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Abstract. A substantial interpretation of electromagnetic induction (EMI) measurements requires

quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this pur-

pose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-

orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline

soil. In the MCMC simulations, posterior distribution was computed using Bayes rule. The elec-5

tromagnetic forward model based on the full solution of Maxwell’s equations was used to simulate

the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD

mini-Explorer. The model parameters and uncertainty for the three-layered earth model are investi-

gated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters

of layer thickness are not well estimated as compared to layers electrical conductivity because layer10

thicknesses in the model exhibits a low sensitivity to the EMI measurements, and is hence difficult

to resolve. Application of the proposed MCMC based inversion to the field measurements in a drip

irrigation system demonstrate that the parameters of the model can be well estimated for the saline

soil as compared to the non-saline soil, and provide useful insight about parameter uncertainty for

the assessment of the model outputs.15
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1 Introduction

Electromagnetic induction (EMI) with low frequency is a powerful tool to map the hydrological

processes in the vadose zone due to the sensitivity to water content and soil salinity (Jadoon et al.,

2015; Robinson et al., 2009). The use of EMI is largely motivated by the need of robust and compact

system design, easy to use, rapid acquisition, and capability to provide a large set of georeferenced20

measurements, which can be associated with the spatial variability of subsurface at the field scale

(Corwin, 2008). The EMI instrument is used to measure soil apparent electrical conductivity (ECa)-

showing distribution of averaged electrical conductivity over a particular depth range. The depth of

investigation of ECa depends on the coil spacing, the coil orientation, and the frequency of the

energizing field. Mester et al. (2011) reported that in the low induction number condition, the coil-25

orientation, offset, and frequency have major, moderate and minor effects on depth of penetration,

respectively. Soil moisture, salinity and texture cannot be directly measured with EMI measure-

ments. However, in non-saline soils, cation exchange capacity, soil moisture and texture are factors

responsible for ECa variations (Rhoades et al., 1976; Sudduth et al., 2003). Whereas in saline soil,

the ECa measurement is generally dominated by the soil salinity, and the reason is the accumula-30

tion of more salt concentration in the topsoil due to the loss of water through evaporation (Corwin

and Lesch, 2005a,b; Ershadi et al., 2014). The success of EMI measurements to assess soil salinity

depends on the establishment of site-specific petrophysical relationship to relate ECa with the soil

salinity estimated by electrical conductivity of the saturated paste extract (ECe) (Cook and Walker,

1992).35

Several inversion algorithms have been developed for EMI measurements to improve the resolu-

tion of subsurface features and the assessment of soil properties (Hendrickx et al., 2002; Santos et al.,

2010; Triantafilis and Monteiro Santos, 2013). The majority of these inversion algorithms solve 1-D

earth model for electromagnetic wave propagation. The model of McNeill (1980) has been exten-

sively used for low induction number and Maxwell’s equations has been utilized for high conductive40

soil (ECa> 100 mS/m) where the low induction number assumption is not valid. For example, Li

et al. (2013) used Geonics EM38 to measure ECa in a rice-paddy and did inversion using forward

model of McNeill (1980) to estimate the variation of soil salinity in a field condition. They reported

that the yield reduced by 33% in an irregular shaped patch of strong saline topsoil estimated by EMI

inversion. EMI systems are sensitive to the field-specific calibration procedure, which limits to ob-45

tain precise measurements of ECa. However, in inversion modeling precise measurement of ECa

is a prerequisite to characterize subsurface soil properties. For decades, the development and use

of quantitative EMI inversions were mainly hampered by the lack of suitable calibration methods.

von Hebel et al. (2014) used electrical resistivity tomography to calibrate EMI measurements before

their inversion of EMI measurements to estimate three-dimensional imaging of subsurface electrical50

conductivity. Recently, Jadoon et al. (2015) calibrated EMI measurements via vertical electrical con-

ductivity profile measured by capacitance sensors in different pits and later performed inversion for
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calibrated multi-configuration EMI measurements to estimate the effect of soil salinity distribution

in an acacia tree farm.

