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Abstract 25 

The quality of statistical calibration of hydraulic and transport soil properties is studied for 26 

infiltration experiments in which, over a given period, tracer-contaminated water is injected 27 

into an hypothetical column filled with a homogeneous soil. The saturated hydraulic 28 

conductivity, the saturated and residual water contents, the Mualem-van Genuchten shape 29 

parameters and the longitudinal dispersivity are estimated in a Bayesian framework using the 30 

Markov Chain Monte Carlo (MCMC) sampler. The impact of the kind of measurement sets 31 

(water content, pressure inside the column, cumulative outflow and outlet solute 32 

concentration) and that of the solute injection duration is investigated by analyzing the 33 

calibrated model parameters and their confidence intervals for different scenarios. The results 34 

show that the injection period has a significant effect on the quality of the estimation, in 35 

particular, on the posterior uncertainty range of the parameters. All hydraulic and transport 36 

parameters of the investigated soil can be well estimated from the experiment using only the 37 

outlet concentration and cumulative outflow, which are measured non-intrusively. An 38 

improvement of the identifiability of the hydraulic parameters is observed when the pressure 39 

data from measurements taken inside the column are also considered in the inversion. 40 

 41 
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Infiltration experiment, Richards’ equation, Statistical calibration, Markov Chain Monte 43 
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1. Introduction 46 

The soil parameters that influence water flow and contaminant transport in unsaturated zones 47 

are not generally known a priori and have to be estimated by fitting model responses to 48 

observed data. The unsaturated soil hydraulic parameters can be (more or less accurately) 49 

estimated from dynamic flow experiments (e.g., Hopmans et al., 2002; Vrugt et al., 2003a; 50 

Durner and Iden, 2011; Younes et al., 2013). Several authors have investigated different types 51 

of transient experiments and boundary conditions suited for a reliable estimation of soil 52 

hydraulic properties (e.g. van Dam et al., 1994; Simunek and van Genuchten, 1997; Inoue et 53 

al, 1998; Durner et al, 1999). Soil hydraulic properties are often estimated using inversion of 54 

one-step (Kool et al., 1985; van Dam et al., 1992) or multistep (Eching et al., 1994; van Dam 55 

et al., 1994) outflow experiments or controlled infiltration experiments (Hudson et al., 1996).  56 

Kool et al. (1985) and Kool and Parker (1988) suggested that the transient experiments should 57 

cover a wide range in water contents to obtain a reliable estimation of the parameters. Van 58 

Dam et al. (1994) have shown that more reliable parameter estimates are obtained by 59 

increasing the pneumatic pressure in several steps instead of a single step. The multistep 60 

outflow experiments are the most popular laboratory methods (e.g., Eching and Hopmans, 61 

1993; Eching et al., 1994; van Dam et al., 1994; Hopmans et al., 2002). However, their 62 

application is limited by expensive measurement equipment (Nasta et al., 2011). 63 

Infiltration experiments have been investigated by Mishra and Parker (1989) to study the 64 

reliability of hydraulic and transport estimated parameters for a soil column of 200 cm using 65 

measurements of water content, concentration and water pressure inside the column. They 66 

showed that the simultaneous estimation of hydraulic and transport properties yields to 67 

smaller estimation errors for model parameters than the sequential inversion of hydraulic 68 

properties from the water content and/or pressure head followed by the inversion of transport 69 

properties from concentration data (Mishra and Parker, 1989).  70 
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Inoue et al. (2000) performed infiltration experiments using a soil column of 30 cm. Pressure 71 

head and solute concentration were measured at different locations. A constant infiltration rate 72 

was applied to the soil surface and a balance was used to measure the cumulative outflow. 73 

They showed that both hydraulic and transport parameters can be assessed by the combination 74 

of flow and transport experiments.  75 

Furthermore, infiltration experiments were often conducted in lysimeters for pesticide 76 

leaching studies. Indeed, lysimeter experiments are generally used to assess the leaching risks 77 

of pesticides using soil columns of around 1.2 m depth which is the standard scale for these 78 

types of experiments (Mertens et al, 2009; Kahl et al., 2015). Before performing the column 79 

leaching experiment, several infiltration-outflow experiments are often realized to estimate 80 

the soil hydraulic parameters (Kahl et al., 2015; Dusek et al, 2015).  81 

The key objective of the present study is to evaluate the reliability of different experimental 82 

protocols for estimating hydraulic and transport parameters and their associated uncertainties 83 

for column experiments. We consider the flow and the transport of an inert solute injected 84 

into a hypothetical column filled with a homogeneous sandy clay loam soil. We assume that 85 

flow can be modelled by the Richards’ equation (RE) and that the solute transport can be 86 

simulated by the classical advection-dispersion model. Furthermore, the Mualem and van 87 

