
ANSWER TO REVIEWER 1 

We thank the reviewer for his/her thoughtful and detailed comments that definitely helped us 

clarify the manuscript and avoid misinterpretations. 

 

General comment: The paper presents a study on the quality of the statistical calibration of 

hydraulic and transport soil properties using an infiltration experiment. In the experiment, 

tracer-contaminated water is injected into a laboratory column filled with a homogeneous 

soil in a given period. Influences of different experimental factors on the calibration results 

were studied.  

In general, this paper deals with an interesting issue. I find some merits in the both 

methodology and results. As the authors describe, the soil parameters that influence water 

flow and contaminant transport in unsaturated zones are not generally known a priori and 

have to be estimated by fitting model responses to observed data. The authors realized this 

issue and pointed out the limitations of their work. Overall, this paper has a good potential to 

be published in the journal. English is also very easy to read in the manuscript. Authors have 

done much work and give us an exciting paper theoretical and experimental study results.  

We thank the reviewer for his/her positive overall appraisal of our work. 

However, there are some issues, listed below, that need to be addressed before it is ready for 

publication.  

Revised comment:  

1. From the abstract, we want to know what you have done in your manuscript, but I can not 

know which parameters you have calibrated in your abstract. Please describe them in the 

abstract.  

We agree, the abstract is rewritten as follows. 

The quality of the statistical calibration of hydraulic and transport soil properties is studied for 

infiltration experiments in which, over a given period, tracer-contaminated water is injected 

into an hypothetical column filled with a homogeneous soil. The saturated hydraulic 

conductivity, the saturated and residual water contents, the Mualem-van Genuchten shape 

parameters and the longitudinal dispersivity are estimated in a Bayesian framework using the 

Markov Chain Monte Carlo (MCMC) sampler. The impact on the quality of the estimated 

parameters of the kind of measurement sets (water content and/or pressure inside the column, 

solute concentration at the outlet and cumulative outflow) and that of the injection duration of 

the solute is investigated by analyzing the calibrated model parameters and their confidence 

intervals for different scenarios. The results show that the injection period has a significant 

effect on the quality of the estimation, in particular, on the posterior uncertainty range of the 

parameters. All hydraulic and transport parameters of the investigated soil can be well 

estimated from the experiment using only the outlet concentration and cumulative outflow, 



which are measured non-intrusively. An improvement of the identifiability of the hydraulic 

parameters is observed when the pressure data from measurements taken inside the column 

are also considered in the inversion. 

 

2. In the introduction section, please describe the development on soil parameters in more 

detail, and please highlight the innovation of this manuscript.  

We agree, a significant number of references is added and the introduction is changed as 

follows: 

The soil parameters that influence water flow and contaminant transport in unsaturated zones 

are not generally known a priori and have to be estimated by fitting model responses to 

observed data. The unsaturated soil hydraulic parameters can be (more or less accurately) 

estimated from dynamic flow experiments (e.g., Hopmans et al., 2002; Vrugt et al., 2003a; 

Durner and Iden, 2011; Younes et al., 2013). Several authors have investigated different types 

of transient experiments and boundary conditions suited for a reliable estimation of soil 

hydraulic properties (e.g. van Dam et al., 1994; Simunek and van Genuchten, 1997; Inoue et 

al, 1998; Durner et al, 1999). Soil hydraulic properties are often estimated using inversion of 

one-step (Kool et al., 1985; van Dam et al., 1992) or multistep (Eching et al., 1994; van Dam 

et al., 1994) outflow experiments or controlled infiltration experiments (Hudson et al., 1996).  

Kool et al. (1985) and Kool and Parker (1988) suggested that the transient experiments should 

cover a wide range in water contents to obtain a reliable estimation of the parameters. Van 

Dam et al. (1994) have shown that more reliable parameter estimates are obtained by 

increasing the pneumatic pressure in several steps instead of a single step. The multistep 

outflow experiments are the most popular laboratory methods (e.g., Eching and Hopmans, 

1993; Eching et al., 1994; van Dam et al., 1994; Hopmans et al., 2002). However, their 

application is limited by expensive measurement equipment (Nasta et al., 2011). 

Infiltration experiments have been investigated by Mishra and Parker (1989) to study the 

reliability of hydraulic and transport estimated parameters for a soil column of 200 cm using 

measurements of water content, concentration and water pressure inside the column. They 

showed that the simultaneous estimation of hydraulic and transport properties yields to 

smaller estimation errors for model parameters than the sequential inversion of hydraulic 

properties from the water content and/or pressure head followed by the inversion of transport 

properties from concentration data (Mishra and Parker, 1989).  

