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Abstract. A substantial interpretation of electromagnetic induction (EMI) measurements requires
quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this pur-
pose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess multi-
orientation and multi-offset EMI measurements in an agriculture field with non-saline and saline
soil. In the MCMC simulations, posterior distribution was computed using Bayes rule. The elec-
tromagnetic forward model based on the full solution of Maxwell’s equations was used to simulate
the apparent electrical conductivity measured with the configurations of EMI instrument, the CMD
mini-Explorer. The model parameters and uncertainty for the three-layered earth model are investi-
gated by using synthetic data. Our results show that in the scenario of non-saline soil, the parameters
of layer thickness are not well estimated as compared to layers electrical conductivity because layer
thicknesses in the model exhibits a low sensitivity to the EMI measurements, and is hence difficult
to resolve. Application of the proposed MCMC based inversion to the field measurements in a drip
irrigation system demonstrate that the parameters of the model can be well estimated for the saline
soil as compared to the non-saline soil, and provide useful insight about parameter uncertainty for

the assessment of the model outputs.
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1 Introduction

Electromagnetic induction (EMI) with low frequency is a powerful tool to map the hydrological
processes in the vadose zone due to the sensitivity to water content and soil salinity (Jadoon et al.|
2015;Robinson et al.,2009). The use of EMI is largely motivated by the need of robust and compact
system design, easy to use, rapid acquisition, and capability to provide a large set of georeferenced
measurements, which can be associated with the spatial variability of subsurface at the field scale
(Corwin, 2008). The EMI instrument is used to measure soil apparent electrical conductivity (E'C,,)-
showing distribution of averaged electrical conductivity over a particular depth range. The depth of
investigation of EC, depends on the coil spacing, the coil orientation, and the frequency of the
energizing field. [Mester et al.| (2011) reported that in the low induction number condition, the coil-
orientation, offset, and frequency have major, moderate and minor effects on depth of penetration,
respectively. Soil moisture, salinity and texture cannot be directly measured with EMI measure-
ments. However, in non-saline soils, cation exchange capacity, soil moisture and texture are factors
responsible for EC,, variations (Rhoades et al.,[1976; Sudduth et al., |2003). Whereas in saline soil,
the £C, measurement is generally dominated by the soil salinity, and the reason is the accumula-
tion of more salt concentration in the topsoil due to the loss of water through evaporation (Corwin
and Lesch| 2005alb; |[Ershadi et al., 2014). The success of EMI measurements to assess soil salinity
depends on the establishment of site-specific petrophysical relationship to relate £C, with the soil
salinity estimated by electrical conductivity of the saturated paste extract (EC.) (Cook and Walker]
1992).

Several inversion algorithms have been developed for EMI measurements to improve the resolu-
tion of subsurface features and the assessment of soil properties (Hendrickx et al., 2002;|Santos et al.|
2010; [Triantafilis and Monteiro Santos, |2013)). The majority of these inversion algorithms solve 1-D
earth model for electromagnetic wave propagation. The model of McNeill (1980) has been exten-
sively used for low induction number and Maxwell’s equations has been utilized for high conductive
soil (EC, > 100 mS/m) where the low induction number assumption is not valid. For example, Li
et al.| (2013)) used Geonics EM38 to measure EC, in a rice-paddy and did inversion using forward
model of McNeill| (1980) to estimate the variation of soil salinity in a field condition. They reported
that the yield reduced by 33% in an irregular shaped patch of strong saline topsoil estimated by EMI
inversion. EMI systems are sensitive to the field-specific calibration procedure, which limits to ob-
tain precise measurements of £C,. However, in inversion modeling precise measurement of EC,
is a prerequisite to characterize subsurface soil properties. For decades, the development and use
of quantitative EMI inversions were mainly hampered by the lack of suitable calibration methods.
von Hebel et al.| (2014) used electrical resistivity tomography to calibrate EMI measurements before
their inversion of EMI measurements to estimate three-dimensional imaging of subsurface electrical
conductivity. Recently,Jadoon et al.|(2015) calibrated EMI measurements via vertical electrical con-

ductivity profile measured by capacitance sensors in different pits and later performed inversion for
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calibrated multi-configuration EMI measurements to estimate the effect of soil salinity distribution
in an acacia tree farm.