Genuchten (MvG) models (Mualem 1976, van Genuchten 1980) are chosen to describe the 88 

retention curve and to relate the hydraulic conductivity of the unsaturated soil to the water 89 

content. The estimation of the flow and transport parameters through flow-transport model 90 

inversion is investigated for two injection periods of the solute and different data 91 

measurement scenarios.  92 

Inverse modelling is often performed using local search algorithms such as the Levenberg-93 

Marquardt algorithm (Marquardt, 1963). The later is computationally efficient to evaluate the 94 

optimal parameter set (Gallagher and Doherty, 2007). Besides, the degree of uncertainty in 95 

https://www.authorea.com/users/61522/articles/74024/_show_article#Mualem76WRR
https://www.authorea.com/users/61522/articles/74024/_show_article#Genuchten80AG


 5 

the estimated parameters, expressed by their confidence intervals, is often calculated using a 96 

first-order approximation of the model near its minimum (Carrera and Neuman, 1986, Kool 97 

and parker, 1988). However, as stated by Vrugt and Bouten (2002), parameter 98 

interdependence and model nonlinearity occurring in hydrologic models may violate the use 99 

of this first approximation to obtain accurate confidence intervals of each parameter. 100 

Therefore, in this work, the estimation of hydraulic and transport parameters is performed in a 101 

Bayesian framework using the Markov Chain Monte Carlo (MCMC) sampler (Vrugt and 102 

Bouten, 2002; Vrugt et al., 2008). Unlike classical parameter optimization algorithms, the 103 

MCMC approach generates sets of parameter values randomly sampled from the posterior 104 

joint probability distributions, which are useful to assess the quality of the estimation. The 105 

MCMC samples can be used to summarize parameter uncertainties and to perform predictive 106 

uncertainty (Ades and Lu, 2003).  107 

Hypothetical infiltration experiments are considered for a column of 120 cm depth, initially 108 

under hydrostatic conditions, free of solute and filled with a homogeneous sandy clay loam 109 

soil. Continuous flow and solute injection are performed during a time period injT  at the top of 110 

the column and with a zero pressure head at the bottom. The unknown parameters for the 111 

water flow are the hydraulic parameters: sk  [L.T
−1

], the saturated hydraulic conductivity; s  112 

[L
3
.L

−3
], the saturated water content; r  [L

3
.L

−3
], the residual water content; and   [L

−1
] and 113 

n  [−], the MvG shape parameters. The only unknown parameter of the tracer transport is the 114 

longitudinal dispersivity, La [L].  115 

Several scenarios corresponding to different sets of measurements are investigated to address 116 

the following questions: 117 

1)  Can we obtain an appropriate estimation of all flow and transport parameters from 118 

tracer-infiltration experiments, even though a limited range in water content is covered 119 
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(only moderately dry conditions are obtained because of gravity drainage conditions 120 

prescribed at the bottom of the soil column)? 121 

2)  What is the optimal set of measurements for the estimation of all the parameters? Can 122 

we use only non-intrusive measurements (cumulative outflow and concentration 123 

breakthrough curve) or are intrusive measurements of pressure heads and/or water 124 

contents inside the column unavoidable? 125 

3)  Is there an optimal design for the tracer injection?  126 

For this purpose, synthetic scenarios are considered in the sequel in which data from 127 

numerical simulations are used to avoid the uncontrolled noise of experiments that could bias 128 

the conclusions.  129 

The paper is organized as follows. The mathematical models describing flow and transport in 130 

the unsaturated zone are detailed in section 2. Section 3 describes the MCMC Bayesian 131 

parameter estimation procedure used in the DREAM(ZS) sampler. Section 4 presents the 132 

different investigated scenarios and discusses the results of the calibration in terms of mean 133 

parameter values and uncertainty ranges for each scenario. Conclusions are given in section 5. 134 

 135 

2. Unsaturated flow-transport model 136 

We consider a uniform soil profile in the column and an injection of a solute tracer such as 137 

bromide, as described in Mertens et al. (2009). The unsaturated water flow in the vertical soil 138 

column is modeled with the one-dimensional pressure head form of the RE: 139 
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where h [L] is the pressure head; q  [L.T
-1

] is the Darcy velocity; z [L] is the depth, measured 141 

as positive in the downward direction; sS  (-) is the specific storage;   and s  [L
3
.L