Inoue et al. (2000) performed infiltration experiments using a soil column of 30 cm. Pressure 

head and solute concentration were measured at different locations. A constant infiltration rate 

was applied to the soil surface and a balance was used to measure the cumulative outflow. 

They showed that both hydraulic and transport parameters can be assessed by the combination 

of flow and transport experiments.  

Furthermore, infiltration experiments were often conducted in lysimeters for pesticide 

leaching studies. Indeed, lysimeter experiments are generally used to assess the leaching risks 



of pesticides using soil columns of around 1.2 m depth which is the standard scale for these 

types of experiments (Mertens et al, 2009; Kahl et al., 2015). Before performing the column 

leaching experiment, several infiltration-outflow experiments are often realized to estimate 

the soil hydraulic parameters (Kahl et al., 2015; Dusek et al, 2015).  

The key objective of the present study is to evaluate the reliability of different experimental 

protocols for estimating hydraulic and transport parameters and their associated uncertainties 

for column experiments. We consider the flow and the transport of an inert solute injected 

into a hypothetical column filled with a homogeneous sandy clay loam soil. We assume that 

flow can be modelled by the Richards’ equation (RE) and that the solute transport can be 

simulated by the classical advection-dispersion model. Furthermore, the Mualem and van 

Genuchten (MvG) models (Mualem 1976, van Genuchten 1980) are chosen to describe the 

retention curve and to relate the hydraulic conductivity of the unsaturated soil to the water 

content. The estimation of the flow and transport parameters through flow-transport model 

inversion is investigated for two injection periods of the solute and different data 

measurement scenarios.  

Inverse modelling is often performed using local search algorithms such as the Levenberg-

Marquardt algorithm (Marquardt, 1963). Besides, the degree of uncertainty in the estimated 

parameters, expressed by their confidence intervals, is often calculated using a first-order 

approximation of the model near its minimum (Carrera and Neuman, 1986, Kool and parker, 

1988). However, as stated by Vrugt and Bouten (2002), parameter interdependence and model 

nonlinearity occurring in hydrologic models may violate the use of this first approximation to 

obtain accurate confidence intervals of each parameter. Therefore, in this work, the estimation 

of hydraulic and transport parameters is performed in a Bayesian framework using the 

Markov Chain Monte Carlo (MCMC) sampler (Vrugt and Bouten, 2002; Vrugt et al., 2008). 

Unlike classical parameter optimization algorithms, the MCMC approach generates sets of 

parameter values randomly sampled from the posterior joint probability distributions, which 

are useful to assess the quality of the estimation. The MCMC samples can be used to 

summarize parameter uncertainties and to perform predictive uncertainty (Ades and Lu, 

2003).  

Hypothetical infiltration experiments are considered for a column of 120 cm depth, initially 

under hydrostatic conditions, free of solute and filled with a homogeneous sandy clay loam 

soil. Continuous flow and solute injection are performed during a time period injT  at the top of 

the column and with a zero pressure head at the bottom. The unknown parameters for the 

water flow are the hydraulic parameters: sk  [LT
−1

], the saturated hydraulic conductivity; s  

[L
3
L

−3
], the saturated water content; r  [L

3
L

−3
], the residual water content; and   [L

−1
] and n  

[−], the MvG shape parameters. The only unknown parameter of the tracer transport is the 

longitudinal dispersivity, La [L].  

Several scenarios corresponding to different sets of measurements are investigated to address 

the following questions: 



1) Can we obtain an appropriate estimation of all flow and transport parameters from 

tracer-infiltration experiments, even though a limited range in water content is covered 

(only moderately dry conditions are used)? 

2) What is the optimal set of measurements for the estimation of all the parameters? Can 

we use only non-intrusive measurements (cumulative outflow and concentration 

breakthrough curve) or are intrusive measurements of pressure heads and/or water 

contents inside the column unavoidable? 

3) Is there an optimal design for the tracer injection?  

 

3. In the results and discussion section, please analyze in more detail.  

We agree and provide some more explanations, especially concerning the injection 

duration as following: 

The improvement of the parameter estimation in this last scenario compared to the 

previous one can be explained by the fact that the injection of water and solute 

contaminant is stopped once the concentration reaches the column outlet. Hence, the 

injected volume (0.015x3000 = 45cm
3
/cm

2
) is slightly less than the pore volume 

(120x0.43=51 cm
3
/cm

2
). Thus, when the injection is stopped, the column is not fully 

saturated and the outlet flux strongly reduces (see the asymptotic behavior of the 

cumulative outflow when the injection is stopped). As a consequence, the concentration 

profile increases smoothly (see Fig. 6) until reaching its maximum value in contrast to 

the sharp front observed for 5000mininjT   in the scenario 6 (see Fig. 5). As a 

consequence, the breakthrough curve obtained with 3000mininjT   is more affected by 

the hydraulic parameters than the breakthrough curve obtained with 5000mininjT  . 

