model simulations. On the basis of 341 

the precipitation data, the shortage of precipitation was 47 mm from May 2009 to April 2010: this event is 342 

regarded as a severe drought on the basis of the SPI value. Moreover, the probability of precipitation 343 

during this period was about 84% in the past 52 years, also indicating a notable drought event, consistent 344 

with the SPI analysis. There was a declining trend in total water storage for the past decade based on 345 

GRACE data, and the regional deficit of water storage was approximately 22 mm (~25 km
3
) in 2009/10. 346 

The relatively dry area is located in the south of North China. Furthermore, both groundwater storage and 347 

total water storage decreased year by year, while the surface water reached its lowest level in 2009. Thus, 348 

this drought event has led to damaging hydrological effects as well as suppression of vegetation growth in 349 

North China. The SNWD project may ease the water storage deficit in North China for this level of 350 

drought intensity. 351 

The GRACE data have attractive advantages for large-scale drought and flood-potential detection (Li 352 

et al., 2012;Rasums Houborg, 2010;Reager and Famiglietti, 2009). However, the effective spatial 353 

resolution of GRACE is about 150,000 km
2
 at best (Swenson et al., 2006), so these data may not be 354 

suitable for small-scale issues. With the implementation of the SNWD project, moreover, there is a 355 

growing need for real-time drought monitoring and forecasting. Use of multi-source data, including 356 
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satellite data, ground measurement, and model simulations, is an effective strategy to quantify both 357 

drought intensity and water deficits. 358 
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 520 

 521 

Figure 1: (a) Location of North China (black line) and the Spatial Distribution of Annual 522 

Precipitation over China; (b) Topography and Distribution of Groundwater Gauge Stations (Red 523 

Triangles) in North China. 524 
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 525 

Figure 2: Accumulated Monthly Precipitation during 2009/10 (a) Compared with the 526 

Climatological Mean; (b) Monthly Departure from the Climatological Mean. 527 
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 528 

Figure 3: (a) SPI on Three Timescales (1 Month, 6 Months, and 12 Months) for 2003–2012; (b) 529 

Probability of the Hydrological Year’s Precipitation. Green Bars are Annual Precipitation for 530 

1960–2012. 531 
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 532 

Figure 4: (a) Total Water Storage Anomalies in North China from 2003 to 2013; (b) Comparison of 533 

Three Models of Water Storage Changes. 534 
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 535 

Figure 5: Spatial Distributions of Water Storage Anomalies between May 2009 and April 2010. 536 
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 543 

Figure 6: Water Storage Deficits Relative to the Normal Water Storage Conditions from May 2009 544 

to April 2010. The Dotted Line Shows the Seriously Dry Area. 545 
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 554 

Figure 7: Surface Water Storage (Green Bars) and Equivalent Water Thickness Changes (Blue 555 

Line). 556 
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 558 

Figure 8: (a) Groundwater Table Changes from 2005 to 2014 in North China. The Shaded Area 559 

Shows the Uncertainties (95% Confidence Intervals); (b) The Trend in the Groundwater Table for 560 

each Gauge. 561 
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 562 

Figure 9: Groundwater Storage Changes Derived from GRACE and Ground Observations. 563 
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 568 

Figure 10: Groundwater Withdraw Changes from 2003 to 2012 in Hai River Basin.  569 
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 575 

Figure 11: Spatial and Temporal Distributions of LAI: (a) LAI for 2009; (b) Departure from 2009 576 

LAI (2009 LAI Minus the Multi-year Mean); (c) Time Series of LAI Corresponding to Three Types 577 

of Land Cover. 578 
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