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Abstract 

The quality of statistical calibration of hydraulic and transport soil properties is studied for 

infiltration experiments in which, over a given period, tracer-contaminated water is injected 

into an hypothetical column filled with a homogeneous soil. The saturated hydraulic 

conductivity, the saturated and residual water contents, the Mualem-van Genuchten shape 

parameters and the longitudinal dispersivity are estimated in a Bayesian framework using the 

Markov Chain Monte Carlo (MCMC) sampler. The impact of the kind of measurement sets 

(water content, pressure inside the column, cumulative outflow and outlet solute 

concentration) and that of the solute injection duration is investigated by analyzing the 

calibrated model parameters and their confidence intervals for different scenarios. The results 

show that the injection period has a significant effect on the quality of the estimation, in 

particular, on the posterior uncertainty range of the parameters. All hydraulic and transport 

parameters of the investigated soil can be well estimated from the experiment using only the 

outlet concentration and cumulative outflow, which are measured non-intrusively. An 

improvement of the identifiability of the hydraulic parameters is observed when the pressure 

data from measurements taken inside the column are also considered in the inversion. 

 

Keywords 

Infiltration experiment, Richards’ equation, Statistical calibration, Markov Chain Monte 

Carlo, Uncertainty ranges. 
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1. Introduction 

The soil parameters that influence water flow and contaminant transport in unsaturated zones 

are not generally known a priori and have to be estimated by fitting model responses to 

observed data. The unsaturated soil hydraulic parameters can be (more or less accurately) 

estimated from dynamic flow experiments (e.g., Hopmans et al., 2002; Vrugt et al., 2003a; 

Durner and Iden, 2011; Younes et al., 2013). Several authors have investigated different types 

of transient experiments and boundary conditions suited for a reliable estimation of soil 

hydraulic properties (e.g. van Dam et al., 1994; Simunek and van Genuchten, 1997; Inoue et 

al, 1998; Durner et al, 1999). Soil hydraulic properties are often estimated using inversion of 

one-step (Kool et al., 1985; van Dam et al., 1992) or multistep (Eching et al., 1994; van Dam 

et al., 1994) outflow experiments or controlled infiltration experiments (Hudson et al., 1996).  

Kool et al. (1985) and Kool and Parker (1988) suggested that the transient experiments should 

cover a wide range in water contents to obtain a reliable estimation of the parameters. Van 

Dam et al. (1994) have shown that more reliable parameter estimates are obtained by 

increasing the pneumatic pressure in several steps instead of a single step. The multistep 

outflow experiments are the most popular laboratory methods (e.g., Eching and Hopmans, 

1993; Eching et al., 1994; van Dam et al., 1994; Hopmans et al., 2002). However, their 

application is limited by expensive measurement equipment (Nasta et al., 2011). 

Infiltration experiments have been investigated by Mishra and Parker (1989) to study the 

reliability of hydraulic and transport estimated parameters for a soil column of 200 cm using 

measurements of water content, concentration and water pressure inside the column. They 

showed that the simultaneous estimation of hydraulic and transport properties yields to 

smaller estimation errors for model parameters than the sequential inversion of hydraulic 

properties from the water content and/or pressure head followed by the inversion of transport 

properties from concentration data (Mishra and Parker, 1989).  
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Inoue et al. (2000) performed infiltration experiments using a soil column of 30 cm. Pressure 

head and solute concentration were measured at different locations. A constant infiltration rate 

was applied to the soil surface and a balance was used to measure the cumulative outflow. 

They showed that both hydraulic and transport parameters can be assessed by the combination 

of flow and transport experiments.  

Furthermore, infiltration experiments were often conducted in lysimeters for pesticide 

leaching studies. Indeed, lysimeter experiments are generally used to assess the leaching risks 

of pesticides using soil columns of around 1.2 m depth which is the standard scale for these 

types of experiments (Mertens et al, 2009; Kahl et al., 2015). Before performing the column 

leaching experiment, several infiltration-outflow experiments are often realized to estimate 

the soil hydraulic parameters (Kahl et al., 2015; Dusek et al, 2015).  