This explains why a better estimation of the parameters is observed for the last scenario 

compared to the scenario 6. 

4. In the conclusions section, please describe the further work needs to be done 

The possible extensions of this work are:   

These results are of course related to the models and experimental conditions we used. This 

work can be extended to different types of soils, water retention and/or relative permeability 

functions to evaluate the interest of coupling flow and transport for parameter identification. 

This work can also be extended to reactive solutes.  

 

 

  



ANSWER TO REVIEWER 2 

 

We thank the reviewer for his/her thoughtful and detailed comments that definitely helped us 

clarify the manuscript and avoid misinterpretations. 

 

The paper deals with an inverse modelling method determining simultaneously hydraulic and 

transport parameters from a packed soil column. Some of the questions posed are very useful 

for experimental work on flow and transport and will help future work to choose efficient 

experimental designs to obtain parameters. Overall the paper focusses on the methodological 

aspects without posing a clear hypothesis. With no clear hypothesis formulated, I would 

expect to have a stronger statement on the benefits of the methods employed and what we 

should be learning from this (not just stating that the methods used in the paper are superior 

over the methods other researchers have used).  

The modeling concepts were clearly stated in the introduction (L57-L61 of the 

submitted manuscript).  

In the revised version, the introduction has been improved and the different assumptions 

are described. Note that we do not claim that our methods are superior to methods used 

previously. We analyze the accuracy of some existing methods and we suggest an 

alternative one which avoids intrusive measurements of pressure and/or water content. 

We show that this new method provides quite good estimates of the parameters but, of 

course, not with the same accuracy than methods with intrusive measurements. 

Even if we come up with better parameter estimation, do we have a better understanding of 

the physics of fluid flow in porous media? The authors should be stating what novel insights 

they expect from this type of numerical experiments. Furthermore, some of the findings are to 

be expected, for example the inclusion of both water content or outflow along with matric 

potential data should always provide better parameter estimation. In fact, the use of only one 

of those variables makes parameter estimation non-unique.  

Parameter estimation through inverse modelling has a weak point: the assumption that 

the model is valid. Therefore, it will not provide a better understanding of the physics. It 

can sometimes be used to reject a model if the estimated parameters have no physical 

meanings. 

We agree that some findings are expected. The MCMC approach allows some 

quantification of the uncertainties.  

An interesting aspect of their work is the impact of the length of the injection of the solute 

pulse. Can the authors provide some kind of explanation why this occurs?  

We agree and provide the following explanations in the discussion. 



The improvement of the parameter estimation in this last scenario compared to the previous 

one can be explained by the fact that the injection of water and solute contaminant is stopped 

once the concentration reaches the column outlet. Hence, the injected volume (0.015x3000 = 

45cm
3
/cm

2
) is slightly less than the pore volume (120x0.43=51 cm

3
/cm

2
). Thus, when the 

injection is stopped, the column is not fully saturated and the outlet flux strongly reduces (see 

the asymptotic behavior of the cumulative outflow when the injection is stopped). As a 

consequence, the concentration profile increases smoothly (see Fig. 6) until reaching its 

maximum value in contrast to the sharp front observed for 5000mininjT   in the scenario 6 

(see Fig. 5). As a consequence, the breakthrough curve obtained with 3000mininjT   is more 

affected by the hydraulic parameters than the breakthrough curve obtained with 

5000mininjT  . This explains why a better estimation of the parameters is observed for the 

last scenario compared to the scenario 6. 

 

Considering how fractional derivatives and continues time random walk have been used to 

describe solute transport in unsaturated soil, will the parameter estimation method give hints 

on systematic model errors (which require real world experiments). Certainly one short 

coming of the approach - it is assumed that the model is indeed correct.  

The modeling concepts are assumed to be valid. See our answer to your second 

comment.  

To make this paper a value contribution I suggest the following: 

 (i) Include a clearer summary of what has been done on inverse modelling in the context of 

transient water flow and solute transport. Perhaps state the methods more explicitly that were 

used by other researchers. 

The introduction is rewritten with a significant number of new references as follows: 

The soil parameters that influence water flow and contaminant transport in unsaturated zones 

are not generally known a priori and have to be estimated by fitting model responses to 

observed data. The unsaturated soil hydraulic parameters can be (more or less accurately) 

estimated from dynamic flow experiments (e.g., Hopmans et al., 2002; Vrugt et al., 2003a; 

Durner and Iden, 2011; Younes et al., 2013). Several authors have investigated different types 

of transient experiments and boundary conditions suited for a reliable estimation of soil 

hydraulic properties (e.g. van Dam et al., 1994; Simunek and van Genuchten, 1997; Inoue et 

al, 1998; Durner et al, 1999). Soil hydraulic properties are often estimated using inversion of 

one-step (Kool et al., 1985; van Dam et al., 1992) or multistep (Eching et al., 1994; van Dam 

et al., 1994) outflow experiments or controlled infiltration experiments (Hudson et al., 1996).  

