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Authors’ response to the reviews 
 
Once again we would like to thank all of the referees for their comments and suggestions. We have been 
studying and discussing thoroughly your sharp criticisms and comments which have helped us to identify 
sections in the manuscript that require supplementing, rewriting or improving. The general referee 
comments and the evaluation points can be categorised into six major issues. Since these issues are first 
introduced in the general comments of Referee #1 and then elaborated in one or more of the evaluation 
points, we suggest to address each issue separately rather than replying to every point. We find that the 
issues addressed in the general comments and in the evaluation points can be summed up under the 
following headings together with the changes we have made to the manuscript accordingly: 
 
1. Novelty 
One of the major criticisms put forth by the referees was the difficulty of grasping the novelty of our 
proposed processing method. After all it is not the first time that a seamless DEM across the land-water 
transition zone has been derived from green LiDAR, and the main processing steps (filtering, water surface 
detection, refraction…) are unavoidable when processing such datasets. However, we do see our presented 
work as novel in the ways mentioned below, and we have clarified this in the manuscript: 

 We have presented a simple procedure for water surface detection/modelling in the coastal zone 
using only green LiDAR data. To the authors’ knowledge, such processing procedure has not been 
published before. We have referred to existing published articles that deal with LiDAR data water 
surface detection/modelling; however, most often NIR LiDAR data are used for the water surface 
detection, and the few studies dealing with green LiDAR data water surface detection do not go 
into detail on how to perform the actual modelling of the water surface in a coastal environment. 

 The entire method for processing raw green LiDAR data into a DEM has never (to our knowledge) 
been openly described to such a high level of detail, which makes the processing useful, user 
friendly, and repeatable. The commercial LiDAR companies have their processing workflows but 
there is a tendency to keep some steps in their workflows hidden. Therefore we argue that our 
manuscript in the very detailed description of the workflow provides new knowledge to a broader 
audience. We have made this clear in the manuscript. 

 We have developed a morphological classification based on the processed DEM, thereby adding 
scientific context to the manuscript (see point 3). We have made our own composition of tools and 
criteria for the morphological classification, and with this addition we have built a processing 
procedure that extends all the way from the raw data to classes of morphological features in a 
coastal environment. 

 
2. Context 
A second major issue, addressed by the referees, was the lack of context to the manuscript, and they were 
absolutely right. Our first submission focused on the technical part of data processing; however, the 
original project work included also a geomorphological part with a morphometric analysis of the test site. 
We decided to focus on the technical part in order to provide all details for the community, which is still 
emerging in the field of airborne green laser scanning and imaging. However, based on the referee 
comments and suggestions we have decided to include the morphometric analysis in order to demonstrate 
the application for mapping morphological units in high energy intertidal environments, and specifically in 
relation to the vast intertidal flats in the Wadden Sea, which are otherwise impossible to map with full 
coverage in high detail. This addition will further clarify the reason for data collection and processing, which 
was also an issue addressed by the referees. 
 
3. Morphological quantitative measurements 



2 
 

It was criticized that the originally submitted manuscript was lacking morphological quantitative 
measurements. We have overcome this issue by adding the morphometric analysis and morphological 
classification as mentioned in the previous point. 
 
4. Extended discussion 
We have consolidated the discussion by relating our developed processing procedure with the state-of-the-
art methods of water surface detection and by elaborating more on the scientific implications of our data 
collection, processing and results. Specifically, we have modified the discussion so it includes: 

 A comparison between our water surface detection methods and existing methods.  
 The implications of the dead zone. 
 The implications of using LiDAR data collected at different days and in different environments for 

data processing and quality assessment, respectively. 
 Our LiDAR data processing method in the context of a morphological classification and the 

method’s transferability to other applications. 
 Evaluation and potential of using topobathymetric LiDAR data for mapping morphological features 

in a highly dynamic tidal environment. 
 
5. More references to relevant literature 
The quality and types of references were criticized by the referees in our first submitted manuscript. We 
have addressed this by including discussion of our method for water surface detection against up to date, 
peer reviewed published literature on the subject. 
 
6. “Lessons learned” 
We addressed this issue in quite few locations in the manuscript when we described the water surface 
modelling method in detail giving the current achievement and the future work required for enhancing the 
modelling accuracy via incorporating the wave and slope models in the workflow. We also discussed the 
choice of thresholds in the morphological classification and showed the importance of choosing the right 
thresholds for producing the actual morphological features, and concluded that an objective method is 
required in future work to estimate these thresholds, which renders the method applicable in all 
environments. We have also demonstrated the ability of green LiDAR to map seamlessly the land-water 
transition zone with such high accuracy and precision to make it a practical and excellent choice for 
conducting such work in the coast zone. 
 
We found these six issues to be the major concerns outlined by the referees. The modifications involved in 
dealing with the issues have required some major amendments, but we are confident that the manuscript 
has improved. 
 
Thank you for your time reviewing the manuscript and for your suggestions for improving it. We look 
forward to receive your response to these improvements. 
 
 
On behalf of all authors, 
 
Faithfully, 
 
Verner B. Ernstsen 
Associate Professor 
Department of Geosciences and Natural Resource Management 
University of Copenhagen, Denmark 
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Abstract 15 

The transition zone between land and water is difficult to map with conventional geophysical 16 

systems due to shallow water depth and often harsh environmental conditions. The emerging 17 

technology of airborne topobathymetric Light Detection And Ranging (LiDAR) is capable of 18 

providing both topographic and bathymetric elevation information, using only a single green laser, 19 

resulting in a seamless coverage of the land-water transition zone. However, there is no 20 

standardtransparent and simplereproducible method for processing green topobathymetric LiDAR 21 

data into a Digital Elevation Model (DEM). InThe general processing steps involve data filtering, 22 

water surface detection and refraction correction. Specifically, the procedure of water surface 23 

detection, solely using green laser LiDAR data, has not previously been described in detail. The aim 24 

of this study, a was to fill this gap of knowledge by developing a step-by-step procedure for 25 

modelling the water surface using the green laser LiDAR data. The detailed description of the 26 

processing method is developed for the creation of a augments its reliability, makes it user friendly 27 

and repeatable. A DEM based on high-resolutionwas obtained from the processed topobathymetric 28 
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LiDAR data collected in spring 2014 from the Knudedyb tidal inlet system in the Danish Wadden 1 

Sea. The vertical accuracy of the LiDAR data is determined to ±8 cm at a 95% confidence level, 2 

and the horizontal accuracy is determined as the mean error to ±10 cm. The LiDAR technique is 3 

found capable of detecting features with a size of less than 1 m
2
. The created DEM seamlessly 4 

covers the land-water transition zone extending down to approximately 3 m water depth which is 5 

the maximum penetration depth of the LiDAR system at the given challenging environmental 6 

conditions in the Wadden Sea.The derived high resolution DEM was applied for detection and 7 

classification of geomorphometric and morphological features in the study area. Initially, stage (or 8 

elevation in relation to tidal range) was used to divide the area of investigation into the different 9 

tidal zones, i.e. subtidal, intertidal and supratidal. Subsequently, a combination of statistical 10 

neighbourhood analyses (Bathymetric Positioning Index, moving average and standard deviation) 11 

with varying window sizes, combined with the first derivative slope and the area/perimeter-ratio 12 

were used to identify and characterise morphometric units. Finally, these morphometric units were 13 

classified into six different types of morphological features (i.e. subtidal channel, intertidal flat, 14 

intertidal creek, linear bar, swash bar and beach dune). The developed classification method is 15 

adapted and applied to a specific case, but it can be transferred to other cases and environments. 16 

 17 

1 Introduction 18 

The coastal zone is under pressure from human exploitation in many and various ways. Many large 19 

cities are located near the coast, and they grow gradually with the increase in worldwide population 20 

and urbanization. Many industrial activities take place in close vicinity to the coast, e.g. fishery, 21 

construction, maintenance dredging for safety of navigation, and mining for raw materials. The 22 

coastal zone also provides the setting for many recreational and touristic activities, such as sailing, 23 

swimming, hiking, diving and surfing. In addition to human exploitation, climate change also poses 24 

a future threat with a predicted rising sea level and increasing storm intensity and frequency, 25 

expected to cause erosion and flooding in the coastal zone (Mousavi et al., 2011)(Mousavi et al., 26 

2011). All these pressures and different interests underpin the societal need for high resolution 27 

mapping and, monitoring, and sustainably managing of the coastal zone. 28 

Traditionally, difficulties of mapping in shallow waters have resulted in an information gap in the 29 

The transition zonezones between land and water, and for that reason there has often  have been a 30 

demand for difficult or even impossible to map and investigate in high spatial resolution data in the 31 



 

3 

 

shallow water zones (Al-Hamdani et al., 2008). Topobathymetric due to the challenging 1 

environmental conditions. The airborne near-infrared (NIR) Light Detection and Ranging (LiDAR) 2 

includesis a technique often used for measuring high-resolution topography, however, NIR laser is 3 

incapable of measuring bathymetry due to the absorption and reflection of the laser light at the 4 

water surface. Traditionally, high-resolution bathymetry is measured with a multibeam echosounder 5 

(MBES) system mounted on a vessel, but it does not cover the bathymetry in the shallow water due 6 

to the vessel draft limitation.  7 

NIR LiDAR and MBES are applied in different environments; however, the data are very similar 8 

and the processed high-resolution topography/bathymetry are both often captured in a Digital 9 

Elevation Model (DEM). The processed DEM may be applied for various purposes, e.g. for 10 

geomorphological mapping. Previous studies classifying morphology in either terrestrial or marine 11 

environments have been performed numerous times (Al-Hamdani et al., 2008; Cavalli and Marchi, 12 

2008; Höfle and Rutzinger, 2011; Ismail et al., 2015; Kaskela et al., 2012; Lecours et al., 2016; 13 

Sacchetti et al., 2011). These classification studies generally focus on either the marine or the 14 

terrestrial environment, and they do not cover the small-scale morphology in the shallow water at 15 

the land-water transition zones, due to the challenges of collecting data in these high-energy 16 

environments. A new generation of airborne green topobathymetric LiDAR enables high resolution 17 

measurements of both topography and shallow bathymetry, and for that reason it is specifically 18 

suited to map the land-water transition zone (Guenther, 1985;Jensen, 2009;Pe'eri and Long, 19 

2011)(Guenther, 1985; Jensen, 2009; Pe'eri and Long, 2011). The technology. The potential of 20 

merging morphological classifications of marine and terrestrial environments enables a holistic 21 

approach for managing the coastal zone. 22 

Topobathymetric LiDAR is based on continuous measurements of the distance between an airplane 23 

and the ground/sea bedseabed. The distance (or range) is calculated by half the travel time of a laser 24 

beam, going from the airplane to the surface of the earth and back to the airplane. The wavelength 25 

of the laser beam is in the green spectrum, usually 532 nm, since this wavelength is found to 26 

attenuate the least in the water column, resulting in the largest penetration depth of the laser 27 