The key objective of the present study is to evaluate the reliability of different experimental 

protocols for estimating hydraulic and transport parameters and their associated uncertainties 

for column experiments. We consider the flow and the transport of an inert solute injected 

into a hypothetical column filled with a homogeneous sandy clay loam soil. We assume that 

flow can be modelled by the Richards’ equation (RE) and that the solute transport can be 

simulated by the classical advection-dispersion model. Furthermore, the Mualem and van 

Genuchten (MvG) models (Mualem 1976, van Genuchten 1980) are chosen to describe the 

retention curve and to relate the hydraulic conductivity of the unsaturated soil to the water 

content. The estimation of the flow and transport parameters through flow-transport model 

inversion is investigated for two injection periods of the solute and different data 

measurement scenarios.  

Inverse modelling is often performed using local search algorithms such as the Levenberg-

Marquardt algorithm (Marquardt, 1963). The later is computationally efficient to evaluate the 

optimal parameter set (Gallagher and Doherty, 2007). Besides, the degree of uncertainty in 

https://www.authorea.com/users/61522/articles/74024/_show_article#Mualem76WRR
https://www.authorea.com/users/61522/articles/74024/_show_article#Genuchten80AG
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the estimated parameters, expressed by their confidence intervals, is often calculated using a 

first-order approximation of the model near its minimum (Carrera and Neuman, 1986, Kool 

and parker, 1988). However, as stated by Vrugt and Bouten (2002), parameter 

interdependence and model nonlinearity occurring in hydrologic models may violate the use 

of this first approximation to obtain accurate confidence intervals of each parameter. 

Therefore, in this work, the estimation of hydraulic and transport parameters is performed in a 

Bayesian framework using the Markov Chain Monte Carlo (MCMC) sampler (Vrugt and 

Bouten, 2002; Vrugt et al., 2008). Unlike classical parameter optimization algorithms, the 

MCMC approach generates sets of parameter values randomly sampled from the posterior 

joint probability distributions, which are useful to assess the quality of the estimation. The 

MCMC samples can be used to summarize parameter uncertainties and to perform predictive 

uncertainty (Ades and Lu, 2003).  

Hypothetical infiltration experiments are considered for a column of 120 cm depth, initially 

under hydrostatic conditions, free of solute and filled with a homogeneous sandy clay loam 

soil. Continuous flow and solute injection are performed during a time period injT  at the top of 

the column and with a zero pressure head at the bottom. The unknown parameters for the 

water flow are the hydraulic parameters: sk  [L.T
−1

], the saturated hydraulic conductivity; s  

[L
3
.L

−3
], the saturated water content; r  [L

3
.L

−3
], the residual water content; and   [L

−1
] and 

n  [−], the MvG shape parameters. The only unknown parameter of the tracer transport is the 

longitudinal dispersivity, La [L].  

Several scenarios corresponding to different sets of measurements are investigated to address 

the following questions: 

1)  Can we obtain an appropriate estimation of all flow and transport parameters from 

tracer-infiltration experiments, even though a limited range in water content is covered 
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(only moderately dry conditions are obtained because of gravity drainage conditions 

prescribed at the bottom of the soil column)? 

2)  What is the optimal set of measurements for the estimation of all the parameters? Can 

we use only non-intrusive measurements (cumulative outflow and concentration 

breakthrough curve) or are intrusive measurements of pressure heads and/or water 

contents inside the column unavoidable? 

3)  Is there an optimal design for the tracer injection?  

For this purpose, synthetic scenarios are considered in the sequel in which data from 

numerical simulations are used to avoid the uncontrolled noise of experiments that could bias 

the conclusions.  

The paper is organized as follows. The mathematical models describing flow and transport in 

the unsaturated zone are detailed in section 2. Section 3 describes the MCMC Bayesian 

parameter estimation procedure used in the DREAM(ZS) sampler. Section 4 presents the 

different investigated scenarios and discusses the results of the calibration in terms of mean 

parameter values and uncertainty ranges for each scenario. Conclusions are given in section 5. 

 

2. Unsaturated flow-transport model 

We consider a uniform soil profile in the column and an injection of a solute tracer such as 

bromide, as described in Mertens et al. (2009). The unsaturated water flow in the vertical soil 

column is modeled with the one-dimensional pressure head form of the RE: 

 

 

  1

s

S

h q
c h S

t z

h
q K h

z





   
  

  


 
    

, (1) 
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where h [L] is the pressure head; q  [L.T
-1

] is the Darcy velocity; z [L] is the depth, measured 

as positive in the downward direction; sS  (-) is the specific storage;   and s  [L
3
.L

-3
] are the 

actual and saturated water contents, respectively;  c h  [L
-1

] is the specific moisture capacity; 

and  K h [L.T
-1

] is the hydraulic conductivity. The latter two parameters are both functions 

of the pressure head. In this study, the relations between the pressure head, conductivity and 

water content are described by the following standard models of Mualem (1976) and van 

Genuchten (1980): 
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, (2) 

where Se (-) is the effective saturation, r  [L
3
.L

-3
] is the residual water content, sK  [L.T

-1
] is 

the saturated hydraulic conductivity, and 1 1m n  ,   [L
-1

] and n  (-) are the MvG shape 

parameters.  