Kool et al. (1985) and Kool and Parker (1988) suggested that the transient experiments should 

cover a wide range in water contents to obtain a reliable estimation of the parameters. Van 

Dam et al. (1994) have shown that more reliable parameter estimates are obtained by 



increasing the pneumatic pressure in several steps instead of a single step. The multistep 

outflow experiments are the most popular laboratory methods (e.g., Eching and Hopmans, 

1993; Eching et al., 1994; van Dam et al., 1994; Hopmans et al., 2002). However, their 

application is limited by expensive measurement equipment (Nasta et al., 2011). 

Infiltration experiments have been investigated by Mishra and Parker (1989) to study the 

reliability of hydraulic and transport estimated parameters for a soil column of 200 cm using 

measurements of water content, concentration and water pressure inside the column. They 

showed that the simultaneous estimation of hydraulic and transport properties yields to 

smaller estimation errors for model parameters than the sequential inversion of hydraulic 

properties from the water content and/or pressure head followed by the inversion of transport 

properties from concentration data (Mishra and Parker, 1989).  

Inoue et al. (2000) performed infiltration experiments using a soil column of 30 cm. Pressure 

head and solute concentration were measured at different locations. A constant infiltration rate 

was applied to the soil surface and a balance was used to measure the cumulative outflow. 

They showed that both hydraulic and transport parameters can be assessed by the combination 

of flow and transport experiments.  

Furthermore, infiltration experiments were often conducted in lysimeters for pesticide 

leaching studies. Indeed, lysimeter experiments are generally used to assess the leaching risks 

of pesticides using soil columns of around 1.2 m depth which is the standard scale for these 

types of experiments (Mertens et al, 2009; Kahl et al., 2015). Before performing the column 

leaching experiment, several infiltration-outflow experiments are often realized to estimate 

the soil hydraulic parameters (Kahl et al., 2015; Dusek et al, 2015).  

The key objective of the present study is to evaluate the reliability of different experimental 

protocols for estimating hydraulic and transport parameters and their associated uncertainties 

for column experiments. We consider the flow and the transport of an inert solute injected 

into a hypothetical column filled with a homogeneous sandy clay loam soil. We assume that 

flow can be modelled by the Richards’ equation (RE) and that the solute transport can be 

simulated by the classical advection-dispersion model. Furthermore, the Mualem and van 

Genuchten (MvG) models (Mualem 1976, van Genuchten 1980) are chosen to describe the 

retention curve and to relate the hydraulic conductivity of the unsaturated soil to the water 

content. The estimation of the flow and transport parameters through flow-transport model 

inversion is investigated for two injection periods of the solute and different data 

measurement scenarios.  

Inverse modelling is often performed using local search algorithms such as the Levenberg-

Marquardt algorithm (Marquardt, 1963). Besides, the degree of uncertainty in the estimated 

parameters, expressed by their confidence intervals, is often calculated using a first-order 

approximation of the model near its minimum (Carrera and Neuman, 1986, Kool and parker, 

1988). However, as stated by Vrugt and Bouten (2002), parameter interdependence and model 

nonlinearity occurring in hydrologic models may violate the use of this first approximation to 

obtain accurate confidence intervals of each parameter. Therefore, in this work, the estimation 

of hydraulic and transport parameters is performed in a Bayesian framework using the 

https://www.authorea.com/users/61522/articles/74024/_show_article#Mualem76WRR
https://www.authorea.com/users/61522/articles/74024/_show_article#Genuchten80AG


Markov Chain Monte Carlo (MCMC) sampler (Vrugt and Bouten, 2002; Vrugt et al., 2008). 

Unlike classical parameter optimization algorithms, the MCMC approach generates sets of 

parameter values randomly sampled from the posterior joint probability distributions, which 

are useful to assess the quality of the estimation. The MCMC samples can be used to 

summarize parameter uncertainties and to perform predictive uncertainty (Ades and Lu, 

2003).  

Hypothetical infiltration experiments are considered for a column of 120 cm depth, initially 

under hydrostatic conditions, free of solute and filled with a homogeneous sandy clay loam 

soil. Continuous flow and solute injection are performed during a time period injT  at the top of 

the column and with a zero pressure head at the bottom. The unknown parameters for the 

water flow are the hydraulic parameters: sk  [LT
−1

], the saturated hydraulic conductivity; s  

[L
3
L

−3
], the saturated water content; r  [L

3
L

−3
], the residual water content; and   [L

−1
] and n  

[−], the MvG shape parameters. The only unknown parameter of the tracer transport is the 

longitudinal dispersivity, La [L].  

