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 13 

Abstract 14 

The transition zone between land and water is difficult to map with conventional 15 

geophysical systems due to shallow water depth and often challenging environmental 16 

conditions. The emerging technology of airborne topobathymetric Light Detection And 17 

Ranging (LiDAR) is capable of providing both topographic and bathymetric elevation 18 

information, using only a single green laser, resulting in a seamless coverage of the 19 

land-water transition zone. However, there is no transparent and reproducible method 20 

for processing green topobathymetric LiDAR data into a Digital Elevation Model 21 

(DEM). The general processing steps involve data filtering, water surface detection and 22 

refraction correction. Specifically, the procedure of water surface detection and 23 

modelling, solely using green laser LiDAR data, has not previously been described in 24 

detail for tidal environments. The aim of this study was to fill this gap of knowledge by 25 

developing a step-by-step procedure for making a Digital Water Surface Model 26 

(DWSM) using the green laser LiDAR data. The detailed description of the processing 27 

procedure augments its reliability, makes it user friendly and repeatable. A DEM was 28 
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obtained from the processed topobathymetric LiDAR data collected in spring 2014 from 1 

the Knudedyb tidal inlet system in the Danish Wadden Sea. The vertical accuracy of the 2 

LiDAR data is determined to ±8 cm at a 95% confidence level, and the horizontal 3 

accuracy is determined as the mean error to ±10 cm. The LiDAR technique is found 4 

capable of detecting features with a size of less than 1 m
2
. The derived high resolution 5 

DEM was applied for detection and classification of geomorphometric and 6 

morphological features within the natural environment of the study area. Initially, the 7 

Bathymetric Positioning Index (BPI) and the slope of the DEM were used to make a 8 

continuous classification of the geomorphometry. Subsequently, stage (or elevation in 9 

relation to tidal range) and a combination of statistical neighbourhood analyses (moving 10 

average and standard deviation) with varying window sizes, combined with the DEM 11 

slope were used to classify the study area into six specific types of morphological 12 

features (i.e. subtidal channel, intertidal flat, intertidal creek, linear bar, swash bar and 13 

beach dune). The developed classification method is adapted and applied to a specific 14 

case, but it can also be implemented in other cases and environments. 15 

 16 

1 Introduction 17 

The coastal zone is under pressure from human exploitation in many and various ways. 18 

Many large cities are located near the coast, and they grow gradually with the increase 19 

in worldwide population and urbanization. Many industrial activities take place in close 20 

vicinity to the coast, e.g. fishery, construction, maintenance dredging for safety of 21 

navigation, and mining for raw materials. The coastal zone also provides the setting for 22 

many recreational and touristic activities, such as sailing, swimming, hiking, diving and 23 

surfing. In addition to human exploitation, climate change also poses a future threat 24 

with a predicted rising sea level and increasing storm intensity and frequency, expected 25 

to cause erosion and flooding in the coastal zone (Mousavi et al., 2011). All these 26 

pressures and different interests underpin the societal need for high resolution mapping, 27 

monitoring, and sustainable management in the coastal zone. 28 

Historically, the transition zones between land and water have been difficult or even 29 

impossible to map and investigate in high spatial resolution due to the difficulties in 30 

collecting data in these challenging, high-energy environments. The airborne near-31 
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infrared (NIR) Light Detection And Ranging (LiDAR) is a technique often used for 1 

measuring high-resolution topography, however, NIR laser is incapable of measuring 2 

bathymetry due to the absorption and reflection of the laser light at the water surface. 3 

Traditionally, high-resolution bathymetry is measured with a multibeam echosounder 4 

(MBES) system mounted on a vessel, but it does not cover the bathymetry in the 5 

shallow water due to the vessel draft limitation.  6 

NIR LiDAR and MBES are applied in different environments; however, the data are 7 

very similar and the processed high-resolution topography/bathymetry is often captured, 8 

visualised and analysed in a Digital Elevation Model (DEM). The processed DEM may 9 

be applied for various purposes, e.g. for geomorphological mapping. Previous studies 10 

classifying morphology in either terrestrial or marine environments have been 11 

performed numerous times (Al-Hamdani et al., 2008; Cavalli and Marchi, 2008; Hogg 12 

et al., 2016; Höfle and Rutzinger, 2011; Ismail et al., 2015; Kaskela et al., 2012; 13 

Lecours et al., 2016; Sacchetti et al., 2011). These classification studies generally focus 14 

on either the marine or the terrestrial environment and do not cover the fine-scale 15 

morphology in the shallow water, due to the challenging environmental conditions. To 16 

overcome this impediment a new generation of airborne green topobathymetric LiDAR 17 

that enables high resolution measurements of both topography and shallow bathymetry 18 

has been introduced (Guenther, 1985; Jensen, 2009; Pe'eri and Long, 2011). The 19 

potential of merging morphological classifications of marine and terrestrial 20 

environments enables a holistic approach for managing the coastal zone. 21 

The raw topobathymetric LiDAR measurements are spatially visualized as points in a 22 

point cloud, with each point containing information of its location and elevation. The 23 

point cloud must be piped through a series of steps before it can be visualised as a 24 

DEM. Most of the processing steps required to process raw topobathymetric LiDAR 25 

data into a DEM are similar to the processing steps of topographic LiDAR data (Huising 26 

and Gomes Pereira, 1998). However, additional processing steps are required for 27 

topobathymetric LiDAR data due to the refraction of the laser beam at the water 28 

surface. All submerged LiDAR points have to be corrected for refraction; therefore, the 29 

water depth must be known for each point. This sets a requirement for making a Digital 30 

Water Surface Model (DWSM), before the refraction correction can be performed.  31 
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Often the water surface is detected and modelled from simultaneous collection of green 1 

and NIR LiDAR measurements, where the green laser reflects from the seabed and the 2 

NIR laser reflects from the air-water interface, and the NIR laser data are then used to 3 

detect and model the water surface (Allouis et al., 2010; Collin et al., 2008; Guenther, 4 

2007; Parker and Sinclair, 2012). The use of NIR LiDAR data for water surface 5 

detection has been applied in several studies. For instance, Hofle et al. (2009) proposed 6 

a method for mapping water surfaces based on the geometrical and intensity information 7 

from NIR LiDAR data. Su and Gibeaut (2009) classified water points from NIR LiDAR 8 

based on point density, intensity and elevation. They identified the shoreline based on 9 

the large sudden decrease in NIR LiDAR intensity values when going from land to 10 

water. Brzank et al. (2008) used the same three variables (point density, intensity and 11 

elevation) in a supervised fuzzy classification to detect the water surface in a section of 12 

the Wadden Sea. Another study in the Wadden Sea by Schmidt et al. (2012) used a 13 

range of geometric characteristics as well as intensity values to classify water points 14 

from NIR LiDAR data. 15 

The capability of NIR LiDAR data for detecting the water surface is thus well 16 

documented. However, deriving all the information from a single green LiDAR dataset 17 

would be a more effective solution for water surface and seabed detection, with respect 18 

to the financial expenses and for the difficulties of storing and handling often very large 19 

amounts of data. However, there is no definitive method for making a DWSM from 20 

green topobathymetric LiDAR data. For this purpose, the Austrian LiDAR company 21 

RIEGL have developed a software, RiHYDRO (RIEGL, 2015), in which it is possible to 22 

model the water surface in a two-step approach: 1) Classification of water surface points 23 

based on areas with two layers (water surface and seabed) and extending the 24 

classification to the entire water body, and 2) Generation of a geometric gridded DWSM 25 

for each flight swath based on the classified water surface points. However, RiHYDRO 26 

is commercial software, and thus the algorithms, which form the basis of the 27 

classification and water surface modelling, are not publicly available. Other software 28 

packages, such as HydroFusion (Optech, 2013) and LiDAR Survey Studio (Leica, 2015), 29 

also proclaim to have incorporated methods for the entire data processing workflow, but 30 

the algorithms in these software packages are also closed and cannot be accessed by 31 

public users. 32 
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Only few research studies have investigated the potential of water surface detection and 1 

modelling from green LiDAR data. In a relatively recent publication Guenther et al. 2 

(2000) even regarded water surface detection from green LiDAR data as unacceptable 3 

and they justified it with two fundamental issues: 1) No water surface returns are 4 

detected in the dead zone, and 2) Uncertainty of the water surface elevation, because the 5 

green water surface returns are actually a mix of returns from the air/water interface and 6 

from volume backscatter returns, and they are generally found as a cloud of points 7 

below the water surface. Mandlburger et al. (2013) addressed the second issue by 8 

comparing the water surface points of NIR and green LiDAR data, and they concluded 9 

that it is possible to derive the water surface elevation from the green LiDAR data with 10 

sub-decimetre vertical precision relative to a reference water surface derived by the NIR 11 

