
Dear Editor and Reviewer, 
 
We appreciate your constructive comments and thank you for the time spent on reviewing our revised 
manuscript. Your comments and suggestions have certainly improved the quality of the manuscript, which 
we greatly acknowledge. Please find below our detailed answers to the reviewer comments. 
 

The manuscript have been revised by one reviewer. In their replies, the authors seems confident to be 
able to address the main issues raised during the reviewer process. After my own re-reading of the 
manuscript, I also have the following comments: 

1.1- In the manuscript (abstract and introduction) the authors talk about parameters uncertainty and 
model uncertainty. Indeed in their application they only consider “parameter uncertainty” since only one 
model is considered. This point should be clarified in the manuscript. For example in the abstract the 
sentence “The model parameters and uncertainty “ is misleading. I guess the authors mean “uncertainty 
in model parameters”.  

Reply 1.1: 
Only one model is considered in this study and the uncertainty in model parameters is 
investigated. In the abstract and introduction, the wording has been changed to “uncertainty in 
the model parameters” 
 
1.2- Introduction: page 2 last sentence “Generally ….analysis of parameter uncertainty and correlation is 
often left unaddressed”. This statement is false. In the literature (and in particular in hydrology – 
hydrogeology) there is a large number of studies dealing with parameters uncertainty (starting at least 
from the ’80).  

Reply 1.2: 
This is correct. Indeed, in hydrology and hydrogeology a large number of studies have addressed 
parameters uncertainty. However, in the case of EMI data analysis uncertainty in model 
parameters is often neglected, and this was the intent of the sentence here. We have addressed 
this by making a more specific statement.   
 
1.3- Page 3, line 7 from the bottom “… to solve the full solution…”please rephrase 

Reply 1.3: 
In the revised manuscript the sentence has been rephrase as below: 
“The alternative method used to calculate the forward EMI response is to solve the Maxwell’s 
equation for the magnetic field measured over a horizontal layered medium, as proposed by Keller 
and Frischknecht (1966) and Anderson (1979).” 
 
1.4- Page 4, eq (1). Symbol x not defined.  
Reply 1.4: 
Symbol “x” has now been defined as depth of the layer. 
 



1.6- Page 4, line 6 from the bottom “….the prior distributions of a given model….”. This sentence is not 
clear. Do you the authors mean the prior distributions of parameters a given model? 

Reply 1.6: 
The sentence was unclear and is now modified as below: 
“Given a set of unknown parameters, the prior distributions of the model parameters are 
formulated and Bayes rule is then used to calculate posterior distribution conditioned on available 
observations (Arulampalam et al., 2002; Sivia, 2006).” 
 

1.7- Page 5, symbol y two lines after eq (6) should not be in bold 

Reply 1.7: 
Bold option in the font settings has been deactivated for the symbol “y” 
 

1.8- Eq (11). I am confused by this equation for the pdf of sigma. Sigma is defined as a positive 
(unbounded) variable. Therefore the integral of (11) between 0 and Infinity must be equal to 1. This is not 
true according to (11). 
 
Reply 1.8: 
Using the inverse gamma distribution, One gets 
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Now taking 0→ ߚ and 0→ ߙ then the inverse gamma will approach the Jeffrey’s prior. This 
distribution is called "uninformative" because it is a proper approximation to the Jeffreys prior 
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which is uninformative for scale parameter, because this prior is the only one which remains 
invariant under a change of scale (note that the approximation is not invariant). This has a 
indefinite integral of log(ߪଶ) which shows that it is improper if the range of ߪଶincludes 
either 0 or ∞. We don’t observe infinite value for variance, and if the observed variance is zero, 
we have perfect data. So we can set a lower limit equal to L>0, and upper limit equal U<∞, and 
our distribution becomes proper. A better non-informative distribution can be chosen as the 
upper and lower limits L and U in the Jeffreys prior. Usually the limits can be set fairly easily with 
a bit of thought to what ߪଶ  actually means in the real world.  
 

1.9- Page 6. The authors introduce the parameters to be estimated. These include (in the 3 layer system) 
3 conductivities and only 2 layer thickness. Why the thickness of the third layer is not estimated? 

Reply 1.9: 
For the inversion algorithms of EMI data the thickness of the last layer is assumed to be infinite 
as the response of EMI signal is weak for deeper depths. This kind of approach is generally applied 
in EMI inversion studies such as those of Lavoué et al. (2010). 



1.10- Page 8. Parameters sigma and sigma_b are not defined 

Reply 1.10: 
Sigma and sigma_b are now defined in the revised manuscript. 
 
1.11- Page 8, line 8 from the bottom. Typo: replace siline by saline 

Reply 1.11: 
Typo mistake has been corrected. 
 
1.12- Please consider to use the help of an expert in English usage and grammar to revise the manuscript 

Reply 1.12: 
The manuscript is now revised for English language by a native speaker. 
 