-3
] are the 142 

actual and saturated water contents, respectively;  c h  [L
-1

] is the specific moisture capacity; 143 

and  K h [L.T
-1

] is the hydraulic conductivity. The latter two parameters are both functions 144 

of the pressure head. In this study, the relations between the pressure head, conductivity and 145 

water content are described by the following standard models of Mualem (1976) and van 146 

Genuchten (1980): 147 
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, (2) 148 

where Se (-) is the effective saturation, r  [L
3
.L

-3
] is the residual water content, sK  [L.T

-1
] is 149 

the saturated hydraulic conductivity, and 1 1m n  ,   [L
-1

] and n  (-) are the MvG shape 150 

parameters.  151 

The tracer transport is governed by the following convection-dispersion equation:  152 

 
   C qC C

D 0
t z z z




    
   

    
 (3) 153 

where C  [M.L
-3

] is the concentration of the tracer, D  [L
2
.T

-1
] is the dispersion coefficient in 154 

which l mD a q d   and la  [L] is the dispersivity coefficient of the soil and md  [L
2
.T

-1
] is 155 

the molecular diffusion coefficient, which is set as 1.04 10
-4

 cm
2
/min. 156 

The transport equation (3) is coupled with the flow equation (1) by the water content   and 157 

the Darcy’s velocity q . The initial conditions are as follows: a hydrostatic pressure 158 

distribution with zero pressure head at the bottom of the column  z L  and a solute 159 

concentration of zero inside the whole column. An infiltration with a flux injq  of contaminated 160 
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water with a concentration injC  is then applied at the upper boundary condition (z = 0) during 161 

a period injT . Hence, the boundary conditions at the top of the column can be expressed as: 162 

 163 
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 166 

A zero pressure head is maintained at the lower boundary  z L  of the column and a zero 167 

concentration gradient is used as the lower boundary condition for the solute transport, 168 

namely, 169 

   0 0
z l

z l

C
h

z


 
  

 
 (5) 170 

In the sequel, the infiltration rate and the injected solute concentration are 0.015injq  cm/min 171 

and 1injC   g/cm
3
, respectively. The system (1)-(5) is solved using the standard finite 172 

difference method for both flow and transport spatial discretization. A uniform mesh of 600 173 

cells is employed. Temporal discretization is performed with the high-order method of lines 174 

(MOL) (e.g., Miller et al., 1998; Tocci et al., 1997; Younes et al., 2009; Fahs et al., 20011). 175 

Error checking, robustness, order selection and adaptive time step features, available in 176 

sophisticated solvers, are applied to the time integration of partial differential equations 177 

(Tocci et al., 1997). The MOL has been successfully used to solve RE in many studies (e.g., 178 

Farthing et al., 2003; Miller et al., 2006; Li et al., 2007; Fahs et al., 2009). Details on the use 179 

of the MOL for solving RE are described in Fahs et al. (2009). 180 
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3. Bayesian parameter estimation  181 

The vector of unknown parameters that has to be identified by model calibration is 182 

 , , , , ,s s r Lk n a  ξ . To analyze the performance of the model calibration procedures, a 183 

reference solution is generated by simulating the flow-transport problem (1)-(5) using the 184 

following parameter values (corresponding to a sandy clay loam soil): 50sk cm day , 185 

0.43s  , 0.09r  , 
10.04cm  , 1.4n  and 0.2la cm . Four types of variables are 186 

extracted from the results of the simulation: the pressure head and water content 5 cm below 187 

the top of the column, the cumulative outflow and the solute breakthrough concentration at 188 

the outflow of the column. These four data series are modified by adding a normally 189 

distributed white noise using the following standard deviations: 1h cm   for the pressure 190 

head, 0.02   for the water content, 0.1Q  cm for the cumulative outflow and 0.01C   191 

g/cm
3
 for the exit concentration. These perturbations mimic measurement errors and the 192 

resulting values of water pressure, water content, cumulative outflow and solute breakthrough 193 

concentration are considered as measurements in the following. 194 

The flow-transport model is used to analyze the effects of different measurement sets on 195 

parameter identification. For this purpose, we adopt a Bayesian approach that involves the 196 

parameter joint posterior distribution (Vrugt et al., 2008). The latter is assessed with the 197 