The tracer transport is governed by the following convection-dispersion equation:  

 
   C qC C

D 0
t z z z




    
   

    
 (3) 

where C  [M.L
-3

] is the concentration of the tracer, D  [L
2
.T

-1
] is the dispersion coefficient in 

which l mD a q d   and la  [L] is the dispersivity coefficient of the soil and md  [L
2
.T

-1
] is 

the molecular diffusion coefficient, which is set as 1.04 10
-4

 cm
2
/min. 

The transport equation (3) is coupled with the flow equation (1) by the water content   and 

the Darcy’s velocity q . The initial conditions are as follows: a hydrostatic pressure 

distribution with zero pressure head at the bottom of the column  z L  and a solute 

concentration of zero inside the whole column. An infiltration with a flux injq  of contaminated 



 8 

water with a concentration 
injC  is then applied at the upper boundary condition (z = 0) during 

a period injT . Hence, the boundary conditions at the top of the column can be expressed as: 

 

 

inj

inj inj

injinj inj

h
hK 1 q

K 1 0z
zfor 0 t T for t T

C
C 0D qC q C

z
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                   
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,

 (4) 

 

A zero pressure head is maintained at the lower boundary  z L  of the column and a zero 

concentration gradient is used as the lower boundary condition for the solute transport, 

namely, 

   0 0
z l

z l

C
h

z


 
  

 
 (5) 

In the sequel, the infiltration rate and the injected solute concentration are 0.015injq  cm/min 

and 1injC   g/cm
3
, respectively. The system (1)-(5) is solved using the standard finite 

difference method for both flow and transport spatial discretization. A uniform mesh of 600 

cells is employed. Temporal discretization is performed with the high-order method of lines 

(MOL) (e.g., Miller et al., 1998; Tocci et al., 1997; Younes et al., 2009; Fahs et al., 20011). 

Error checking, robustness, order selection and adaptive time step features, available in 

sophisticated solvers, are applied to the time integration of partial differential equations 

(Tocci et al., 1997). The MOL has been successfully used to solve RE in many studies (e.g., 

Farthing et al., 2003; Miller et al., 2006; Li et al., 2007; Fahs et al., 2009). Details on the use 

of the MOL for solving RE are described in Fahs et al. (2009). 
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3. Bayesian parameter estimation  

The vector of unknown parameters that has to be identified by model calibration is 

 , , , , ,s s r Lk n a  ξ . To analyze the performance of the model calibration procedures, a 

reference solution is generated by simulating the flow-transport problem (1)-(5) using the 

following parameter values (corresponding to a sandy clay loam soil): 50sk cm day , 

0.43s  , 0.09r  , 10.04cm  , 1.4n   and 0.2la cm . Four types of variables are 

extracted from the results of the simulation: the pressure head and water content 5 cm below 

the top of the column, the cumulative outflow and the solute breakthrough concentration at 

the outflow of the column. These four data series are modified by adding a normally 

distributed white noise using the following standard deviations: 1h cm   for the pressure 

head, 0.02   for the water content, 0.1Q  cm for the cumulative outflow and 0.01C   

g/cm
3
 for the exit concentration. These perturbations mimic measurement errors and the 

resulting values of water pressure, water content, cumulative outflow and solute breakthrough 

concentration are considered as measurements in the following. 

The flow-transport model is used to analyze the effects of different measurement sets on 

parameter identification. For this purpose, we adopt a Bayesian approach that involves the 

parameter joint posterior distribution (Vrugt et al., 2008). The latter is assessed with the 

DREAM(ZS) MCMC sampler (Laloy and Vrugt, 2012). This software generates random 

sequences of parameter sets that asymptotically converge toward the target joint posterior 

distribution (Gelman et al., 1997). Thus, if the number of runs is sufficiently high, the 

generated samples can be used to estimate the statistical measures of the posterior 

distribution, such as the mean and variance among other measures.  