1.13- If the authors decide to revise and resubmit the manuscript to HESS they should carefully address 
these issues together with the main criticisms pointed out by the reviewer. 
 
The main criticisms pointed out by the reviewer were: 
1.13a- “My only methodological issue with this paper. You use as non-conductive scenario a soil that is 
completely dry. (By the way, what are the salinity values measured at this site? E.g., the conductivity of 
the saturated paste extract?).  
Reply 1.13a: 
We thank the reviewer for highlighting this important issue. As reported in the last revision that 
for the same site, Jadoon et al. (2015) proposed a relationship to relate bulk electrical 
conductivity to the soil salinity (i.e., the conductivity of the saturated paste extract). Observed 
soil salinity range between 3-185 dS/m. In the last revision, the same relationship was used to 
estimate the soil salinity. Additional text and Figure 9 were incorporated to show the soil salinity 
distribution. 
 
1.13b- In their protocols for use of apparent electrical conductivity measurements in agriculture, Corwin 
and Lesch state that the soil volumetric water content should be at least 50% of the value at field capacity 
(ideally between 70% and field capacity. Otherwise, the liquid pathways of electrical conductivity through 
the soils would be interrupted, unpredictably increasing the resistivity of the soil. This is very likely reason 
why your results on the non-conductive scenario are not encouraging. 
 
Reply1.13b: 
Indeed, in agriculture fields soil apparent electrical conductivity decreases if the soil volumetric 
water content decreases below 50% of the value at field capacity, whereby the process described 
by Corwin and Lesch greatly depends on soil textural distribution. Additionally, if non-saline 
water is used for irrigation the soil water content dominates the EC readings. In our study, on the 
other hand, saline groundwater was used to irrigate the Acacia tree and salt starts to accumulate 
in the top soil when volumetric soil water content decreases. Therefore, the accumulated salt 
has a dominating effect on soil apparent electrical conductivity and also the hydroscopic salts will 
provide liquid pathways even in this dry environment. Furthermore, in the field, non-conductive 



soil were at locations between the Acacia trees where drip irrigation system was not used to 
irrigate the farm so there was no change in the soil water content for the non-conductive soil. 
 
1.13c- My criticism is the following: with one scenario where ECa is known not to be reliable, is the other 
scenario (highly conductive medium) enough to provide context to your data analyses? I fear not. I think 
this paper would make much better of a point if other scenarios (e.g., increasing water contents?) were 
presented. See: Corwin, D.L., and S.M. Lesch. 2013. Protocols and guidelines for field-scale measurement 
of soil salinity distribution with ECa-directed soil sampling. 
J. Environ. Eng. Geophysics 18(1):1-25. and: Corwin, D.L., and S.M. Lesch. 2005b. Characterizing soil spatial 
variability with apparent soil electrical conductivity: I. Survey protocols. Comput. Electron. Agric. 46(1-
3):103-134.” 
 
Reply 1.13c: 
In general, the protocols developed by Corwin and Lesch are mainly based on observations in 
combination with theoretical knowledge of current flow in porous media. Even if these protocols 
are of high value they are restricted to observational findings in specific environments. Therefore, 
we believe that a full physical description using synthetic scenarios in combination with 
observations will increase our understanding of EMI sensing for areas such as those being 
analysed here. 
As such, the synthetic scenarios were analysed to test the performance of the electromagnetic 
forward model in conductive and non-conductive soil, with uncertainty in model parameters 
estimated using Bayesian inversion. In the case of synthetic scenario of non-saline soil, the 
increasing trend of soil moisture with depth has been analysed (Figure 1a). Results show that the 
electromagnetic forward model is not sensitive to the non-conductive soil. Previous studies have 
reported similar results for different EMI systems. For instance, Minsley (2011) used synthetic 
data considering the characteristics of shallow ground-based EMI system (Geophex GEM-2) and 
reported that the electromagnetic forward model is less sensitive to the non-conductive soil. 
While certainly very interesting, undertaking time-lapse EMI measurement with varying soil 
moisture dynamics is beyond the scope of this current contribution. 
 
References: 
Jadoon K. Z., Moghadas D., Jadoon A., Missimer T., Al-Mashharawi S., and McCabe M. F., 2015.  Estimation 

of soil salinity in a drip irrigation system by using joint inversion of multi-coil electromagnetic induction 
measurements, Water Resources Research, volume 51, issue 5, page 3490-3504 
DOI: 10.1002/2014WR016245 

Minsley, B. J.: A trans-dimensional Bayesian Markov chain Monte Carlo algorithm for model assessment 
using frequency-domain electromagnetic data, Geophysical Journal International, 187, 252–272, 
2011. 