Several scenarios corresponding to different sets of measurements are investigated to address 

the following questions: 

1) Can we obtain an appropriate estimation of all flow and transport parameters from 

tracer-infiltration experiments, even though a limited range in water content is covered 

(only moderately dry conditions are used)? 

2) What is the optimal set of measurements for the estimation of all the parameters? Can 

we use only non-intrusive measurements (cumulative outflow and concentration 

breakthrough curve) or are intrusive measurements such as the measurements pressure 

heads and/or water contents inside the column unavoidable? 

3) Is there an optimal design for the tracer injection?  

 

 (ii) The methods sections need more precise description of numerical methods used and 

experimental set up. I doubt this paper is reproducible with the information provided. The 

language is used in such a way, that true experiments were actually done. When the authors 

talk about experiments they mean virtual numerical experiments. This needs to be clearly 

stated earlier in the paper. 

The experiments are numerical experiments. This was clearly stated in the introduction 

(L93 of the submitted manuscript). Although we think that numerical methods for 

solving the flow and transport equations have to be improved, we did not addressed this 

issue here. The domain is 1D which does not required heavy computational equipment 

and standard numerical methods are accurate enough. Standard finite differences have 

been used for solving the equation. 

All required data, initial and boundary conditions are described in the paper. The 

simulations can be reproduced. 



 (iii) The discussion section needs a thorough revision to address the above points – clearly 

relate your findings to the work of others on parameter estimation. Currently the discussion 

focusses only own findings without setting a broader context.  

The broader context has been described in the new introduction. 

 

Further comments:  

Lines 74-75: When stating column length, column diameter should also be mentioned if real 

world experiments were used.  

The diameter is not a relevant characteristic for our numerical examples since we use 

1D simulations. 

Lines 83-92: The research questions are not logical derived from previous they were certainly 

retrospectively formulated based on the findings of study. 

We agree and reformulate the questions in the new introduction.  

Line 113: There is an issue with the van Genuchten - Mualem model near saturation 

(hydraulic conductivity will decrease before air entry point as been reached)- will this affect 

parameter estimation.  

We agree. However, this effect is not taken into account in this work. An extension of 

our work on different kind of models (Brooks and Corey, Modified Van Genuchten) is a 

perspective of this work. 

Lines132-139: Be precise on what was exactly implemented. The numerical scheme should be 

exactly described (appendix or supplemental materials are sufficient for this purpose.  

We used very standard 1D finite difference for spatial discretization. Because the 

method is very popular, we do not think it requires a detailed description. Details on the 

use of the MOL for solving RE are well described in Fahs et al. (2009). This point is 

specified in the revised version. 
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Abstract 24 

The quality of statistical calibration of hydraulic and transport soil properties is studied for 25 

infiltration experiments in which, over a given period, tracer-contaminated water is injected 26 

into an hypothetical column filled with a homogeneous soil. The saturated hydraulic 27 

conductivity, the saturated and residual water contents, the Mualem-van Genuchten shape 28 

parameters and the longitudinal dispersivity are estimated in a Bayesian framework using the 29 

Markov Chain Monte Carlo (MCMC) sampler. The impact on the quality of the estimated 30 

parameters of the kind of measurement sets (water content and/or pressure inside the column, 31 

solute concentration at the outlet and cumulative outflow) and that of the injection duration of 32 

the solute is investigated by analyzing the calibrated model parameters and their confidence 33 

intervals for different scenarios. The results show that the injection period has a significant 34 

effect on the quality of the estimation, in particular, on the posterior uncertainty range of the 35 

parameters. All hydraulic and transport parameters of the investigated soil can be well 36 

estimated from the experiment using only the outlet concentration and cumulative outflow, 37 

which are measured non-intrusively. An improvement of the identifiability of the hydraulic 38 

parameters is observed when the pressure data from measurements taken inside the column 39 

are also considered in the inversion. 40 

 41 

Keywords 42 

Infiltration experiment, Richards’ equation, Statistical calibration, Markov Chain Monte 43 

Carlo, Uncertainty ranges. 44 

  45 
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1. Introduction 46 

The soil parameters that influence water flow and contaminant transport in unsaturated zones 47 

are not generally known a priori and have to be estimated by fitting model responses to 48 

observed data. The unsaturated soil hydraulic parameters can be (more or less accurately) 49 

estimated from dynamic flow experiments (e.g., Hopmans et al., 2002; Vrugt et al., 2003a; 50 