The Bayes theorem states that the probability density function of the model parameters 

conditioned onto data can be expressed as: 
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      | |mes mesp p pξ y y ξ ξ
,
 (6) 

where  | mesp ξ y  is the likelihood function measuring how well the model fits the 

observations 
mesy , and  p ξ  is the prior information about the parameter before the 

observations are made. Independent uniform priors within the ranges reported in Table 1 are 

chosen. In this work, a Gaussian distribution defines the likelihood function because the 

observations are simulated and corrupted with Gaussian errors. Hence, the parameter 

posterior distribution is expressed as: 

  
       

2 2 2 22 2 2 2

Qh C

mes

h Q C

SSSS SS SS
p | exp



   

 
      

 

ξξ ξ ξ
ξ y

,

 (7) 

where  hSS ξ ,  SS ξ ,  QSS ξ  and  CSS ξ  are the sums of the squared differences 

between the observed and modeled data of the pressure head, water content, cumulative 

outflow and output concentration, respectively. For instance,         
2

1

Nh k k

h mes modk
SS h h


 ξ ξ , 

which includes the observed 
 k

mesh  and predicted 
 k

modh  pressure heads at time kt  for the number 

of pressure head observations Nh .  

Bayesian parameter estimation is performed hereafter with the DREAM(ZS) software (Laloy 

and Vrugt, 2012), which is an efficient MCMC sampler. DREAM(ZS) computes multiple sub-

chains in parallel to thoroughly explore the parameter space. Archives of the states of the sub-

chains are stored and used to allow a strong reduction of the "burn-in" period in which the 

sampler generates individuals with poor performances. Taking the last 25% of individuals of 

the MCMC (when the chains have converged) yields multiple sets of parameters, ξ , that 

adequately fit the model onto observations. These sets are then used to estimate the updated 

parameter distributions, the pairwise parameter correlations and the uncertainty of the model 
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predictions. As suggested in Vrugt et al. (2003b), we consider that the posterior distribution is 

stationary if the Gelman and Ruban (1992) criterion is 1 2. .  

4. Results and discussion 

In this section, the identifiability of the parameters is investigated for 7 different scenarios of 

measurement sets (Table 1). In the first scenario, only measured pressure heads and 

cumulative outflow are used for the calibration. The scenarios 2 to 5 investigate the benefit of 

adding measured water contents and/or solute outlet concentrations to pressure heads and 

outflow. The last scenarios (6, 7) investigate the use of measured cumulative outflow and 

concentration breakthrough at the column outflow because these measurements do not require 

intrusive techniques. Scenarios 5 to 7 investigate as well the effects of solute injection 

duration on the identifiability of the parameters.  

 

In all cases, the MCMC sampler was run with 3 simultaneous chains for a total number of 

50000 runs. Depending on the scenario, the MCMC required between 5000 and 20000 model 

runs to reach convergence and was terminated after 30000 runs. The last 25% of the runs that 

adequately fit the model onto observations are used to estimate the updated probability 

density function (pdf). 

 

4.1. The data sets for parameter estimation 

The data sets obtained from solving the flow-transport problems (1)-(5) using the parameters 

given in section 2 are shown in Fig. 1. The pressure head at 5 cm from the top of the column 

(Fig. 1a) increases from its initial hydrostatic negative value (-115 cm) and reaches a plateau 

(-1.75 cm) in less than 100 minutes during the injection period. After the injection is finished, 

it progressively decreases due to the drainage caused by the gravity effect. A similar behavior 

is observed for the water content at the same location (Fig. 1b), where the value of the plateau 
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is close to the saturation value. The cumulative outflow (Fig. 1c) starts to increase at 

approximately 1000 min after the beginning of the injection. It shows an almost linear 

behavior until 5500 min. It then slowly increases with an asymptotic behavior due to the 

natural drainage after the end of the injection period. Fig. 1d displays the water saturation as a 

function of the pressure head. It is worth noting that only a few part of this curve is described 

during the infiltration experiment. Indeed, only moderate dry conditions are established 

because the minimum pressure head reached in the column is -120 cm, which corresponds to 

the initial pressure head at the top of the column. 

The breakthrough concentration curve (Fig. 1e) shows a sharp front, which starts shortly after 

3000 min. Note that if the injection of both water and contaminant are stopped once the solute 

reaches the output. For an injection period of 3000 min, the breakthrough curve exhibits a 

smoother progression (Fig. 1f). 