LiDAR data. However, their work addressed only the determination of the water surface 12 

elevation, without going into detail on the actual procedure of generating a DWSM. An 13 

approach for modelling the water surface from green LiDAR data was presented by 14 

Mandlburger et al. (2015), who did their study in a riverine environment with only few 15 

return signals from the water surface. Their method was based on manual estimates of 16 

the water level in a series of river cross sections, after which interpolation between the 17 

cross sections filled out the gaps with no water surface points to derive a continuous 18 

water surface model.  19 

The aim of this study was to investigate the potential of improving the procedure of 20 

processing green LiDAR data and generating DEMs in tidal environments, and of 21 

improving the classification of morphological units in such environments. More 22 

specifically, the objectives were: 23 

1. To develop a robust, repeatable and user friendly processing procedure of raw 24 

green LiDAR data for generating high resolution DEMs in land-water transition 25 

zones. 26 

2. To quantify the accuracy and precision of the green LiDAR data based on object 27 

detection. 28 

3. To automatically classify morphological units based on geomorphometric 29 

analyses of the generated DEM. 30 

The investigations were based on studies undertaken in a section of the Knudedyb tidal 31 

inlet system in the Danish Wadden Sea. 32 
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 1 

2 Study area 2 

The Knudedyb tidal inlet system is located between the barrier islands of Fanø and 3 

Mandø in the Danish Wadden Sea (Fig. 1A). The tidal inlet system is a natural 4 

environment without larger influence from human activity. The tides in the area are 5 

semi-diurnal, with a mean tidal range of 1.6 m, and the tidal prism is in the order of 6 

175 · 10
6
 m

3
 (Pedersen and Bartholdy, 2006). The main channel is approximately 1 km 7 

wide and with an average water depth of approx. 15 m (Lefebvre et al., 2013). 8 

The study site is an elongated 3.2 km
2
 (0.85 × 4 km) section of the Knudedyb tidal inlet 9 

system (Fig. 1B). The section is located perpendicular to the main channel and stretches 10 

across both topography and bathymetry. The study site extends towards north into an 11 

area on Fanø with dispersed cottages (Fig. 1C). The most prominent morphological 12 

features within the study site include beach dunes (Fig. 1D), small mounds (Fig. 1E), 13 

swash bars (Fig. 1F-G) and linear bars (Fig. 1H).  14 

 15 

3 Methods 16 

3.1 Topobathymetric LiDAR 17 

The topobathymetric LiDAR technique is based on continuous measurements of the 18 

distance between an airplane and the ground/seabed. The distance (or range) is 19 

calculated by half the travel time of a laser beam, going from the airplane to the surface 20 

of the earth and back to the airplane. The wavelength of the laser beam is in the green 21 

spectrum, usually 532 nm, since this wavelength is found to attenuate the least in the 22 

water column, resulting in the largest penetration depth of the laser (Jensen, 2009). In 23 

literature, topobathymetric LiDAR data is sometimes referred to as either bathymetric 24 

LiDAR or Airborne LiDAR bathymetry. These are different terms with the same 25 

meaning, and in this paper, topobathymetric LiDAR is preferred, since it describes the 26 

system’s ability to simultaneously measure bathymetry as well as topography. 27 

A single laser beam may encounter many targets of varying nature on its way from the 28 

airplane and back again, and different processes are influencing the laser beam 29 

propagation through air and water. First, the laser beam may be reflected by targets in 30 
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the air, such as birds or dust particles, and these can show up as LiDAR points in the 1 

space between the airplane and the surface. When encountering water, the speed of the 2 

laser decreases from 3 × 10
8
 ms

-1
 to e.g. 2.25 × 10

8
 ms

-1
 in 10°C freshwater or e.g. 2.24 3 

× 10
8
 ms

-1
 in 10°C saltwater of 30 PSU (Millard and Seaver, 1990).  4 

The changing speed of the laser beam also affects the direction of the laser beam when 5 

penetrating the water surface with an angle different from nadir (Fig. 2) (Guenther, 6 

2007; Jensen, 2009). The laser beam will be refracted according to Snell’s Law: 7 

𝑠in𝛼air

sin𝛼water
=

cair

𝑐𝑤𝑎𝑡𝑒𝑟
=

nwater

nair
        (1) 8 

where 𝛼air is the incidence angle of the laser beam relative to the normal vector of the 9 

water surface and 𝛼water is the refraction angle in water. nwater and nair  are the 10 

refractive indices of water and air, respectively (Mandlburger et al., 2013). 11 

The penetration depth in water is limited by the attenuation of the laser beam. Water 12 

molecules, suspended sediment and dissolved material all act on the laser beam by 13 

absorption and scattering, resulting in substantial reduction in power as the signal 14 

propagates into the water (Guenther, 2007; Mandlburger et al., 2013; Steinbacher et al., 15 

2012). The laser beam also diverges in the water column, resulting in a wider laser 16 

beam footprint (Guenther et al., 2000), and this effect reduces the resolving capability of 17 

fine-scale morphology the deeper the laser beam penetrates. 18 

The returned signal is represented as a distribution of energy over time, also called the 19 

‘full-waveform’ (Alexander, 2010; Chauve et al., 2007; Mallet and Bretar, 2009). The 20 

peaks in the full-waveform are detected as individual targets encountered by the 21 

propagating laser beam. If the laser hits two targets with a small vertical difference, 22 

such as a water surface and seabed in very shallow water, then the two peaks in the full-23 

waveform may merge together, resulting in the detection of only one target (Fig. 2). 24 

This results in a detection minimum of successive returns from a single laser pulse, 25 

referred to as the ‘dead zone’ (Mandlburger et al., 2011; Nayegandhi et al., 2009). The 26 

dead zone is a clear limitation to the LiDAR measurements, which is an important 27 

parameter to consider in very shallow water, such as intertidal environments. 28 
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3.2 Surveys and instruments 1 

LiDAR data and ortophotos were collected by Airborne Hydro Mapping GmbH (AHM) 2 

during two surveys on 19 April 2014 and 30 May 2014.  3 

On 19 April 2014, the quality of the LiDAR data was validated at two sites along Ribe 4 

Vesterå River (Fig. 1I-J): 5 

 Validation site 1 with a 2.50 × 1.25 × 0.80 m cement block located on land next 6 

to the mouth of Ribe Vesterå River (Fig. 1I). The block was covered by 7 swaths 7 

retaining 227 LiDAR points from the block surface, which were used for 8 

assessing the accuracy and precision of the LiDAR data. 9 

 Validation site 2 with a 0.92 × 0.92 × 0.30 m steel frame located in the Ribe 10 

Vesterå River, its top situated just below the water surface (Fig. 1J). The frame 11 

was covered by 4 swaths retaining 46 LiDAR points from the surface of the 12 

frame, which were used for precision assessment, and for testing the feature 13 

detection capability of the LiDAR system. According to the International 14 

Hydrographic Organization survey standards, cubic features of at least 1 m
2
 15 

should be detectable in Special Order areas, which are areas with very shallow 16 

water as in the study site (IHO, 2008).  17 

Ground control points (GCPs) were measured for the four corners of the block with 18 

accuracy better than 2 cm using a Trimble R8 RTK GPS. Measurements were repeated 19 

three times and averaged to minimize errors caused by measurement uncertainties. 20 

GCPs were also collected for the frame; however, during the LiDAR survey the frame 21 

experienced an unforeseen intervention by local fishermen using the frame as fishing 22 

platform. Therefore, the frame was only used to assess the deviation between the 23 

LiDAR points (the precision), and not to assess the deviation between the LiDAR points 24 

and the GCP’s (the accuracy). 25 

On 30 May 2014, the study site was covered by 11 swaths, which were used for 26 

generating the DWSM and DEM. The overflight was carried out during low tide, and 27 

the water level was measured to -1 m DVR90 at Grådyb Barre, approx. 20 km NW of 28 

the study site. 29 
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The weather conditions were similar during the two surveys, with sunny conditions, 1 

average wind velocities of 7-8 m/s (DMI, 2014) and significant wave heights, measured 2 

west of Fanø at 15 m water, of approx. 0.5 m coming from NW (DCA, 2014). However, 3 

the waves in the less exposed Knudedyb tidal inlet were observed in the 30 May LiDAR 4 

point cloud to be 0.2-0.3 m, which can be explained by the location of the study site in 5 

lee of the western most intertidal flats and the ebb-tidal delta. The wave heights in the 6 

rest of the study site (flood channel and intertidal ponds) were in the scale of sub 7 

decimetres. There were no waves at validation site 2 during the 19 April LiDAR survey.  8 