Generally these inversion algorithms are robust and provide useful estimates of subsurface prop-
erties in terms of optimal model parameters, analysis of parameter uncertainty and correlation is
often left unaddressed. Parameter uncertainty can be associated to the measurement errors (acqui-
sition geometry, instrumental calibration and human error), modeling errors (assumptions in the
electromagnetic forward model and petrophysical relationships), prior assumptions or constraints,
parametrization, and inversion or estimation methods. Parameter uncertainty analysis can serve two
main purposes: identify the model parameters of dominant importance and provide confidence in the
estimated model parameters (Scharnagl et al.} [2011). For instance, used synthetic
data considering the characteristics of shallow ground-based EMI system, geophex GEM-2
2003), to estimate parameters uncertainty for a three layer model via a Bayesian Markov
Chain Monte Carlo (MCMC) approach. They showed that combining multiple configuration EMI

measurements have significantly reduced total error, was best able to capture the shallow interface,
and have reduced regions of uncertainty at depth.

Conventional estimation of a single best-fit model with linear uncertainty usually does not trace
ambiguity in the models, and may lead to a misguiding or imprecise interpretation. In this work,
an adaptive Bayesian MCMC algorithm was used for multi-orientation and multi-offset EMI mea-
surements, in which the parameters posterior distribution represents the complete solution of the
Bayesian inversion problem, including prediction of optimal parameters value and the associated
uncertainty. Synthetic scenarios were analyzed for a three-layered earth model to evaluate the esti-
mated parameter and uncertainty for saline and non-saline soil using the characteristics of the CMD-
Mini Explorer EMI system. Furthermore, field measurements of the CMD-Mini explorer were used
to estimate parameter uncertainty in the three-layered earth model and soil salinity distributions in

an agricultural field irrigated with drip irrigation system.

2 Materials and methods
2.1 Electromagnetic forward model

Forward EMI response for a given layered earth model is usually calculated by the McNeill (1980)
model, which is created by using the cumulative electrical conductivity distribution over a certain
depth range, and valid under condition of low induction number. The alternative method used to

calculate the forward EMI response is to solve the full solution of the Maxwell’s equation for the

magnetic field measured over a horizontal layered medium proposed by [Keller and Frischknecht
(1966) and[Anderson|(1979). Preliminary analysis indicated that the electromagnetic forward model,
which is based on high induction number assumption, returned more reliable apparent electrical con-

ductivity values than the standard sensitivity curves of [McNeill| (1980). Furthermore, an increased
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computational power made it possible to characterize subsurface by utilizing forward models based
on the Maxwell’s equation (Santos et al., 2010). On one hand, the effective depth of exploration is
independent of E'C, in a low induction number condition, on other in high induction number con-
dition inverse relationship was found between the depth of exploration and EC,, (Callegary et al.,
2007). For a combination of a vertical and horizontal dipole source-receiver with an offset p over a

multilayered earth, the electromagnetic forward model can be written as:

—4 >
ECHP(z,p)= —"Im U ROJO(pA)AQdA] ’ v
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In these expressions, ECY ¢ and ECHCF represents apparent electrical conductivity - measured
in vertical and horizontal coplanar mode, 1 represents permeability of the free space, A indicates
the radial wave number, Jy and J; corresponds to the zero-order and first-order Bessel functions, w
is angular frequency and Im shows the quadrature component. The reflection factor Ry is obtained

recursively, beginning with the lowest layer N+1, where Ry11=0:
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09 =0, h, is the height, and o, is the electrical conductivity for the nth layer. The assumption

Rn(hnvo—n) = 3)

made in this formulation is that each layer is uniform with infinite horizontal extent. EMI measure-
ments were carried out under high induction number conditions (EC, > 100 mS/m) resulting in

utilization of the full solution of Maxwell’s equation for forward EMI response.
2.2 Bayesian Inference

Bayesian inference approach is used to express the uncertainties in the system using a suitable like-
lihood function. Given a set of unknown parameters, the prior distributions of the given model are
formulated and Bayes rule is then used by incorporating observational data to calculate posterior
distribution (Arulampalam et al.| 2002} |Sivial 2006). Bayesian inversion gained a lot of interests in
recent years and has been applied in different applications, including climate, ocean and geophysical
modeling (Malinvernol 2002} Zedler et al., 2012; |Olson et al., 2012; |Altaf et al., 2014; |Sraj et al.|
2014).