The data considered as measurements, which are used as conditioning information for model 

calibration, are also shown in Fig. 1. In Fig. 1b, the water content seems to be more affected 

by the perturbation of data than the pressure head and cumulative outflow. This phenomenon 

is due to the relative importance of the measurement errors of the water content often 

observed with time-domain-reflectometry probes and to the weak variations of the water 

content during the infiltration experiment. The perturbation of the breakthrough curve is 

relatively small because of the low added noise since output concentrations can be accurately 

measured. The perturbations of the pressure head and cumulative outflow seem weak because 

of the large variation of these variables during the experiment. 

 

4.2. Results of the parameter estimation  

The uncertainty model parameters are assumed to be distributed uniformly over the ranges 

reported in Table 1. This table also lists the reference values used to generate data 



 13 

observations before perturbation. Seven scenarios are considered, corresponding to different 

sets of measurements for the estimation of the hydraulic and transport soil parameters (Table 

2). 

The MCMC results of the seven studied scenarios are given in Figs. 2 to 8. The "on-diagonal" 

plots in these figures display the inferred parameter distributions, whereas the "off-diagonal" 

plots represent the pairwise correlations in the MCMC sample. If the draws are independent, 

non-sloping scatterplots should be observed. However, if a good value of a given parameter is 

conditioned by the value of another parameter, then their pairwise scatterplot should show a 

narrow sloping stripe. The sensitivity of parameters is obtained by comparing prior to 

posterior parameter distribution. A significant difference between the two distributions for a 

parameter indicates high model sensitivity to that parameter (Dusek et al., 2015). 

To facilitate the comparison between the different scenarios, Figs. 9 to 14 show the mean and 

the 95% confidence intervals of the final MCMC sample that adequately fit the model onto 

observations for each scenario, and Table 3 summarizes the pairwise parameter correlations. 

Fig. 2 shows the inferred distributions of the parameters identified with the MCMC sampler 

using only the pressure and cumulative outflow measurements (scenario 1). The parameters 

sk ,   and n  are well estimated; their prior intervals of variation are strongly narrowed and 

they essentially show bell-shaped posterior distributions. This shows the high sensitivity of 

the model responses to these parameters.  

The parameter sk  is strongly correlated to   (0.94) and n  (-0.97). These results confirmed 

the results of Eching and Hopmans (1994) on multistep outflow experiments who found that 

the inverse solution technique is greatly improved when both cumulative outflow and pressure 

head data from some positions inside the column are used. The two water contents related 

parameters are strongly correlated (0.96) and cannot be identified accurately because the 

water retention relationship depends on the difference between s  and r  and only this 
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difference is identifiable. Note that the prior intervals of r  and s  which are respectively 

 0.05,0.2  and  0.3,0.5  have changed to the posterior intervals  0.05,0.16  and  0.39,0.5  

because the target difference should be 0.34.s r    In the literature, van Genuchten and 

Nielsen (1985), Eching and Hopmans (1993) and Zurmühl (1996) considered that saturated 

water content is determined independently and considered only r  to be an empirical 

parameter that should be fitted to the data. 

The dispersivity coefficient la  has not been identified in this first scenario.  

The MCMC results in Fig. 3 show that water content measurements throughout the 

experiment (scenario 2) allow the estimation of both the residual and saturated water contents. 

The parameter r  strongly correlates to sk  (-0.94) and n  (0.98) and the parameter sk  remains 

strongly related to   (0.94) and n  (-0.98). Although the water content data are subject to 

relatively high measurement errors, a good estimation is obtained for s  and r . The 

parameters sk ,   and n  are estimated with the same accuracy as for the first scenario. All 

parameters (except the dispersivity coefficient) are highly sensitive since their posterior 

intervals of variations are strongly reduced compared to the prior intervals. Moreover, the 

prior uniform distributions give place to almost Gaussian posterior distributions. These results 

show that, although Kool et al. (1985) and Kool and Parker (1988) suggested that the transient 

experiments should cover a wide range in water content, an appropriate estimation of all 

parameters can be obtained with the infiltration experiment even though a limited range in 

water content is covered. 