Lavoue, F., J. van der Kruk, J. Rings, F. Andre, D. Moghadas, J. A. Huisman, S. Lambot, L. Weihermuller, J. 
Vanderborght, and H. Vereecken (2010), Electromagnetic induction calibration using apparent 
electrical conductivity modelling based on electrical resistivity tomography, Near Surf. Geophys., 8(6), 
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Abstract. A substantial interpretation of electromagnetic induction (EMI) measurements requires

quantifying optimal model parameters and uncertainty of a nonlinear inverse problem. For this

purpose, an adaptive Bayesian Markov chain Monte Carlo (MCMC) algorithm is used to assess

multi-orientation and multi-offset EMI measurements in an agriculture field with non-saline and

saline soil. In MCMC the posterior distribution is computed using Bayes rule. The electromagnetic5

forward model based on the full solution of Maxwell’s equations was used to simulate the appar-

ent electrical conductivity measured with the configurations of EMI instrument, the CMD mini-

Explorer. Uncertainty in the parameters for the three-layered earth model are investigated by using

synthetic data. Our results show that in the scenario of non-saline soil, the parameters of layer thick-

ness as compared to layers electrical conductivity are not very informative and are therefore difficult10

to resolve. Application of the proposed MCMC based inversion to field measurements in a drip

irrigation system demonstrates that the parameters of the model can be well estimated for the saline

soil as compared to the non-saline soil, and provides useful insight about parameter uncertainty for

the assessment of the model outputs.
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1 Introduction15

Electromagnetic induction (EMI) with low frequency is a powerful tool to map the hydrological

processes in the vadose zone due to the sensitivity to water content and soil salinity (Robinson et al.,

2009). The use of EMI is largely motivated by the need of robust and compact system design, easy

to use, rapid acquisition, and capability to provide a large set of georeferenced measurements, which

can be associated with the spatial variability of subsurface at the field scale (Corwin, 2008). The20

EMI instrument is used to measure soil apparent electrical conductivity (ECa), providing distribu-

tion of averaged electrical conductivity over a particular depth range. The depth of investigation of

ECa depends on the coil spacing, the coil orientation, and the frequency of the energizing field.

Mester et al. (2011) reported that in the low induction number condition, the coil-orientation, offset,

and frequency have major, moderate and minor effects on the penetration depth, respectively. Soil25

moisture, salinity and texture cannot be directly observed with EMI measurements. However, in

non-saline soils, cation exchange capacity, soil moisture and texture are factors responsible for ECa

variations (Rhoades et al., 1976; Sudduth et al., 2003). Whereas in saline soil, theECa measurement

is generally dominated by the soil salinity, and the reason is the accumulation of more salt concentra-

tion in the topsoil due to the loss of water through evaporation (Corwin and Lesch, 2005a,b; Ershadi30

et al., 2014). The success of EMI measurements to assess soil salinity depends on the establishment

of site-specific petrophysical relationship to relate ECa with the soil salinity estimated by electrical

conductivity of the saturated paste extract (ECe) (Cook and Walker, 1992).

Several inversion algorithms have been developed for EMI measurements to improve the reso-

lution of subsurface features and the assessment of soil properties (Hendrickx et al., 2002; Santos35

et al., 2010; Triantafilis and Monteiro Santos, 2013). The majority of these inversion algorithms

solve 1-D earth model for electromagnetic wave propagation. The model of McNeill (1980) has

been extensively used for low induction number and Maxwell’s equations has been utilized for high

conductive soil (ECa > 100 mS/m) where the low induction number assumption is not valid. For

example, Li et al. (2013) used Geonics EM38 to measure ECa in a rice-paddy and inverted these40

using McNeill (1980) forward model to estimate the variation of soil salinity in a field condition.

They reported that the yield reduced by 33% in an irregular shaped patch of strong saline topsoil.

EMI systems are sensitive to the field-specific calibration procedure, which limits the accuracy of

ECa measurements. In inversion modeling, however, precise measurements of ECa is a prerequi-

site to characterize subsurface soil properties. For decades, the development and use of quantitative45

EMI inversions were mainly hampered by the lack of efficient calibration methods. von Hebel

et al. (2014) used electrical resistivity tomography to calibrate EMI measurements before inversion

to estimate three-dimensional images of subsurface electrical conductivity. Recently, Jadoon et al.

(2015) calibrated EMI measurements via vertical electrical conductivity profile measured by capac-

itance sensors in different pits and later performed inversion for calibrated multi-configuration EMI50

measurements to estimate the effect of soil salinity distribution in an acacia tree farm.
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EMI inversion algorithms are generally robust and provide useful estimates of subsurface proper-

ties in terms of optimal model parameters. Analysis of uncertainty in model parameters is however

often left unaddressed. Parameters uncertainty can be associated with measurement errors (acqui-

sition geometry, instrumental calibration and human error), modeling errors (assumptions in the55

electromagnetic forward model and petrophysical relationships), prior assumptions or constraints,

parametrization, and estimation methods. Parameter uncertainty analysis can serve two main pur-

poses: identify the model parameters of dominant importance, and provide confidence in the esti-

mated model parameters (Scharnagl et al., 2011). For instance, Minsley (2011) used synthetic data

considering the characteristics of the shallow ground-based EMI system, geophex GEM-2 (Huang60

and Won, 2003), to quantify parameters uncertainty of a three layer model via a Bayesian Markov

Chain Monte Carlo (MCMC) approach. They show that combining multiple configuration EMI

measurements significantly reduces total error, was best able to capture the shallow interface, and

reduced regions of uncertainty at depth.