LiDAR data were collected with a RIEGL VQ-820-G topobathymetric airborne laser 9 

scanner in both surveys (RIEGL, 2014). The scanner was characterized by emitting 10 

green laser pulses with 532 nm wavelength and 1 ns pulse width. It had a very high laser 11 

pulse repetition rate of up to 520,000 Hz. The flying altitude was 400 m, which 12 

combined with a beam divergence of 1 mrad created a laser beam footprint of 40 cm 13 

diameter at the ground. The high repetition rate and narrow footprint made it well suited 14 

to capture fine-scale landforms (Doneus et al., 2013; Mandlburger et al., 2011). An arc 15 

shaped scan pattern results in a swath width of approx. 400 m, while maintaining an 16 

almost constant 20° (±1°) incidence angle of the laser beam when penetrating the water 17 

surface (Niemeyer and Soergel, 2013). The typical water depth penetration of the laser 18 

scanner is claimed by the manufacturer to be 1 Secchi disc depth (RIEGL, 2014). 19 

For each returned signal, the collected LiDAR data contained information of x, y and z, 20 

as well as a GPS time stamp and values of the amplitude, reflectance, return number, 21 

attribute and laser beam deviation (RIEGL, 2012). 22 

3.3 Processing raw topobathymetric LiDAR data into a gridded DEM 23 

The essential processing steps, which are standard procedure when processing 24 

topobathymetric LiDAR data, were followed to produce a DEM in the study area. These 25 

steps included: 26 

1. Determination of flight trajectory. 27 

2. Boresight calibration: Calculating internal scanner calibration. 28 

3. Collecting topobathymetric LiDAR data. 29 
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4. Swath alignment based on boresight calibration: The bias between individual 1 

swaths was minimized. 2 

5. Filtering: The raw data contained noise located both above and below ground, 3 

which needed to be filtered from the point cloud. 4 

6. Water surface detection: A DWSM had to be established in order to correct for 5 

refraction in the following step. 6 

7. Refraction correction: All the points below the water surface in the DWSM were 7 

corrected for the refraction of the laser beam. 8 

8. Point cloud to DEM: The points were transformed into a gridded elevation 9 

model representing the real world terrain in the study area, including cottages 10 

and vegetation on Fanø in the northern part. 11 

Step 1 and 2 were performed prior to the LiDAR survey. The different instruments 12 

(LiDAR, IMU and GPS) were integrated spatially by measuring their position relative 13 

to each other, when mounted on the airplane, and temporally by calibrating their time 14 

stamps. 15 

Step 3 was the actual LiDAR survey and step 4 was the initial processing step after the 16 

LiDAR survey. The bias between the swaths was minimized in the software 17 

RiPROCESS (RIEGL LMS) by automatically searching for planes in each swath and 18 

then matching the planes between the swaths. 19 

Steps 5-8 represent the processing of the point cloud into a DEM. The methods involved 20 

in these steps are the main focus in this study and they are described in detail in the 21 

following sub-sections. Each swath was pulled individually through the processing 22 

workflow to account for the continually changing water level in the study area due to 23 

tides. The broad term “DEM” is used, rather than the more specific terms “Digital 24 

Terrain Model (DTM)” or “Digital Surface Model (DSM)”, because the generated 25 

model includes both natural terrain in the tidal environment, which is the main focus 26 

area in this study, as well as vegetation and cottages on Fanø. 27 

3.3.1 Filtering 28 

The raw LiDAR data contained noise in the air column originating from the laser being 29 

scattered by birds, clouds, dust and other particles, and noise was also appearing below 30 
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the ground/seabed (Fig. 3A-B). This noise had to be filtered before further processing. 1 

The filtering process involved both automatic and manual filtering. 2 

The automatic filtering was carried out in HydroVish (AHM) with the tool Remove flaw 3 

echoes (Fig. 3C). The filtering tool was controlled by three variable parameters: search 4 

radius, distance and density. The search radius parameter specified the radius of a 5 

sphere in which the distance and density filters were utilized. The distance parameter 6 

rejected a point, if it was too far from any other point within the sphere. The density 7 

parameter specified the lower limit of points within the sphere. The automatic filter 8 

iterated through all the points in the point cloud. The settings for the automatic filtering 9 

were based on a sensitivity analysis of three fragments of the LiDAR data, and the 10 

settings were selected so that a minimum of valid points were removed by the automatic 11 

filter. The settings were: Search radius = 1 m, distance = 0.75 m and density = 4.  12 

The automatic filter could not to remove two layers of noise points closely above and 13 

below ground, but on the other hand, more widely dispersed points in the deeper 14 

bathymetry were removed. To account for this, the point cloud went through manual 15 

filtering in Fledermaus (QPS) software, where the remaining noise points were rejected 16 

and the valid bathymetric points were accepted (Fig. 3D). 17 

The filtered point cloud (with water points) was used in the following step to detect the 18 

water surface. Meanwhile, a copy of the data was undergoing additional manual 19 

filtering, removing all the water points (Fig. 3E). After this final filtering step, there 20 

were only points representing topography, bathymetry, vegetation and man-made 21 

structures left in the dataset. 22 

3.3.2 Water surface detection 23 

The water surface detection was based on determining the water surface elevation and 24 

the water surface extent, thereby producing a DWSM. The water surface elevation was 25 

determined based on the water surface points, and the extent was determined by 26 

extrapolating the water surface until it intersected the surface of the topography. Two 27 

assumptions were made in the production of the DWSM: 28 

1. The water surface was horizontal. This was a simplification of the real world. 29 

Tidal processes and wind- and wave-setup may cause the water surface to be 30 
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sloping, and the water is often topped by more or less significant waves. A linear 1 

fit through the water surface LiDAR points along the main channel, showed a 2 

changing water level of 0.13 m over a distance of 400 m, corresponding to a 3 

0.325 × 10
-3

 (0.019 deg.) sloping water surface. A similar fit through the LiDAR 4 

points along the flood channel showed a slope of 0.156 × 10
-3

 (0.009 deg.). The 5 

maximum wave heights observed in the main channel were 20-30 cm. Based on 6 

the moderate slope of the water surface and relatively low wave height, the 7 

water surface was assumed flat. This assumption is deemed error prone, but at 8 

the time of this study, it was our best estimate. 9 

2. The study area contained water bodies with two different water levels: One 10 

represented the water level in the main channel and the other represented the 11 

water level in the flood channel. This was also a simplification, as the tidal flat 12 

contained small ponds with potentially different water levels. However, almost 13 

all of these ponds contained no LiDAR points of the water surface, which means 14 

that the water depth in the ponds must have been within the limitation of the 15 

dead zone. Therefore, it was impossible to detect individual water surfaces in the 16 

ponds. 17 

A series of processing steps were performed to produce the DWSM. The first step was 18 

to extract a shallow surface and a deep surface from the filtered point cloud (with water 19 

points) in Fledermaus (Fig. 3F). Both surfaces consisted of 0.5 × 0.5 m cells, and the 20 

elevation of each cell was equal to the highest point within the cell (shallow surface) 21 

and the lowest point within the cell (deep surface), respectively. The shallow surface 22 

should then display the topography along with the water surface, whereas the deep 23 

surface should display the topography and the seabed (as long as the seabed was 24 

detected by the laser). It is worth noting, that the extraction of the shallow surface and 25 

the deep surface had nothing to do with the final DEM, as they were merely 26 

intermediate steps performed for the water surface detection. 27 

The following steps were focused on the shallow surface to determine the elevation of 28 

the water surface (Fig. 3G). First, the shallow surface was down-sampled to a surface 29 

with a cell size of 2 × 2 m, and the new cells were populated with the maximum 30 

elevation of the input cells. The down-sampling was done for smoothing the water 31 

surface, and thereby eliminating most of the outliers. The exact cell size of 2 × 2 m, as 32 
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well as populating them with the maximum value, was chosen based on the work by 1 

Mandlburger et al. (2013). They compared water surface detection capability between 2 

green LiDAR data, collected with the same RIEGL-VQ-820-G laser scanner, and NIR 3 