(Jensen, 2009)(Jensen, 2009).. In literature, topobathymetric LiDAR data is sometimes referred to 28 

as either bathymetric LiDAR or Airborne LiDAR bathymetry (ALB). These are just different terms 29 

with the same meaning, and in this paper, topobathymetric LiDAR is preferred, since it describes 30 

the system’s ability to simultaneously measure bathymetry as well as topography. 31 
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TheA single laser beam may encounter many targets of varying nature on its way from the airplane 1 

and back again, and different processes are influencing the laser beam propagation through air and 2 

water. First, the laser beam may be reflected by targets in the air, such as birds or dust particles, and 3 

these can show up as LiDAR reflection points in the space between the airplane and the surface. 4 

When encountering water, the speed of the laser decreases from 3 × 10
8
 ms

-1
 to e.g. 2.25 × 10

8
 ms

-1
 5 

in 10°C freshwater or e.g. 2.24 × 10
8
 ms

-1
 in 10°C saltwater of 30 PSU (Millard and Seaver, 6 

1990)(Millard and Seaver, 1990). Thereby, the total range (𝑅𝑡) is the mathematical addition of the 7 

range in air (𝑅air) and in water (𝑅water) (Mandlburger et al., 2013):.  8 

𝑅𝑡 = 𝑅air + 𝑅water = (
1

2
∙ 𝑡air ∙ 𝑐air) + (

1

2
∙ 𝑡water ∙ 𝑐water)    (1) 9 

where 𝑡air, 𝑐air, 𝑡water, and 𝑐water are laser beam travel time (𝑡) and speed of light (𝑐) in air and 10 

water, respectively. 11 

The changing speed of the laser beam also affects the direction of the laser beam when penetrating 12 

the water surface with an angle different from nadir (Fig. 1) (Guenther, 2007;Jensen, 13 

2009)(Guenther, 2007; Jensen, 2009). The laser beam will be refracted according to Snell’s Law 14 

(Mandlburger et al., 2013)(Mandlburger et al., 2013): 15 

𝑠in𝛼air

sin𝛼water
=

cair

𝑐𝑤𝑎𝑡𝑒𝑟
=

nwater

nair
        (21) 16 

where 𝛼air is the incidence angle of the laser beam relative to the normal vector of the water surface 17 

and 𝛼water is the refraction angle in water. nwater and nair  are the refractive indices of water and 18 

air, respectively (Mandlburger et al., 2013)(Mandlburger et al., 2013). 19 

The penetration depth in water is limited by the attenuation of the laser beam. Water molecules, 20 

suspended sediment and dissolved material all act on the laser beam by absorption and scattering, 21 

resulting in substantial reduction in power as the signal propagates into the water (Guenther, 22 

2007;Mandlburger et al., 2013;Steinbacher et al., 2012)(Guenther, 2007; Mandlburger et al., 2013; 23 

Steinbacher et al., 2012). The laser beam also diverges in the water column, resulting in a wider 24 

laser beam footprint, which reduces the resolving capability of small. The laser beam also diverges 25 

in the water column, resulting in a wider laser beam footprint (Guenther et al., 2000), and this effect 26 

reduces the resolving capability of fine-scale morphology the deeper the laser beam penetrates. 27 

The returned signal is represented as a distribution of energy over time, also called the ‘full-28 

waveform’ (Alexander, 2010;Chauve et al., 2007;Mallet and Bretar, 2009)(Alexander, 2010; 29 
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Chauve et al., 2007; Mallet and Bretar, 2009). The peaks in the full-waveform are detected as 1 

individual targets encountered by the propagating laser beam. If the laser hits two targets with a 2 

small vertical difference, such as a water surface and sea bedseabed in very shallow water, then the 3 

two peaks in the full-waveform may merge together, resulting in the detection of only one target 4 

(Fig. 1). This results in a detection minimum of successive returns from a single laser pulse, and the 5 

vertical distance within this minimum is referred to as the ‘dead zone’ (Mandlburger et al., 6 

2011;Nayegandhi et al., 2009)(Mandlburger et al., 2011; Nayegandhi et al., 2009). The dead zone is 7 

a clear limitation to the LiDAR measurements, which is an important parameter to consider in very 8 

shallow water, such as in tidalintertidal environments. 9 

The raw LiDAR measurements are spatially visualized as a point cloud, with each point 10 

representing an individual target. The point cloud must be piped through a series of steps before it 11 

can take shape as a digital elevation model (DEM). The overall . Most of the processing steps 12 

required to process raw topobathymetric LiDAR data to a DEM are knownsimilar to the processing 13 

steps of topographic LiDAR data (Huising and Gomes Pereira, 1998). However, additional 14 

processing steps are required for topobathymetric LiDAR data due to the refraction of the laser 15 

beam at the water surface. All submerged LiDAR points have to be corrected for the refraction, but 16 

therein order to do so, the water depth must be known for each point. This sets a requirement of 17 

modelling the water surface before the refraction correction can be performed. The general 18 

processing procedure is no well defined; however, there is no standard or universal approach for 19 

dealinghow to deal with the individual steps. these steps. LiDAR companies have their workflows, 20 

but the specific steps in their workflow are usually hidden, which make them non-repeatable. 21 

In particular, there is no definitive method for detecting a water surface from the topobathymetric 22 

LiDAR data. Careful processing of the LiDAR data is important, in order to obtain the best 23 

approximation of the real world in the processed DEM. Finally,green topobathymetric LiDAR data. 24 

Often the water surface is detected from simultaneous collection of green and NIR LiDAR 25 

measurements, where the green laser reflects from the seabed and the NIR laser reflects from the 26 

air-water interface, and the NIR laser data are then used to detect and model the water surface 27 

(Allouis et al., 2010; Collin et al., 2008; Guenther, 2007; Parker and Sinclair, 2012). The use of NIR 28 

LiDAR data for water surface detection has been applied in several studies. For instance, Hofle et 29 

al. (2009) proposed a method for mapping water surfaces based on the geometrical and intensity 30 

information from NIR LiDAR data. Su and Gibeaut (2009) classified water points from NIR 31 

LiDAR based on point density, intensity and altitude. They identified the shoreline based on the 32 
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large sudden decrease in NIR LiDAR intensity values when going from land to water. Brzank et al. 1 

(2008) used the same three variables (point density, intensity and altitude) in a supervised fuzzy 2 

classification to detect the water surface in a section of the Wadden Sea. Another study in the 3 

Wadden Sea by Schmidt et al. (2012) used a range of geometric characteristics as well as intensity 4 

values to classify water points from NIR LiDAR data. 5 

The capability of NIR LiDAR data for water surface detection is thus well documented. However, 6 

deriving all the information (seabed and water surface) from a single green LiDAR dataset would 7 

be a more effective solution for water surface detection, with respect to the financial expenses and 8 

for the difficulties of storing and handling often very large amounts of data. For this purpose, the 9 

Austrian LiDAR company RIEGL have developed a software, RiHYDRO (RIEGL, 2015), in which 10 

it is essential to determine the accuracy andpossible to model the water surface in a two-step 11 

approach: 1) Classification of water surface points based on areas with two layers (water surface 12 

and seabed) and extending the classification to the entire water body, and 2) Generation of a 13 

geometric gridded water surface model for each flight swath based on the classified water surface 14 

points. However, RiHYDRO is commercial software, and thus the algorithms, which form the basis 15 

of the classification and water surface modelling, are not publicly available. Other software 16 

packages, such as HydroFusion (Optech, 2013) and LiDAR Survey Studio (Leica, 2015), also 17 

proclaim to have incorporated methods for the entire data processing workflow, but the algorithms 18 

in these software packages are also closed and cannot be accessed by users. 19 

Only few research studies have investigated the potential of water surface detection from green 20 

LiDAR data. Guenther et al. (2000) even regarded water surface detection from green LiDAR data 21 

as unacceptable and they justified it with two fundamental issues: 1) No water surface returns are 22 

detected in the dead zone, and 2) Uncertainty of the water surface altitude, because the green water 23 

surface returns are actually a mix of returns from the air/water interface and from volume 24 

backscatter returns, and they are generally found as a cloud of points below the water surface. 25 

Mandlburger et al. (2013) addressed the second issue by comparing the water surface points of NIR 26 

and green LiDAR data, and they concluded that it is possible to derive the water surface altitude 27 

from the green LiDAR data with sub-decimetre vertical precision of the LiDAR data for assessing 28 

the capability of the technique to represent the real world surface.relative to a reference water 29 

surface derived by the NIR LiDAR data. However, their work addressed only the determination of 30 

the water surface altitude, without going into detail on the actual procedure of modelling the water 31 

surface. An approach for modelling the water surface from green LiDAR data was presented by 32 
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Mandlburger et al. (2015), who did their study in a riverine environment with only few return 1 

signals from the water surface. Their method was based on manual estimates of the water level in a 2 

series of river cross sections, after which interpolation between the cross sections filled out the gaps 3 

with no water surface points to derive a continuous water surface model. The vertical accuracy of 4 

the detected water surface was evaluated by statistical comparison against water surface points from 5 

a terrestrial laser scanner, resulting in a root mean square error of ±3.3 cm.  6 

Develop a processing methodPublished literature that deals with water surface modelling/detection 7 

procedure in the coastal zone based solely on green laser Lidar data are very few and the procedure 8 

for LiDAR data processing to reach this goal is not clearly explained.  9 

The aim of this study is to investigate the potential of topobathymetric LiDAR data to accurately 10 

model the real world terrain and surface in land-water transition zones. The aim is achieved by 11 

meeting the following objectives: 12 

The aim of this study was to investigate the potential of improving the processing procedure of 13 

green LiDAR data for generating DEMs in tidal coastal environments characterised by land-water 14 

transition zones, and of improving the classification of morphological units in such environments. 15 

More specifically, the objectives were: 16 

1. To develop a robust, repeatable and user friendly processing procedure of raw green LiDAR 17 

dataTo develop a processing procedure for generating high resolution DEMsthe generation 18 

of a digital elevation model DEM in land-water transition zones. 19 

2. QuantifyTo quantify the accuracy and precision of the green LiDAR data based on object 20 

detection. 21 

3. Evaluate the potential of topobathymetric LiDAR to resolve landforms in land-water 22 

transition zones. 23 

3. To automatically classify morphological units based on morphometric analyses of the 24 

generated DEM. 25 

The investigations were based on studies undertaken in a section of the Knudedyb tidal inlet system 26 

in the Danish Wadden Sea. 27 

 28 
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2 Study area 1 

The Knudedyb tidal inlet system is located between the barrier islands of Fanø and Mandø in the 2 

Danish Wadden Sea (Fig. 2A). The tidal inlet system is a natural environment without larger 3 

influence from human activity. The tides in the area are semi-diurnal, with a mean tidal range of 1.6 4 

m, and the tidal prism is in the order of 175 · 10
6
 m

3
 (Pedersen and Bartholdy, 2006)(Pedersen and 5 

Bartholdy, 2006). The main channel is approximately 1 km wide and with an average water depth 6 

of approx. 15 m (Lefebvre et al., 2013)(Lefebvre et al., 2013). 7 

Three study sites around the tidal inlet system are referred to throughout this work (Fig. 2A-D): 8 