Conventional estimation of a single best-fit model with linear uncertainty does not usually trace65

ambiguity in the models, and may lead to a misguiding or imprecise interpretation. In this work,

an adaptive Bayesian MCMC algorithm was used for inverting multi-orientation and multi-offset

EMI measurements, in which the parameters posterior distribution represents the complete solution

of the Bayesian inversion problem, including prediction of optimal parameters value and the asso-

ciated uncertainty. Synthetic scenarios are first analyzed for a three-layered earth model to evaluate70

the uncertainty in model parameters for saline and non-saline soil using the characteristics of the

CMD-Mini Explorer EMI system. Field measurements of the CMD-Mini explorer are then used to

quantify parameters uncertainty in the three-layered earth model and soil salinity distributions in an

agricultural field irrigated with drip irrigation system.

2 Materials and methods75

2.1 Electromagnetic forward model

Forward EMI response for a given layered earth model is usually calculated by the McNeill (1980)

model, which is generated using the cumulative electrical conductivity distribution over a certain

depth range, and is valid under condition of low induction number. The alternative method used

to calculate the forward EMI response is to solve the Maxwell’s equation for the magnetic field80

measured over a horizontal layered medium (Keller and Frischknecht, 1966) and Anderson (1979).

Preliminary analysis indicated that the electromagnetic forward model, which is based on high in-

duction number assumption, returned more reliable apparent electrical conductivity values than the

standard sensitivity curves of McNeill (1980). Furthermore, increased computational power made it

possible to characterize the subsurface by utilizing forward models based on the Maxwell’s equation85

(Santos et al., 2010). The effective depth of exploration is independent of ECa in a low induction
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number condition, whereas in high induction number condition inverse relationship was found be-

tween the depth of exploration and ECa (Callegary et al., 2007). For a combination of a vertical

and horizontal dipole source-receiver with an offset ρ over a multilayered earth, the electromagnetic

forward model can be written as:90

ECHCPa (x,ρ) =
−4ρ

ωµ0
Im
[∫ ∞

0

R0J0(ρλ)λ2dλ

]
, (1)

ECV CPa (x,ρ) =
−4

ωµ0
Im
[∫ ∞

0

R0J1(ρλ)λdλ

]
. (2)

In these expressions, ECV CPa and ECHCPa represent apparent electrical conductivity - measured

in vertical and horizontal coplanar mode, µ0 represents permeability of the free space, λ indicates

the radial wave number, J0 and J1 correspond to the zero-order and first-order Bessel functions, x

is the depth of layer, ω is the angular frequency and Im the quadrature component. The reflection

factor R0 is obtained recursively, starting from the lowest layer N+1, with RN+1 = 0 :95

Rn(hn,σn) =

Γn−Γn+1

Γn+Γn+1
+Rn+1exp(−2Γn+1hn+1)

1+ Γn−Γn+1

Γn+Γn+1
Rn+1exp(−2Γn+1hn+1)

(3)

Γn =
√
λ2 +ωµ0jσn, (4)

σ0 = 0, hn is the height, and σn is the electrical conductivity for the nth layer. This is based on

the assumption that each layer is uniform with infinite horizontal extent. EMI measurements were

carried out under high induction number conditions (ECa> 100 mS/m) utilizing the full solution of

Maxwell’s equation to model the forward EMI response.

2.2 Bayesian Inference100

Bayesian inference is used to express the uncertainties in the system parameters based on a suitable

likelihood function and a prior. Given a set of unknown parameters, the so called posterior distri-

bution of the model parameters, which is the distribution of the parameters conditioned on available

observations is calculated as the product of the prior distribution and the likelihood function (Aru-

lampalam et al., 2002; Sivia, 2006). Bayesian inversion gained a lot of interests in recent years105

and has been applied in different applications, including climate, ocean and geophysical modeling

(Malinverno, 2002; Zedler et al., 2012; Olson et al., 2012; Altaf et al., 2014; Sraj et al., 2014).

Suppose a set of observations ({yi}ni=1) is available and assume a certain model to predict the

data. Let α be the set of unknown parameters in the model, then according to Bayeś rule

p(α|{yi}ni=1)∝ p({yi}ni=1|α) p(α), (5)

where p(α) is the prior distribution of α that represents the a priori knowledge about α, i.e. before110

considering the data. p({yi}ni=1|α) denotes the likelihood function: the probability of predicting the
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data given α. p(α|{yi}ni=1) is the posterior probability: the probability of recovering α given the

data ({yi}ni=1).