Suppose a set of data ({y*}_,) is available and assume a certain model to describe the data. Let

o be the set of parameters defining our model, then according to Bayes rule

plal{y'}izy) xp({y'}imila) pla), ©)



where p(«) is the prior distribution of « that represents the a priori knowledge about «, i.e. before

considering the data. p({y*}"_,|a) denotes the likelihood function: the probability of acquiring the

15 data given a. p(a|{y*}"_ ;) is the posterior probability: the probability that « is true given the data

({y*}™,). The equation refers to Bayes law which describes the probability of an event, based

on conditions that might be related to the event. One of the many applications of Bayes theorem is
Bayesian inference.

Let’s consider the forward model M, for the evaluation of the data as a function of the parameters

120 such that:

y=M(a). (6)

Let € be a random variable which represents the discrepancy between our model M («), and the

observations y as:

e=y—M(a), (7

Specifically, we assume that e follows a Gaussian distribution of mean zero and variance o2, ie.

€~ N(0,02). The likelihood function can then be represented as

n
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125 The variance (02) depends on the observational data y. Together with unknown parameters o,
o2 is an additional unknown estimated parameter. Finally, the joint posterior distribution using the

Bayesian inference is expressed as:
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The choice of a prior is a key step in the inference process. Here, an informative uniform prior
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for all five (three conductivities and two thickness) parameters is assumed, with ay in the range
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130 [ak min];

ap""; ie:

1 f min max
—mar——me | lor « <ap<a«a
AT ymin k ko
plag) = apttt —ay (10)

0 otherwise ,

The noise variance o2, we assume a Jeffreys prior (Sivia, [2006) given as:

—5 for a?>0,
plag) = (11
0  otherwise ,
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Generally, the most appropriate computational strategy for a multidimensional parameters space is
the Markov Chain Monte Carlo (MCMC) method. We have applied an adaptive Metropolis MCMC
algorithm (Haario et al 2001}, [Roberts and Rosenthall,[2009) to sample the posterior distribution.

2.3 Synthetic and Field Measurements

Two set of scenarios were considered to test the MCMC approach to evaluate the estimated param-
eters and their uncertainty using synthetic data for CMD Mini-Explorer configurations. Figure[T](a)
and (b) shows a three-layer earth model of low and high conductivity for non-saline soil and high
soil salinity, respectively. In both scenarios thicknesses for the three-layer earth model was concep-
tualized by a plow horizon (0.25 m thick), with an intermediate subsoil layer (0.50 m thick) and
underlying consolidated layer up to 1.5 m depth. Usually the plowing horizon has less soil moisture
as compared to the deeper horizon because of evaporation and infiltration processes. Therefore in
the scenario of non-saline soil the plowing horizon had low electrical conductivity of 15 mS/m as
compared to the intermediate and consolidated soil layers (Figure[I] (a)). Whereas in the saline soil
scenario, salt accumulations on the surface of soil due to evaporation of water, as a result the elec-
trical conductivity of plowing horizon, is considered higher 1800 mS/m as compared to the deeper
layers (Figure[T](b)). In the agricultural field, the increase in the soil salinity is generally due to the
use of poor quality of water or the excessive use of fertilizers. Forward response of both scenarios
was calculated in HCP and VCP via Equations (T)) and (), respectively, for EMI configuration se-
tups using the characteristics of CMD-Mini Explorer of three receiver coils respectively placed at
0.32,0.71 and 1.18 m distances from the receiver.

In both scenarios, six configurations, three each for HCP and VCP with different spacings were
taken as an output for forward models. Let a = (Ul,Ug,Ug,hl,hg)T be a vector of model control
parameters. o1, 09, and o3 are layer conductivities, and h; and ho thicknesses. Bayesian inference
was used to estimate these 5 parameters that minimize the errors between observed and modeled
HCP and VCP. An adaptive MCMC method was used to sample the posterior distributions and
consequently update « distributions according to the observed data. All the results explained below
are based on 10* MCMC samples. Parameter range for h; and hy was fixed between 0.05 — 0.6
m in each scenario. In the non-saline scenario, parameter range for o1, o2 and o3 was considered
between 5-100 mS/m and the saline soil scenario range was fixed between 5-3000 mS/m. A uniform
prior distribution function was considered in both scenarios.