Study site 1, in which a DEM was generated,The study site is an elongated 3.2 km
2
 (0.85 × 4 km) 9 

section of the Knudedyb tidal inlet system (Fig. 2B). The section is located perpendicular to the 10 

main channel and stretches across both topography and bathymetry. The study site extends towards 11 

north into an area on Fanø with dispersed cottages (Fig. 2C). The most prominent morphological 12 

features within the study site include beach dunes (Fig. 2D), small mounds (Fig. E), swash bars 13 

(Fig. 2F-G) and linear bars (Fig. 2H).The quality of the LiDAR data were validated at two sites 14 

along Ribe Vesterå River (Fig. 2I-J): 15 

 StudyValidation site 21 is a cement block with a size of 2.50×1.25×0.80 m located on land 16 

next to the mouth of Ribe Vesterå River (Fig. 2C2I). The block was used for assessing the 17 

accuracy and precision of the LiDAR data. 18 

 StudyValidation site 32 is a steel frame with a size of 0.92×0.92×0.30 m located in the river 19 

with the surface just below the water surface (Fig. 2D2J). The frame was used for precision 20 

assessment.Study site 1 extends towards north into an area on Fanø with dispersed cottages 21 

(Fig. 2E). The most prominent morphological, and for testing the feature detection 22 

capability of the LiDAR system. According to the hydrographic survey standards presented 23 

by the International Hydrographic Organization (IHO, 2008), cubic features withinof at least 24 

1 m
2
 should be detectable in Special Order areas, which are areas with very shallow water as 25 

in the study site include beach dunes (Fig. 2F), small mounts (Fig. G), swash bars (Fig. 2H-26 

I) and linear bars (Fig. 2J)..  27 

 28 
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3 Methods 1 

3.1 Surveys and instruments 2 

LiDAR data and ortophotos were collected by Airborne Hydro Mapping GmbH (AHM) during two 3 

surveys on 19 April 2014 and 30 May 2014. 4 

On 19 April 2014, study site 2 validation sites 1 and 3 was2 were covered for accuracy and 5 

precision assessment of the LiDAR data by object detection of the block and the frame (for location 6 

see Fig. 2). The block was covered by 7 swaths retaining 227 LiDAR points from the block surface. 7 

The frame was covered by 4 swaths retaining 46 LiDAR points from the surface of the frame. 8 

Ground control points (GCPs) were measured for the four corners of the block with accuracy better 9 

than 2 cm using a Trimble R8 RTK GPS. Measurements were repeated three times and averaged to 10 

minimize errors caused by measurement uncertainties. GCPs were also collected for the frame; 11 

however, during the LiDAR survey the frame experienced an unforeseen intervention by local 12 

fishermen using the frame as fishing platform. Therefore, the frame is only used to assess the 13 

deviation between the LiDAR points (the precision), and not to assess the deviation between the 14 

LiDAR points and GCP’s (the accuracy). 15 

On 30 May 2014, the study site 1 was covered by 11 swaths (Fig. 3),, which were used for 16 

generating the DEM. Low tide was -1 m DVR90, measured at Grådyb Barre, approx. 20 km NW of 17 

the study site. 18 

The weather was similar during the two surveys, with sunny conditions, average wind velocities of 19 

7-8 m/s (DMI, 2014a, b) and significant wave heights, measured west of Fanø, of approx. 0.5 m 20 

coming from NW (Danish Coastal Authority, 2014). Overall, both days constituted good conditions 21 

for topobathymetric LiDAR surveys. 22 

The weather conditions were similar during the two surveys, with sunny periods, average wind 23 

velocities of 7-8 m/s (DMI, 2014) and approx. 0.5 m wave heights coming from NW, measured 24 

west of Fanø (DCA, 2014). The wave heights in the less exposed Knudedyb tidal inlet was observed 25 

in the LiDAR data to 0.2-0.3 m. Overall, both days constituted good conditions for topobathymetric 26 

LiDAR surveys. 27 

In both surveys, LiDAR data waswere collected with a RIEGL VQ-820-G topobathymetric airborne 28 

laser scanner. The scanner is characterized by emitting green laser pulses with 532 nm wavelength 29 
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and 1 ns pulse width. It has a very high laser pulse repetition rate of up to 520,000 Hz and, and a 1 

beam divergence of 1 mrad creates a narrow laser beam footprint of 40 cm diameter at a flying 2 

altitude of 400 m (RIEGL, 2014).(RIEGL, 2014), which was the actual flying altitude during the 3 

surveys. The high repetition rate and narrow footprint makes it well suited to capture smallfine-4 

scale landforms (Doneus et al., 2013;Mandlburger et al., 2011;RIEGL, 2014)(Doneus et al., 2013; 5 

Mandlburger et al., 2011; RIEGL, 2014). An arc shaped scan pattern maintainsresults in a swath 6 

width of approx. 400 m (at 400 m flying altitude), while maintaining an almost uniform scan angle 7 

of constant 20° (±1°), which is influenced by the roll, pitch and yaw of the airplane. This means that 8 

the°) incidence angle of the laser beam is almost constant at when it penetrates the water surface 9 

(Niemeyer and Soergel, 2013)(Niemeyer and Soergel, 2013). General specifications of the laser 10 

scanner are summarized in Table 1 (RIEGL, 2014;Steinbacher et al., 2012). The typical water depth 11 

penetration of the laser scanner is 1 Secchi disc depth. 12 

For each returned signal, the collected LiDAR data contained information of x, y and z, as well as a 13 

GPS time stamp and values of the amplitude, reflectance, return number, attribute and laser beam 14 

deviation (RIEGL, 2012). Primarily the positions and time stamps of the LiDAR points were used 15 

in the data processing. The reflectance, which represents the range-normalized amplitude of the 16 

received signal, was used to a lesser extent in the filtering process.(RIEGL, 2012). 17 

3.2 FromProcessing raw topobathymetric LiDAR data tointo a gridded DEM 18 

A list ofThe essential processing steps was necessary to produce a DEM from raw, which are 19 

standard procedure when processing topobathymetric LiDAR data., were followed to produce a 20 

DEM in the study area. These steps included: 21 

1. Determination of flight trajectory. 22 

2. Integration of sensor data (laser scanner data, motion sensor data, positioning/trajectory 23 

data). 24 

3. Raw point cloud processing. 25 

4.2.Boresight calibration: Calculating internal scanner calibration. 26 

3. Collecting topobathymetric LiDAR data. 27 

5.4.Swath alignment based on boresight calibration: The bias between individual swaths was 28 

minimized. 29 
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6.5.Filtering: The raw data contained lots of unwanted return signals (noise) located both above 1 

and below ground. These points, which needed to be filtered from the point cloud. 2 

7.6.Water surface detection: A water surface had to be established in order to correct for 3 

refraction in the following step. 4 

8.7.Refraction correction: All the points below the water surface were corrected for the 5 

refraction of the laser beam. 6 

9.8.Point cloud to DEM: The points were transformed into a surface which 7 

representedrepresenting the real world topography and bathymetry. 8 

Step 1 and 2 were performed prior to the LiDAR survey. The different instruments (LiDAR, IMU 9 

and GPS) were integrated spatially by measuring their position relative to each other, when 10 

mounted on the airplane, and temporally by calibrating their time stamps. 11 

Step 3-5 were was the actual LiDAR survey and step 4 was the initial processing stepsstep after the 12 

LiDAR survey. A number of reference planes on the ground were measured with RTK GPS, and 13 

The bias between the swaths covering these was minimized in the software RiPROCESS (RIEGL 14 

LMS) by automatically searching for planes in each swath and then matching the planes were 15 

adjusted so that they aligned with the planes. The rest ofbetween the swaths, which did not cover 16 

the reference planes, were aligned with the already adjusted swaths.. 17 

Step 6-95-8 represents the processing of the point cloud into a DEM. The methods involved in these 18 

steps are the main focus in this work and they are described in detail in the following sub-sections. 19 

Each swath was pulled individually through the processing workflow to account for the continually 20 

changing water level in the study area due to tides. 21 

3.2.1 Filtering 22 

The raw LiDAR data contained a lot of noise points in the air column originating from the laser 23 

being scattered by birds, clouds, dust and other particles, and a lot of noise points werewas also 24 

appearing below the ground/sea bedseabed (Fig. 4A3A-B). All theseThis noise points had to be 25 

filtered before further processing. The filtering process involved both automatic and manual 26 

filtering. 27 

1. Automatic filtering 28 

The automatic filtering was carried out in HydroVish (AHM) with the tool Remove flaw echoes. 29 

(Fig. 3C). The filtering tool was controlled by three variable parameters: search radius, distance and 30 
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density. The search radius parameter specified the radius of a sphere in which the distance and 1 

density filters were utilized. The distance parameter rejected a point, if it was too far from any other 2 

point within the sphere. The density parameter specified the lower limit of points within the sphere. 3 

The automatic filter iterated through all the points in the point cloud. 4 

In order to identify the best settings of the three parameters, a sensitivity analysis was performed on 5 

three data fragments representing different natural environments in the Knudedyb tidal inlet system: 6 

a fragment in the flood channel, one on the tidal flat and a fragment with vegetation. The outcome 7 

of the filtering was visually evaluatedcompared for different settings to decide the most suitable 8 

settings to use for filtering the whole study area. Based on visual inspection of the outcomes, itIt 9 

was impossiblenot possible to reach a specific setting, which would be optimal for all the different 10 

environments. Particularly, the deeper bathymetric parts contained more widely dispersed points, 11 

which were easily rejected by the filter. The analyses with different settings also showed that two 12 

layers of noise points close to the ground, both above and below, were very difficult, if not 13 

impossible, to reject with this automatic filtering method. TheyThe settings were only rejected if the 14 

distance threshold was set very low (0.20-0.25 m) or the density threshold was very large, 15 

butselected so that would result in a large amountminimum of valid points beingwere rejected. 16 

Based on the visual inspection of the filtering sensitivity analysis, the chosen settings for by the 17 

automatic filteringfilter. The settings were: Search radius = 1 m, distance = 0.75 m and density = 4.  18 

2. Manual filtering 19 

The remaining noise points werewas manually filtered in the software Fledermaus (QPS) based on 20 

visual inspection of the point cloud (Fig. 4D). The reflectance of the points helped to distinguish 21 

between valid and non-valid points.3D). 22 

The filtered point cloud (with water points) was used in the following step to detect the water 23 

surface. Meanwhile, a copy of the data waswere undergoing additional manual filtering, removing 24 

all the water points (Fig. 4E3E). After this final filtering step, there were only points representing 25 

topography, bathymetry, vegetation and man-made structures left in the dataset. 26 