Let’s consider the forward model M, for the evaluation of the observations y as a function of the

parameters such that:115

y=M(α). (6)

Let ε be a random variable representing the discrepancy between our model M(α) and the obser-

vations, which we refer to as the observational noise:

ε= y−M(α). (7)

Assuming the components of the observational noise to be independent and Gaussian of mean zero

and variance σ2, the likelihood function can then be decomposed as

p({yi}ni=1|α) =

n∏
i=1

1√
2πσ2

exp

(
− (yi−Mi(α))2

2σ2

)
. (8)

Here we consider σ2 as an additional unknown (hyper) parameter and try to estimate its distribu-120

tion as part of the inference process. The (joint) posterior distribution is then expressed as:

p(α,σ2|{yi}ni=1)∝
n∏
i=1

1√
2πσ2

exp

(
− (yi−Mi(α))2

2σ2

)
p(α)p(σ2). (9)

The choice of the prior is a key step in the inference process. Here, an informative uniform prior

for all five (three conductivities and two thickness) parameters is considered, with αk in the range

[αmaxk αmink ]; i.e:

p(αk) =


1

αmax
k −αmin

k

for αmink <αk ≤αmaxk ,

0 otherwise.
(10)

For the noise variance σ2, we consider a Jeffreys prior (Sivia, 2006):125

p(αk) =


1
σ2 for σ2> 0,

0 otherwise.
(11)

The most commonly used computational strategy to numerically solve a multidimensional param-

eters Bayesian inference problem is the Markov Chain Monte Carlo (MCMC) method. We have

applied an adaptive Metropolis MCMC algorithm to sample the posterior distribution, as discribed

in details in Haario et al. (2001); Roberts and Rosenthal (2009)
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2.3 Synthetic and Field Measurements130

Two set of experimental setups were considered to test the MCMC approach and to evaluate the es-

timated model parameters and associated uncertainties using synthetic data for CMD Mini-Explorer

configurations. Figure 1 (a) and (b) show a three-layer earth model setups of low and high con-

ductivity for non-saline soil and saline soil salinity, respectively. In both setups, thicknesses for the

three-layer earth model were conceptualized by a plow horizon (0.25 m thick), with an intermedi-135

ate subsoil layer (0.50 m thick) and underlying consolidated layer up to 1.5 m depth. The plowing

horizon generally has less soil moisture as compared to the deeper horizon because of evaporation

and infiltration processes. The scenario of non-saline soil therefore used a plowing horizon with

low electrical conductivity of 15 mS/m as compared to the intermediate and consolidated soil layers

(Figure 1 (a)). In the saline soil scenario, salt accumulates on the surface of soil due to evaporation of140

water. As a result, the electrical conductivity of plowing horizon is considered higher 1800 mS/m as

compared to the deeper layers (Figure 1 (b)). In the agricultural field, the increase in the soil salinity

is generally due to the use of poor water quality or the excessive use of fertilizers. The forward

response of both scenarios was calculated in HCP and VCP via Equations (1) and (2), respectively,

for EMI configuration setups using the characteristics of CMD-Mini Explorer of three receiver coils145

respectively placed at 0.32, 0.71 and 1.18 m distances from the receiver.

In both scenarios, six configurations, three for each HCP and VCP with different spacings were

taken as an output for forward models. Let α= (σ1,σ2,σ3,h1,h2)T be a vector of model parameters.

σ1, σ2, and σ3 are layer conductivities, and h1 and h2 thicknesses. Bayesian inference was used to

estimate these 5 parameters that minimize the errors between observed and modeled HCP and VCP.150

An adaptive MCMC method was used to sample the posterior distributions and consequently update

α distributions according to the observed data. All the results presented below are based on 104

MCMC samples. Parameter range for h1 and h2 was fixed between 0.05−0.6 m in each scenario.

In the non-saline scenario, parameter range for σ1, σ2 and σ3 was considered between 5-100 mS/m

and the saline soil scenario range was fixed between 5 - 3000 mS/m. A uniform prior distribution155

function was considered in both scenarios.

Field measurements were also carried out in a farm, where Acacia trees were irrigated with saline

groundwater. The farm is located at a distance of 6 km from the Red Sea coast at Al-Qadeimah,

Makkah province, Saudi Arabia. EMI measurements were collected at an interval of 2 m over

a 40 m-long transect, along which three Acacia trees were irrigated using drip irrigation. At each160

location, EMI measurements using CMD-Mini explorer system gives six different values of apparent

electrical conductivity (using two coil orientations and three offsets), each responds to different depth

ranges. Ten pits were dug along the same transect and in each pit the bulk electrical conductivity σb

profile was measured at 15 locations within a depth range of 0.05-1.5 m via 5TE capacitance sensors

(Decagon Devices, Pullman, USA). EMI and 5TE measurements were performed 8 h after the drip165

irrigation system was stopped, so that the soil moisture is not concentrated below the drippers and
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to give enough time to reduce the soil moisture impact due to evaporation, root water uptake and

infiltration (Jadoon et al., 2015).