When the concentration measurements are also considered in the inversion (scenario 3), the 

results depicted in Fig. 4 show very significant correlations between sk  and r  (-0.94), sk  

and   (0.91), sk  and n  (-0.97) and n  and r  (0.99). The posterior uncertainty ranges of sk , 

 , n  and r  are similar to the previous scenarios. Those of s  and la  are strongly reduced, 
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leading to a good identification of these parameters when using C  measurements (Figs. 10 

and 14). A better estimate of the saturated water content is obtained because advective 

transport is a function of this variable. 

In the inversion procedure of scenario 4, the measurements of the water content are not 

considered. This scenario leads to the same quality of the estimation for the parameters sk , r

,   and n  (Figs. 9, 11, 12, 13) and similar correlations between the parameters as in the 

previous scenario. This result shows that the intrusive water content measurements, which are 

subject to more significant measurement errors than the output concentration, are not required 

if the output concentration is measured. Compared with the results of scenario 2, it can be 

concluded that better parameter estimations are obtained using h , Q  and C  data than using h

, Q  and   data, especially for s . Therefore, using C  instead of   measurements in 

combination with h  and Q  measurements allows the estimation of la  and yields better 

estimate of s . 

The pressure head, cumulative outflow and concentration measurements are used in the 

estimation procedure of scenario 5, but the injection period is now reduced to 3000 mininjT  . 

The obtained results (Fig. 6) show the same correlations between the parameters as for 

5000 mininjT  . For the parameters sk , s , r ,   and n , almost the same mean estimates are 

obtained as for scenario 4. However, the parameters are better identified (Figs. 9 to 13). 

Indeed, the uncertainty of these parameters is smaller because the credible interval is reduced 

by a factor of 25% for sk , 8% for s , 26% for r , 10% for   and 25% for n  when compared 

to the results obtained using 5000 mininjT  . The parameter la  is also much better estimated 

than in the previous scenario. Its mean value approaches the reference solution and the 

posterior uncertainty range is reduced by approximately 75% (Fig. 14). 
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In scenario 6, the pressure head measurements are removed and only non-intrusive 

measurements ( Q  and C  data) are used for the calibration with an injection period of 

5000 mininjT  . These kind of nonintrusive measures have been used by Mertens et al. (2009) 

to estimate some of hydraulic and pesticides leaching parameters. The results depicted in Fig. 

7 show high correlations only between sk  and n  (-0.95) and r  and n  (0.95). On the one 

hand, these results show that all the parameters are well estimated since, as compared to the 

prior intervals (given in Table 1), the confidence intervals of the estimated parameters (plotted 

in Figs. 9-14) are strongly reduced, especially for the parameters  , n  and s . On the other 

hand, compared to the results of scenario 4 which also considers pressure data, sk  is not as 

well estimated (the mean value is less close to the reference value and the confidence interval 

is 27% larger). The mean estimated values for r  and n  also degraded (less close to the 

reference solution), although their confidence intervals are similar to those of scenario 4 

(Figs. 11, 13). The estimated mean value of the parameter   is similar to that in scenario 4. 

However, its uncertainty is much larger because the credible interval is 77% larger (Fig. 14). 

The parameters s  and la  are estimated as well as in scenario 4 (in terms of mean estimated 

value and credible interval). 

The last scenario (scenario 7) is similar to the previous one, but the injection period is reduced 

to 3000 mininjT  . The results depicted in Fig. 8 show similar correlations between the 

parameters as for 5000 mininjT  . However, a significant improvement is observed for the 

mean estimated values, which approach the reference solution for sk , r , n  and la  (Figs. 9, 

11, 13, 14). The uncertainties of sk ,   and la  are also reduced by approximately 40%, 15% 

and 70%, respectively. The parameter s  is estimated as well as in scenario 6. The 

improvement of the parameter estimation in this last scenario compared to the previous one 
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can be explained by the fact that the injection of water and solute contaminant is stopped once 

the concentration reaches the column outlet. Hence, the injected volume (0.015x3000 = 

45cm
3
/cm

2
) is slightly less than the pore volume (120x0.43=51 cm

3
/cm

2
). Thus, when the 

injection is stopped, the column is not fully saturated and the outlet flux strongly reduces (see 

the asymptotic behavior of the cumulative outflow when the injection is stopped in Fig. 1c). 

As a consequence, the concentration profile increases smoothly (see Fig. 1f) until reaching its 

maximum value in contrast to the sharp front observed for 5000mininjT   in the scenario 6 

(see Fig. 1e). Hence, the breakthrough curve obtained with 3000 mininjT   is more affected 

by the hydraulic parameters than the breakthrough curve obtained with 5000mininjT  . This 

explains why a better estimation of the parameters is observed for the last scenario compared 

to the scenario 6.  