Field measurements were carried out in a farm, where acacia trees were irrigated with saline
groundwater. The farm is located at a distance of 6 km from the Red Sea coast at Al-Qadeimabh,
Makkah province, Saudi Arabia. EMI measurements were carried out with the interval of 2 m
over a 40 m-long transect, along which three acacia trees were irrigated using drip irrigation. At

each location, EMI measurements using CMD-Mini explorer system gives six different values of
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apparent electrical conductivity (using two coil orientations and three offsets), each responds to
different depth ranges. Ten pits were dug along the same transect and in each pit the vertical oy,
profile was measured at 15 locations within a depth range of 0.05-1.5 m via STE capacitance sensors
(Decagon Devices, Pullman, USA). EMI and 5TE measurements were performed 8 h after the drip
irrigation system was stopped, so that the soil moisture should not be concentrated below the drippers
and to give some time to reduce the soil moisture impact due to evaporation, root water uptake and

infiltration (Jadoon et al.| [2015)).

3 Results and Discussion
3.1 Synthetic Data

Figure |Z| (a) and (b) depicts the observed, estimated (modeled) and range of EC, picked from the
chain of MCMC simulation for six configurations of synthetic case considered for non-saline and
saline soil, respectively. X-axis represents VCP and HCP with three coil spacing (p32, p71, p118).
In a non-saline scenario, the layer electrical conductivity increases with the depth (Figure [I] (a)),
and is reflected in the observed and modeled EC, in the VCP and HCP with increasing trend for
bigger spacing (Figure 2] (a)). The EC, value for the VCP and HCP with maximum spacing of
1.8 m between transmitter and receiver corresponds to deeper horizon and in the case of saline
soil scenario the layer conductivity decreases (Figure |I| (b)) and as a result £C, values in VCP
and HCP configuration exhibits a decreasing trend (Figure 2] (b)). The electromagnetic forward
model is sensitive to high electrical conductive soil, so the modeled EC, values for the saline soil
scenario matches well with the observed as compared to the non-saline scenario. Mismatch between
the observed and modeled EC,, values for non-saline soil is due to low sensitivity of the forward
electromagnetic model to the low electrical conductivity.

Figure[3](a) shows the true parameter values (red line), the value of the estimated parameters using
MCMC simulations (blue dash line) for the non-saline soil scenario. The computed MCMC sam-
ples were used to obtain the marginalized posterior distributions based on kernel density estimation
(KDE) (Parzen| [1962)). The 95 percent of the KDE for each parameter is shown by the shaded gray
background (Figure [3]a). The resulting marginalized posterior pdfs of the three conductivities and
two thicknesses are shown in Figure [3| (b — f). The pdfs of each parameter (Figure 3] b—f) show a
single peak, corresponding to the optimal parameter value. Electrical conductivities of three layers
(01, 02 and o3) were comparatively well estimated as compared to the layer thicknesses. Differ-
ent uniform prior distribution functions were also considered for the layer thicknesses and in each
MCMC simulation the model converges close to the prior instead of true layer thicknesses. It seems
that the topography of the objective function is flat in the direction of layer thicknesses and do not
change with the layer thickness picked in each iteration of the MCMC simulation. This suggests that

the electromagnetic model is not sensitive to the layer thicknesses for the low conductive soil layer.
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Figure [] illustrates the true and estimated depth profile of electrical conductivity for saline sce-
nario, and the KDE of the marginalized posterior distributions for the three layer conductivities (o1,
o2 and o3) and the two layer thicknesses (h; and hy). The shaded gray background shows the 95
percent of the KDE for each parameter (Figure |4|a). The vertical electrical conductivity profile was
well optimized by MCMC simulation. The electrical conductivity of the top two layers were well
estimated as compared to the consolidated layer with low electrical conductivity. Furthermore, in
the six configurations of CMD Mini-Explorer, the HCP and VCP configuration with spacing 1.18 m
are mostly sensitive to the consolidated layer and the remaining four configurations are sensitive to
upper horizon. A big range of parameter space was searched by MCMC simulation (Figure d]b —

e), which illustrate parameters sensitivity to the electromagnetic model.
3.2 Experimental Data

Measurements were catried out in a farm, where acacia trees were irrigated with saline groundwater.
The farm is located at a distance of 6 km from the Red Sea coast at Al-Qadeimah, Makkah province,
Saudi Arabia. EMI measurements were carried out with the interval of 2 m over a 40 m-long transect,
along which three acacia trees were irrigated using drip irrigation. At each location, EMI measure-
ments using CMD-Mini explorer system gives six different values of apparent electrical conductivity
(using two coil orientations and three offsets), each responds to different depth ranges. Ten pits were
dug along the same transect and in each pit the vertical oy, profile was measured at 15 locations
within a depth range of 0.05-1.5 m via 5STE capacitance sensors (Decagon Devices, Pullman, USA).
5TE and EMI measurements were carried out on the same day 8 hr after the drip irrigation system
was stopped, so that the soil moisture concentration below the drippers be avoided, and the time be
given for the reduction of soil moisture impact due to root water uptake, evaporation and infiltration
(Jadoon et al.,[2015).