DREAM(ZS) MCMC sampler (Laloy and Vrugt, 2012). This software generates random 198 

sequences of parameter sets that asymptotically converge toward the target joint posterior 199 

distribution (Gelman et al., 1997). Thus, if the number of runs is sufficiently high, the 200 

generated samples can be used to estimate the statistical measures of the posterior 201 

distribution, such as the mean and variance among other measures.  202 

The Bayes theorem states that the probability density function of the model parameters 203 

conditioned onto data can be expressed as: 204 
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      | |mes mesp p pξ y y ξ ξ
,
 (6) 205 

where  | mesp ξ y  is the likelihood function measuring how well the model fits the 206 

observations mesy , and  p ξ  is the prior information about the parameter before the 207 

observations are made. Independent uniform priors within the ranges reported in Table 1 are 208 

chosen. In this work, a Gaussian distribution defines the likelihood function because the 209 

observations are simulated and corrupted with Gaussian errors. Hence, the parameter 210 

posterior distribution is expressed as: 211 

  
       

2 2 2 22 2 2 2
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p | exp



   

 
      

 

ξξ ξ ξ
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 (7) 212 

where  hSS ξ ,  SS ξ ,  QSS ξ  and  CSS ξ  are the sums of the squared differences 213 

between the observed and modeled data of the pressure head, water content, cumulative 214 

outflow and output concentration, respectively. For instance,         
2

1

Nh k k

h mes modk
SS h h


 ξ ξ , 215 

which includes the observed 
 k

mesh  and predicted 
 k

modh  pressure heads at time kt  for the number 216 

of pressure head observations Nh .  217 

Bayesian parameter estimation is performed hereafter with the DREAM(ZS) software (Laloy 218 

and Vrugt, 2012), which is an efficient MCMC sampler. DREAM(ZS) computes multiple sub-219 

chains in parallel to thoroughly explore the parameter space. Archives of the states of the sub-220 

chains are stored and used to allow a strong reduction of the "burn-in" period in which the 221 

sampler generates individuals with poor performances. Taking the last 25% of individuals of 222 

the MCMC (when the chains have converged) yields multiple sets of parameters, ξ , that 223 

adequately fit the model onto observations. These sets are then used to estimate the updated 224 

parameter distributions, the pairwise parameter correlations and the uncertainty of the model 225 
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predictions. As suggested in Vrugt et al. (2003b), we consider that the posterior distribution is 226 

stationary if the Gelman and Ruban (1992) criterion is 1 2. .  227 

4. Results and discussion 228 

In this section, the identifiability of the parameters is investigated for 7 different scenarios of 229 

measurement sets (Table 1). In the first scenario, only measured pressure heads and 230 

cumulative outflow are used for the calibration. The scenarios 2 to 5 investigate the benefit of 231 

adding measured water contents and/or solute outlet concentrations to pressure heads and 232 

outflow. The last scenarios (6, 7) investigate the use of measured cumulative outflow and 233 

concentration breakthrough at the column outflow because these measurements do not require 234 

intrusive techniques. Scenarios 5 to 7 investigate as well the effects of solute injection 235 

duration on the identifiability of the parameters.  236 

 237 

In all cases, the MCMC sampler was run with 3 simultaneous chains for a total number of 238 

50000 runs. Depending on the scenario, the MCMC required between 5000 and 20000 model 239 

runs to reach convergence and was terminated after 30000 runs. The last 25% of the runs that 240 

adequately fit the model onto observations are used to estimate the updated probability 241 

density function (pdf). 242 

 243 

4.1. The data sets for parameter estimation 244 

The data sets obtained from solving the flow-transport problems (1)-(5) using the parameters 245 

given in section 2 are shown in Fig. 1. The pressure head at 5 cm from the top of the column 246 

(Fig. 1a) increases from its initial hydrostatic negative value (-115 cm) and reaches a plateau 247 

(-1.75 cm) in less than 100 minutes during the injection period. After the injection is finished, 248 

it progressively decreases due to the drainage caused by the gravity effect. A similar behavior 249 

is observed for the water content at the same location (Fig. 1b), where the value of the plateau 250 
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is close to the saturation value. The cumulative outflow (Fig. 1c) starts to increase at 251 

approximately 1000 min after the beginning of the injection. It shows an almost linear 252 

behavior until 5500 min. It then slowly increases with an asymptotic behavior due to the 253 

natural drainage after the end of the injection period. Fig. 1d displays the water saturation as a 254 

function of the pressure head. It is worth noting that only a few part of this curve is described 255 

during the infiltration experiment. Indeed, only moderate dry conditions are established 256 

because the minimum pressure head reached in the column is -120 cm, which corresponds to 257 

the initial pressure head at the top of the column. 258 

The breakthrough concentration curve (Fig. 1e) shows a sharp front, which starts shortly after 259 