LiDAR data, which was assumed to capture the true water surface. They found that the 4 

green LiDAR generally underestimated the water surface elevation, but that reliable 5 

results were achieved by increasing the cell size and only taking the top 1-5% of water 6 

points into account. According to their work, it was assumed that placing the water 7 

surface on the highest points in 2 m cells provided a good estimate of the true water 8 

level. However, based on their results it could be expected that the water surface 9 

elevation in this case would be underestimated in the order of 2-4 cm. 10 

The water-covered areas in the main channel and the flood channel were manually 11 

extracted from the newly down-sampled shallow surface. The average elevation of the 12 

2 m cells within each area was calculated, and these values constituted the elevation of 13 

the water surfaces in the main channel and in the flood channel, respectively. Two 14 

horizontal water surfaces were created in the flood channel and the main channel with a 15 

cell size of 0.5 × 0.5 m and cell values equal to the calculated water surface elevations. 16 

The high spatial resolution of 0.5 m cells was chosen to produce a detailed DWSM 17 

along the edges of the land-water transition. 18 

Finally, the extent of the water surfaces was determined by subtracting the deep surface 19 

cell elevations from the water surface elevation and discarding all cells with resulting 20 

negative values (Fig. 3H), together forming the DWSM. 21 

3.3.3 Refraction correction 22 

The refraction correction of all the points below the DWSM was calculated in 23 

HydroVish (AHM). The input parameters were the filtered point cloud (without water 24 

points), the derived DWSM and the trajectory data of the airplane. The refraction 25 

correction was calculated automatically for each point based on the water depth, the 26 

incident angle of the laser beam, and the refracted angle according to Snell’s Law (Eq. 1 27 

and Fig. 3I). 28 
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3.3.4 Point cloud to DEM 1 

After iterating through the processes of filtering, water surface detection and refraction 2 

correction for all the individual swaths, the LiDAR points of all swaths were combined. 3 

The transformation from point cloud into a DEM was performed with ArcGIS (ESRI) 4 

software. The DEM was created as a raster surface with a cell size of 0.5 × 0.5 m, and 5 

each cell was attributed the average elevation of the points within the cell-boundaries. It 6 

was chosen to make the resolution of the DEM lower than the laser beam footprint size 7 

(i.e. 40 cm), due to the inaccuracies arising from attributing smaller cells with measured 8 

elevation values spanning across a larger area. Furthermore, the 0.5 m cell size was 9 

chosen to get as high resolution as possible without making any significant interpolation 10 

between the measurements. In this way, each cell represented actually measured 11 

elevations instead of interpolated values. However, there were still very few gaps of 12 

individual cells with no data in the resulting raster surface in areas with relatively low 13 

point density. Despite of the general intention of avoiding interpolation it was chosen to 14 

populate these cells with interpolated values to obtain a full coverage DEM (except for 15 

the bathymetric parts beyond the maximum laser penetration depth). The arguments for 16 

interpolation were that: 1) the interpolated cells were scattered and represented only 1.7 17 

% of all the cells, 2) they were found primarily on the tidal flat where the slope is 18 

generally less than 1°, meaning that the elevation difference from one cell to a 19 

neighbouring cell is usually less than 1 cm, and 3) the general point density in most of 20 

the study area was so high that the loss of information by lowering the DEM resolution 21 

would represent a larger sacrifice than interpolating a few scattered cells. The 22 

interpolation was performed by assigning the average value of all neighbouring cells to 23 

the empty cells. The final DEM was thereby fully covering the topography, and the 24 

bathymetry was covered down to a depth equal to the maximum laser penetration depth. 25 

3.4 Accuracy and precision of the topobathymetric LiDAR data  26 

The term accuracy refers to the difference between a point coordinate (in this case a 27 

LiDAR point) compared to its “true” coordinate measured with higher accuracy, e.g. by 28 

a total station or a differential GPS; while the term precision refers to the difference 29 

between successive point coordinates compared to their mean value, i.e. the 30 

repeatability of the measurements (Graham, 2012; Jensen, 2009; RIEGL, 2014). 31 
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Two “best-fit planes” based on the LiDAR points on the block and the frame surfaces 1 

were established with the Curve Fitting tool in MATLAB (MathWorks). We propose 2 

the use of these two planes to give an indication of the relative precision of the LiDAR 3 

measurements.  4 

Another best-fit plane was established based on the block GPS measurements, and this 5 

plane was regarded as the “true” block surface for assessment of the accuracy of the 6 

LiDAR measurements. The established planes were described by the polynomial 7 

equation: 8 

𝑧(𝑥, 𝑦) = a + b𝑥 + c𝑦         (2) 9 

where 𝑥, 𝑦  and 𝑧 are coordinates and a, b and c are constants. Inserting x and y 10 

coordinates for the LiDAR surface points in Eq. (3) led to a result of the corresponding 11 

elevation (z) as projected on the fitted plane. The difference between the elevation of 12 

the LiDAR point and the corresponding elevation on the fitted plane was used as a 13 

measure of the vertical accuracy (for the GCP fitted plane of the block) and the vertical 14 

precision (for the LiDAR point fitted plane of the block and the frame). Statistical 15 

measures of the standard deviation (𝜎), mean absolute error (𝐸MA), and root mean 16 

square error (𝐸RMS) were calculated by: 17 

𝜎 = √
∑(𝑧i−𝑧plane)2

𝑛−1
         (3) 18 

𝐸MA =
∑|𝑧i−𝑧plane|

𝑛
         (4) 19 

𝐸RMS = √
∑(𝑧i−𝑧plane)2

𝑛
         (5) 20 

where 𝑧𝑖 is the elevation of the measured LiDAR points, 𝑧plane is the corresponding 21 

elevation on the best-fit plane, and 𝑛 is the number of LiDAR points. The vertical 22 

accuracy and precision were determined at a 95% confidence level based on the 23 

accuracy standard presented in Geospatial Position Accuracy Standards Part 3: 24 

National Standard for Spatial Data Accuracy (NSSDA) (FGDC, 1998): 25 

𝐶𝑙95% = 𝐸RMS ∙ 1.96         (6) 26 
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The horizontal accuracy was determined as the horizontal mean absolute error (𝐸MA,xy) 1 

based on the horizontal distances between the block corners, measured with RTK GPS, 2 

and the best approximation of the block corners derived from the LiDAR points of the 3 

block surface. The minimum distance between a block corner and the perimeter of the 4 

LiDAR points was regarded as the best approximation. Hereafter 𝐸MA,xy was calculated 5 

as the average of the four corners.  6 

3.5 Geomorphometric and morphological classifications 7 

The processed DEM was applied in two classification analyses; first a geomorphometric 8 

classification and then a morphological classification. Both were based on the DEM and 9 

derivatives of the DEM, but they differentiated by the resulting classification classes, 10 

which showed 1) Surface geometry and 2) Surface morphology. The analysis mode, as 11 

defined by Pike et al. (2009), was “general” in the geomorphometric classification 12 

where the surface geometry was continuously classified within the study site, while 13 

being “specific” in the morphological classification where discrete morphological units 14 

were classified. The northern part of the study site with cottages on Fanø was excluded 15 

in the classification analyses, as the objective of this work was to classify the natural 16 

terrain (geomorphometry and morphology) in the high-energy and dynamic tidal 17 

environment. 18 

3.5.1 Geomorphometric classification analysis 19 

The tool Benthic Terrain Modeler (BTM) (Wright et al., 2005) was used for the 20 

geomorphometric classification. The tool is an extension to ArcGIS Spatial Analyst, 21 

originally used for analysing MBES data (Diesing et al., 2009; Lundblad et al., 2006; 22 

Rinehart et al., 2004). The BTM classification tool uses fine- and broad-scale 23 

Bathymetric Positioning Indexes (BPIs) (Verfaillie et al., 2007) in a multiple-scale 24 

terrain analysis to classify fine- and broad-scale geometrical features. The BPIs are 25 

measures of the elevation of a cell compared to the elevation of the surrounding cells 26 

within the determined scale (radius) size. Positive BPI values indicate a higher elevation 27 

than the neighbouring cells and negative BPI values indicate a lower elevation than the 28 

neighbouring cells. For instance, a BPI value of 100 corresponds to 1 standard deviation 29 

and a value of -100 corresponds to -1 standard deviation of the cell elevation compared 30 
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to the elevation of the surrounding cells within the determined scale size. BPI values 1 

close to zero are derived from flat areas or from constant slopes.  2 

The elevation values of each cell in the DEM were exaggerated by a factor of 10 before 3 

the classification, to enable the BTM to detect the shapes of the terrain. The fine- and 4 

broad-scales were determined based on the BPI results for different radius sizes. The 5 

best results were obtained from a broad-scale BPI of 100 m radius and a fine-scale BPI 6 

of 10 m radius, based on visual inspection. The fine- and broad-scale BPIs were used, 7 

together with the slope of the actual DEM (not the exaggerated) to classify the 8 

investigated area into the geomorphometric classes: Fine-scale crests, broad-scale 9 

crests, depressions, slopes and flats (Fig. 4). The classification classes were decided 10 

based on previous studies using the BTM classification tool with success (Diesing et al., 11 