3.2.2 Water surface detection 27 

The water surface detection was based on determining the water surface elevationaltitude and the 28 

water surface extent. The water surface elevationaltitude was determined based on the water surface 29 
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points and the extent was determined by extrapolating the water surface until it intersected the 1 

surface of the topography. Two assumptions about the water surface were made: 2 

1. The water surface was horizontal. This was of course a simplification of the real world. 3 

Tidal processes and wind- and wave-setup may cause the water surface to be sloping, and 4 

the water is often topped by more or less significant wave action. A linear fit through the 5 

water surface LiDAR points along the main channel, showed a changing water level of 0.13 6 

m over a distance of 400 m, corresponding to a 0.325 × 10
-3

 (0.019 deg.) sloping water 7 

surface. A similar fit through the LiDAR points along the flood channel showed a slope of 8 

0.156 × 10
-3

 (0.009 deg.). The maximum wave heights observed in the main channel were 9 

20-30 cm. Based on the moderate slope of the water surface and relatively low wave height, 10 

it was considered acceptable to assume a flat water surfacethe water surface was assumed 11 

flat. This assumption is deemed error prone, but at the time of this study, it was currently our 12 

best estimate. 13 

2. Study site 1 hadThe study area contained water bodies with two different water levels: One 14 

represented the water level in the main channel and the other represented the water level in 15 

the flood channel. This was also a simplification, as the tidal flat contained small pools of 16 

waterponds with potentially different water levels. However, almost all of these poolsponds 17 

contained no LiDAR points of the water surface, which means that the water depth in the 18 

poolsponds must have been within the limitation of the dead zone. Therefore, it was 19 

impossible to detect individual water surfaces in the poolsponds. 20 

A series of processing steps were performed to detect the water surface. The first step was to extract 21 

a shallow surface and a deep surface from the filtered point cloud (with water points) in Fledermaus 22 

(Fig. 4F3F). Both surfaces consisted of 0.5 × 0.5 m cells, and the elevation value inaltitude of each 23 

cell was equal to the highest point within the cell (shallow surface) and the lowest point within the 24 

cell (deep surface), respectively. The shallow surface should then display the topography along with 25 

the water surface, whereas the deep surface should display the topography and the sea bedseabed 26 

(as long as the sea bedseabed was detected by the laser). It is worth noting, that the extraction of the 27 

shallow surface and the deep surface have nothing to do with the final DEM, as they are just 28 

intermediate steps performed for the water surface detection. 29 

The following steps were focused on the shallow surface to determine the elevationaltitude of the 30 

water surface (Fig. 4G3G). First, the shallow surface was down-sampled to a surface with a cell size 31 
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of 2 × 2 m, and the new cells were populated with the maximum elevationaltitude of the input cells. 1 

The down-sampling was done for smoothing the water surface, and thereby eliminating most of the 2 

outliers. The exact cell size of 2 × 2 m, as well as populating them with the maximum value, was 3 

chosen based on the work by Mandlburger et al. (2013).Mandlburger et al. (2013). They compared 4 

water surface detection capability between green LiDAR data, collected with the same RIEGL-VQ-5 

820-G laser scanner, and near-infraredNIR LiDAR data, which was assumed to capture the true 6 

water surface. They found that the green LiDAR generally underestimated the water surface level, 7 

but that reliable results were achieved by increasing the cell size and only taking the top 95-100% 8 

of water points into account. According to their work, it was assumed that placing the water surface 9 

on the highest points in 2 m cells provided a good estimate of the true water level. However, based 10 

on their results it could be expected that the water surface level in this case would be 11 

underestimated in the order of 2-4 cm. 12 

The water covered areas in the main channel and the flood channel were manually extracted from 13 

the newly resampleddown-sampled raster surface. The mean elevationaverage altitude of the cells 14 

was calculated individually in each area, and these values constituted the water surface levels in the 15 

main channel and in the flood channel, respectively. 16 

Hereafter, the extent of the water surfaces was determined (Fig. 4H3H). Two horizontal water 17 

surfaces waswere created in the flood channel and the main channel with a cell size of 0.5 × 0.5 m 18 

and cell values equal to the determined water surface elevationsaltitudes in each region. The high 19 

spatial resolution of 0.5 m cells was chosen to produce a detailed water surface along the edges of 20 

the land-water transition. It also made the calculations in the following step straightforward, 21 

because the resolution was similar to that of the deep surface. The deep surface cell 22 

elevationsaltitudes were subtracted from the water surface elevationaltitude and all cells with 23 

resulting negative values were discarded from the water surface. Thereby, all the water surface cells 24 

which were below the deep surface were discarded. All the cells above the deep surface were 25 

expected to represent the two water surfaces. Thereby, two water surfaces were created; one in the 26 

main channel and one in the flood channel. 27 

3.2.3 Refraction correction 28 

The refraction correction of all the points below the water surfaces was calculated in HydroVish 29 

(AHM). The input parameters were the filtered point cloud (without water points), the derived water 30 

surfaces and the trajectory data of the airplane. These were all converted to F5 file format to allow 31 
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import into HydroVish (AHM). The refraction correction was calculated automatically for each 1 

point based on the water depth, the incident angle of the laser beam, and the refracted angle 2 

according to Snell’s Law (Eq. 1 and Fig. 4I3I). 3 

3.2.4 Point cloud to DEM 4 

After iterating through the processes of filtering, water surface detection and refraction correction 5 

for all the individual swaths, the LiDAR points of all swaths were combined. The transformation 6 

from point cloud into a DEM was performed with ArcGIS (ESRI) software. The DEM was created 7 

as a raster surface with a cell size of 0.5 × 0.5 m, and each cell was attributed the average elevation 8 

of the points within the cell-boundaries. Thealtitude of the points within the cell-boundaries. It was 9 

chosen to make the resolution of the DEM lower than the laser beam footprint size (i.e. 40 cm), due 10 

to the inaccuracies arising from attributing smaller cells with measured altitude values spanning 11 

across a larger area. Furthermore, the 0.5 m cell size was chosen to get as high resolution as 12 

possible without making any significant interpolation between the measurements. In this way, each 13 

cell represented actually measured elevationsaltitudes instead of interpolated values. However, there 14 

were still very few gaps of individual cells with no data in the resulting raster in areas with 15 

relatively low point density. Despite of the general intention of avoiding interpolation it was chosen 16 

to populate these cells with interpolated values to end up with a full DEM coverage (except for the 17 

bathymetric parts beyond the maximum laser penetration depth). The arguments for interpolation 18 

were that 1) the interpolated cells were scattered and represented only 1.7 % of all the cells, 2) they 19 

were found primarily on the tidal flat where the slope is generally less than 1°, meaning that the 20 

elevationaltitude difference from one cell to a neighbouring cell is usually less than 1 cm, and 3) the 21 

general point density in most of the study area was so high that the loss of information by lowering 22 

the DEM resolution would represent a larger sacrifice than interpolating a few scattered cells. The 23 

interpolation was performed by assigning the average value of all neighboringneighbouring cells to 24 

the empty cells. The final DEM was thereby fully covering the topography, and the bathymetry was 25 

covered down to a depth equal to the maximum laser penetration depth. 26 

3.3 Accuracy and precision of the topobathymetric LiDAR data  27 

The term accuracy refers to the difference between a point coordinate (in this case a LiDAR point) 28 

compared to its “true” coordinate measured with higher accuracy, e.g. by a total station or a 29 

differential GPS; while the term precision refers to the difference between successive point 30 
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coordinates compared to their mean value, i.e. the repeatability of the measurements (Graham, 1 

2012;Jensen, 2009;RIEGL, 2014).the repeatability of the measurements (Graham, 2012; Jensen, 2 

2009; RIEGL, 2014). 3 

Two “best-fit planes” based on the LiDAR points on the block and the frame surfaces were 4 

established with the Curve Fitting tool in MATLAB (MathWorks). These were used to quantify the 5 

precision. We propose the use of these two planes to give an indication of the relative precision of 6 

the LiDAR measurements.  7 

Another best-fit plane was established based on the block GPS measurements, and this plane was 8 

regarded as the “true” block surface for assessment of the accuracy of the LiDAR measurements. 9 

The established planes were described by the polynomial equation: 10 

𝑧(𝑥, 𝑦) = a + b𝑥 + c𝑦         (32) 11 

where 𝑥, 𝑦  and 𝑧 are coordinates and a, b and c are constants. Inserting x and y coordinates for the 12 

LiDAR surface points in Eq. (3) led to a result of the corresponding elevationaltitude (z) as 13 

projected on the fitted plane. The difference between the elevationaltitude of the LiDAR point and 14 

the corresponding elevationaltitude on the fitted plane was used as a measure of the vertical 15 

accuracy (for the GCP fitted plane of the block) and the vertical precision (for the LiDAR point 16 

fitted plane of the block and the frame). Statistical measures of the standard deviation (𝜎), mean 17 

absolute error (𝐸MA), and root mean square error (𝐸RMS) were calculated by: 18 

𝜎 = √
∑(𝑧i−𝑧plane)2

𝑛−1
         (43) 19 

𝐸MA =
∑|𝑧i−𝑧plane|

𝑛
         (54) 20 

𝐸RMS = √
∑(𝑧i−𝑧plane)2

𝑛
         (65) 21 

where 𝑧𝑖 is the elevationaltitude of the measured LiDAR points, 𝑧plane is the corresponding 22 

elevationaltitude on the best-fit plane, and 𝑛 is the number of LiDAR points. The vertical accuracy 23 

and precision were determined at a 95% confidence level based on the accuracy standard presented 24 

in Geospatial Position Accuracy Standards Part 3: National Standard for Spatial Data Accuracy 25 

(NSSDA) (FGDC, 1998)(FGDC, 1998): 26 

𝐶𝑙95% = 𝐸RMS ∙ 1.96         (76) 27 
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The horizontal accuracy was determined as the horizontal mean absolute error (𝐸MA,xy) based on 1 

the horizontal distances between the block corners, measured with RTK GPS, and the best 2 

approximation of the block corners derived from the LiDAR points of the block surface. The 3 

minimum distance between a block corner and the perimeter of the LiDAR points was regarded as 4 

the best approximation. Hereafter, 𝐸MA,xy was calculated as the average of the four corners.  5 

3.4 Geomorphometric and morphological classifications 6 

The processed DEM was applied in two classification analyses; first a geomorphometric 7 

classification and then a morphological classification. Both were based on the DEM and derivatives 8 

of the DEM, but they differentiated by the resulting classification classes, which showed 1) Surface 9 

geometry and 2) Surface morphology.      10 

Geomorphometric classification analysis 11 

The tool Benthic Terrain Modeler (BTM) (Wright et al., 2005) was used for the geomorphometric 12 

classification. The tool is an extension to ArcGIS Spatial Analyst, originally used for analysing 13 

MBES data (Diesing et al., 2009; Lundblad et al., 2006; Rinehart et al., 2004). The BTM 14 

classification tool uses fine- and broad scale Bathymetric Positioning Indexes (BPIs) (Verfaillie et 15 

al., 2007) in a multiple scale terrain analysis to classify fine- and broad scale geometrical features. 16 

The BPIs are measures of the altitude of a cell compared to the altitude of the surrounding cells 17 

within the determined scale (radius) size. Positive BPI values indicate a higher altitude than the 18 

neighbouring cells and negative BPI values indicate a lower altitude than the neighbouring cells. 19 