Generally these inversion algorithms are robust and provide useful estimates of subsurface prop-55

erties in terms of optimal model parameters, analysis of parameter uncertainty and correlation is

often left unaddressed. Parameter uncertainty can be associated to the measurement errors (acqui-

sition geometry, instrumental calibration and human error), modeling errors (assumptions in the

electromagnetic forward model and petrophysical relationships), prior assumptions or constraints,

parametrization, and inversion or estimation methods. Parameter uncertainty analysis can serve two60

main purposes: identify the model parameters of dominant importance and provide confidence in the

estimated model parameters (Scharnagl et al., 2011). For instance, Minsley (2011) used synthetic

data considering the characteristics of shallow ground-based EMI system, geophex GEM-2 (Huang

and Won, 2003), to estimate parameters uncertainty for a three layer model via a Bayesian Markov

Chain Monte Carlo (MCMC) approach. They showed that combining multiple configuration EMI65

measurements have significantly reduced total error, was best able to capture the shallow interface,

and have reduced regions of uncertainty at depth.

Conventional estimation of a single best-fit model with linear uncertainty usually does not trace

ambiguity in the models, and may lead to a misguiding or imprecise interpretation. In this work,

an adaptive Bayesian MCMC algorithm was used for multi-orientation and multi-offset EMI mea-70

surements, in which the parameters posterior distribution represents the complete solution of the

Bayesian inversion problem, including prediction of optimal parameters value and the associated

uncertainty. Synthetic scenarios were analyzed for a three-layered earth model to evaluate the esti-

mated parameter and uncertainty for saline and non-saline soil using the characteristics of the CMD-

Mini Explorer EMI system. Furthermore, field measurements of the CMD-Mini explorer were used75

to estimate parameter uncertainty in the three-layered earth model and soil salinity distributions in

an agricultural field irrigated with drip irrigation system.

2 Materials and methods

2.1 Electromagnetic forward model

Forward EMI response for a given layered earth model is usually calculated by the McNeill (1980)80

model, which is created by using the cumulative electrical conductivity distribution over a certain

depth range, and valid under condition of low induction number. The alternative method used to

calculate the forward EMI response is to solve the full solution of the Maxwell’s equation for the

magnetic field measured over a horizontal layered medium proposed by Keller and Frischknecht

(1966) and Anderson (1979). Preliminary analysis indicated that the electromagnetic forward model,85

which is based on high induction number assumption, returned more reliable apparent electrical con-

ductivity values than the standard sensitivity curves of McNeill (1980). Furthermore, an increased

3



computational power made it possible to characterize subsurface by utilizing forward models based

on the Maxwell’s equation (Santos et al., 2010). On one hand, the effective depth of exploration is

independent of ECa in a low induction number condition, on other in high induction number con-90

dition inverse relationship was found between the depth of exploration and ECa (Callegary et al.,

2007). For a combination of a vertical and horizontal dipole source-receiver with an offset ρ over a

multilayered earth, the electromagnetic forward model can be written as:

ECHCPa (x,ρ) =
−4ρ

ωµ0
Im
[∫ ∞

0

R0J0(ρλ)λ2dλ

]
, (1)

ECV CPa (x,ρ) =
−4

ωµ0
Im
[∫ ∞

0

R0J1(ρλ)λdλ

]
. (2)

In these expressions,ECV CPa andECHCPa represents apparent electrical conductivity - measured

in vertical and horizontal coplanar mode, µ0 represents permeability of the free space, λ indicates95

the radial wave number, J0 and J1 corresponds to the zero-order and first-order Bessel functions, ω

is angular frequency and Im shows the quadrature component. The reflection factor R0 is obtained

recursively, beginning with the lowest layer N+1, where RN+1 = 0 :

Rn(hn,σn) =

Γn−Γn+1

Γn+Γn+1
+Rn+1exp(−2Γn+1hn+1)

1+ Γn−Γn+1

Γn+Γn+1
Rn+1exp(−2Γn+1hn+1)

, (3)

Γn =
√
λ2 +ωµ0jσn, (4)

σ0 = 0, hn is the height, and σn is the electrical conductivity for the nth layer. The assumption

made in this formulation is that each layer is uniform with infinite horizontal extent. EMI measure-100

ments were carried out under high induction number conditions (ECa > 100 mS/m) resulting in

utilization of the full solution of Maxwell’s equation for forward EMI response.