3000 min. Note that if the injection of both water and contaminant are stopped once the solute 260 

reaches the output. For an injection period of 3000 min, the breakthrough curve exhibits a 261 

smoother progression (Fig. 1f). 262 

The data considered as measurements, which are used as conditioning information for model 263 

calibration, are also shown in Fig. 1. In Fig. 1b, the water content seems to be more affected 264 

by the perturbation of data than the pressure head and cumulative outflow. This phenomenon 265 

is due to the relative importance of the measurement errors of the water content often 266 

observed with time-domain-reflectometry probes and to the weak variations of the water 267 

content during the infiltration experiment. The perturbation of the breakthrough curve is 268 

relatively small because of the low added noise since output concentrations can be accurately 269 

measured. The perturbations of the pressure head and cumulative outflow seem weak because 270 

of the large variation of these variables during the experiment. 271 

 272 

4.2. Results of the parameter estimation  273 

The uncertainty model parameters are assumed to be distributed uniformly over the ranges 274 

reported in Table 1. This table also lists the reference values used to generate data 275 
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observations before perturbation. Seven scenarios are considered, corresponding to different 276 

sets of measurements for the estimation of the hydraulic and transport soil parameters (Table 277 

2). 278 

The MCMC results of the seven studied scenarios are given in Figs. 2 to 8. The "on-diagonal" 279 

plots in these figures display the inferred parameter distributions, whereas the "off-diagonal" 280 

plots represent the pairwise correlations in the MCMC sample. If the draws are independent, 281 

non-sloping scatterplots should be observed. However, if a good value of a given parameter is 282 

conditioned by the value of another parameter, then their pairwise scatterplot should show a 283 

narrow sloping stripe. The sensitivity of parameters is obtained by comparing prior to 284 

posterior parameter distribution. A significant difference between the two distributions for a 285 

parameter indicates high model sensitivity to that parameter (Dusek et al., 2015). 286 

To facilitate the comparison between the different scenarios, Figs. 9 to 14 show the mean and 287 

the 95% confidence intervals of the final MCMC sample that adequately fit the model onto 288 

observations for each scenario, and Table 3 summarizes the pairwise parameter correlations. 289 

Fig. 2 shows the inferred distributions of the parameters identified with the MCMC sampler 290 

using only the pressure and cumulative outflow measurements (scenario 1). The parameters 291 

sk ,   and n  are well estimated; their prior intervals of variation are strongly narrowed and 292 

they essentially show bell-shaped posterior distributions. This shows the high sensitivity of 293 

the model responses to these parameters.  294 

The parameter sk  is strongly correlated to   (0.94) and n  (-0.97). These results confirmed 295 

the results of Eching and Hopmans (1994) on multistep outflow experiments who found that 296 

the inverse solution technique is greatly improved when both cumulative outflow and pressure 297 

head data from some positions inside the column are used. The two water contents related 298 

parameters are strongly correlated (0.96) and cannot be identified accurately because the 299 

water retention relationship depends on the difference between s  and r  and only this 300 
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difference is identifiable. Note that the prior intervals of r  and s  which are respectively 301 

 0.05,0.2  and  0.3,0.5  have changed to the posterior intervals  0.05,0.16  and  0.39,0.5  302 

because the target difference should be 0.34.s r    In the literature, van Genuchten and 303 

Nielsen (1985), Eching and Hopmans (1993) and Zurmühl (1996) considered that saturated 304 

water content is determined independently and considered only r  to be an empirical 305 

parameter that should be fitted to the data. 306 

The dispersivity coefficient la  has not been identified in this first scenario.  307 

The MCMC results in Fig. 3 show that water content measurements throughout the 308 

experiment (scenario 2) allow the estimation of both the residual and saturated water contents. 309 

The parameter r  strongly correlates to sk  (-0.94) and n  (0.98) and the parameter sk  remains 310 

strongly related to   (0.94) and n  (-0.98). Although the water content data are subject to 311 

relatively high measurement errors, a good estimation is obtained for s  and r . The 312 

parameters sk ,   and n  are estimated with the same accuracy as for the first scenario. All 313 

parameters (except the dispersivity coefficient) are highly sensitive since their posterior 314 

intervals of variations are strongly reduced compared to the prior intervals. Moreover, the 315 

prior uniform distributions give place to almost Gaussian posterior distributions. These results 316 

show that, although Kool et al. (1985) and Kool and Parker (1988) suggested that the transient 317 