For instance, a BPI value of 100 corresponds to 1 standard deviation and a value of -100 20 

corresponds to -1 standard deviation. BPI values close to zero are derived from flat areas or from 21 

constant slopes.  22 

The altitude of the DEM was exaggerated 10 times before the classification, to enable the BTM to 23 

detect the shapes of the landscape. The fine- and broad scales were determined based on the BPI 24 

results for different radius sizes. The best results were obtained from a broad scale BPI of 100 m 25 

radius and a fine scale BPI of 10 m radius. The fine- and broad scale BPIs were used, together with 26 

DEM derived slopes to classify the investigated area into the geomorphometric classes: Small-scale 27 

crests, large-scale crests, depressions, slopes and flats (Fig. 4). The classification classes were 28 

decided based on previous studies using the BTM classification tool with success (Diesing et al., 29 

2009; Lundblad et al., 2006). The thresholds for the fine- and broad scale BPIs were in previous 30 
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studies often defined as 1 standard deviation (Lundblad et al., 2006; Verfaillie et al., 2007), 1 

however, thresholds of 0.5 standard deviations have also previously been applied (Kaskela et al., 2 

2012). We used a low threshold of 0.5 standard deviations due to the generally very gentle 3 

variations in the landscape geometry of the tidal inlet system. We defined the threshold between 4 

slopes and flats as 2°. This definition was a compromise between detecting as many slopes as 5 

possible but avoiding too many “false slopes” being detected along the swath edges, which seemed 6 

to be a consequence of lower precision at the outer beams of the swath, as well as differences 7 

between overlapping swaths. 8 

Morphological classification analysis 9 

A morphological classification was developed for the purpose of delineating classes of actual 10 

morphological features in the study area. This classification was built partly on different 11 

neighbourhood analyses and slopes derived from the DEM, and partly on the local tidal range. 12 

Large scale crests from the geomorphometric classification were also incorporated in the 13 

analysis.Figure 5 describes the steps performed in ArcGIS, which led to the classification of 6 14 

morphological classes: Swash bars, linear bars, beach dunes, intertidal flats, intertidal creeks and 15 

subtidal channels. All the criteria for defining a particular morphological class had to be fulfilled for 16 

a cell to be classified into that class. 17 

33 years of continuous measurements of the water level at Havneby on Rømø, 25 km south of the 18 

study area, shows a mean low water level of -0.94 m (DVR90) and a mean high water of 0.94 m 19 

(DVR90) (Klagenberg et al., 2008). Although the tidal range in Knudedyb is probably slightly 20 

different, it is the best estimate for the study site. Therefore, these water levels were used to separate 21 

between the supratidal, intertidal and subtidal zones. 22 

Subtidal channels were defined as everything below the mean low water, which is -0.94 m. A 23 

“smooth DEM” was created, in which each cell of the original DEM was assigned the average 24 

altitude value of its surrounding cells in a window size of 100x100 m. The result was subtracted 25 

from the original DEM, creating an Elevation Change Model (ECM), which made it possible to 26 

extract information about the deviation of the cells in the DEM compared to its surrounding cells. 27 

The principle is similar to the BPI, and again the purpose was to locate cells, with a higher/lower 28 

altitude than its surrounding cells. Positive values were higher cells and negative values were lower 29 

cells. Certain thresholds were found suitable for classifying beach dunes (> 0.8 m) and intertidal 30 

creeks (< -0.3 m). These two classes were furthermore classified into their respective tidal zones 31 
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(supratidal and intertidal) based on the altitude. Intertidal flats were classified by low slope values 1 

(< 1°) of a down-sampled 2 m DEM (each down-sampled cell was assigned the mean value of its 2 

4x4 original cells). Moreover, to be classified as a flat, the ECM has to be within ±10 cm to avoid 3 

any incorrect intertidal flat classification of flat crests on top of bars or flat bottoms inside creeks or 4 

channels. The BTM classification class “large-scale crests” is used as an input, since it is found to 5 

capture bar features. However, the thresholds used in the BTM classification resulted in capturing 6 

features larger than bars in the large-scale crests class. To distinguish between bars and larger 7 

features, the standard deviation of each DEM cell in a moving window size of 250x250 m is 8 

calculated. A suitable threshold to distinguish between bars and larger features are 0.6 standard 9 

deviations. Finally, swash bars and linear bars are distinguished by an area/perimeter-ratio, based on 10 

the assumption that linear bars has a smaller ratio than swash bars, due to the different shapes. In 11 

this case, 4 were found to be a suitable ratio threshold. 12 

 13 

4 Results 14 

4.1 Refraction correction and dead zone extent 15 

The vertical adjustment of the LiDAR points due to refraction correction (𝑧
diff

) is linearly 16 

correlated with the water depth (𝑑) (Fig. 5). The6). An empirical formula was derived for this 17 

relationship and is given by the equation: 18 

𝑧diff = 0.227 ∗ 𝑑  ,  R2 = 0.997       (87) 19 

A LiDAR point at 1 m water depth is vertically adjusted by approximately 0.23 m (Fig. 56). The 20 

variations around the linear trend in Fig. 56 are due to changing incidence angles of the laser beam 21 

that varies with the airplane attitude (roll, pitch and yaw). 22 

The dead zone is clearly visible in the LiDAR point cloud as a gap with no water points at very 23 

shallow water depths (Fig. 6).  24 

The vertical extent of the dead zone is approx. 28 cm, determined by plotting the vertical difference 25 

between the shallowest and the deepest LiDAR point within 0.5 m cells – i.e. between the shallow 26 

surface and the deep surface (Fig. 7). The difference is manifested by an abrupt change inat the 27 

dead zone, and the highest rate of change is shown to be at a water depth of approx. 28 cm. 28 
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4.2 Sub-decimetre accuracy and precision 1 

The vertical accuracy root mean square error of the LiDAR data is ±4.1 cm, and the accuracy is 2 

±8.1 cm with a 95% confidence level (Table 21 and Fig. 8A). This means that there is 95% 3 

likelihood for a given LiDAR point measurement to be within ±8.1 cm of the actual elevation at that 4 

position. The vertical precision of the LiDAR data with a 95 % confidence level is ±3.8 cm for the 5 

points on the frame, and ±7.6 cm for the points on the block (Table 21). 6 

The horizontal accuracy calculated as the horizontal mean absolute error (𝐸MA,xy) is determined to 7 

±10.4 cm, which is the average of the minimum distances between the four block corners and the 8 

edge of the block surface derived by the LiDAR data (Fig. 8B). 9 

4.3 Point density and resolution 10 

The average point density is 20 points per m
2
, which equals an average point spacing of 20 cm 11 

(Table 32). The point density of the individual swaths varies between 7-13 points per m
2
, and the 12 

point density of the combined swaths in the study area, varies between 0-216 points per m
2
, 13 

although above 50 points per m
2
 are rare. 14 

The point density of the combined swaths varies significantly throughout the area, spanning 15 

between 0-216 points per m
2
, although above 50 points per m

2
 are rare (Fig. 8A). The highest point 16 

density is found in vegetated areas on Fanø, where a single laser pulse potentially returns multiple 17 

signals. The density on the tidal flat is generally a little lower. The local point density is, however 18 

and not surprisingly, highly related to the number of overlapping swaths, which is evident by 19 

comparing the point density (Fig. 9A) with the number of swath overlaps (Fig. 9B). 20 

The large variation of the point density and its spatial relation to swath overlaps is also reflected by 21 

the frequency distribution of the point density (Fig. 10). Three peaks are visible in the distribution 22 

around 8, 17 and 26 points per m
2
. They fit very well with the expected densities from 1, 2 and 3 23 

overlaps, respectively, when keeping in mind the point density of the individual swaths. 24 

4.4 DEM and landforms 25 

The elevationsaltitudes in the studied section of the Knudedyb tidal inlet system range from -4 26 

m DVR90 in the deepest parts of the flood channel and main channel to 21 m DVR90 on top of the 27 

beach dunes on Fanø (Fig. 119). Beach dunes and cottages of the village Sønderho are clearly 28 

visible in the northern part of the study site (Fig. 11A9A-B). The tidal inlet system isintertidal areas 29 
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are generally flat, withwhile the most varying morphology is found in the area of the flood channel 1 

(Fig. 11C9C-D), and in the area close to the main channel (Fig. 11E9E-F). The flood channel is 2 

approximately 200 m wide in the western part and it divides into two channels towards east. The 3 

bathymetry of the channel bed is clearly captured by the LiDAR measurementsdata in the eastern 4 

part, and also in the western part down to -4 m DVR90, which approximately equalequals a water 5 

depth of 3 m at the time of survey time. An intertidal creek joins the flood channel from the north 6 

(Fig. 11D9D). From the flood channel towards south, the tidal flat is vaguely upward sloping, until 7 

reaching two distinct swash bars, which are rising 0.9 m above the surrounding tidal flat, reaching a 8 

maximum elevationaltitude of 1.5 m DVR90 (Fig. 11E9E-F). Further south, the linear bars along 9 

the margin of the main channel are clearly captured in the DEM (Fig. 11E9E). 10 

4.5 Geomorphometric and morphological classifications 11 

The geomorphometric and morphological classifications show that most of the study site is located 12 

in the intertidal zone, and is mostly flat. That is manifested by the dominating two classes; flats and 13 

intertidal flats (Fig. 10A-B). The geomorphometric classification identifies slopes as stripes with 14 

NNW-SSE directionality across the flats. These are following the direction of the survey lines, and 15 

thus, they are not real morphological features but more an indication of lower precision of the 16 

LiDAR data, especially at the outer beams of the swath. These swath artefacts are smoothed out in 17 

the morphological classification by down-sampling the DEM to 2 m resolution, and therefore, the 18 

intertidal flats appear uniform and seamless. The bar features close to the main channel are well 19 

defined in the geomorphometric classification where they are classified as large-scale crests and 20 

small-scale crests surrounded by slopes. In the morphological classification, these are identified 21 

based on neighbourhood analyses and separated by the area/perimeter-ratio into two classes, swash 22 

bars and linear bars (Fig. 10C). Large-scale crests are also found on Fanø in the northern part of the 23 

area, and most of these are classified as beach dunes in the morphological classification. The 24 

geomorphometric classification identifies more large-scale crests along the banks of the flood 25 

channel, however, these are not actual bar features but they are identified as crests due to the nearby 26 

flood channel and creeks resulting in a positive broad scale BPI. In the morphological classification 27 

it is possible to distinguish between these “false” crests and actual bar features, by looking at 28 

altitude deviations at an even larger scale than the broad scale BPI. The intertidal creek in the 29 