 

5. Conclusions 

In this work, estimation of hydraulic and transport soil parameters have been investigated 

using synthetic infiltration experiments performed in a column filled with a sandy clay loam 

soil, which was subjected to continuous flow and solute injection over a period injT .  

The saturated hydraulic conductivity, the saturated and residual water contents, the Mualem-

van Genuchten shape parameters and the longitudinal dispersivity are estimated in a Bayesian 

framework using the Markov Chain Monte Carlo (MCMC) sampler. Parameter estimation is 

performed for different scenarios of data measurements.  

The results reveal the following conclusions: 

1. All hydraulic and transport parameters can be appropriately estimated from the 

described infiltration experiment. However, the accuracy differs and depends on the 
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type of measurement and the duration of the injection injT , even if the water content 

remains close to saturated conditions.  

2. The use of concentration measurements at the column outflow, in addition to 

traditional measured variables (water content, pressure head and cumulative outflow), 

reduces the hydraulic parameters uncertainties, especially that of the saturated water 

content (comparison between scenario 2 and scenario 3). 

3. The saturated hydraulic conductivity is estimated with the same order of accuracy, 

independent of the observed variables. 

4. The estimation of the dispersivity is sensitive to the injection duration. The scenarios 5 

and 7 with 3000 mininjT   yield much more accurate dispersivity estimations than 

scenarios 4 and 6 with 5000mininjT   due to the extended spreading of the solute 

observed for 3000 mininjT  .  

5. A better identifiability of the soil parameters is obtained using C  instead of   

measurements, in combination with h  and Q  data (comparison between scenario 2 

and scenario 4). 

6. Using only non-intrusive measurements (cumulative outflow and output 

concentration) yields satisfactory estimation of all parameters (scenario 7). The 

uncertainty of the parameters significantly decreases when the injection of water and 

solute is maintained for a limited period (comparison between scenario 6 and scenario 

7).  

 

This last point has practical applications for designing simple experimental setups dedicated 

to the estimation of hydrodynamic and transport parameters for unsaturated flow in soils. The 

setup has to be appropriately equipped to measure the cumulative water outflow (e.g., 
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weighing machine) and the solute breakthrough at the column outflow (e.g., flow through 

electrical conductivity). The injection should be stopped as soon as the solute concentration 

reaches the outflow. The accuracy of the estimation of r ,   and n  improves by adding 

pressure measurements inside the column, close to the injection. 

 

These results are of course related to the models and experimental conditions we used. This 

work can be extended to different types of soils, water retention and/or relative permeability 

functions to evaluate the interest of coupling flow and transport for parameter identification. 

This work can also be extended to reactive solutes.  
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List of table captions 

 

Table 1. Prior lower and upper bounds of the uncertainty parameters and reference values. 

 

Table 2. Measurement sets and injection periods for the different scenarios. The pressure head 

h  and the water content   are measured at 5 cm from the top of the column. The cumulative 

outflow Q  and the concentration C  are measured at the exit of the column.   

 

Table 3. Summary of the pairwise parameter correlations. 
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Parameters Lower bounds Upper bounds Reference values 

sk  [cm min
-1

] 0.025 0.1 0.0347 

s  [-] 0.3 0.5 0.43 

r  [-] 0.05 0.2 0.09 

  [cm
-1

] 0.01 0.3 0.04 

n  [-] 1.2 5 1.4 

la  [cm] 0.05 0.6 0.2 

 

Table 1. Prior lower and upper bounds of the uncertainty parameters and reference values. 

 

 

 

 

Scenario Measured variables Injection period 

 h    Q  C  5000mininjT   3000mininjT   

1       

2       

3       

4       

5       

6       

7       

 

Table 2. Measurement sets and injection periods for the different scenarios. The pressure head 

h  and the water content   are measured at 5 cm from the top of the column. The cumulative 

outflow Q  and the concentration C  are measured at the exit of the column.   
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 1 