2009; Lundblad et al., 2006). The thresholds for the fine- and broad-scale BPIs were in 12 

previous studies often defined as 1 standard deviation (Lundblad et al., 2006; Verfaillie 13 

et al., 2007), however, thresholds of 0.5 standard deviations have also previously been 14 

applied (Kaskela et al., 2012). We used a low threshold of 0.5 standard deviations due 15 

to the generally very gentle variations in the terrain geometry of the tidal inlet system. 16 

We defined the threshold between slopes and flats as 2°. This definition was a 17 

compromise between detecting as many slopes as possible but avoiding too many “false 18 

slopes” being detected along the swath edges, which seemed to be a consequence of 19 

lower precision at the outer beams of the swath, as well as differences between 20 

overlapping swaths. 21 

3.5.2 Morphological classification analysis 22 

A morphological classification was developed for delineating actual morphological 23 

features in the study area. The classification was built partly on different neighbourhood 24 

analyses and slopes derived from the DEM, and partly on the local tidal range. Broad-25 

scale crests from the geomorphometric classification were also incorporated in the 26 

analysis. Figure 5 describes the steps performed in ArcGIS, which led to the 27 

classification of 6 morphological classes: Swash bars, linear bars, beach dunes, 28 

intertidal flats, intertidal creeks and subtidal channels. All the criteria for defining a 29 

particular morphological class had to be fulfilled for a cell to be classified into that 30 
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class. Cells that did not meet the criteria to be classified into any of the morphological 1 

classes were assigned the class “unclassified”. 2 

33 years of continuous measurements of the water level at Havneby on Rømø, 25 km 3 

south of the study area, showed a mean low water level of -0.94 m (DVR90) and a mean 4 

high water of 0.94 m (DVR90) (Klagenberg et al., 2008). Although the tidal range in 5 

Knudedyb was probably slightly different, it was the best estimate for the study site. 6 

Therefore, these water levels were used to separate between the supratidal, intertidal and 7 

subtidal zones. 8 

Subtidal channels were defined as everything below the mean low water, which was -9 

0.94 m. A “smooth DEM” was created, in which each cell of the original DEM was 10 

assigned the average elevation value of its surrounding cells in a window size of 11 

100 × 100 m (actually 199 × 199 cells, i.e. 99.5 × 99.5 m). The result was subtracted 12 

from the original DEM, creating an Elevation Change Model (ECM), which made it 13 

possible to extract information about the deviation of the cells in the DEM compared to 14 

its surrounding cells. The principle is similar to the BPI, and again the purpose was to 15 

locate cells, with a higher/lower elevation than its surrounding cells. Positive values 16 

were higher cells and negative values were lower cells. Certain thresholds were found 17 

suitable for classifying beach dunes (> 0.8 m) and intertidal creeks (< -0.3 m). These 18 

two classes were furthermore classified into their respective tidal zones (supratidal and 19 

intertidal) based on the elevation. Intertidal flats were classified by low slope values (< 20 

1°) of a down-sampled 2 m DEM (each down-sampled cell was assigned the mean 21 

value of its 4 × 4 original cells). Moreover, to be classified as a flat, the ECM had to be 22 

within ±10 cm to avoid any incorrect intertidal flat classification of flat crests on top of 23 

bars or flat bottoms inside creeks or channels. The BTM classification class “broad-24 

scale crests” was used as an input, since it was found to capture bar features. However, 25 

the thresholds used in the BTM classification resulted in capturing features larger than 26 

bars in the broad-scale crests class. To distinguish between bars and larger features, the 27 

standard deviation of each DEM cell in a moving window size of 250 × 250 m (actually 28 

249 × 249 cells, i.e. 124.5 × 124.5 m) was calculated. A suitable threshold to distinguish 29 

between bars and larger features was 0.6 standard deviations. Finally, swash bars and 30 

linear bars were identified by an area/perimeter-ratio, based on the assumption that 31 
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linear bars have smaller ratio than swash bars, due to the different shapes. Based on 1 

visual interpretation, a ratio of 4 was found to be a suitable threshold. 2 

 3 

4 Results 4 

4.1 Refraction correction and dead zone extent 5 

The vertical adjustment of the LiDAR points (𝑧
diff

) due to refraction correction is 6 

linearly correlated with the water depth (𝑑) (Fig. 6). An empirical formula is derived for 7 

this relationship: 8 

𝑧diff = 0.227 ∙ 𝑑  ,  R2 = 0.997       (7) 9 

A LiDAR point at 1 m water depth is vertically adjusted by approximately 0.23 m (Fig. 10 

6). The variations around the linear trend in Fig. 6 are due to changing incidence angles 11 

of the laser beam that varies with the airplane attitude (roll, pitch and yaw). 12 

The vertical extent of the dead zone is approx. 28 cm, determined by plotting the 13 

vertical difference between the shallowest and the deepest LiDAR point within 0.5 m 14 

cells – i.e. between the shallow surface and the deep surface (Fig. 7). The difference is 15 

manifested by an abrupt change at the dead zone, and the highest rate of change is 16 

shown to be at a water depth of approx. 28 cm. 17 

4.2 Sub-decimetre accuracy and precision 18 

The vertical root mean square error of the LiDAR data is ±4.1 cm, and the accuracy is 19 

±8.1 cm with a 95% confidence level (Table 1 and Fig. 8A). The vertical precision of 20 

the LiDAR data with a 95 % confidence level is ±3.8 cm for the points on the frame, 21 

and ±7.6 cm for the points on the block (Table 1). 22 

The horizontal accuracy calculated as the horizontal mean absolute error (𝐸MA,xy) is 23 

determined to ±10.4 cm (Fig. 8B). 24 

4.3 Point density and resolution 25 

The average point density is 20 points per m
2
, which equals an average point spacing of 26 

20 cm (Table 2). The point density of the individual swaths varies between 7-13 points 27 
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per m
2
, and the point density of the combined swaths in the study area, varies between 1 

0-216 points per m
2
, although above 50 points per m

2
 are rare. 2 

4.4 DEM and landforms 3 

The elevations in the studied section of the Knudedyb tidal inlet system range from -4 4 

m DVR90 in the deepest parts of the flood channel and main channel to 21 m DVR90 5 

on top of the beach dunes on Fanø (Fig. 9). Beach dunes and cottages of the village 6 

Sønderho are clearly visible in the northern part of the study site (Fig. 9A-B). The 7 

intertidal zones are generally flat, while the most varying morphology is found in the 8 

area of the flood channel (Fig. 9C-D), and in the area close to the main channel (Fig. 9 

9E-F). The flood channel is approximately 200 m wide in the western part and it divides 10 

into two channels towards east. The bathymetry of the channel bed is clearly captured 11 

by the LiDAR data in the eastern part, and also in the western part down to -4 m 12 

DVR90, which approximately equals a water depth of 3 m at the time of survey. An 13 

intertidal creek joins the flood channel from the north (Fig. 9D). From the flood channel 14 

towards south, the tidal flat is vaguely upward sloping, until reaching two distinct swash 15 

bars, which are rising 0.9 m above the surrounding tidal flat, reaching a maximum 16 

elevation of 1.5 m DVR90 (Fig. 9E-F). Further south, the linear bars along the margin 17 

of the main channel are clearly captured in the DEM (Fig. 9E). 18 

4.5 Geomorphometric and morphological classifications 19 

The geomorphometric and morphological classifications show that most of the study 20 

area is located in the intertidal zone, and is mostly flat. This is manifested by the 21 

dominating two classes; flats and intertidal flats (Fig. 10A-B). The geomorphometric 22 

classification identifies slopes as stripes with NNW-SSE directionality across the flats. 23 

These are following the direction of the survey lines, and thus, they are not real 24 

morphological features but more an indication of lower precision of the LiDAR data, 25 

especially at the outer beams of the swath. These swath artefacts are smoothed out in the 26 

morphological classification by down-sampling the DEM to 2 m resolution, and 27 

therefore, the intertidal flats appear uniform and seamless. The bar features close to the 28 

main channel are well defined in the geomorphometric classification where they are 29 

classified as broad-scale crests and fine-scale crests surrounded by slopes. In the 30 
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morphological classification, these are identified based on neighbourhood analyses and 1 

separated by the area/perimeter-ratio into two classes, swash bars and linear bars (Fig. 2 