2.2 Bayesian Inference

Bayesian inference approach is used to express the uncertainties in the system using a suitable like-

lihood function. Given a set of unknown parameters, the prior distributions of the given model are105

formulated and Bayes rule is then used by incorporating observational data to calculate posterior

distribution (Arulampalam et al., 2002; Sivia, 2006). Bayesian inversion gained a lot of interests in

recent years and has been applied in different applications, including climate, ocean and geophysical

modeling (Malinverno, 2002; Zedler et al., 2012; Olson et al., 2012; Altaf et al., 2014; Sraj et al.,

2014).110

Suppose a set of data ({yi}ni=1) is available and assume a certain model to describe the data. Let

α be the set of parameters defining our model, then according to Bayes rule

p(α|{yi}ni=1)∝ p({yi}ni=1|α) p(α), (5)
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where p(α) is the prior distribution of α that represents the a priori knowledge about α, i.e. before

considering the data. p({yi}ni=1|α) denotes the likelihood function: the probability of acquiring the

data given α. p(α|{yi}ni=1) is the posterior probability: the probability that α is true given the data115

({yi}ni=1). The equation 5 refers to Bayes law which describes the probability of an event, based

on conditions that might be related to the event. One of the many applications of Bayes theorem is

Bayesian inference.

Let’s consider the forward model M, for the evaluation of the data as a function of the parameters

such that:120

y=M(α). (6)

Let ε be a random variable which represents the discrepancy between our model M(α), and the

observations y as:

ε= y−M(α), (7)

Specifically, we assume that ε follows a Gaussian distribution of mean zero and variance σ2, i.e.

ε∼N(0,σ2). The likelihood function can then be represented as

p({yi}ni=1|α) =

n∏
i=1

1√
2πσ2

exp

(
− (yi−Mi(α))2

2σ2

)
. (8)

The variance (σ2) depends on the observational data y. Together with unknown parameters α,125

σ2 is an additional unknown estimated parameter. Finally, the joint posterior distribution using the

Bayesian inference is expressed as:

p(α,σ2|{yi}ni=1)∝
n∏
i=1

1√
2πσ2

exp

(
− (yi−Mi(α))2

2σ2

)
p(α)p(σ2). (9)

The choice of a prior is a key step in the inference process. Here, an informative uniform prior

for all five (three conductivities and two thickness) parameters is assumed, with αk in the range

[αmaxk −αmink ]; i.e:130

p(αk) =


1

αmax
k −αmin

k

for αmink <αk ≤αmaxk ,

0 otherwise ,
(10)

The noise variance σ2, we assume a Jeffreys prior (Sivia, 2006) given as:

p(αk) =


1
σ2 for σ2> 0,

0 otherwise ,
(11)
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Generally, the most appropriate computational strategy for a multidimensional parameters space is

the Markov Chain Monte Carlo (MCMC) method. We have applied an adaptive Metropolis MCMC

algorithm (Haario et al., 2001; Roberts and Rosenthal, 2009) to sample the posterior distribution.

135

2.3 Synthetic and Field Measurements

Two set of scenarios were considered to test the MCMC approach to evaluate the estimated param-

eters and their uncertainty using synthetic data for CMD Mini-Explorer configurations. Figure 1 (a)

and (b) shows a three-layer earth model of low and high conductivity for non-saline soil and high

soil salinity, respectively. In both scenarios thicknesses for the three-layer earth model was concep-140

tualized by a plow horizon (0.25 m thick), with an intermediate subsoil layer (0.50 m thick) and

underlying consolidated layer up to 1.5 m depth. Usually the plowing horizon has less soil moisture

as compared to the deeper horizon because of evaporation and infiltration processes. Therefore in

the scenario of non-saline soil the plowing horizon had low electrical conductivity of 15 mS/m as

compared to the intermediate and consolidated soil layers (Figure 1 (a)). Whereas in the saline soil145

scenario, salt accumulations on the surface of soil due to evaporation of water, as a result the elec-

trical conductivity of plowing horizon, is considered higher 1800 mS/m as compared to the deeper

layers (Figure 1 (b)). In the agricultural field, the increase in the soil salinity is generally due to the

use of poor quality of water or the excessive use of fertilizers. Forward response of both scenarios

was calculated in HCP and VCP via Equations (1) and (2), respectively, for EMI configuration se-150

tups using the characteristics of CMD-Mini Explorer of three receiver coils respectively placed at

0.32, 0.71 and 1.18 m distances from the receiver.