Durner and Iden, 2011; Younes et al., 2013). Several authors have investigated different types 51 

of transient experiments and boundary conditions suited for a reliable estimation of soil 52 

hydraulic properties (e.g. van Dam et al., 1994; Simunek and van Genuchten, 1997; Inoue et 53 

al, 1998; Durner et al, 1999). Soil hydraulic properties are often estimated using inversion of 54 

one-step (Kool et al., 1985; van Dam et al., 1992) or multistep (Eching et al., 1994; van Dam 55 

et al., 1994) outflow experiments or controlled infiltration experiments (Hudson et al., 1996).  56 

Kool et al. (1985) and Kool and Parker (1988) suggested that the transient experiments should 57 

cover a wide range in water contents to obtain a reliable estimation of the parameters. Van 58 

Dam et al. (1994) have shown that more reliable parameter estimates are obtained by 59 

increasing the pneumatic pressure in several steps instead of a single step. The multistep 60 

outflow experiments are the most popular laboratory methods (e.g., Eching and Hopmans, 61 

1993; Eching et al., 1994; van Dam et al., 1994; Hopmans et al., 2002). However, their 62 

application is limited by expensive measurement equipment (Nasta et al., 2011). 63 

Infiltration experiments have been investigated by Mishra and Parker (1989) to study the 64 

reliability of hydraulic and transport estimated parameters for a soil column of 200 cm using 65 

measurements of water content, concentration and water pressure inside the column. They 66 

showed that the simultaneous estimation of hydraulic and transport properties yields to 67 

smaller estimation errors for model parameters than the sequential inversion of hydraulic 68 

properties from the water content and/or pressure head followed by the inversion of transport 69 

properties from concentration data (Mishra and Parker, 1989).  70 
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Inoue et al. (2000) performed infiltration experiments using a soil column of 30 cm. Pressure 71 

head and solute concentration were measured at different locations. A constant infiltration rate 72 

was applied to the soil surface and a balance was used to measure the cumulative outflow. 73 

They showed that both hydraulic and transport parameters can be assessed by the combination 74 

of flow and transport experiments.  75 

Furthermore, infiltration experiments were often conducted in lysimeters for pesticide 76 

leaching studies. Indeed, lysimeter experiments are generally used to assess the leaching risks 77 

of pesticides using soil columns of around 1.2 m depth which is the standard scale for these 78 

types of experiments (Mertens et al, 2009; Kahl et al., 2015). Before performing the column 79 

leaching experiment, several infiltration-outflow experiments are often realized to estimate 80 

the soil hydraulic parameters (Kahl et al., 2015; Dusek et al, 2015).  81 

The key objective of the present study is to evaluate the reliability of different experimental 82 

protocols for estimating hydraulic and transport parameters and their associated uncertainties 83 

for column experiments. We consider the flow and the transport of an inert solute injected 84 

into a hypothetical column filled with a homogeneous sandy clay loam soil. We assume that 85 

flow can be modelled by the Richards’ equation (RE) and that the solute transport can be 86 

simulated by the classical advection-dispersion model. Furthermore, the Mualem and van 87 

Genuchten (MvG) models (Mualem 1976, van Genuchten 1980) are chosen to describe the 88 

retention curve and to relate the hydraulic conductivity of the unsaturated soil to the water 89 

content. The estimation of the flow and transport parameters through flow-transport model 90 

inversion is investigated for two injection periods of the solute and different data 91 

measurement scenarios.  92 

Inverse modelling is often performed using local search algorithms such as the Levenberg-93 

Marquardt algorithm (Marquardt, 1963). Besides, the degree of uncertainty in the estimated 94 

parameters, expressed by their confidence intervals, is often calculated using a first-order 95 

https://www.authorea.com/users/61522/articles/74024/_show_article#Mualem76WRR
https://www.authorea.com/users/61522/articles/74024/_show_article#Genuchten80AG


 14 

approximation of the model near its minimum (Carrera and Neuman, 1986, Kool and parker, 96 

1988). However, as stated by Vrugt and Bouten (2002), parameter interdependence and model 97 

nonlinearity occurring in hydrologic models may violate the use of this first approximation to 98 

obtain accurate confidence intervals of each parameter. Therefore, in this work, the estimation 99 

of hydraulic and transport parameters is performed in a Bayesian framework using the 100 

Markov Chain Monte Carlo (MCMC) sampler (Vrugt and Bouten, 2002; Vrugt et al., 2008). 101 

Unlike classical parameter optimization algorithms, the MCMC approach generates sets of 102 

parameter values randomly sampled from the posterior joint probability distributions, which 103 

are useful to assess the quality of the estimation. The MCMC samples can be used to 104 

summarize parameter uncertainties and to perform predictive uncertainty (Ades and Lu, 105 