3 Results and Discussion

3.1 Synthetic Data170

Figure 2 (a) and (b) depicts the observed, estimated (modeled) and range of ECa as they result from

the chain of MCMC simulation for six configurations of the synthetic case with saline and non-saline

soil. X-axis represents VCP and HCP with three coil spacing (ρ32, ρ71, ρ118). In a non-saline

scenario, the layer electrical conductivity increases with depth (Figure 1 (a)), and this is reflected

in the observed and modeled ECa in the VCP and HCP with increasing trend for larger spacing175

(Figure 2 (a)). The ECa value for the VCP and HCP with maximum spacing of 1.8 m between

transmitter and receiver corresponds to deeper horizon, in the case of saline soil scenario the layer

conductivity decreases (Figure 1 (b)) and as a result ECa values in VCP and HCP configuration

exhibit a decreasing trend (Figure 2 (b)). The electromagnetic forward model is sensitive to high

electrical conductive soil, so the modeled ECa values for the saline soil scenario matches well180

with the observed as compared to the non-saline scenario. The mismatch between the observed and

modeledECa values for non-saline soil is due to the weak sensitivity of the forward electromagnetic

model to the low electrical conductivity.

Figure 3 (a) shows the true parameter values (red line) with the estimated parameters using MCMC

(blue dash line) for the non-saline soil scenario. The MCMC samples were used to obtain the185

marginalized posterior distributions based on kernel density estimation (KDE) (Parzen, 1962). The

95 percent of the KDE for each parameter is shown by the shaded gray background (Figure 3 a).

The resulting marginalized posterior pdfs of the three conductivities and two thicknesses are shown

in Figure 3 (b − f). The estimated parameters (Figure 3 b−f) show a single peak, corresponding

to the best parameter values. The electrical conductivities of the three model layers (σ1, σ2 and190

σ3) are reasonably well estimated as compared to the layer thicknesses. Different uniform prior

distributions were also tested for the layer thicknesses, but the and MCMC solution converged close

to the prior instead of the true layer thicknesses. The topography of the objective function was too

flat in this case to allow consequent changes in the direction of layer thicknesses. This suggests that

the electromagnetic model is not sensitive to the layer thicknesses for the low conductive soil layer.195

Figure 4 illustrates the true and estimated depth profile of electrical conductivity for saline sce-

nario, and the KDE of the marginalized posterior distributions for the three layer conductivities (σ1,

σ2 and σ3) and the two layer thicknesses (h1 and h2). The shaded gray background shows the 95

percent of the KDE for each parameter (Figure 4 a). The vertical electrical conductivity profile is

well recovered by MCMC. The electrical conductivity of the top two layers are well estimated as200

compared to the consolidated layer with low electrical conductivity. Furthermore, for the six tested
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configurations of CMD Mini-Explorer, the HCP and VCP configuration with spacing 1.18 m are

mostly sensitive to the consolidated layer while the remaining four configurations are more sensitive

to the upper horizon. A large range of the parameter space was explored by MCMC (Figure 4 b −
e), illustrating the sensitivity of the electromagnetic model to the considered parameters.205

3.2 Experimental Data

Measurements were carried out in a farm, where acacia trees were irrigated with saline groundwater.

The farm is located at a distance of 6 km from the Red Sea coast at Al-Qadeimah, Makkah province,

Saudi Arabia. EMI measurements were collected at an intervals over a 40 m-long transect, along

which three acacia trees were irrigated using drip irrigation. At each location, EMI measurements210

using the CMD-Mini explorer system provides six different values of apparent electrical conductivity

(using two coil orientations and three offsets), each responds to different depth ranges. Ten pits were

dug along the same transect and in each pit the vertical σb profile was measured at 15 locations within

a depth range of 0.05-1.5 m via 5TE capacitance sensors (Decagon Devices, Pullman, USA). 5TE

and EMI measurements were carried out on the same day 8 hr after the drip irrigation system was215

stopped, so that the soil moisture concentration below the drippers is avoided, and enough time is

given for the reduction of soil moisture impact due to root water uptake, evaporation and infiltration

(Jadoon et al., 2015).

Figure 5 shows the soil electrical conductivity measured in ten pits along a transect and the mod-

eled soil electrical conductivity as estimated by the MCMC using the multi-configuration EM induc-220

tion measurements. Pit locations along the transect are indicated by black triangle and cubic interpo-

lation of 150 5TE sensor measurements were used to construct the two dimensional profile of mea-

sured soil electrical conductivity σ (Figure 5 (a)). The groundwater used to irrigate the acacia trees

has an electrical conductivity of 4200 mS/m. The three patterns of high electrical conductivity is due

to the infiltration front and soil salinity near the three acacia trees. In total, 21 multi-configuration225

EMI measurements were performed along a transect and calibrated with in situ measurements col-

lected using capacitance sensors (Jadoon et al., 2015). The Three-layer earth model was considered

for Bayesian inference of the five parameters (σ1,σ2,σ3,h1,h2) and their uncertainty based on the