In both scenarios, six configurations, three each for HCP and VCP with different spacings were

taken as an output for forward models. Let α= (σ1,σ2,σ3,h1,h2)T be a vector of model control

parameters. σ1, σ2, and σ3 are layer conductivities, and h1 and h2 thicknesses. Bayesian inference155

was used to estimate these 5 parameters that minimize the errors between observed and modeled

HCP and VCP. An adaptive MCMC method was used to sample the posterior distributions and

consequently update α distributions according to the observed data. All the results explained below

are based on 104 MCMC samples. Parameter range for h1 and h2 was fixed between 0.05−0.6

m in each scenario. In the non-saline scenario, parameter range for σ1, σ2 and σ3 was considered160

between 5-100 mS/m and the saline soil scenario range was fixed between 5-3000 mS/m. A uniform

prior distribution function was considered in both scenarios.

Field measurements were carried out in a farm, where acacia trees were irrigated with saline

groundwater. The farm is located at a distance of 6 km from the Red Sea coast at Al-Qadeimah,

Makkah province, Saudi Arabia. EMI measurements were carried out with the interval of 2 m165

over a 40 m-long transect, along which three acacia trees were irrigated using drip irrigation. At

each location, EMI measurements using CMD-Mini explorer system gives six different values of
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apparent electrical conductivity (using two coil orientations and three offsets), each responds to

different depth ranges. Ten pits were dug along the same transect and in each pit the vertical σb

profile was measured at 15 locations within a depth range of 0.05-1.5 m via 5TE capacitance sensors170

(Decagon Devices, Pullman, USA). EMI and 5TE measurements were performed 8 h after the drip

irrigation system was stopped, so that the soil moisture should not be concentrated below the drippers

and to give some time to reduce the soil moisture impact due to evaporation, root water uptake and

infiltration (Jadoon et al., 2015).

3 Results and Discussion175

3.1 Synthetic Data

Figure 2 (a) and (b) depicts the observed, estimated (modeled) and range of ECa picked from the

chain of MCMC simulation for six configurations of synthetic case considered for non-saline and

saline soil, respectively. X-axis represents VCP and HCP with three coil spacing (ρ32, ρ71, ρ118).

In a non-saline scenario, the layer electrical conductivity increases with the depth (Figure 1 (a)),180

and is reflected in the observed and modeled ECa in the VCP and HCP with increasing trend for

bigger spacing (Figure 2 (a)). The ECa value for the VCP and HCP with maximum spacing of

1.8 m between transmitter and receiver corresponds to deeper horizon and in the case of saline

soil scenario the layer conductivity decreases (Figure 1 (b)) and as a result ECa values in VCP

and HCP configuration exhibits a decreasing trend (Figure 2 (b)). The electromagnetic forward185

model is sensitive to high electrical conductive soil, so the modeled ECa values for the saline soil

scenario matches well with the observed as compared to the non-saline scenario. Mismatch between

the observed and modeled ECa values for non-saline soil is due to low sensitivity of the forward

electromagnetic model to the low electrical conductivity.

Figure 3 (a) shows the true parameter values (red line), the value of the estimated parameters using190

MCMC simulations (blue dash line) for the non-saline soil scenario. The computed MCMC sam-

ples were used to obtain the marginalized posterior distributions based on kernel density estimation

(KDE) (Parzen, 1962). The 95 percent of the KDE for each parameter is shown by the shaded gray

background (Figure 3 a). The resulting marginalized posterior pdfs of the three conductivities and

two thicknesses are shown in Figure 3 (b − f). The pdfs of each parameter (Figure 3 b−f) show a195

single peak, corresponding to the optimal parameter value. Electrical conductivities of three layers

(σ1, σ2 and σ3) were comparatively well estimated as compared to the layer thicknesses. Differ-

ent uniform prior distribution functions were also considered for the layer thicknesses and in each