NWern part of the area is a mix of depressions, slopes and small-scale crests in the 30 
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geomorphometric classification, whereas it is relatively well defined and properly delineated in the 1 

morphological classification (Fig. 10D).  2 

The geomorphometric classification identifies slopes along the banks of the main channel, flood 3 

channel and the intertidal creek, as well as in front of the beach dunes and along the edges of the 4 

swash bars and linear bars. The slopes seem particularly reliable at delineating the features in the 5 

intertidal zone; swash bars, linear bars and creeks. Depressions are primarily identified in the 6 

deepest detected parts of the main channel and in the flood channel, in the intertidal creek and in the 7 

beach dunes. Small-scale crests are found in the geomorphometric classification in locations which 8 

are high compared to its near surroundings. They are primarily seen as parts of the linear bars close 9 

to the main channel, in the beach dunes on Fanø and along the banks of the intertidal creeks.  10 

A few small circular patches of approx. 5 m diameter with Spartina Townsendii (Common Cord 11 

Grass) located on the intertidal flat are classified as small-scale crests in the geomorphometric 12 

classification (Fig. 11). It clearly shows the capability of capturing relatively small features in the 13 

DEM and in the derived classification. 14 

 15 

5 Discussion 16 

5.1 Performance of the water surface detection 17 

5.1 The method for 18 

The water surface in topobathymetric LiDAR surveys is most often detected from NIR LiDAR data, 19 

which is simultaneously collected along with the green LiDAR data (Collin et al., 2012; Guenther et 20 

al., 2000; Parker and Sinclair, 2012; Wang and Philpot, 2007). However, detecting the water surface 21 

based on the green LiDAR data provides a potential to perform topobathymetric surveys with just 22 

one sensor, thus optimizing the survey costs as well as data handling and storage.  23 

The two critical issues roserisen by Guenther et al. (2000), as mentioned in the introduction, 24 

concerning the water surface detection assumeswith green LiDAR were thoroughly investigated in 25 

this study. The first issue, regarding the gap of detected water surface signals in the dead zone, is 26 

addressed by detecting the water surface based on areas which are known to be covered by water, 27 

and thereafter extending the water surface until it intersects the topography, so that also the dead 28 

zone is covered by the modeledmodelled water surface. The second issue, regarding uncertainty in 29 
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the water surface altitude determination, is addressed using the results presented byMandlburger et 1 

al. (2013) who found a statistical relationship between the cloud of water surface points in the green 2 

LiDAR data and the water surface altitude derived from NIR LiDAR data. Mandlburger et al. 3 

(2013), however, did not describe the actual method of modelling the water surface, which is done 4 

in this study. Mandlburger et al. (2015), on the other hand, did propose a method for modelling the 5 

water surface, however, it was in a fluvial environment and the water level was based on manual 6 

determinations of cross sectional water levels. The water surface detection method in this study is 7 

thus new in combining the properties: 1) It is only using green LiDAR data, 2) it is based on 8 

automatic water level determination 3) it is applied in a tidal environment (can be applied in any 9 

coastal environment) and 4) it is open to the public and described in detail. 10 

The developed water surface detection method is new but it must be pointed out that the assumption 11 

of a flat surface, which is water surface leaves room for improvements for the future, especially if it 12 

is applied in a fluvial environment. Assuming a flat water surface is indeed a simplification of the 13 

real world. The, since the water surface in reality can be inclined, and it can also be topped by 14 

waves. An example 15 

5.2 Implications of wave action directly visible in the LiDAR point clouddead zone 16 

The vertical extent of the dead zone is seen in in this study determined to approx. 28 cm (Fig. 12. 17 

The waves lead to a larger degree of uncertainty 7), which means that no return signal is detected 18 

from the water surface when determining the water surface level, however, the modelled water 19 

surface level in the example is in between the wave crests and troughs. Perhaps more important is 20 

the effect of the waves on the water surface angles and thereby the laser beam angles of incidence. 21 

It results in different the water depth is less than 28 cm. As Guenther et al. (2000) explains, the dead 22 

zone poses a real challenge to the modelling of a water surface, because all submerged points, also 23 

those in less than 28 cm water depth, have to be corrected for refraction angles than assumed with 24 

the horizontal surface. In order to account for this,. With the water surface should include changing 25 

elevations and thereby form a complete surface model, including waves. 26 

The water surface detection method proposed in this work this issue has an advantagebeen dealt 27 

with by extending the water surface into the dead zone, which makes it possible to correct even the 28 

LiDAR points in 0-28 cm water depth for refraction. ThisIn this way, the implication of the dead 29 

zone along the channel edges is diminished, which is particularly beneficial in a flat areaareas such 30 
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as the Knudedyb tidal inlet system, where the dead zone may cover large areas depending on the 1 

tide (Fig. 1312). 2 

However, there are manyThe implication of the dead zone along the channel edges is minimised, 3 

but the setting is different for the small ponds within the study site with a water surface in a on the 4 

intertidal flats. They may have different elevationwater levels than in the large channels, but no 5 

detected water surface points, since the water depth in the ponds are generally less than the vertical 6 

extent of the dead zone, i.e. approx. 28 cm. The presented method is not capable of detecting a 7 

water surface in these ponds. This, which means that the bottom points of the ponds are not 8 

corrected for refraction. According to the computedcalculated refraction (Fig. 56), omitting 9 

refraction correction of a 28 cm deep pond will result in -6 cm elevationaltitude error (naturally less 10 

error in shallower water). For future investigations it will be an improvement if all the water 11 

surfaces are modelled. This could be achieved by implementing NIR LiDAR measurements in the 12 

LiDAR survey, since it is reflected by any water surface. It may also be achieved with green 13 

LiDAR as the only data source by detecting the returned signals reflecting off the water surface in 14 

the dead zone. Potentially, this could be achieved by analysing the waveforms and choosing the first 15 

local peak in the returned signal as a valid detected point. Thereby, both the sea bed and the water 16 

surface would have a seamless transition between land and water. 17 

5.25.3 QualityEvaluation of the topobathymetric LiDAR data quality 18 

The vertical accuracy of conventional topographic LiDAR has previously been determined to ±10-19 

15 cm (Hladik and Alber, 2012;Jensen, 2009;Klemas, 2012;Mallet and Bretar, 2009)(Hladik and 20 

Alber, 2012; Jensen, 2009; Klemas, 2013; Mallet and Bretar, 2009). Only few previous studies have 21 

focused on the accuracy of shallow water topobathymetric LiDAR data (Nayegandhi et al., 22 

2009;Steinbacher et al., 2012). Nayegandhi et al. (2009)(Mandlburger et al., 2015; Nayegandhi et 23 

al., 2009; Steinbacher et al., 2012). Nayegandhi et al. (2009) determined the vertical 𝐸RMS of 24 

LiDAR data in 0-2.5 m water depth to ±10-14 cm, which is above the ±4.1 cm 𝐸RMS found in this 25 

study. Steinbacher et al. (2012)found in this study (Table 1). Steinbacher et al. (2012) compared 26 

topobathymetric LiDAR data from a RIEGL VQ-820-G laser scanner with 70 ground-surveyed 27 

river cross sections, serving as reference, and found that the system’s error range was ±5-10 cm, 28 

which is comparable to the ±8.1 cm accuracy found in this study. Mandlburger et al. (2015) 29 

compared ground-surveyed points from a river bed with the median of the four nearest 3D-30 

neighbors in the LiDAR point cloud, and they found a standard deviation of 4.0 cm, which is almost 31 
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equal to the ±4.1 cm standard deviation found in this study (Table 1). In comparison with these 1 

previous findings of LiDAR accuracy, the assessment of the vertical accuracy in this study indicates 2 

a good quality of the LiDAR data. 3 

Mapping the full coverage of tidal environments, such as the Wadden Sea, require a combination of 4 

topobathymetric LiDAR to capture topography and shallow bathymetry and MBES to capture the 5 

deeper bathymetry. The two technologies make it possible to produce seamless coverage of entire 6 

tidal basins; however, merging the two products raises the question whether the quality of the data 7 

from the two different sources is comparable. Comparing the LiDAR accuracy with previous 8 

findings of accuracy derived from multibeam sonarMBES systems indicates similar or slightly 9 

better accuracy from the multibeam sonarMBES systems (Dix et al., 2012;Ernstsen et al., 10 

2006)(Dix et al., 2012; Ernstsen et al., 2006). Dix et al. (2012) determined the vertical accuracy of a 11 

multibeam sonar by testing the system on different objects and in different environments, and found 12 

the vertical 𝐸RMS to be ±4 cm. Furthermore, they tested a LiDAR system on the same objects and 13 

found a similar vertical 𝐸RMS of ±4 cm. The vertical 𝐸RMS of ±4.1 cm found in this study is very 14 

close to both the multibeam accuracy and LiDAR accuracy determined by Dix et al. (2012). 15 

Another study by Ernstsen et al. (2006) determined the vertical precision of a multibeam sonar 16 

based on 7 measurements of a ship wreck from a single survey. They found the vertical precision to 17 

be ±2 cm, which is slightly better than the vertical precision of ±3.8 cm (frame) and ±7.6 cm (block) 18 

found in this study. 19 

Determining vertical accuracy and precision are standard practice in studies involving spatial data 20 

(FGDC, 1998;Graham, 2012;Jensen, 2009). Accuracy and precision are in many cases provided as 21 

single values, such as ±8.1 cm for the vertical accuracy in this case, and thereafter they represent the 22 

accuracy/precision of the whole dataset. However, the values actually only apply to the specific 23 

locations, where the assessment is conducted. In reality, the accuracy and precision may vary 24 

spatially, which is also the case by the differing precision of ±3.8 cm at the steel frame and ±7.6 cm 25 

at the cement block in this study. Furthermore, spatial variations of the precision throughout the 26 

study area are revealed by looking at the vertical difference between overlapping LiDAR 27 

measurements (Fig. 14). 28 

. Dix et al. (2012) determined the vertical accuracy of MBES data by testing the system on different 29 

objects and in different environments, and found the vertical 𝐸RMS to be ±4 cm. Furthermore, they 30 

tested a LiDAR system on the same objects and found a similar vertical 𝐸RMS of ±4 cm. The 31 
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vertical 𝐸RMS of ±4.1 cm found in this study is very close to both the MBES accuracy and LiDAR 1 

accuracy determined by Dix et al. (2012). Another study by Ernstsen et al. (2006) determined the 2 

vertical precision of a high-resolution shallow-water MBES system based on 7 measurements of a 3 

ship wreck from a single survey carried out in similar settings as the present study, namely in the 4 

main tidal channel in the tidal inlet just north of the inlet investigated in this study. They found the 5 

vertical precision to be ±2 cm, which is slightly better than the vertical precision of ±3.8 cm (frame) 6 

and ±7.6 cm (block) found in this study. Overall, accuracy and precision are within the scale of sub 7 

decimetres for both topobathymetric LiDAR and MBES systems, which enables the mapping of 8 

tidal basins with full coverage and with comparable quality. 9 

Due to technical and logistical reasons, the data validation and the actual survey were carried out on 10 

different days and in different locations. Based on this, it is a fair question to ask, whether the 11 

determined quality actually represents the quality of the data within the study site. In order to 12 

address this issue, the environmental conditions between the two surveying dates, as well as the 13 

environmental differences, which may impact the data quality, between the study site and the 14 

validation sites are compared. 15 

The environmental conditions in the two surveying days were similar, with sunny conditions, 16 

average wind velocities of 7-8 m/s (DMI, 2014) and significant wave heights, measured west of 17 

