Supplement of

Can controlled drainage control agricultural nutrient emissions? Evidence from a BACI experiment combined with a dual isotope approach

Mette V. Carstensen¹, Jane R. Poulsen¹, Niels B. Ovesen¹, Christen D. Børgesen², Søren K. Hvid³, Brian Kronvang¹

¹Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark

²Department of Agroecology, Blichers Allé 20, 8830 Tjele, Denmark

³SEGES, Agro Food Park 15, 8200 Aarhus N, Denmark

*Correspondence to Mette V. Carstensen (mvc@bios.au.dk)

10 pages, 3 tables, 14 figures

TABLE OF CONTENTS PAGE
TABLE S1. TEXTURE OF IP1, IP2, CP1, AND CP2 FOLLOWING USDA CLASSIFICATION
TABLE S2. CACO3, TOTAL C, TOTAL N, AND C:N FOR IP1, IP2, CP1, AND CP2.
*B.D.L.=BELOW DETECTION LIMIT
TABLE S3. BACI TEST OF THE SPATIALLY MONITORED GROUNDWATER LEVELS IN THE PERIODS
BEFORE (11/05/12-31/03/13), AFTER1 (12/10/13-03/11/14), AND AFTER2 (11/17/14-03/09/15)5
FIGURE S1. TN AT CP1 AND IP1 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)5
FIGURE S2. NH4 ⁺ -N AT CP1 AND IP1 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)6
FIGURE S3. N ₂ O-N AT CP1 AND IP1 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)6
FIGURE S4. TP AT CP1 AND IP1 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)
FIGURE S5. PO ₄ ³⁻ AT CP1 AND IP1 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)
FIGURE S6. SO ₄ ²⁻ AT CP1 AND IP1 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)
FIGURE S7. DRAIN FLOW AND PRECIPITATION AT CP2 AND IP2 DURING Y0 (2012/13), Y1 (2013/14),
AND Y2 (2014/15)
FIGURE S8. TN AT CP2 AND IP2 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)
FIGURE S9. NO ₃ ⁻ N AT CP2 AND IP2 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)8
FIGURE S10. NH ₄ ⁺ -N AT CP2 AND IP2 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)8
FIGURE S11. N ₂ O-N AT CP2 AND IP2 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)9
FIGURE S12. TP AT CP2 AND IP2 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)9
FIGURE S13. PO ₄ ³⁻ AT CP2 AND IP2 DURING Y0 (2012/13), Y1 (2013/14), AND Y2 (2014/15)
FIGURE S14. MEASURED RANGES OF Δ^{15} N AND Δ^{18} O OF NO ₃ ⁻ -N FROM IP1, IP2, CP1, AND CP2 IN Y1
(2013/14) AND Y2 (2014/15) PLOTTED WITH TYPICAL RANGES OF Δ^{15} N AND Δ^{18} O FROM NO ₃ ⁻ -N
SOURCES ADOPTED FROM KENDALL, ET AL. ¹ 10

		Clay	Silt	Sand	Humus	
		(< 2 µm)	(2-50 µm)	(50-2000 µm)		
Plot	Horizon	g/100 g	g/100 g	g/100 g	g/100 g	Soil type
IP1	Ар	14.9	47.8	34.2	3.1	Silt loam
	Ap2	15.5	49.4	32.6	2.6	Silt loam
	Beg	17.1	55.5	26.9	0.5	Silt loam
	Btg	25.9	50.9	22.7	0.5	Silt loam
	Lq	33.1	41.9	13.8	11.2	Silty clay loam
IP2	Ар	13.4	49.1	34.5	3.1	Silt loam
	Beg	12.5	74.8	12.4	0.3	Silt loam
	Btg	14.5	37.9	47.3	0.3	Loam
CP1	Ар	13.4	47.7	36.0	2.9	Silt loam
	Beg	14.5	44.2	41.0	0.3	Loam
	Cg	11.0	32.7	40.7	0.3	Loam
CP2	Ар	14.1	41.3	41.7	2.9	Loam
	Be	14.9	45.4	39.2	0.5	Loam
	Btg	17.1	42.6	32.6	0.3	Silt loam
	Ccg	10.4	30.9	43.0	0.3	Loam

 Table S1. Texture of IP1-2 (impacted) and CP1-2 (control plots) following USDA classification.