10C). Broad-scale crests are also found on Fanø in the northern part of the area, and 3 

most of these are classified as beach dunes in the morphological classification. The 4 

geomorphometric classification identifies more broad-scale crests along the banks of the 5 

flood channel, however, these are not real bar features but they are identified as crests 6 

due to the nearby flood channel and creeks resulting in a positive broad-scale BPI. In 7 

the morphological classification it is possible to distinguish between these and the actual 8 

bar features, by looking at elevation deviations at an even broader scale than the broad-9 

scale BPI. The intertidal creek in the NWern part of the area is a mix of depressions, 10 

slopes and fine-scale crests in the geomorphometric classification, whereas it is 11 

relatively well defined and properly delineated in the morphological classification (Fig. 12 

10D).  13 

The geomorphometric classification identifies slopes along the banks of the main 14 

channel, flood channel and the intertidal creek, as well as in front of the beach dunes 15 

and along the edges of the swash bars and linear bars. The slopes seem particularly 16 

reliable at delineating the features in the intertidal zone, i.e. swash bars, linear bars and 17 

creeks. Depressions are primarily identified in the deepest detected parts of the main 18 

channel and in the flood channel, in the intertidal creek and in the beach dunes. Fine-19 

scale crests are found in the geomorphometric classification in locations which are high 20 

compared to its near surroundings. They are primarily seen as parts of the linear bars 21 

close to the main channel, in the beach dunes on Fanø and along the banks of the 22 

intertidal creeks.  23 

A few small circular mounds of approx. 5 m diameter with patches of Spartina 24 

Townsendii (Common Cord Grass) located on the intertidal flat are classified as fine-25 

scale crests in the geomorphometric classification (Fig. 11). It clearly shows the 26 

capability of capturing fine-scale features in the DEM and in the derived classification. 27 

 28 
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5 Discussion 1 

5.1 Performance of the water surface detection method 2 

The water surface in topobathymetric LiDAR surveys is most often detected from NIR 3 

LiDAR data, which is simultaneously collected along with the green LiDAR data 4 

(Collin et al., 2012; Guenther et al., 2000; Parker and Sinclair, 2012; Wang and Philpot, 5 

2007). However, detecting the water surface and generating a DWSM based on the 6 

green LiDAR data alone provides a potential to perform topobathymetric surveys with 7 

just one sensor, thus optimizing the survey costs as well as data handling and storage.  8 

The two critical issues risen by Guenther et al. (2000), as mentioned in the introduction, 9 

concerning the water surface detection with green LiDAR were thoroughly investigated 10 

in this study. The first issue, regarding the gap of detected water surface signals in the 11 

dead zone, is addressed by detecting the water surface based on areas which are known 12 

to be covered by water, and thereafter extending the water surface until it intersects the 13 

topography, so that also the dead zone is covered by the modelled water surface. The 14 

second issue, regarding uncertainty in the water surface elevation determination, is 15 

addressed using the results presented by Mandlburger et al. (2013) who found a 16 

statistical relationship between the cloud of water surface points in the green LiDAR 17 

data and the water surface elevation derived from NIR LiDAR data. Mandlburger et al. 18 

(2013), however, did not describe the actual method of modelling a DWSM, which is 19 

done in this study. Mandlburger et al. (2015), on the other hand, did propose a method 20 

for modelling the water surface, however, it was done in a fluvial environment and the 21 

water level was based on manual determinations of cross sectional water levels. The 22 

water surface detection method in this study is thus new in combining the properties: 1) 23 

It is only using green LiDAR data, 2) it is based on automatic water level determination, 24 

3) it is applied in a tidal environment (can be applied in any coastal environment) and 4) 25 

it is transparent and repeatable due to the detailed description of data processing steps 26 

given in the text. 27 

The developed water surface detection method is new but it must be pointed out that the 28 

assumption of a flat DWSM leaves room for improvements for the future, especially if 29 

it is applied in a fluvial environment. Assuming a flat water surface is indeed a 30 
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simplification of the real world, since the water surface in reality can be inclined, and it 1 

can be topped by waves.  2 

5.2 Implications of the dead zone 3 

The vertical extent of the dead zone is in this study determined to approx. 28 cm (Fig. 4 

7), which means that no return signal is detected from the water surface when the water 5 

depth is less than 28 cm. The implication of the dead zone along the channel edges is 6 

minimised by extending the DWSM until it intersects the topography, but the setting is 7 

different for the small ponds on the intertidal flats. They may have different water levels 8 

than in the large channels, but no detected water surface points, since the water depth in 9 

the ponds are generally less than the vertical extent of the dead zone, i.e. approx. 28 cm. 10 

The presented method is not capable of detecting a water surface in these ponds, which 11 

means that the bottom points of the ponds are not corrected for refraction. Omitting 12 

refraction correction of a 28 cm deep pond will result in -6 cm elevation error according 13 

to the calculated refraction (Fig. 6). 14 

5.3 Evaluation of the topobathymetric LiDAR data quality 15 

The vertical accuracy of conventional topographic LiDAR data has previously been 16 

determined to ±10-15 cm (Hladik and Alber, 2012; Jensen, 2009; Klemas, 2013; Mallet 17 

and Bretar, 2009). Only few previous studies have focused on the accuracy of shallow 18 

water topobathymetric LiDAR data (Mandlburger et al., 2015; Nayegandhi et al., 2009; 19 

Steinbacher et al., 2012). Nayegandhi et al. (2009) determined the vertical 𝐸RMS of 20 

LiDAR data in 0-2.5 m water depth to ±10-14 cm, which is above the ±4.1 cm 𝐸RMS 21 

found in this study (Table 1). Steinbacher et al. (2012) compared topobathymetric 22 

LiDAR data from a RIEGL VQ-820-G laser scanner with 70 ground-surveyed river 23 

cross sections, serving as reference, and found that the system’s error range was ±5-10 24 

cm, which is comparable to the ±8.1 cm accuracy found in this study. Mandlburger et 25 

al. (2015) compared ground-surveyed points from a river bed with the median of the 26 

four nearest 3D-neighbors in the LiDAR point cloud, and they found a standard 27 

deviation of 4.0 cm, which is almost equal to the ±4.1 cm standard deviation found in 28 

this study (Table 1). In comparison with these previous findings of LiDAR accuracy, 29 
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the assessment of the vertical accuracy in this study indicates a good quality of the 1 

LiDAR data. 2 

Mapping the full coverage of tidal environments, such as the Wadden Sea, requires a 3 

combination of topobathymetric LiDAR to capture topography and shallow bathymetry 4 

and MBES to capture the deeper bathymetry. The two technologies make it possible to 5 

produce seamless coverage of entire tidal basins; however, merging the two products 6 

raises the question whether the quality of the data from the two different sources is 7 

comparable. Comparing the LiDAR accuracy with previous findings of accuracy 8 

derived from MBES systems indicates similar or slightly better accuracy from the 9 

MBES systems (Dix et al., 2012; Ernstsen et al., 2006). Dix et al. (2012) determined the 10 

vertical accuracy of MBES data by testing the system on different objects and in 11 

different environments, and found the vertical 𝐸RMS to be ±4 cm. Furthermore, they 12 

tested a LiDAR system on the same objects and found a similar vertical 𝐸RMS of ±4 cm. 13 

The vertical 𝐸RMS of ±4.1 cm found in this study is very close to both the MBES 14 

accuracy and LiDAR accuracy determined by Dix et al. (2012). Another study by 15 

Ernstsen et al. (2006) determined the vertical precision of a high-resolution shallow-16 

water MBES system based on 7 measurements of a ship wreck from a single survey 17 

carried out in similar settings as the present study, namely in the main tidal channel in 18 

the tidal inlet just north of the inlet investigated in this study. They found the vertical 19 

precision to be ±2 cm, which is slightly better than the vertical precision of ±3.8 cm 20 