MCMC simulation the model converges close to the prior instead of true layer thicknesses. It seems

that the topography of the objective function is flat in the direction of layer thicknesses and do not200

change with the layer thickness picked in each iteration of the MCMC simulation. This suggests that

the electromagnetic model is not sensitive to the layer thicknesses for the low conductive soil layer.
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Figure 4 illustrates the true and estimated depth profile of electrical conductivity for saline sce-

nario, and the KDE of the marginalized posterior distributions for the three layer conductivities (σ1,

σ2 and σ3) and the two layer thicknesses (h1 and h2). The shaded gray background shows the 95205

percent of the KDE for each parameter (Figure 4 a). The vertical electrical conductivity profile was

well optimized by MCMC simulation. The electrical conductivity of the top two layers were well

estimated as compared to the consolidated layer with low electrical conductivity. Furthermore, in

the six configurations of CMD Mini-Explorer, the HCP and VCP configuration with spacing 1.18 m

are mostly sensitive to the consolidated layer and the remaining four configurations are sensitive to210

upper horizon. A big range of parameter space was searched by MCMC simulation (Figure 4 b −
e), which illustrate parameters sensitivity to the electromagnetic model.

3.2 Experimental Data

Measurements were carried out in a farm, where acacia trees were irrigated with saline groundwater.

The farm is located at a distance of 6 km from the Red Sea coast at Al-Qadeimah, Makkah province,215

Saudi Arabia. EMI measurements were carried out with the interval of 2 m over a 40 m-long transect,

along which three acacia trees were irrigated using drip irrigation. At each location, EMI measure-

ments using CMD-Mini explorer system gives six different values of apparent electrical conductivity

(using two coil orientations and three offsets), each responds to different depth ranges. Ten pits were

dug along the same transect and in each pit the vertical σb profile was measured at 15 locations220

within a depth range of 0.05-1.5 m via 5TE capacitance sensors (Decagon Devices, Pullman, USA).

5TE and EMI measurements were carried out on the same day 8 hr after the drip irrigation system

was stopped, so that the soil moisture concentration below the drippers be avoided, and the time be

given for the reduction of soil moisture impact due to root water uptake, evaporation and infiltration

(Jadoon et al., 2015).225

Figure 5 shows soil electrical conductivity measured in ten pits along a transect and the mod-

eled soil electrical conductivity as estimated by the Markov Chain Monte Carlo simulation for

multi-configuration electromagnetic induction measurements. The pit locations along the transect

are shown by black triangle and cubic interpolation of 150 5TE sensor measurements were used

to construct the two dimensional profile of measured σ (Figure 5 (a)). The groundwater used to230

irrigate the acacia trees has an electrical conductivity of 4200 mS/m. The three patterns of high

electrical conductivity is due to infiltration front and soil salinity near three acacia trees. In total, 21

multi-configuration EMI measurements were performed along a transect and calibrated with in situ

measurements obtained through capacitance sensors (Jadoon et al., 2015). Three-layer earth model

was considered for Bayesian inference to estimate five parameters (σ1,σ2,σ3,h1,h2) and their un-235

certainty based on the 15,000 MCMC samples. For all MCMC simulations, the parameter space

for optimization was set relatively large, having the range of values used for low and high electri-

cal conductivity of soil; namely, 0<σ1 < 3000 mS/m, 0<σ2 < 3000 mS/m, 0<σ3 < 3000 mS/m,
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0.05<h1 < 0.6 m, and 0.05<h1 < 0.6 m. In the depth section of soil electrical conductivity ob-

tained by EMI MCMC simulations, the effect of infiltration patterns and the soil salinity due to240

the drip irrigation near three acacia trees can be observed (Figure 5 (b)). The obtained soil electri-

cal conductivity values by MCMC simulation are in a good agreement with sensor measurements

performed in pits (Figure 5 (a)).