		CaCO ₃	Total C	Total N	C:N		
Plot	Horizon						
		g/100 g	g/100 g	g/100 g	N/A		
IP1	Ар	b.d.l.	1.83	0.19	10		
	Ap2	b.d.l.	1.50	0.16	9		
	Beg	b.d.l.	0.28	0.03	9		
	Btg	b.d.l.	0.31	0.03	10		
	Lq	b.d.l.	6.57	0.19	35		
IP2	Ap	b.d.l.	1.84	0.17	11		
	Beg	b.d.l.	0.16	0.02	8		
	Btg	b.d.l.	0.16	0.01	16		
CP1	Ap	b.d.l.	1.68	0.16	11		
	Beg	b.d.l.	0.20	0.02	10		
	Cg	15.43	2.02	0.01	202		
CP2	Ap	b.d.l.	1.70	0.17	10		
	Be	b.d.l.	0.29	0.03	10		
	Btg	7.34	1.06	0.02	53		
	Ccg	15.51	2.03	0.01	203		
*b.d.l.=Below Detection Limit							

Table S2. CaCO₃, total C, total N, and C:N for IP1-2 (impacted) and CP1-2 (control plots)

Location at plot	Compared periods	n	BE	t value	р
			(cm)		
Center of plots	Y0/Y1	69	-0.3	0.2	0.8
	Y0/Y2	68	-2.8	-0.1	0.9
Northeast of well	Y0/Y1	69	-7.0	1.7	0.09
	Y0/Y2	68	-20.5	4.5	< 0.001
Northwest of well	Y0/Y1	69	5.3	-1.7	0.09
	Y0/Y2	68	5.6	-2.9	< 0.05
Southwest of	Y0/Y1	69	-2.6	0.8	0.4
well	Y0/Y2	68	-2.8	-0.4	0.7
Closest to well	Y0/Y1	69	-6,3	1,2	0.22
	Y0/Y2	68	-18,4	6,0	< 0.001
East of the plot	Y0/Y1	69	-9.6	5,3	< 0.001
	Y0/Y2	68	-12.0	5,7	< 0.001
South of the plot	Y0/Y1	69	-7.5	1,2	0.25
	Y0/Y2	68	-11.4	2,8	< 0.05

Table S3. BACI test of the spatially monitored groundwater levels in Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S1. TN at CP1 and IP1 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S2. NH₄⁺-N at CP1 and IP1 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S3. N₂O-N at CP1 and IP1 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S4. TP at CP1 and IP1 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S5. PO₄³- at CP1 and IP1 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S6. SO₄²⁻ at CP1 and IP1 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S7. Drain flow and precipitation at CP2 and IP2 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S8. TN at CP2 and IP2 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S9. NO₃⁻-N at CP2 and IP2 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S10. NH₄⁺-N at CP2 and IP2 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S11. N₂O-N at CP2 and IP2 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S12. TP at CP2 and IP2 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S13. PO₄³⁻ at CP2 and IP2 during Y0 (2012/13), Y1 (2013/14), and Y2 (2014/15).

Figure S14. Measured ranges of δ^{15} N and δ^{18} O of NO₃⁻-N from IP1, IP2, CP1, and CP2 in Y1 (2013/14) and Y2 (2014/15) plotted with typical ranges of δ^{15} N and δ^{18} O from NO₃⁻-N sources adopted from Kendall et al. (2007).

References

Kendall, C., Elliott, E. M., and Wankel, S. D.: Tracing anthropogenic inputs of nitrogen to ecosystems, in: Stable Isotopes in Ecology and Environmental Science, 2nd edition ed., Blackwell Publishing, p. 375-449., 2007.