2003).  106 

Hypothetical infiltration experiments are considered for a column of 120 cm depth, initially 107 

under hydrostatic conditions, free of solute and filled with a homogeneous sandy clay loam 108 

soil. Continuous flow and solute injection are performed during a time period injT  at the top of 109 

the column and with a zero pressure head at the bottom. The unknown parameters for the 110 

water flow are the hydraulic parameters: sk  [L.T
−1

], the saturated hydraulic conductivity; s  111 

[L
3
.L

−3
], the saturated water content; r  [L

3
.L

−3
], the residual water content; and   [L

−1
] and 112 

n  [−], the MvG shape parameters. The only unknown parameter of the tracer transport is the 113 

longitudinal dispersivity, La [L].  114 

Several scenarios corresponding to different sets of measurements are investigated to address 115 

the following questions: 116 

4) Can we obtain an appropriate estimation of all flow and transport parameters from 117 

tracer-infiltration experiments, even though a limited range in water content is covered 118 

(only moderately dry conditions are used)? 119 
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5) What is the optimal set of measurements for the estimation of all the parameters? Can 120 

we use only non-intrusive measurements (cumulative outflow and concentration 121 

breakthrough curve) or are intrusive measurements of pressure heads and/or water 122 

contents inside the column unavoidable? 123 

6) Is there an optimal design for the tracer injection?  124 

For this purpose, synthetic scenarios are considered in the sequel in which data from 125 

numerical simulations are used to avoid the uncontrolled noise of experiments that could bias 126 

the conclusions.  127 

The paper is organized as follows. The mathematical models describing flow and transport in 128 

the unsaturated zone are detailed in section 2. Section 3 describes the MCMC Bayesian 129 

parameter estimation procedure used in the DREAM(ZS) sampler. Section 4 presents the 130 

different investigated scenarios and discusses the results of the calibration in terms of mean 131 

parameter values and uncertainty ranges for each scenario. Conclusions are given in section 5. 132 

 133 

2. Unsaturated flow-transport model 134 

We consider a uniform soil profile in the column and an injection of a solute tracer such as 135 

bromide, as described in Mertens et al. (2009). The unsaturated water flow in the vertical soil 136 

column is modeled with the one-dimensional pressure head form of the RE: 137 

 

 
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c h S

t z

h
q K h
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


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  

  


 
    

, (1) 138 

where h [L] is the pressure head; q  [L.T
-1

] is the Darcy velocity; z [L] is the depth, measured 139 

as positive in the downward direction; sS  (-) is the specific storage;   and s  [L
3
.L

-3
] are the 140 

actual and saturated water contents, respectively;  c h  [L
-1

] is the specific moisture capacity; 141 
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and  K h [L.T
-1

] is the hydraulic conductivity. The latter two parameters are both functions 142 

of the pressure head. In this study, the relations between the pressure head, conductivity and 143 

water content are described by the following standard models of Mualem (1976) and van 144 

Genuchten (1980): 145 
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 (2) 146 

where Se (-) is the effective saturation, r  [L
3
.L

-3
] is the residual water content, sK  [L.T

-1
] is 147 

the saturated hydraulic conductivity, and 1 1m n  ,   [L
-1

] and n  (-) are the MvG shape 148 

parameters.  149 

The tracer transport is governed by the following convection-dispersion equation:  150 

 
   C qC C

D 0
t z z z




    
   

     ,

 (3) 151 

where C  [M.L
-3

] is the concentration of the tracer, D  [L
2
.T

-1
] is the dispersion coefficient in 152 

which l mD a q d   and la  [L] is the dispersivity coefficient of the soil and md  [L
2
.T

-1
] is 153 

the molecular diffusion coefficient, which is set as 1.04 10
-4

 cm
2
/min. 154 

The initial conditions are as follows: a hydrostatic pressure distribution with zero pressure 155 

head at the bottom of the column  z L  and a solute concentration of zero inside the whole 156 

column. An infiltration with a flux injq  of contaminated water with a concentration injC  is then 157 

applied at the upper boundary condition (z = 0) during a period injT . Hence, the boundary 158 

conditions at the top of the column can be expressed as: 159 

 160 
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,

 (4) 162 

 163 

A zero pressure head is maintained at the lower boundary  z L  of the column and a zero 164 

concentration gradient is used as the lower boundary condition for the solute transport, 165 

namely, 166 

   0 0
z l

z l

C
h

z


 
  

 
 (5) 167 

In the sequel, the infiltration rate and the injected solute concentration are 0.015injq  cm/min 168 

and 1injC   g/cm
3
, respectively. The system (1)-(5) is solved using the standard finite 169 

difference method for both flow and transport spatial discretization. A uniform mesh of 600 170 

cells is employed. Temporal discretization is performed with the high-order method of lines 171 