Figure 6 (a) and (b) shows the measured, estimated (modeled) and range of ECa picked from the

chain of MCMC simulation for six multi-configuration of CMD-Mini Explorer for non-siline and245

saline soil, respectively. Three coil spacing for each VCP and HCP is represented on x-axis. EMI

measurement is shown for non-saline and saline soil is at the location 4 and 9 of the pit (Figure 5 (a)),

respectively. The soil was completely dry for non-saline soil as no irrigation was applied, whereas

in the case of saline soil the moisture in the soil was in the range of 0.005-0.19 at the time of EMI

and sensor measurements. In non-saline soil, the measured six ECa values are in the range of 5-60250

mS/m and the modeled ECa value are in the range of 23-38 mS/m Figure (6 (a)). The range of ECa

picked from the last 10,000 MCMC simulation is in the range of 0-75 mS/m. As we observed in

the synthetic non-saline soil scenario that the electromagnetic forward model was not sensitive to

the low electrical conductive soil similarly the fit between the measured and modeled ECa is not in

good agreement with the real measurements (Figure 6 (a)). Furthermore, the misfit may be due to255

the large search parameter space in the MCMC simulations. In the case of saline soil, the electrical

conductivity of the top 50 cm soil is high due to the saline infiltration and soil salinity. This effect

can be seen in the decreasing trend of the measured ECa for the VCP and HCP measurements with

bigger coil spacing (Figure 6 (b)). The measured and modeled ECa are in good agrement and this

is due to the sensitivity of the electromagnetic forward model to high electrical conductive soil.260

Figure 7 plots the vertical profile of electrical conductivity for non-saline soil measured by capac-

itance sensors (red line), the value of the estimated parameters using the MCMC simulations (blue

dash line), and the KDE of the marginalized posterior distributions for the three layer conductivities

and the two layer thicknesses. CMD-Mini Explorer measurements at the pit 4 for non-saline soil was

used for the analysis. In Figure 7 (a), the shaded area shows the 95% KDE distribution limits, the265

measured vertical profile of soil electrical conductivity fall within the shaded area in the top depth

0-0.7 m and below this depth modeled soil electrical conductivity is over estimated. The mismatch

between the measured and modeled ECa for the maximum coil separation Hρ118 and Vρ118 is the

cause of over estimation of modeled soil electrical conductivity. The marginalized posterior pdfs

of the three conductivities and two thicknesses are shown in Figure 7 (b − f). The pdfs of each270

parameter (Figure 7 b−f) exhibit a single peak and corresponds to the optimal parameter value. The

peak of the σ3 is flat between 30-38 mS/m and seems the topography of the objective function do

not change within this range of conductivity in each iteration of the MCMC simulation.

Figure 8 plots the vertical profile of electrical conductivity for saline soil measured by capacitance

sensors (red line), the value of the estimated parameters using the MCMC simulations (blue dash275
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line), and the KDE of the marginalized posterior distributions for the three layer conductivities and

the two layer thicknesses. CMD-Mini Explorer measurements at the pit 9 for saline soil was used

for the analysis. The shaded area in Figure 8 (a) plots the 95% KDE distribution limits, and the

whole measured vertical profile of soil electrical conductivity fall within the shaded area. This

suggests that the electrical conductivity is well estimated. The marginalized posterior pdfs of the280

three conductivities and two thicknesses as shown in Figure 8 (b − f), exhibit a single peak for each

parameter except layer thickness h2 which is flat which shows that the measured data were not useful

to refine our prior knowledge for h2. The posterior pdfs of first two conductivities (σ1 and σ2) and

layer thickness h1 appear to be a precise Gaussian shape with a clear Maximum A Posteriori (MAP)

values. For conductivity parameter σ3, we notice a posterior with a well defined peak but no clear285

pdf shape.

Figure 9 shows the spatial distribution of soil salinity estimated from EMI measurement using

Bayesian MCMC simulations. Soil salinity ECe is related to bulk electrical conductivity σb via a

linear relationship (ECe = 13.74σb+0.001) established by Jadoon et al. (2015) for the same site.

Infiltration front and high soil salinity ranges from 0.01 to 0.5 m at three locations where Acacia trees290

are irrigated with brackish water. Results show that the Bayesian inversion of multi-configuration

EMI measurement permits the estimation of soil salinity caused by the brackish water infiltration.

In the field, Acacia trees roots were concentrated in the top 70 cm of soil and the low soil salinity

below 30 cm shows that Acacia are capable of extracting salt solutions and reduces subsoil salinity.