 2 

Scenario      

1  , 0.97sk n     , 0.94sk       , 0.96r s    

2  , 0.98sk n     , 0.94sk     , 0.94s rk      , 0.98r n    

3  , 0.97sk n     , 0.91sk     , 0.94s rk      , 0.99r n    

4  , 0.98sk n     , 0.95sk     , 0.96s rk      , 0.99r n    

5  , 0.96sk n     , 0.93sk     , 0.91s rk      , 0.98r n    

6  , 0.95sk n       , 0.95r n    

7  , 0.95sk n       , 0.94r n    

Table 3. Summary of the pairwise parameter correlations. 3 

 4 

 5 
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List of figure captions 7 

Fig. 1. (a) Pressure head at 5 cm below the soil surface, (b) water content at 5 cm below the 8 

soil surface, (c) cumulative outflow, (d) retention curve, (e) output concentration for Tinj = 9 

5000 and (f) for Tinj= 3000 min. Solid lines represent model outputs and dots represent the 10 

sets of perturbed data serving as conditioning information for model calibration. 11 

Fig. 2. MCMC solutions for the transport scenario 1. The diagonal plots represent the inferred 12 

posterior probability distribution of the model parameters. The off-diagonal scatterplots 13 

represent the pairwise correlations in the MCMC drawing.  14 

Fig. 3. MCMC solutions for transport scenario 2 [see Fig. 2 caption]. 15 

Fig. 4. MCMC solutions for transport scenario 3 [see Fig. 2 caption]. 16 

Fig. 5. MCMC solutions for transport scenario 4 [see Fig. 2 caption]. 17 

Fig. 6. MCMC solutions for transport scenario 5 [see Fig. 2 caption]. 18 

Fig. 7. MCMC solutions for transport scenario 6 [see Fig. 2 caption]. 19 

Fig. 8. MCMC solutions for transport scenario 7 [see Fig. 2 caption]. 20 

Fig. 9. Posterior mean values and 95% confidence intervals of the saturated hydraulic 21 

conductivity for the different scenarios. 22 

Fig. 10. Posterior mean values and 95% confidence intervals of the saturated water content for 23 

the different scenarios. 24 

Fig. 11. Posterior mean values and 95% confidence intervals of the residual water content for 25 

the different scenarios. 26 

Fig. 12. Posterior mean values and 95% confidence intervals of the shape parameter  for the 27 

different scenarios. 28 

Fig. 13. Posterior mean values and 95% confidence intervals of the shape parameter n for the 29 

different scenarios. 30 

Fig. 14. Posterior mean values and 95% confidence intervals of dispersivity for the different 31 

scenarios. 32 
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Fig. 1. (a) Pressure head at 5 cm below the soil surface, (b) water content at 5 cm below the 36 

soil surface, (c) cumulative outflow, (d) retention curve, (e) output concentration for Tinj = 37 

5000 and (f) for Tinj= 3000 min. Solid lines represent model outputs and dots represent the 38 

sets of perturbed data serving as conditioning information for model calibration. 39 

 40 



 30 

 1 
Fig. 2. MCMC solutions for the transport scenario 1. The diagonal plots represent the inferred posterior probability distribution of the model 2 

parameters. The off-diagonal scatterplots represent the pairwise correlations r in the MCMC draws.  3 



 31 

 1 
Fig. 3. MCMC solutions for transport scenario 2 [see Fig. 2 caption]. 2 

 3 
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 1 
Fig. 4. MCMC solutions for transport scenario 3 [see Fig. 2 caption]. 2 
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 1 
Fig. 5. MCMC solutions for transport scenario 4 [see Fig. 2 caption]. 2 
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 1 
Fig. 6. MCMC solutions for transport scenario 5 [see Fig. 2 caption]. 2 
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 1 
Fig. 7. MCMC solutions for transport scenario 6 [see Fig. 2 caption]. 2 
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 1 
Fig. 8. MCMC solutions for transport scenario 7 [see Fig. 2 caption]. 2 
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Fig. 9. Posterior mean values and 95% confidence intervals of the saturated hydraulic 

conductivity for the different scenarios. 
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Fig. 10. Posterior mean values and 95% confidence intervals of the saturated water content for 

the different scenarios. 
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Fig. 11. Posterior mean values and 95% confidence intervals of the residual water content for 

the different scenarios. 
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Fig. 12. Posterior mean values and 95% confidence intervals of the shape parameter  for the 

different scenarios. 
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Fig. 13. Posterior mean values and 95% confidence intervals of the shape parameter n for the 

different scenarios. 
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Fig. 14. Posterior mean values and 95% confidence intervals of dispersivity for the different 

scenarios. 

 