15,000 MCMC samples. For all MCMC simulations, the parameters search space was set relatively

large, with the range of low and high values of electrical conductivity of soil; 0<σ1 < 3000 mS/m,230

0<σ2< 3000 mS/m, 0<σ3< 3000 mS/m, 0.05<h1< 0.6 m, and 0.05<h1< 0.6 m. In the depth

section of soil electrical conductivity resulting from the EMI MCMC simulations, the effect of in-

filtration patterns and the soil salinity due to the drip irrigation near the three acacia trees is clear

(Figure 5 (b)). The estimated soil electrical conductivity values by MCMC are in a good agreement

with the sensor measurements performed in pits (Figure 5 (a)).235

Figure 6 (a) and (b) show the measured, estimated (modeled) and range ofECa as they result from

the MCMC chain for the six multi-configuration of CMD-Mini Explorer for saline and non-saline
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soil. Three coil spacing for each VCP and HCP is represented on the x-axis. EMI measurement is

shown for non-saline and saline soil at locations 4 and 9 of the pit (Figure 5 (a)), respectively. The

soil was completely dry for non-saline soil as no irrigation was applied, whereas in the case of saline240

soil the moisture in the soil varied between 0.005 - 0.19 at the time of EMI and sensor measurements.

In non-saline soil, the measured six ECa values range between 5 - 60 mS/m and the modeled ECa

between 23 - 38 mS/m Figure (6 (a)). The range of ECa estimated from the last 10,000 MCMC

samples is in the range of 0 - 75 mS/m. As observed in the synthetic non-saline soil scenario, the

electromagnetic forward model was not sensitive to the low electrical conductive soil. Similarly the245

fit between the measured and modeled ECa is not in good agreement with the real measurements

(Figure 6 (a)). Furthermore, the misfit may be due to the large search parameter space in the MCMC

simulations. In the case of saline soil, the electrical conductivity of the top 50 cm soil is high due to

the saline infiltration and soil salinity. This effect can be seen in the decreasing trend of the measured

ECa for the VCP and HCP measurements with larger coil spacing (Figure 6 (b)). The measured and250

modeled ECa are in good agrement and this is due to the high sensitivity of the electromagnetic

forward model to high electrical conductive soil.

Figure 7 plots the vertical profile of electrical conductivity for non-saline soil as measured by

capacitance sensors (red line), the value of the MCMC estimated parameters (blue dash line), and

the KDE of the marginalized posterior distributions for the three layer conductivities and the two255

layer thicknesses. The CMD-Mini Explorer measurements at the pit 4 for non-saline soil were used

for the analysis. In Figure 7 (a) the measured vertical profile of soil electrical conductivity fall

within the shaded area in the top 95% KDE distribution limits 0-0.7 m depth and below this depth

the modeled soil electrical conductivity is overestimated. The mismatch between the measured and

modeled ECa for the maximum coil separation Hρ118 and Vρ118 is behind the overestimation of260

the soil electrical conductivity. The marginalized posterior pdfs of the three conductivities and two

thicknesses are shown in Figure 7 (b− f). The pdfs of the parameters (Figure 7 b−f) exhibit a single

peak, corresponding to the best parameters. The peak of the σ3 is flat between 30-38 mS/m and

seems the topography of the objective function do not change within this range of conductivity in

each iteration of the MCMC simulation.265

Figure 8 plots the vertical profile of electrical conductivity for the saline soil measured by capaci-

tance sensors (red line), the value of the MCMC estimated parameters (blue dash line), and the KDE

of the marginalized posterior distributions for the three layer conductivities and the two layer thick-

nesses. CMD-Mini Explorer measurements at the pit 9 for the saline soil was used for the analysis.

The shaded area in Figure 8 (a) indicates the 95% KDE distribution limits. The whole measured ver-270

tical profile of soil electrical conductivity fall within the shaded area, suggesting that the electrical

conductivity is well estimated. The marginalized posterior pdfs of the three conductivities and two

thicknesses, as shown in Figure 8 (b − f), exhibit a single peak for all parameters except the layer

thickness h2 which is flat and suggest that the data were not informative to refine our prior knowl-
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edge about h2. The posterior pdfs of the first two conductivities (σ1 and σ2) and layer thickness h1275

exhibit a clear Gaussian shape with an obvious Maximum A Posteriori (MAP). For the conductivity

parameter σ3, we notice a posterior with a well defined peak, but no standard pdf shape.