The results of this study has attempted to evaluate model parameters and their uncertainties using295

the Bayesian inference framework for both synthetic and ground-based EMI field measurements to

estimate the spatial distribution of soil salinity in a drip irrigation system.

4 Conclusion

In this research, adaptive Bayesian MCMC algorithm has been introduced for the model assessment

and uncertainty analysis of multi-orientation and multi-offset EMI measurements. The algorithm300

has been tested for CMD-Mini Explorer with both synthetic and field measurements conducted in an

agriculture field over a non-saline and saline soil. Using Bayesian inference, marginalized posterior

pdfs were computed for three subsurface electrical conductivities (σ1, σ2, and σ3 ) and two layer

thicknesses (h1 and h2) using MCMC. Such analysis helps to provide insight about parameters

estimate and uncertainties.305

The experimental results showed that the MCMC simulations can improve the reliability of the

electromagnetic forward model to estimate the subsurface electrical conductivity profiles. Analysis

shows that the electromagnetic forward model is less sensitive to the non-saline soil as compared to

the saline soil. The proposed approach is flexible and can be implemented for various low-frequency

ground-based EMI system and can provide subsurface electrical conductivity distribution and un-310
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certainty of model parameters. Future research will focus to implement the Bayesian inference ap-

proach on time-lapse EMI measurements in different agricultural fields to monitor the soil dynamics,

estimate the model parameters and their uncertainties.
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Fig. 1. Three-layer synthetic earth model of electrical conductivity for (a) non-saline soil and (b) saline soil in

the top horizon.
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Fig. 2. Observed electrical conductivity obtained from the forward response of the six different configuration of

CMD-Mini Explorer (red star), estimated (modeled) earth electrical conductivity (blue asterisk) and the range

of ECa simulated by MCMC for (a) non-saline and (b) saline soil scenarios.
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Fig. 3. Summary of the MCMC simulation for the synthetic three layer earth model of non-saline soil. (a) True

(red line) and estimated parameter (blue dash-line) for the vertical electrical conductivity profile, and the gray

background with the 95 percent confidence interval of kernel distribution estimation (KDE). (b − f) show the

KDE of the marginalized posterior distributions for the three layer conductivities (σ1, σ2 and σ3) and two layer

thicknesses (h1 and h2).
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Fig. 4. Summary of the MCMC simulation for the synthetic three layer earth model of saline soil. (a) True

(red line) and estimated parameter (blue dash-line) for the vertical electrical conductivity profile, and the gray

background with the 95 percent confidence interval of kernel distribution estimation (KDE). (b − f) show the

KDE of the marginalized posterior distributions for the three layer conductivities (σ1, σ2 and σ3) and two layer

thicknesses (h1 and h2).
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Fig. 5. (a) electrical conductivity (mS/m) measured by the 5TE capacitance sensors from 10 soil pits along

transect and the location of the soil pits is indicated by black triangles (Jadoon et al., 2015), (b) the soil electrical

conductivity obtained by using Markov Chain Monte Carlo simulation for multi-configuration electromagnetic

induction measurements.
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Fig. 6. Measured six different configuration of CMD-Mini Explorer (red star), estimated (modeled) earth

electrical conductivity (blue asterisk) and the range of ECa simulated by MCMC for (a) non-saline soil at pit 4

and (b) saline soil at pit 9 location.
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Fig. 7. Summary of the MCMC simulation for three-layer earth model by considering CMD-Mini explorer

measurement over a non-saline soil. (a) True (red line) and estimated parameter (blue dash-line) for the vertical

electrical conductivity profile, and the gray background with the 95 percent confidence interval of kernel distri-

bution estimation (KDE). (b − f) show the KDE of the marginalized posterior distributions for the three layer

conductivities (σ1, σ2 and σ3) and two layer thicknesses (h1 and h2).
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Fig. 8. Summary of the MCMC simulation for three-layer earth model by considering CMD-Mini explorer

measurement over a saline soil. (a) True (red line) and estimated parameter (blue dash-line) for the vertical

electrical conductivity profile, and the gray background with the 95 percent confidence interval of kernel distri-

bution estimation (KDE). (b − f) show the KDE of the marginalized posterior distributions for the three layer

conductivities (σ1, σ2 and σ3) and two layer thicknesses (h1 and h2).
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