experiments should cover a wide range in water content, an appropriate estimation of all 318 

parameters can be obtained with the infiltration experiment even though a limited range in 319 

water content is covered. 320 

When the concentration measurements are also considered in the inversion (scenario 3), the 321 

results depicted in Fig. 4 show very significant correlations between sk  and r  (-0.94), sk  322 

and   (0.91), sk  and n  (-0.97) and n  and r  (0.99). The posterior uncertainty ranges of sk , 323 
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 , n  and r  are similar to the previous scenarios. Those of s  and la  are strongly reduced, 324 

leading to a good identification of these parameters when using C  measurements (Figs. 10 325 

and 14). A better estimate of the saturated water content is obtained because advective 326 

transport is a function of this variable. 327 

In the inversion procedure of scenario 4, the measurements of the water content are not 328 

considered. This scenario leads to the same quality of the estimation for the parameters sk , r329 

,   and n  (Figs. 9, 11, 12, 13) and similar correlations between the parameters as in the 330 

previous scenario. This result shows that the intrusive water content measurements, which are 331 

subject to more significant measurement errors than the output concentration, are not required 332 

if the output concentration is measured. Compared with the results of scenario 2, it can be 333 

concluded that better parameter estimations are obtained using h , Q  and C  data than using 334 

h , Q  and   data, especially for s . Therefore, using C  instead of   measurements in 335 

combination with h  and Q  measurements allows the estimation of la  and yields better 336 

estimate of s . 337 

The pressure head, cumulative outflow and concentration measurements are used in the 338 

estimation procedure of scenario 5, but the injection period is now reduced to 3000mininjT  . 339 

The obtained results (Fig. 6) show the same correlations between the parameters as for 340 

5000mininjT  . For the parameters sk , s , r ,   and n , almost the same mean estimates are 341 

obtained as for scenario 4. However, the parameters are better identified (Figs. 9 to 13). 342 

Indeed, the uncertainty of these parameters is smaller because the credible interval is reduced 343 

by a factor of 25% for sk , 8% for s , 26% for r , 10% for   and 25% for n  when compared 344 

to the results obtained using 5000mininjT  . The parameter la  is also much better estimated 345 

than in the previous scenario. Its mean value approaches the reference solution and the 346 

posterior uncertainty range is reduced by approximately 75% (Fig. 14). 347 
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In scenario 6, the pressure head measurements are removed and only non-intrusive 348 

measurements ( Q  and C  data) are used for the calibration with an injection period of 349 

5000mininjT  . These kind of nonintrusive measures have been used by Mertens et al. (2009) 350 

to estimate some of hydraulic and pesticides leaching parameters. The results depicted in Fig. 351 

7 show high correlations only between sk  and n  (-0.95) and r  and n  (0.95). On the one 352 

hand, these results show that all the parameters are well estimated since, as compared to the 353 

prior intervals (given in Table 1), the confidence intervals of the estimated parameters (plotted 354 

in Figs. 9-14) are strongly reduced, especially for the parameters  , n  and s . On the other 355 

hand, compared to the results of scenario 4 which also considers pressure data, sk  is not as 356 

well estimated (the mean value is less close to the reference value and the confidence interval 357 

is 27% larger). The mean estimated values for r  and n  also degraded (less close to the 358 

reference solution), although their confidence intervals are similar to those of scenario 4 359 

(Figs. 11, 13). The estimated mean value of the parameter   is similar to that in scenario 4. 360 

However, its uncertainty is much larger because the credible interval is 77% larger (Fig. 14). 361 

The parameters s  and la  are estimated as well as in scenario 4 (in terms of mean estimated 362 

value and credible interval). 363 

The last scenario (scenario 7) is similar to the previous one, but the injection period is reduced 364 

to 3000mininjT  . The results depicted in Fig. 8 show similar correlations between the 365 

parameters as for 5000mininjT  . However, a significant improvement is observed for the 366 

mean estimated values, which approach the reference solution for sk , r , n  and la  (Figs. 9, 367 

11, 13, 14). The uncertainties of sk ,   and la  are also reduced by approximately 40%, 15% 368 

and 70%, respectively. The parameter s  is estimated as well as in scenario 6. The 369 

improvement of the parameter estimation in this last scenario compared to the previous one 370 
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can be explained by the fact that the injection of water and solute contaminant is stopped once 371 

the concentration reaches the column outlet. Hence, the injected volume (0.015x3000 = 372 