Figure 9 shows the spatial distribution of the soil salinity as estimated from EMI measurement

using MCMC. Soil salinity ECe is related to bulk electrical conductivity σb via a linear relationship

(ECe = 13.74σb+0.001) established by Jadoon et al. (2015) for the same site. Infiltration front and280

high soil salinity range between 0.01 to 0.5 m at three locations where Acacia trees are irrigated with

brackish water. The results show that the Bayesian inversion of multi-configuration EMI measure-

ments successfully estimates the soil salinity caused by the brackish water infiltration. In the field,

Acacia trees roots concentrated in the top 70 cm of soil and the low soil salinity below 30 cm show

that Acacia are capable of extracting salt solutions and reduces subsoil salinity.285

4 Conclusion

In this paper, an adaptive Bayesian MCMC algorithm has been implemented for the model assess-

ment and uncertainty analysis of multi-orientation and multi-offset EMI measurements. The algo-

rithm has been tested for CMD-Mini Explorer with both synthetic and field measurements conducted

in an agriculture field over a non-saline and saline soil. Using Bayesian inference, marginalized pos-290

terior pdfs were computed for three subsurface electrical conductivities (σ1, σ2, and σ3 ) and two

layer thicknesses (h1 and h2) using MCMC. Such analysis helps to provide insight about parameters

estimate and uncertainties.

The experimental results showed that the MCMC simulations can improve the reliability of the

electromagnetic forward model to estimate the subsurface electrical conductivity profiles. Analysis295

shows that the electromagnetic forward model is less sensitive to the non-saline soil as compared to

the saline soil. The proposed approach is flexible and can be implemented for various low-frequency

ground-based EMI system and can provide subsurface electrical conductivity distribution and un-

certainty of model parameters. Future research will focus to implement the Bayesian inference ap-

proach on time-lapse EMI measurements in different agricultural fields to monitor the soil dynamics,300

estimate the model parameters and their uncertainties.
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Fig. 1. Three-layer synthetic earth model of electrical conductivity for (a) non-saline soil and (b) saline soil in

the top horizon.
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Fig. 2. Observed electrical conductivity obtained from the forward response of the six different configuration of

CMD-Mini Explorer (red star), estimated (modeled) earth electrical conductivity (blue asterisk) and the range

of ECa simulated by MCMC for (a) non-saline and (b) saline soil scenarios.
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Fig. 3. Summary of the MCMC simulation for the synthetic three layer earth model of non-saline soil. (a) True

(red line) and estimated parameter (blue dash-line) for the vertical electrical conductivity profile, and the gray

background with the 95 percent confidence interval of kernel distribution estimation (KDE). (b − f) show the

KDE of the marginalized posterior distributions for the three layer conductivities (σ1, σ2 and σ3) and two layer

thicknesses (h1 and h2).
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Fig. 4. Summary of the MCMC simulation for the synthetic three layer earth model of saline soil. (a) True

(red line) and estimated parameter (blue dash-line) for the vertical electrical conductivity profile, and the gray

background with the 95 percent confidence interval of kernel distribution estimation (KDE). (b − f) show the

KDE of the marginalized posterior distributions for the three layer conductivities (σ1, σ2 and σ3) and two layer

thicknesses (h1 and h2).
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Fig. 5. (a) electrical conductivity (mS/m) measured by the 5TE capacitance sensors from 10 soil pits along

transect and the location of the soil pits is indicated by black triangles (Jadoon et al., 2015), (b) the soil electrical

conductivity obtained by using Markov Chain Monte Carlo simulation for multi-configuration electromagnetic

induction measurements.

0

20

40

60

80

100

Hρ32 Hρ71 Hρ118 Vρ32 Vρ71 Vρ118
CMD Mini−Explorer configurations

E
C

a (
m

S
/m

)

 

 

Measured
Modeled
Range

0

400

800

1200

1600

2000

2400

Vρ32 Vρ71 Vρ118 Hρ32 Hρ71 Hρ118
CMD Mini−Explorer configurations

E
C

a (
m

S
/m

)

 

 

Measured
Modeled
Range

(a) (b)

Fig. 6. Measured six different configuration of CMD-Mini Explorer (red star), estimated (modeled) earth

electrical conductivity (blue asterisk) and the range of ECa simulated by MCMC for (a) non-saline soil at pit 4

and (b) saline soil at pit 9 location.
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Fig. 7. Summary of the MCMC simulation for three-layer earth model by considering CMD-Mini explorer

measurement over a non-saline soil. (a) True (red line) and estimated parameter (blue dash-line) for the vertical

electrical conductivity profile, and the gray background with the 95 percent confidence interval of kernel distri-

bution estimation (KDE). (b − f) show the KDE of the marginalized posterior distributions for the three layer

conductivities (σ1, σ2 and σ3) and two layer thicknesses (h1 and h2).
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Fig. 8. Summary of the MCMC simulation for three-layer earth model by considering CMD-Mini explorer

measurement over a saline soil. (a) True (red line) and estimated parameter (blue dash-line) for the vertical

electrical conductivity profile, and the gray background with the 95 percent confidence interval of kernel distri-

bution estimation (KDE). (b − f) show the KDE of the marginalized posterior distributions for the three layer

conductivities (σ1, σ2 and σ3) and two layer thicknesses (h1 and h2).
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