Fanø at 15 m water, of approx. 0.5 m coming from NW (DCA, 2014). However, the waves in the 18 

main channel, next to the study site, have been observed in the 30 May LiDAR point cloud to be not 19 

more than 0.2-0.3 m, which can be explained by the location of the study site in lee of the western 20 

most intertidal flats and the ebb-tidal delta. The wave heights in the rest of the study area (flood 21 

channel and intertidal ponds) were in the scale of sub decimetres. In comparison, there were no 22 

waves at validation site 2 in Ribe Vesterå River during the 19 April LiDAR survey. As already 23 

mentioned, the proposed water surface detection method has a shortcoming of not modelling the 24 

waves, and this is a source of error in areas exposed to waves. The precision of the seabed points 25 

within the study area are therefore expected to be worse than the ±3.8 cm precision determined at 26 

validation site 2, because of the larger wave exposure.  27 

The water clarity/turbidity impacts the accuracy of the LiDAR data negatively, due to scattering on 28 

particles in the water column, which causes the laser beam to spread (Kunz et al., 1992; Niemeyer 29 

and Soergel, 2013). Moreover, part of the light is reflected in the direction of the receiver, and such 30 

return signals can be difficult to distinguish from the seabed return (Kunz et al., 1992). The 31 
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turbidity was measured at validation site 2 and in the flood channel close to the study site during the 1 

19 April survey by collecting water samples and subsequently analysing the samples for suspended 2 

sediment concentration (SSC) and organic matter content (OMC). The analyses showed that the 3 

average SSC was higher in the flood channel (17.2 mg/kg) than in the river (10.2 mg/kg). In 4 

contrast, the average OMC was lower in the flood channel (25.5 %) than in the river (40.0 %). 5 

These observations indicate that 1) the underwater precision is assessed in a location with higher 6 

turbidity than the environment within the study site; therefore, the turbidity cannot be a cause of 7 

lower precision in the study site, and 2) the penetration depth seems to be controlled by the OMC 8 

rather than by the SSC. This is new knowledge, since no previous studies (from what we know) 9 

have investigated the relative effect of organic matter as opposed to inorganic matter on the laser 10 

beam penetration depth. However, in order to determine the relationship with statistical confidence, 11 

a more comprehensive study is needed, involving measurements of penetration depth at different 12 

SSCs and OMCs, and without disturbance from other environmental parameters. 13 

5.4 Spatial variations of topobathymetric LiDAR data quality 14 

The quality of spatial datasets is often provided as single values, such as ±8.1 cm for the vertical 15 

accuracy in this case, and then the determined value represents the accuracy/precision of the whole 16 

dataset. However, in reality the value is only a measure of the local quality at the location where the 17 

assessment is conducted. The quality of the dataset varies spatially, and one way to illustrate that is 18 

to extract the maximum vertical difference between the LiDAR points of the processed point cloud 19 

within every 0.5×0.5 m cell throughout the study site (Fig. 13). In flat areas, without multiple return 20 

signals, this shows the spatially varying precision of the dataset. There are large differences on 21 

Fanø, which is expected due to vegetation causing multiple LiDAR returns from both the vegetation 22 

canopy and from the bare ground. In contrast, the differences on the very vaguelygently sloping, 23 

non-vegetated tidal flat do not have aare up to 10 cm, and there is no simple and natural 24 

explanation.reason for that variation. A range of uncertainty factors are causingcontribute to the 25 

observed variations:  26 

Laser beam incidence angle: The incidence angle, at which the laser beam hits the ground/seabed, is 27 

determined by a combination of the scan angle, the water surface angle and the terrain slope. The 28 

shape of the footprint is stretched with larger incidence angles, and this effect can cause pulse 29 

timing errors in the detected signal, which leads to a decreasing vertical accuracy (Baltsavias, 30 

1999). The error associated with larger scan angles is generally causing the outer beams, toward the 31 
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swath edges, to attain a lower accuracy (Guenther, 2007). This is a reason for the observed 1 

variations along the swath edges (Fig. 13). Terrain slopes has the same effect of decreasing the 2 

vertical accuracy due to the footprint stretching. The measured altitude tend to be biased toward the 3 

shallowest point of the slope within the laser beam (Guenther, 2007). However, the influence of 4 

slope is not crucial in the Knudedyb tidal inlet system, since it is generally a very flat area. 5 

Vertical bias between overlapping swaths: Areas covered by more than a single swath, and hence 6 

constituting a higher point density, tend to show more vertical variation in the LiDAR point 7 

measurements. This is evident by comparing number of swath overlaps (Fig. 9B) and the local point 8 

density (Fig. 9A) with the local vertical difference of the LiDAR points (Fig. 14). 9 

This can be caused by variance/error in the GPS measurements and/or IMU errors (Huising and 10 

Gomes Pereira, 1998). The vertical bias between swaths is varying and it has been observed in the 11 

point cloud to be up to 5 cm., but it is varying throughout the study site. In most environments, a 12 

bias of 5 cm would be unnoticeable, but because of the large and very flat parts of the Knudedyb 13 

tidal inlet system, even a small bias becomes readily evident. The bias between overlapping swaths 14 

may explain the lower precision at the block compared to the frame, because the block was covered 15 

by 7 swaths as opposed to 4 swaths at the frame. It seems counterintuitive that more overlapping 16 

swaths, leading to higher point density, eventually result in lower precision of the measurements. In 17 

this case, the difference between precision and accuracy should be kept in mind, and that the same 18 

relationship between overlapping swaths and accuracy does not necessarily exist. 19 

Sloping areas: LiDAR measurements on sloping areas are expected to have lower vertical accuracy 20 

than on flat ground, because the laser beam footprint may span across different elevations. The 21 

exact position of the detected point can vary within the footprint, and thus it may also vary in 22 

elevation. Furthermore, the slope affects the footprint by increasing its area size and changing the 23 

shape to more elliptical and less round. The influence of slope is not crucial in the Knudedyb tidal 24 

inlet system, since it is generally a very flat area, but it is still an uncertainty factor to keep in mind. 25 

Uncertainty with increased water depth: The accuracy and precision are expected to be lower as the 26 

laser beam penetrates deeper into the water column. It is first of all due to widening of the laser 27 

beam footprint, which means that the elevation of a single LiDAR point is derived from the 28 

measurement on a larger area on the sea bed. Secondly, any uncertainty associated to a LiDAR 29 

measurement is magnified with increasing water depth, due to the refraction correction. These 30 
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factors, together with slopes, are causing the LiDAR measurements to be less precise in the main 1 

channel and in the flood channel. 2 

Water depth: The accuracy and precision are expected to be lower as the laser beam penetrates 3 

deeper into the water column (Kunz et al., 1992). The laser beam footprint is diverging as it moves 4 

through the water column, resulting in a larger footprint on the seabed. The altitude of the detected 5 

point is thus derived from the measurement on a larger area on the seabed, which will decrease the 6 

vertical accuracy, as well as decrease the capability of detecting small objects. With this in mind, 7 

the lower precision at the frame compared to the block is opposite of what would be expected, since 8 

the frame is below water and the block is on land. In this case, other factors, such as overlapping 9 

swaths and/or scan angle deviations, have more influence on the precision than the water depth. 10 

Also, it should be remembered that the frame surface was close to the water surface, and the effect 11 

of the water depth on the precision would most likely be more evident if it was located in deeper 12 

water. 13 

Additional factors, beside the ones mentioned above, may increase the uncertainty ofinfluence the 14 

quality of LiDAR datasets. This could for For instance be, a dense vegetation coveringcover of the 15 

ground or sea bed,seabed or breaking waves, which that makes it the laser detection of the seabed 16 

almost impossible for the laser to detect the sea bed. However, these factors do not have a great 17 

influence in the studied part of the Knudedyb tidal inlet system, and thus they are not further 18 

elaborated. Nevertheless, these factors must be taken into consideration for LiDAR surveys in 19 

different areas with lots of vegetation and slopes. 20 

5.35.5 ImpactEvaluation of the findingsmorphological classification 21 

The morphological classification presented in this study is based on the studied section of the 22 

Knudedyb tidal inlet system. The overall concept of using tidal range, slope and variations of the 23 

altitude at different spatial scales proves to be a reliable method for delineating the morphological 24 

features in this tidal environment. The concept, however, can be applied in other environments. The 25 

specific thresholds in the classification determined in this study may deviate in other areas. 26 

Morphological features of different sizes require steps of other spatial scales in the neighbourhood 27 

analyses to produce a successful classification. In the future the classification method will be 28 

improved by implementing an objective method for determining the scales, which can make it 29 

applicable in areas with different morphological characteristics. Such an objective scale 30 
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determination method is presented by Ismail et al. (2015), who determined the scales based on the 1 

variance of the DEM at progressively larger window sizes. In this way, the sizes of the 2 

morphological features are determining the scales for the classification. 3 

5.6  Using topobathymetric LiDAR data to map morphology in a highly dynamic 4 

tidal environment  5 

The study demonstrates the capability of green topobathymetric LiDAR to resolve smallfine-scale 6 

features, while covering a broad-scale tidal inlet system. Collecting topobathymetric LiDAR data 7 

with a high point density of 20 points/m
2 

on average enables detailed seamless mapping of large-8 

scale tidal inlet system. While bridging between spatial scales, tidal environments, and the LiDAR 9 

data has further proved to maintain a high accuracy, which means that shallow water zones can be 10 

mapped with a high level of detail.. The combined characteristics of mapping with high resolution 11 

and high accuracy in a traditionally challenging environment provide many potential applications to 12 

the society, such as mapping for purposes of spatial planning and management, safety of navigation, 13 

or nature conservation., or morphological classification, as demonstrated in this study. The 14 

developed LiDAR data processing method is tailored to a morphological analysis application. The 15 

best representation of the morphology is mapped by gridding the average value of the LiDAR 16 

points into a DEM with a 0.5 × 0.5 resolution. Other applications would require different gridding 17 

techniques. For instance hydrographers, who are generally interested in mapping for navigational 18 

safety, would use the shallowest point for gridding. However, the overall method for processing the 19 

point cloud can be used regardless of the application. Only the last and least challenging/time 20 

consuming step of gridding the point cloud into a DEM may vary depending on the application.  21 

During a single LiDAR survey, the present state of the environment is captured with high resolution 22 

and high accuracy. However, the coastal zone is a highly dynamic environment influenced by 23 

complex hydrodynamic processes and feedback mechanisms. Therefore, a continuous monitoring of 24 

the coastal zone with high accuracy LiDAR systems will provide an insight to the temporal 25 

variation, whether caused by climate variation or inflected by human activities. 26 