45cm
3
/cm

2
) is slightly less than the pore volume (120x0.43=51 cm

3
/cm

2
). Thus, when the 373 

injection is stopped, the column is not fully saturated and the outlet flux strongly reduces (see 374 

the asymptotic behavior of the cumulative outflow when the injection is stopped in Fig. 1c). 375 

As a consequence, the concentration profile increases smoothly (see Fig. 1f) until reaching its 376 

maximum value in contrast to the sharp front observed for 5000mininjT   in the scenario 6 377 

(see Fig. 1e). Hence, the breakthrough curve obtained with 3000mininjT   is more affected 378 

by the hydraulic parameters than the breakthrough curve obtained with 5000mininjT  . This 379 

explains why a better estimation of the parameters is observed for the last scenario compared 380 

to the scenario 6.  381 

 382 

5. Conclusions 383 

In this work, estimation of hydraulic and transport soil parameters have been investigated 384 

using synthetic infiltration experiments performed in a column filled with a sandy clay loam 385 

soil, which was subjected to continuous flow and solute injection over a period injT .  386 

The saturated hydraulic conductivity, the saturated and residual water contents, the Mualem-387 

van Genuchten shape parameters and the longitudinal dispersivity are estimated in a Bayesian 388 

framework using the Markov Chain Monte Carlo (MCMC) sampler. Parameter estimation is 389 

performed for different scenarios of data measurements.  390 

The results reveal the following conclusions: 391 

1. All hydraulic and transport parameters can be appropriately estimated from the 392 

described infiltration experiment. However, the accuracy differs and depends on the 393 
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type of measurement and the duration of the injection injT , even if the water content 394 

remains close to saturated conditions.  395 

2. The use of concentration measurements at the column outflow, in addition to 396 

traditional measured variables (water content, pressure head and cumulative outflow), 397 

reduces the hydraulic parameters uncertainties, especially that of the saturated water 398 

content (comparison between scenario 2 and scenario 3). 399 

3. The saturated hydraulic conductivity is estimated with the same order of accuracy, 400 

independent of the observed variables. 401 

4. The estimation of the dispersivity is sensitive to the injection duration. The scenarios 5 402 

and 7 with 3000mininjT   yield much more accurate dispersivity estimations than 403 

scenarios 4 and 6 with 5000mininjT   due to the extended spreading of the solute 404 

observed for 3000mininjT  .  405 

5. A better identifiability of the soil parameters is obtained using C  instead of   406 

measurements, in combination with h  and Q  data (comparison between scenario 2 407 

and scenario 4). 408 

6. Using only non-intrusive measurements (cumulative outflow and output 409 

concentration) yields satisfactory estimation of all parameters (scenario 7). The 410 

uncertainty of the parameters significantly decreases when the injection of water and 411 

solute is maintained for a limited period (comparison between scenario 6 and scenario 412 

7).  413 

 414 

This last point has practical applications for designing simple experimental setups dedicated 415 

to the estimation of hydrodynamic and transport parameters for unsaturated flow in soils. The 416 

setup has to be appropriately equipped to measure the cumulative water outflow (e.g., 417 
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weighing machine) and the solute breakthrough at the column outflow (e.g., flow through 418 

electrical conductivity). The injection should be stopped as soon as the solute concentration 419 

reaches the outflow. The accuracy of the estimation of r ,   and n  improves by adding 420 

pressure measurements inside the column, close to the injection. 421 

 422 

These results are of course related to the models and experimental conditions we used. This 423 

work can be extended to different types of soils, water retention and/or relative permeability 424 

functions to evaluate the interest of coupling flow and transport for parameter identification. 425 

This work can also be extended to reactive solutes.  426 

 427 
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Parameters Lower bounds Upper bounds Reference values 

sk  [cm min
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s  [-] 0.3 0.5 0.43 

r  [-] 0.05 0.2 0.09 

  [cm
-1
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n  [-] 1.2 5 1.4 

la  [cm] 0.05 0.6 0.2 
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Table 1. Prior lower and upper bounds of the uncertainty parameters and reference values. 612 
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Scenario Measured variables Injection period 

 h    Q  C  5000mininjT   3000mininjT   

1       

2       

3       

4       

5       

6       

7       

 617 

Table 2. Measurement sets and injection periods for the different scenarios. The pressure head 618 

h  and the water content   are measured at 5 cm from the top of the column. The cumulative 619 

outflow Q  and the concentration C  are measured at the exit of the column.   620 

 621 
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 624 
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 627 