Figure [5] shows soil electrical conductivity measured in ten pits along a transect and the mod-
eled soil electrical conductivity as estimated by the Markov Chain Monte Carlo simulation for
multi-configuration electromagnetic induction measurements. The pit locations along the transect
are shown by black triangle and cubic interpolation of 150 5TE sensor measurements were used
to construct the two dimensional profile of measured o (Figure E] (a)). The groundwater used to
irrigate the acacia trees has an electrical conductivity of 4200 mS/m. The three patterns of high
electrical conductivity is due to infiltration front and soil salinity near three acacia trees. In total, 21
multi-configuration EMI measurements were performed along a transect and calibrated with in situ
measurements obtained through capacitance sensors (Jadoon et al., |2015). Three-layer earth model
was considered for Bayesian inference to estimate five parameters (01,02,03,h1,h2) and their un-
certainty based on the 15,000 MCMC samples. For all MCMC simulations, the parameter space
for optimization was set relatively large, having the range of values used for low and high electri-

cal conductivity of soil; namely, 0 < o7 < 3000 mS/m, 0 < o2 < 3000 mS/m, 0 < o3 < 3000 mS/m,
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0.05 < hy < 0.6 m, and 0.05 < h; < 0.6 m. In the depth section of soil electrical conductivity ob-
tained by EMI MCMC simulations, the effect of infiltration patterns and the soil salinity due to
the drip irrigation near three acacia trees can be observed (Figure [5] (b)). The obtained soil electri-
cal conductivity values by MCMC simulation are in a good agreement with sensor measurements
performed in pits (Figure E] (a)).

Figure[6](a) and (b) shows the measured, estimated (modeled) and range of EC,, picked from the
chain of MCMC simulation for six multi-configuration of CMD-Mini Explorer for non-siline and
saline soil, respectively. Three coil spacing for each VCP and HCP is represented on x-axis. EMI
measurement is shown for non-saline and saline soil is at the location 4 and 9 of the pit (FigureE](a)),
respectively. The soil was completely dry for non-saline soil as no irrigation was applied, whereas
in the case of saline soil the moisture in the soil was in the range of 0.005-0.19 at the time of EMI
and sensor measurements. In non-saline soil, the measured six EC,, values are in the range of 5-60
mS/m and the modeled EC|, value are in the range of 23-38 mS/m Figure (6|(a)). The range of EC,,
picked from the last 10,000 MCMC simulation is in the range of 0-75 mS/m. As we observed in
the synthetic non-saline soil scenario that the electromagnetic forward model was not sensitive to
the low electrical conductive soil similarly the fit between the measured and modeled EC|, is not in
good agreement with the real measurements (Figure [6] (a)). Furthermore, the misfit may be due to
the large search parameter space in the MCMC simulations. In the case of saline soil, the electrical
conductivity of the top 50 cm soil is high due to the saline infiltration and soil salinity. This effect
can be seen in the decreasing trend of the measured £C, for the VCP and HCP measurements with
bigger coil spacing (Figure [6|(b)). The measured and modeled EC, are in good agrement and this
is due to the sensitivity of the electromagnetic forward model to high electrical conductive soil.

Figure[7]plots the vertical profile of electrical conductivity for non-saline soil measured by capac-
itance sensors (red line), the value of the estimated parameters using the MCMC simulations (blue
dash line), and the KDE of the marginalized posterior distributions for the three layer conductivities
and the two layer thicknesses. CMD-Mini Explorer measurements at the pit 4 for non-saline soil was
used for the analysis. In Figure[7| (a), the shaded area shows the 95% KDE distribution limits, the
measured vertical profile of soil electrical conductivity fall within the shaded area in the top depth
0-0.7 m and below this depth modeled soil electrical conductivity is over estimated. The mismatch
between the measured and modeled EC, for the maximum coil separation Hp118 and Vp118 is the
cause of over estimation of modeled soil electrical conductivity. The marginalized posterior pdfs
of the three conductivities and two thicknesses are shown in Figure [/| (b — f). The pdfs of each
parameter (Figure[7]b—f) exhibit a single peak and corresponds to the optimal parameter value. The
peak of the o3 is flat between 30-38 mS/m and seems the topography of the objective function do
not change within this range of conductivity in each iteration of the MCMC simulation.