Applying topobathymetric LiDAR data for morphological analyses in tidal environments enables a 27 

holistic approach of seamlessly merging marine and terrestrial morphologies in a single dataset. In 28 

order to map the morphology of tidal environments in full coverage, however, a combination of 29 

topobathymetric LiDAR and MBES swath data is required. The comparable quality and resolution 30 
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of LiDAR and MBES data gives a potential to map large scale tidal environments, such as the 1 

Wadden Sea, in full coverage and with high resolution and high accuracy. 2 

 3 

6 Conclusions 4 

A new method was developed for processing raw topobathymetric LiDAR data into a digital 5 

elevation model with seamless coverage across the land-water transition zone. The point cloud 6 

processing is based on simple concepts, which are easily repeatable, and the processing steps are 7 

described in detail. The novel method Specifically a procedure was developed for water surface 8 

detection utilizing automatic water level determination from only green LiDAR data in a tidal 9 

environment. The method relies on basic principles, and in general the entire processing method is 10 

described with a high level of detail, which makes it easy to implement for future studies. 11 

Specifically, the The water surface is extrapolated, so that it also covers the “dead zone”, which has 12 

been determined to be approx. 0-28 cm in the very shallow water. The method doesdetection 13 

method presented in this work did not model the spatially changing water levels, such as wavestake 14 

into account the variation in wave heights and inclined surfaces.surface slopes, which therefore 15 

constitutes a challenge to be addressed in future studies.  16 

The vertical accuracy of the LiDAR data was determined by object detection of a cement block on 17 

land to ±8.1 cm with a 95% confidence level. The vertical precision was determined at the cement 18 

block to ±7.6 cm, and ±3.8 cm at a steel frame, placed just below the water surface. The difference 19 

between the two sites is an indication of spatial variations throughout the study area, largely 20 

influenced by biases between overlapping swaths. The horizontal mean error was determined at the 21 

block to ±10.4 cm. Overall, vertical and horizontal precision is within sub decimetre scale. 22 

A seamless topobathymetric digital elevation model was created forin a 4 × ×0.85 km section in the 23 

Knudedyb tidal inlet system. An average point density of 20 points per m
2
 made it possible to create 24 

an elevation model of 0.5 × ×0.5 m resolution without significant interpolation. The model extends 25 

down to water depths of 3 m, which was the maximum penetration depth of the laser scanning 26 

system at the given environmental conditions. Measurements of suspended sediment concentration 27 

and organic matter content indicate that the penetration depth is limited by the amount of organic 28 

matter rather than the amount of suspended sediment. 29 
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The vertical “dead zone” of the LiDAR data has been determined to be approx. 0-28 cm in the very 1 

shallow water. 2 

A morphological classification method was developed for classifying the area into 6 morphological 3 

classes: swash bars, linear bars, beach dunes, intertidal flats, intertidal creeks and subtidal channels. 4 

The morphological classification method is based on parameters of tidal range, terrain slope, a 5 

combination of various statistical neighbourhood analyses with varying window sizes and the 6 

area/perimeter-ratio of morphological features. The concept can be applied in any coastal 7 

environment with knowledge of the tidal range and the input of a digital elevation model; however, 8 

the thresholds may need adaptation, since they have been determined for the given study area. In the 9 

future the classification method should be improved by implementing an objective method for 10 

determining thresholds, which makes it immediately applicable across different environments. 11 

Overall this study has demonstrated a high potential for that airborne topobathymetric LiDAR to 12 

bridge scales, i.e. to resolve small scale landforms at landscape scales, and to bridge environments, 13 

i.e. to close the gap between marine and terrestrial environments in the coastal zone or in other 14 

shallowis capable of seamless mapping across land-water transition zones like rivers and lakeseven 15 

in environmentally challenging coastal environments with high water column turbidity and 16 

continuously varying water levels due to tides. Furthermore, we have demonstrated the potential of 17 

topobathymetric LiDAR in combination with morphometric analyses for classification of 18 

morphological features present in coastal land-water transition zones. 19 
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Table 1: Specifications of the RIEGL VQ-820-G topobathymetric airborne laser scanner (RIEGL, 1 

2014). 2 

Flight altitude ~ 400 m above ground 

Swath width ~ 400 m 

Scan pattern Section of an ellipse – arc shape 

Scan angle 20° ±1° 

Laser wavelength 532 nm 

Pulse width 1 ns 

Laser beam footprint (diameter) 40 cm (at 400 m flight altitude) 

Laser pulse repetition rate Up to 520,000 Hz 

Max. effective measurement rate Up to 200,000 meas./sec. 

Laser beam divergence 1 mrad 

Typical water depth penetration 1 Secchi disc depth 

  3 
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Table 2: 1 
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 1 

Table 1: Vertical accuracy and precision of the LiDAR point measurements, in terms of minimum 2 

error (Emin), maximum error (Emax), standard deviation (σ), mean absolute error (EMA), root mean 3 

square error (ERMS) and the 95% confidence level (Cl95%). 4 

Accuracy/ 

Precision 

Object Best-fit 

plane 

# 

points 

n 

Emin 

(cm) 

Emax 

(cm) 

σ 

(cm) 

EMA 

(cm) 

ERMS 

(cm) 

Cl95% 

(cm) 

Accuracy Cement 

block 

GCPs 227 0.01 12.1 4.1 3.5 ±4.1 ±8.1 

Precision Cement 

block 

Point 

cloud 

227 0.04 12.9 3.9 2.8 ±3.9 ±7.6 

Precision Steel 

frame 

Point 

cloud 

46 0.02 5.5 2.0 1.6 ±1.9 ±3.8 

  5 
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Table 32: LiDAR point spacing and density for all the 11 individual swaths, which covered the 1 

study area, and for the combined swaths.  2 

Swath 

number 

1 2 3 4 5 6 7 8 9 10 11 All 

Point 

spacing (m) 

0.30 0.30 0.36 0.31 0.36 0.32 0.37 0.29 0.35 0.36 0.28 0.20 

Point 

density 

(pt./m
2
) 

10.8 10.8 7.8 10.2 7.5 9.6 7.2 11.7 8.0 7.8 12.7 19.6 

  3 
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 1 

 2 

Figure 1: Conceptual sketch of the laser beam propagation and return signals. The beam refracts 3 

upon entering the water body, and it diverges as it propagates through the water column. Return 4 

signals are produced both in the air, at the water surface, in the water column and at the sea 5 

bedseabed. The LiDAR instrument has limited capability in very shallow water (the “dead zone” in 6 

the figure) because the successive peaks from the water surface and the seabed are not individually 7 

separated in time and amplitude. Only the largest peak, which is from the sea bedseabed, is 8 

detected.   9 
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Figure 2: A) Overview of the study area location in the Danish Wadden Sea and the specific 1 

locations of the study site (B) and the two validation sites (I and J) three study sites (22 April 2015 2 

satellite image, Landsat 8). B) StudyThe study site 1 in the Knudedyb tidal inlet system (30 May 3 

2015 Orthophoto, AHM). C) Study site 2C) Cottages in the dunes on Fanø. D) Beach dunes on 4 

Fanø. E) Patch of Spartina Townsendii (Common Cord Grass). F-G) Swash bars. H) Linear bar. I) 5 

Validation site 1 with a cement block on land, used for accuracy and precision assessment (19 April 6 

2015 orthophoto, AHM). D) StudyJ) Validation site 32 with a steel frame in Ribe Vesterå River, 7 

used for precision assessment (19 April 2015 orthophoto, AHM). E) Cottages in the dunes on Fanø. 8 

F) Beach dunes on Fanø. G) Patch of Spartina Townsendii (Common Cord Grass). H-I) Swash bars. 9 

J) Linear bar.  10 
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 1 

Figure 3: The 11 swaths covering study site 1, which were used for generating the DEM.  2 
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 1 

Figure 4: Classification decision tree, showing how the geomorphometric classification was 2 

conducted in the Benthic Terrain Model tool. 3 

  4 
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 1 

Figure 5: Classification decision tree of the morphological classification. All steps were performed 2 

in ArcGIS. 3 

  4 
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 1 

 2 

Figure 5:6: Vertical adjustment of the refracted LiDAR points from the flood channel transect (see 3 

location in Fig. 2C).  4 
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 1 

Figure 6: Example of a cross section of the flood channel, with a clearly visible gap in the water 2 

points in the very shallow water. The vertical dead zone is determined to be approx. 28 cm (see 3 

text).  4 
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 1 

Figure 7:Figure 7: Vertical difference between the shallowest and the deepest LiDAR point within 2 

0.5 m grid cells in the land-water transition zone.  The abrupt change is caused by the dead zone. 3 

The vertical extent of the dead zone is determined to approx. 28 cm, derived by the maximum rate 4 

of change of a polynomial fit through the points.   5 
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 1 

Figure 8:8: Vertical and horizontal distribution of the LiDAR points describing the block surface 2 

and the block surface derived from Ground Control Points (GCPs). A) LiDAR points (grey dots) 3 

compared to the GCP block surface (black line) for determining the vertical accuracy. The grey line 4 

shows the LiDAR block surface as a best-linear-fit through the points. B) Block surface derived 5 

from the four GCP corner points and the block surface derived by the perimeter of the LiDAR 6 

points.   7 
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 1 

Figure 9: A) Point density (pts./m
2
) throughout the study site. B) Number of swath overlaps in 2 

different sections of the study site.  3 

A B 
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 1 

Figure 10: Frequency distribution of the varying LiDAR point density throughout the study area.  2 
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 1 

Figure 11:  2 

Figure 9: Topobathymetric DEM across the northern part of the Knudedyb tidal inlet system with 3 

close-up views of different detail level on specific areas. A hill shade is draped upon the close-ups 4 

for improved visual interpretation.visualization of morphological features. A) Northern section with 5 

beach dunes and cottages. B) Cottages. C) Mid-section with the flood channel. D) Closer view on 6 

an intertidal creek. E) Southern section with swash bars, linear bars and bathymetry of the main 7 

channel. F) Swash bar. 8 
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 1 

Figure 12: Examples10: Two classifications of observed wave activitythe investigated section in 2 

Knudedyb tidal inlet system, derived from a topobathymetric DEM. A) Geomorphometric 3 

classification. B) morphological classification. C) Zoom-in on the intertidal creek in the 4 

morphological classification. D) Zoom-in on the swash bars and linear bars close to the main 5 

channel in the LiDAR data from a single swath. A) morphological classification. A vertical 6 
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viewhillshade of the shallow surface with 0.5 m resolution, showing waves near the tidal DEM is 1 

draped over C and D. 2 

 3 

Figure 11: Vegetated mounds on the intertidal flat. B) A horizontal view along a transect through 4 

the point cloud, which are clearly captures the waves, together with the determined water 5 

surface.visible in the DEM and classified as small-scale crests in the geomorphometric BTM 6 

classification. To the right is an image of one of the patches.  7 

   8 
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 1 

Figure 13:12: Horizontal extent of the dead zone in the studied area at mean low water, mean water 2 

level and mean high water.  3 
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 1 

Figure 14:13: Vertical difference between the highest and the lowest LiDAR point within 0.5 × 2 

×0.5 m grid cells. 3 
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