(frame) and ±7.6 cm (block) found in this study. Overall, accuracy and precision are 21 

within the scale of sub decimetres for both topobathymetric LiDAR and MBES systems, 22 

which enables the mapping of tidal basins with full coverage and with comparable 23 

quality. 24 

Due to technical and logistical reasons, the data validation and the actual survey were 25 

carried out on different days and in different locations. Based on this, it is a fair question 26 

to ask, whether the determined quality actually represents the quality of the data within 27 

the study site. Differences between the determined data quality at the validation sites 28 

and the data quality at the study site may arise from 1) different environmental 29 

conditions on the two surveying days and/or 2) different environments at the validation 30 

sites compared to the study site.  31 
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The environmental conditions were similar on the two surveying days (as mentioned in 1 

the section “Surveys and instruments”), meaning that the different days are not affecting 2 

the representation of the data quality within the study site.  3 

The environmental differences between validation site 2 and the study site include the 4 

presence of up to 0.2-0.3 m waves in the main channel next to the study site. The waves 5 

introduce a source of error, because the proposed water surface detection method is not 6 

modelling the waves. The precision of the seabed points within the study site are 7 

therefore expected to be worse than the ±3.8 cm precision determined at validation site 8 

2. 9 

The water clarity/turbidity impacts the accuracy of the LiDAR data negatively, due to 10 

scattering on particles in the water column, which causes the laser beam to spread 11 

(Kunz et al., 1992; Niemeyer and Soergel, 2013). Moreover, part of the light is reflected 12 

in the direction of the receiver, and such return signals can be difficult to distinguish 13 

from the seabed return (Kunz et al., 1992). The turbidity was measured at validation site 14 

2 and in the flood channel close to the study site during the 19 April survey by 15 

collecting water samples and subsequently analysing the samples for suspended 16 

sediment concentration (SSC) and organic matter content (OMC). The analyses showed 17 

that the average SSC was higher in the flood channel (17.2 mg/kg) than in the river 18 

(10.2 mg/kg). In contrast, the average OMC was lower in the flood channel (25.5 %) 19 

than in the river (40.0 %). These observations indicate that 1) the underwater precision 20 

is assessed in a location with higher turbidity than the environment within the study site; 21 

therefore, the turbidity cannot be a cause of lower precision in the study site, and 2) the 22 

penetration depth seems to be controlled by the OMC rather than by the SSC. This is 23 

new knowledge, since no previous studies (from what we know) have investigated the 24 

relative effect of organic matter as opposed to inorganic matter on the laser beam 25 

penetration depth. However, in order to determine the relationship with statistical 26 

confidence, a more comprehensive study is needed, involving measurements of 27 

penetration depth at different SSCs and OMCs, and without disturbance from other 28 

environmental parameters. 29 
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5.4 Spatial variations of topobathymetric LiDAR data quality 1 

The quality of spatial datasets is often provided as single values, such as ±8.1 cm for the 2 

vertical accuracy in this case, and then the determined value represents the 3 

accuracy/precision of the whole dataset. However, in reality the value is only a measure 4 

of the local quality at the location where the assessment is conducted. The quality of the 5 

dataset varies spatially, and one way to illustrate this is to extract the maximum vertical 6 

difference between the LiDAR points of the processed point cloud within every 0.5×0.5 7 

m cell throughout the study site (Fig. 12). In flat areas, without multiple return signals, 8 

this shows the spatially varying precision of the dataset. There are large differences on 9 

Fanø, which is expected due to vegetation causing multiple LiDAR returns from both 10 

the vegetation canopy and from the bare ground. In contrast, the differences on the very 11 

gently sloping, non-vegetated tidal flat are up to 10 cm, and there is no simple and 12 

natural reason for this variation. A range of factors contribute to the observed variations:  13 

Laser beam incidence angle: The incidence angle, at which the laser beam hits the 14 

ground/seabed, is determined by a combination of the scan angle, the water surface 15 

angle and the terrain slope. The shape of the footprint is stretched with larger incidence 16 

angles, and this effect can cause pulse timing errors in the detected signal, which leads 17 

to a decreasing vertical accuracy (Baltsavias, 1999). The error associated with larger 18 

scan angles is generally causing the outer beams, toward the swath edges, to attain a 19 

lower accuracy (Guenther, 2007). This is a reason for the observed variations along the 20 

swath edges (Fig. 12). Terrain slopes have the same effect of decreasing the vertical 21 

accuracy due to the footprint stretching. The measured elevation tends to be biased 22 

toward the shallowest point of the slope within the laser beam (Guenther, 2007). 23 

However, the influence of slope is not crucial in the Knudedyb tidal inlet system, since 24 

it is generally a very flat area. 25 

Vertical bias between overlapping swaths: Areas covered by more than a single swath 26 

tend to show more vertical variation in the LiDAR point measurements. This can be 27 

caused by variance/error in the GPS measurements and/or IMU errors (Huising and 28 

Gomes Pereira, 1998). The vertical bias between swaths has been observed in the point 29 

cloud to be up to 5 cm, but it is varying throughout the study site. In most environments, 30 
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a bias of 5 cm would be unnoticeable, but because of the large and very flat parts of the 1 

Knudedyb tidal inlet system, even a small bias becomes readily evident.  2 

Water depth: The accuracy and precision are expected to be lower as the laser beam 3 

penetrates deeper into the water column (Kunz et al., 1992). The laser beam footprint is 4 

diverging as it moves through the water column, resulting in a larger footprint on the 5 

seabed. The elevation of the detected point is thus derived from the measurement on a 6 

larger area on the seabed, which will decrease the vertical accuracy, as well as decrease 7 

the capability of detecting small objects. With this in mind, the higher precision at the 8 

frame compared to the block is opposite of what would be expected, since the frame is 9 

below water and the block is on land. In this case, other factors, such as overlapping 10 

swaths and/or scan angle deviations, have more influence on the precision than the 11 

water depth. Also, it should be remembered that the frame surface was close to the 12 

water surface, and the effect of the water depth on the precision would most likely be 13 

more evident if it was located in deeper water. 14 

Additional factors, beside the ones mentioned above, may influence the quality of 15 

LiDAR datasets. For instance, a dense vegetation cover of the seabed or breaking waves 16 

that makes the laser detection of the seabed almost impossible. However, these factors 17 

do not have a great influence in the studied part of the Knudedyb tidal inlet system, and 18 

thus they are not further elaborated.  19 

5.5 Evaluation of the morphological classification 20 

The morphological classification presented in this study is based on the studied section 21 

of the Knudedyb tidal inlet system. The overall concept of using tidal range, slope and 22 

variations of the elevation at different spatial scales proves to be a reliable method for 23 

delineating the morphological features in this tidal environment. The concept, however, 24 

can be applied in other environments. The specific thresholds in the classification 25 

determined in this study may deviate in other areas. Morphological features of different 26 

sizes require steps of other spatial scales in the neighbourhood analyses to produce a 27 

successful classification. In the future the classification method will be improved by 28 

implementing an objective method for determining the scales, which can make it 29 

applicable in areas with different morphological characteristics. Such an objective scale 30 

determination method is presented by Ismail et al. (2015), who determined the scales 31 
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based on the variance of the DEM at progressively larger window sizes. In this way, the 1 

sizes of the morphological features are determining the scales for the classification. 2 

5.6  Using topobathymetric LiDAR data to map morphology in a highly 3 

dynamic tidal environment  4 

The study demonstrates the capability of green topobathymetric LiDAR to resolve fine-5 

scale features, while covering a broad-scale tidal inlet system. Collecting 6 

topobathymetric LiDAR data with a high point density of 20 points/m
2 

on average 7 

enables detailed seamless mapping of large tidal environments, and the LiDAR data has 8 

further proved to maintain a high accuracy. The combined characteristics of mapping 9 

with high resolution and high accuracy in a traditionally challenging environment 10 

provide many potential applications, such as mapping for purposes of spatial planning 11 

and management, safety of navigation, nature conservation, or morphological 12 

classification, as demonstrated in this study. The developed LiDAR data processing 13 

method is tailored to a morphological analysis application. The best representation of 14 

the morphology is mapped by gridding the average value of the LiDAR points into a 15 

DEM with a 0.5 × 0.5 resolution. Other applications would require different gridding 16 

techniques. For instance hydrographers, who are generally interested in mapping for 17 

navigational safety, would use the shallowest point for gridding. However, the overall 18 

method for processing the point cloud can be used regardless of the application. Only 19 

the last and least challenging/time consuming step of gridding the point cloud into a 20 