Scenario      

1  , 0.97sk n     , 0.94sk       , 0.96r s    

2  , 0.98sk n     , 0.94sk     , 0.94s rk      , 0.98r n    

3  , 0.97sk n     , 0.91sk     , 0.94s rk      , 0.99r n    

4  , 0.98sk n     , 0.95sk     , 0.96s rk      , 0.99r n    

5  , 0.96sk n     , 0.93sk     , 0.91s rk      , 0.98r n    

6  , 0.95sk n       , 0.95r n    

7  , 0.95sk n       , 0.94r n    

Table 3. Summary of the pairwise parameter correlations. 628 
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List of figure captions 632 

Fig. 1. (a) Pressure head at 5 cm below the soil surface, (b) water content at 5 cm below the 633 

soil surface, (c) cumulative outflow, (d) retention curve, (e) output concentration for Tinj = 634 

5000 and (f) for Tinj= 3000 min. Solid lines represent model outputs and dots represent the 635 

sets of perturbed data serving as conditioning information for model calibration. 636 

Fig. 2. MCMC solutions for the transport scenario 1. The diagonal plots represent the inferred 637 

posterior probability distribution of the model parameters. The off-diagonal scatterplots 638 

represent the pairwise correlations in the MCMC drawing.  639 

Fig. 3. MCMC solutions for transport scenario 2 [see Fig. 2 caption]. 640 

Fig. 4. MCMC solutions for transport scenario 3 [see Fig. 2 caption]. 641 

Fig. 5. MCMC solutions for transport scenario 4 [see Fig. 2 caption]. 642 

Fig. 6. MCMC solutions for transport scenario 5 [see Fig. 2 caption]. 643 

Fig. 7. MCMC solutions for transport scenario 6 [see Fig. 2 caption]. 644 

Fig. 8. MCMC solutions for transport scenario 7 [see Fig. 2 caption]. 645 

Fig. 9. Posterior mean values and 95% confidence intervals of the saturated hydraulic 646 

conductivity for the different scenarios. 647 

Fig. 10. Posterior mean values and 95% confidence intervals of the saturated water content for 648 

the different scenarios. 649 

Fig. 11. Posterior mean values and 95% confidence intervals of the residual water content for 650 

the different scenarios. 651 

Fig. 12. Posterior mean values and 95% confidence intervals of the shape parameter  for the 652 

different scenarios. 653 

Fig. 13. Posterior mean values and 95% confidence intervals of the shape parameter n for the 654 

different scenarios. 655 

Fig. 14. Posterior mean values and 95% confidence intervals of dispersivity for the different 656 

scenarios. 657 
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 660 

Fig. 1. (a) Pressure head at 5 cm below the soil surface, (b) water content at 5 cm below the 661 

soil surface, (c) cumulative outflow, (d) retention curve, (e) output concentration for Tinj = 662 

5000 and (f) for Tinj= 3000 min. Solid lines represent model outputs and dots represent the 663 

sets of perturbed data serving as conditioning information for model calibration. 664 
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 1 
Fig. 2. MCMC solutions for the transport scenario 1. The diagonal plots represent the inferred posterior probability distribution of the model 2 

parameters. The off-diagonal scatterplots represent the pairwise correlations r in the MCMC draws.  3 
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 1 
Fig. 3. MCMC solutions for transport scenario 2 [see Fig. 2 caption]. 2 

 3 
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 1 
Fig. 4. MCMC solutions for transport scenario 3 [see Fig. 2 caption]. 2 
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 1 
Fig. 5. MCMC solutions for transport scenario 4 [see Fig. 2 caption]. 2 
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 1 
Fig. 6. MCMC solutions for transport scenario 5 [see Fig. 2 caption]. 2 
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 1 
Fig. 7. MCMC solutions for transport scenario 6 [see Fig. 2 caption]. 2 
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 1 
Fig. 8. MCMC solutions for transport scenario 7 [see Fig. 2 caption]. 2 
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Fig. 9. Posterior mean values and 95% confidence intervals of the saturated hydraulic 

conductivity for the different scenarios. 
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Fig. 10. Posterior mean values and 95% confidence intervals of the saturated water content for 

the different scenarios. 
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Fig. 11. Posterior mean values and 95% confidence intervals of the residual water content for 

the different scenarios. 
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Fig. 12. Posterior mean values and 95% confidence intervals of the shape parameter  for the 

different scenarios. 
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Fig. 13. Posterior mean values and 95% confidence intervals of the shape parameter n for the 

different scenarios. 
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Fig. 14. Posterior mean values and 95% confidence intervals of dispersivity for the different 

scenarios. 

 