Figure[§|plots the vertical profile of electrical conductivity for saline soil measured by capacitance

sensors (red line), the value of the estimated parameters using the MCMC simulations (blue dash
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line), and the KDE of the marginalized posterior distributions for the three layer conductivities and
the two layer thicknesses. CMD-Mini Explorer measurements at the pit 9 for saline soil was used
for the analysis. The shaded area in Figure [8] (a) plots the 95% KDE distribution limits, and the
whole measured vertical profile of soil electrical conductivity fall within the shaded area. This
suggests that the electrical conductivity is well estimated. The marginalized posterior pdfs of the
three conductivities and two thicknesses as shown in Figure([8] (b — f), exhibit a single peak for each
parameter except layer thickness ho which is flat which shows that the measured data were not useful
to refine our prior knowledge for h5. The posterior pdfs of first two conductivities (1 and o2) and
layer thickness h; appear to be a precise Gaussian shape with a clear Maximum A Posteriori (MAP)
values. For conductivity parameter o3, we notice a posterior with a well defined peak but no clear
pdf shape.

Figure [0] shows the spatial distribution of soil salinity estimated from EMI measurement using
Bayesian MCMC simulations. Soil salinity £'C. is related to bulk electrical conductivity o, via a
linear relationship (EC, = 13.740, + 0.001) established by Jadoon et al.| (2015) for the same site.

Infiltration front and high soil salinity ranges from 0.01 to 0.5 m at three locations where Acacia trees

are irrigated with brackish water. Results show that the Bayesian inversion of multi-configuration
EMI measurement permits the estimation of soil salinity caused by the brackish water infiltration.
In the field, Acacia trees roots were concentrated in the top 70 cm of soil and the low soil salinity
below 30 cm shows that Acacia are capable of extracting salt solutions and reduces subsoil salinity.
The results of this study has attempted to evaluate model parameters and their uncertainties using
the Bayesian inference framework for both synthetic and ground-based EMI field measurements to

estimate the spatial distribution of soil salinity in a drip irrigation system.

4 Conclusion

In this research, adaptive Bayesian MCMC algorithm has been introduced for the model assessment
and uncertainty analysis of multi-orientation and multi-offset EMI measurements. The algorithm
has been tested for CMD-Mini Explorer with both synthetic and field measurements conducted in an
agriculture field over a non-saline and saline soil. Using Bayesian inference, marginalized posterior
pdfs were computed for three subsurface electrical conductivities (o1, o2, and o3 ) and two layer
thicknesses (h; and hs) using MCMC. Such analysis helps to provide insight about parameters
estimate and uncertainties.

The experimental results showed that the MCMC simulations can improve the reliability of the
electromagnetic forward model to estimate the subsurface electrical conductivity profiles. Analysis
shows that the electromagnetic forward model is less sensitive to the non-saline soil as compared to
the saline soil. The proposed approach is flexible and can be implemented for various low-frequency

ground-based EMI system and can provide subsurface electrical conductivity distribution and un-

10



certainty of model parameters. Future research will focus to implement the Bayesian inference ap-
proach on time-lapse EMI measurements in different agricultural fields to monitor the soil dynamics,

estimate the model parameters and their uncertainties.

Acknowledgements. This research was funded by the Water Desalination and Reuse Center, King Abdullah
s1s  University of Science and Technology (KAUST), Saudi Arabia.

11



320

325

330

335

340

345

350

355

References

Altaf, M. U., Butler, T., Mayo, T., Luo, X., Dawson, C., Heemink, A. W., and Hoteit, I.: A Comparison of
Ensemble Kalman Filters for Storm Surge Assimilation, Monthly Weather Review, 142, 2899-2914, 2014.

Anderson, W. L.: Numerical integration of related Hankel transforms of orders O and by adaptive digital filter-
ing, Geophysics, 44, 1287-1305, 1979.

Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T.: A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking, Ieee Transactions on Signal Processing, 50, 174-188, 2002.

Callegary, J. B., Ferre, T. P. A., and Groom, R. W.: Vertical spatial sensitivity and exploration depth of low-
induction-number electromagnetic-induction instruments, Vadose Zone Journal, 6, 158-167, 2007.

Cook, P. G. and Walker, G. R.: Depth profiles of electrical-conductivity from linear-combinations of electro-
magnetic induction measurements, Soil Science Society of America Journal, 56, 1015-1022, 1992.

Corwin, D. L.: Past, present, and future trends of soil electrical conductivity measurement using geophysical
methods, in: Handbook of Agricultural Geophysics, edited by Allred, B. J., D. J. J. E. M. R., pp. 1744,
CRC Press, Taylor and Francis Group, Boca Raton, Folrida, 2008.

Corwin, D. L. and Lesch, S. M.: Apparent soil electrical conductivity measurements in agriculture, Computers
and Electronics in Agriculture, 46, 11-43, 2005a.

Corwin, D. L. and Lesch, S. M.: Characterizing soil spatial variability with apparent soil electrical conductivity:
I. Survey protocols, Computers and Electronics in Agriculture, 46, 103—134, 2005b.

Ershadi, A., McCabe, M. F,, Evans, J. P, Chaney, N. W., and Wood, E. F.: Multi-site evaluation of terrestrial
evaporation models using FLUXNET data, Agricultural and Forest Meteorology, 187, 46-61, 2014.

Haario, H., Saksman, E., and Tamminen, J.: An adaptive Metropolis algorithm, Bernoulli, 7, 223-242, 2001.

Hendrickx, J. M. H., Borchers, B., Corwin, D. L., Lesch, S. M., Hilgendorf, A. C., and Schlue, J.: Inver-
sion of soil conductivity profiles from electromagnetic induction measurements: Theory and experimental
verification, Soil Science Society of America Journal, 66, 673-685, 2002.

Huang, H. P. and Won, I. J.: Real-time resistivity sounding using a hand-held broadband electromagnetic sensor,
Geophysics, 68, 1224-1231, 2003.

Jadoon, K. Z., Moghadas, D., Jadoon, A., Missimer, T. M., Al-Mashharawi, S. K., and McCabe, M. F.: Estima-
tion of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction
measurements, Water Resources Research, 51, 3490-3504, 2015.

Keller, G. and Frischknecht, F.: Electrical methods in geophysical prospecting. International Series of Mono-
graphs in Electromagnetic Waves 10. Pergamon Press, Oxford, New York, 1966.

Li, H. Y., Shi, Z., Webster, R., and Triantafilis, J.: Mapping the three-dimensional variation of soil salinity in a
rice-paddy soil, Geoderma, 195, 31-41, 2013.

Malinverno, A.: Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical prob-
lem, Geophysical Journal International, 151, 675-688, 2002.

McNeill, J. D.: Electromagnetic terrain conductivity measurement at low induction numbers, Tech note TN-6.
Geonics Ltd., Mississauga, ON, Canada., 10, 1319-1330, 1980.

Mester, A., van der Kruk, J., Zimmermann, E., and Vereecken, H.: Quantitative Two-Layer Conductivity In-
version of Multi-Configuration Electromagnetic Induction Measurements, Vadose Zone Journal, 10, 1319-

1330, 2011.

12



360

365

370

375

380

385

390

Minsley, B. J.: A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment using
frequency-domain electromagnetic data, Geophysical Journal International, 187, 252-272, 2011.

Olson, R., Sriver, R., Goes, M., Urban, N. M., Matthews, H. D., Haran, M., and Keller, K.: A climate sensi-
tivity estimate using Bayesian fusion of instrumental observations and an Earth System model, Journal of
Geophysical Research-Atmospheres, 117, 11, 2012.

Parzen, E.: On Estimation of a Probability Density Function and Mode, pp. 1065-1076, 1962.

Rhoades, J. D., Raats, P. A. C., and Prather, R. J.: Effects of Liquid-phase Electrical Conductivity, Water
Content, and Surface Conductivity on Bulk Soil Electrical Conductivity, Soil Sci. Soc. Am. J., 40, 651-655,
1976.

Roberts, G. O. and Rosenthal, J. S.: Examples of Adaptive MCMC, Journal of Computational and Graphical
Statistics, 18, 349-367, 2009.