DEM, may vary depending on the application.  21 

Applying topobathymetric LiDAR data for morphological analyses in tidal 22 

environments enables a holistic approach of seamlessly merging marine and terrestrial 23 

morphologies in a single dataset. However, a combination of topobathymetric LiDAR 24 

and MBES data is required, in order to map the morphology of tidal environments in 25 

full coverage. The comparable quality and resolution of LiDAR and MBES data gives a 26 

potential to map broad-scale tidal environments, such as the Wadden Sea, in full 27 

coverage and with high resolution and high accuracy. 28 

 29 
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6 Conclusions 1 

A method was developed for processing raw topobathymetric Light Detection And 2 

Ranging (LiDAR) data into a Digital Elevation Model (DEM) with seamless coverage 3 

across the land-water transition zone. The method relies on basic principles, and the 4 

entire processing method is described with a high level of detail, which makes it 5 

transparent and easy to implement for future studies. Specifically a new procedure was 6 

developed for water surface detection in a tidal environment utilizing automatic water 7 

level determination solely based on green LiDAR data. The water surface detection 8 

method presented in this work did not take into account the variation in wave heights 9 

and surface slopes, which therefore constitutes a challenge to be addressed in future 10 

studies.  11 

The vertical accuracy of the LiDAR data was determined by object detection of a 12 

cement block on land to ±8.1 cm with a 95% confidence level. The vertical precision 13 

was determined at the cement block to ±7.6 cm, and ±3.8 cm at a steel frame, placed 14 

just below the water surface. The horizontal mean error was determined at the block to 15 

±10.4 cm. Overall, vertical and horizontal precision are within sub decimetre scale. 16 

A seamless topobathymetric DEM was created in a 4 × 0.85 km section in the 17 

Knudedyb tidal inlet system. An average point density of 20 points per m
2
 made it 18 

possible to create an elevation model of 0.5 × 0.5 m resolution without significant 19 

interpolation. The DEM extended down to water depths of 3 m, which was determined 20 

as the maximum penetration depth of the laser scanning system at the given 21 

environmental conditions. Measurements of suspended sediment concentration and 22 

organic matter content indicated that the penetration depth was limited by the amount of 23 

organic matter rather than the amount of suspended sediment. 24 

The vertical “dead zone” of the LiDAR data was determined to approx. 0-28 cm in the 25 

very shallow water. 26 

The DEM was used as input in the Benthic Terrain Modeler tool to classify the study 27 

area into 5 classes of geomorphometry: broad-scale crests, fine-scale crests, 28 

depressions, slopes and flats. A morphological classification method was developed for 29 

classifying the area into 6 morphological classes: swash bars, linear bars, beach dunes, 30 

intertidal flats, intertidal creeks and subtidal channels. The morphological classification 31 
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method was based on parameters of tidal range, terrain slope, a combination of various 1 

statistical neighbourhood analyses with varying window sizes and the area/perimeter-2 

ratio of morphological features. The concept can be applied in any coastal environment 3 

with knowledge of the tidal range and the input of a DEM; however, the thresholds may 4 

need adaptation, since they have been determined for the given study area. In the future 5 

the classification method should be improved by implementing an objective method for 6 

determining thresholds, which makes it immediately applicable across different 7 

environments. 8 

Overall this study has demonstrated that airborne topobathymetric LiDAR is capable of 9 

seamless mapping across land-water transition zones even in environmentally 10 

challenging coastal environments with high water column turbidity and continuously 11 

varying water levels due to tides. Furthermore, we have demonstrated the potential of 12 

topobathymetric LiDAR in combination with morphometric analyses for classification 13 

of morphological features present in coastal land-water transition zones. 14 
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Table 1: Vertical accuracy and precision of the LiDAR point measurements, in terms of 1 

minimum error (Emin), maximum error (Emax), standard deviation (σ), mean absolute 2 

error (EMA), root mean square error (ERMS) and the 95% confidence level (Cl95%). 3 

Accuracy/ 

Precision 

Object Best-fit 

plane 

# 

points 

n 

Emin 

(cm) 

Emax 

(cm) 

σ 

(cm) 

EMA 

(cm) 

ERMS 

(cm) 

Cl95% 

(cm) 

Accuracy Cement 

block 

GCPs 227 0.01 12.1 4.1 3.5 ±4.1 ±8.1 

Precision Cement 

block 

Point 

cloud 

227 0.04 12.9 3.9 2.8 ±3.9 ±7.6 

Precision Steel 

frame 

Point 

cloud 

46 0.02 5.5 2.0 1.6 ±1.9 ±3.8 

  4 
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Table 2: LiDAR point spacing and density for all the 11 individual swaths, which 1 

covered the study area, and for the combined swaths.  2 

Swath 

number 

1 2 3 4 5 6 7 8 9 10 11 All 

Point 

spacing (m) 

0.30 0.30 0.36 0.31 0.36 0.32 0.37 0.29 0.35 0.36 0.28 0.20 

Point 

density 

(pt./m
2
) 

10.8 10.8 7.8 10.2 7.5 9.6 7.2 11.7 8.0 7.8 12.7 19.6 

  3 
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Figure 1: A) Overview of the study area location in the Danish Wadden Sea and the 1 

specific locations of the study site (B) and the two validation sites (I and J) (22 April 2 

2015 satellite image, Landsat 8). B) The study site in the Knudedyb tidal inlet system 3 

(30 May 2015 Orthophoto, AHM). C) Cottages in the dunes on Fanø. D) Beach dunes 4 

on Fanø. E) Patch of Spartina Townsendii (Common Cord Grass). F-G) Swash bars. H) 5 

Linear bar. I) Validation site 1 with a cement block on land, used for accuracy and 6 

precision assessment (19 April 2015 orthophoto, AHM). J) Validation site 2 with a steel 7 

frame in Ribe Vesterå River, used for precision assessment (19 April 2015 orthophoto, 8 

AHM). 9 

  10 
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1 
Figure 2: Conceptual sketch of the laser beam propagation and return signals. The beam 2 

refracts upon entering the water body, and it diverges as it propagates through the water 3 

column. Return signals are produced both in the air, at the water surface, in the water 4 

column and at the seabed. The LiDAR instrument has limited capability in very shallow 5 

water (the “dead zone” in the figure) because the successive peaks from the water 6 

surface and the seabed are not individually separated in time and amplitude. Only the 7 

largest peak, which is from the seabed, is detected.  8 
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Figure 4: Classification decision tree, showing how the geomorphometric classification 3 

was conducted in the Benthic Terrain Model tool. 4 
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Figure 5: Classification decision tree of the morphological classification. All steps were 3 

performed in ArcGIS. 4 
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Figure 6: Vertical adjustment of the refracted LiDAR points from the flood channel 3 

transect (see location in Fig. 1B).4 
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Figure 7: Vertical difference between the shallowest and the deepest LiDAR point 2 

within 0.5 m grid cells in the land-water transition zone. The abrupt change is caused by 3 

the dead zone. The vertical extent of the dead zone is determined to approx. 28 cm, 4 

derived by the maximum rate of change of a polynomial fit through the points.   5 
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Figure 8: Vertical and horizontal distribution of the LiDAR points describing the block 2 

surface and the actual block surface derived from GCPs. A) LiDAR points (grey dots) 3 

compared to the GCP block surface (black line) for determining the vertical accuracy. 4 

The grey line shows the LiDAR block surface as a best-linear-fit through the points. B) 5 

Block surface derived from the four GCP corner points and the block surface derived by 6 

the perimeter of the LiDAR points.   7 
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Figure 9: Topobathymetric DEM across the northern part of the Knudedyb tidal inlet 3 

system with close-up views of different detail level in specific areas. The northern 4 

supratidal part of the study area (A and B) includes beach dunes, vegetation and 5 

cottages, thus the DEM can be regarded as a DSM in this specific section. In the sub- 6 

and intertidal parts of the study area (C, D, E and F), the DEM reflects the natural 7 

terrain, thus it can be regarded as a DTM. A) Beach dunes, vegetation and cottages. B) 8 
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Cottages. C) Flood channel. D) Intertidal creek. E) Swash bars, linear bars and 1 

bathymetry of the main channel. F) Swash bar. A hillshade is draped upon the close-up 2 

views for improved visualization of morphological features. 3 
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Figure 10: Two classifications derived from topobathymetric LiDAR data: A) 3 

Geomorphometric classification, and B) Morphological classification. C) Zoom-in on 4 

the swash bars and linear bars close to the main channel in the morphological 5 

classification. D) Zoom-in on the intertidal creek in the morphological classification. A 6 

hillshade of the DEM is draped over C and D. 7 
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Figure 11: Vegetated mounds on the intertidal flat are clearly visible in the DEM and 3 

classified as fine-scale crests in the geomorphometric classification. To the right is an 4 

image of one of the mounds.  5 
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Figure 12: Vertical difference between the highest and the lowest LiDAR point within 3 

0.5 × 0.5 m grid cells. 4 