Robinson, D. A., Lebron, L., Kocar, B., Phan, K., Sampson, M., Crook, N., and Fendorf, S.: Time-lapse
geophysical imaging of soil moisture dynamics in tropical deltaic soils: An aid to interpreting hydrological
and geochemical processes, Water Resources Research, 45, 12, 20009.

Santos, F. A. M., Triantafilis, J., Taylor, R. S., Holladay, S., and Bruzgulis, K. E.: Inversion of Conductivity
Profiles from EM Using Full Solution and a 1-D Laterally Constrained Algorithm, Journal of Environmental
and Engineering Geophysics, 15, 163—-174, 2010.

Scharnagl, B., Vrugt, J. A., Vereecken, H., and Herbst, M.: Inverse modelling of in situ soil water dynamics:
investigating the effect of different prior distributions of the soil hydraulic parameters, Hydrol. Earth Syst.
Sci., 15, 3043-3059, 2011.

Sivia, D. S.: Data Analysis: A Bayesian Tutorial, Oxford Science Publications, Oxford, UK, 2006.

Sraj, 1., Mandli, K. T., Knio, O. M., Dawson, C. N., and Hoteit, I.: Uncertainty quantification and inference
of Manning’s friction coefficients using DART buoy data during the Tohoku tsunami, Ocean Modelling, 83,
82-97, 2014.

Sudduth, K. A., Kitchen, N. R., Bollero, G. A., Bullock, D. G., and Wiebold, W. J.: Comparison of elec-
tromagnetic induction and direct sensing of soil electrical conductivity, Agronomy Journal, 95, 472482,
2003.

Triantafilis, J. and Monteiro Santos, F. A.: Electromagnetic conductivity imaging (EMCI) of soil using a
DUALEM-421 and inversion modelling software (EM4Soil), Geoderma, 211, 28-38, 2013.

von Hebel, C., Rudolph, S., Mester, A., Huisman, J. A., Kumbhar, P., Vereecken, H., and van der Kruk, J.:
Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfigura-
tion electromagnetic induction data, Water Resources Research, 50, 2732-2748, 2014.

Zedler, S. E., Kanschat, G., Korty, R., and Hoteit, I.: A new approach for the determination of the drag coeffi-
cient from the upper ocean response to a tropical cyclone: a feasibility study, Journal of Oceanography, 68,
227-241, 2012.

13



0
15 mS/m
25 mS/m
0.5¢
E
=
o
Q
o
1.0r ,
40 mS/m
154
10 10

Conductivity (mS/m)
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Fig. 3. Summary of the MCMC simulation for the synthetic three layer earth model of non-saline soil. (a) True
(red line) and estimated parameter (blue dash-line) for the vertical electrical conductivity profile, and the gray
background with the 95 percent confidence interval of kernel distribution estimation (KDE). (b — f) show the
KDE of the marginalized posterior distributions for the three layer conductivities (o1, o2 and 03) and two layer

thicknesses (h1 and ho).
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Fig. 4. Summary of the MCMC simulation for the synthetic three layer earth model of saline soil. (a) True
(red line) and estimated parameter (blue dash-line) for the vertical electrical conductivity profile, and the gray
background with the 95 percent confidence interval of kernel distribution estimation (KDE). (b — f) show the
KDE of the marginalized posterior distributions for the three layer conductivities (o1, o2 and 03) and two layer

thicknesses (h1 and ho).
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Fig. 7. Summary of the MCMC simulation for three-layer earth model by considering CMD-Mini explorer
measurement over a non-saline soil. (a) True (red line) and estimated parameter (blue dash-line) for the vertical
electrical conductivity profile, and the gray background with the 95 percent confidence interval of kernel distri-
bution estimation (KDE). (b — f) show the KDE of the marginalized posterior distributions for the three layer

conductivities (o1, o2 and o3) and two layer thicknesses (h1 and h2).
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Fig. 8. Summary of the MCMC simulation for three-layer earth model by considering CMD-Mini explorer
measurement over a saline soil. (a) True (red line) and estimated parameter (blue dash-line) for the vertical
electrical conductivity profile, and the gray background with the 95 percent confidence interval of kernel distri-
bution estimation (KDE). (b — f) show the KDE of the marginalized posterior distributions for the three layer

conductivities (o1, o2 and o3) and two layer thicknesses (h1 and h2).
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