(MOL) (e.g., Miller et al., 1998; Tocci et al., 1997; Younes et al., 2009; Fahs et al., 20011). 172 

Error checking, robustness, order selection and adaptive time step features, available in 173 

sophisticated solvers, are applied to the time integration of partial differential equations 174 

(Tocci et al., 1997). The MOL has been successfully used to solve RE in many studies (e.g., 175 

Farthing et al., 2003; Miller et al., 2006; Li et al., 2007; Fahs et al., 2009). Details on the use 176 

of the MOL for solving RE are described in Fahs et al. (2009). 177 

The vector of unknown parameters is  , , , , ,s s r Lk n a  ξ . A reference solution is 178 

generated using the following parameter values (corresponding to a sandy clay loam soil): 179 

50sk cm day , 0.43s  , 0.09r  , 
10.04cm  , 1.4n  and 0.2la cm . Four types of 180 

observations are deduced from the results of the simulation, which include the following: the 181 

pressure head and water content near the surface (5 cm below the top of the column) as well 182 
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as the cumulative outflow and the breakthrough concentration at the output of the column. 183 

The vector of observations mesy  is formed by the four data series, which are independently 184 

corrupted with a normally distributed noise using the following standard deviations: 1h cm   185 

for the pressure head, 0.02   for the water content, 0.1Q  cm for the cumulative 186 

outflow and 0.01C   g/cm
3
 for the exit concentration. 187 

3. Bayesian parameter estimation  188 

The flow-transport model is used to analyze the effects of different measurement sets on 189 

parameter identification. For this purpose, we adopt a Bayesian approach that involves the 190 

parameter joint posterior distribution (Vrugt et al., 2008). The latter is assessed with the 191 

DREAM(ZS) MCMC sampler (Laloy and Vrugt, 2012). This software generates random 192 

sequences of parameter sets that asymptotically converge toward the target joint posterior 193 

distribution (Gelman et al., 1997). Thus, if the number of runs is sufficiently high, the 194 

generated samples can be used to estimate the statistical measures of the posterior 195 

distribution, such as the mean and variance among other measures.  196 

The Bayes theorem states that the probability density function of the model parameters 197 

conditioned onto data can be expressed as: 198 

      | |mes mesp p pξ y y ξ ξ
,
 (6) 199 

where  | mesp ξ y  is the likelihood function measuring how well the model fits the 200 

observations mesy , and  p ξ  is the prior information about the parameter before the 201 

observations are made. Independent uniform priors within the ranges reported in Table 1 are 202 

chosen. In this work, a Gaussian distribution defines the likelihood function because the 203 

observations are simulated and corrupted with Gaussian errors. Hence, the parameter 204 

posterior distribution is expressed as: 205 
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 (7) 206 

where  hSS ξ ,  SS ξ ,  QSS ξ  and  CSS ξ  are the sums of the squared differences 207 

between the observed and modeled data of the pressure head, water content, cumulative 208 

outflow and output concentration, respectively. For instance,         
2

1

Nh k k

h mes modk
SS h h


 ξ ξ , 209 

which includes the observed 
 k

mesh  and predicted 
 k

modh  pressure heads at time kt  for the number 210 

of pressure head observations Nh .  211 

Bayesian parameter estimation is performed hereafter with the DREAM(ZS) software (Laloy 212 

and Vrugt, 2012), which is an efficient MCMC sampler. DREAM(ZS) computes multiple sub-213 

chains in parallel to thoroughly explore the parameter space. Archives of the states of the sub-214 

chains are stored and used to allow a strong reduction of the "burn-in" period in which the 215 

sampler generates individuals with poor performances. Taking the last 25% of individuals of 216 

the MCMC (when the chains have converged) yields multiple sets of parameters, ξ , that 217 

adequately fit the model onto observations. These sets are then used to estimate the updated 218 

parameter distributions, the pairwise parameter correlations and the uncertainty of the model 219 

predictions. As suggested in Vrugt et al. (2003b), we consider that the posterior distribution is 220 

stationary if the Gelman and Ruban (1992) criterion is 1 2. .  221 

4. Results and discussion 222 

In this section, the identifiability of the parameters is investigated for different scenarios of 223 

measurement sets and for two periods of injections. In all cases, the MCMC sampler was run 224 

with 3 simultaneous chains for a total number of 50000 runs. Depending on the scenario, the 225 

MCMC required between 5000 and 20000 model runs to reach convergence and was 226 

terminated after 30000 runs. The last 25% of the runs that adequately fit the model onto 227 

observations are used to estimate the updated probability density function (pdf). 228 
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 229 

4.1. Reference solution and hypothetical data measurements 230 

The reference solutions obtained from solving the flow-transport problems (1)-(5) using the 231 

parameters given in section 2 are shown in Figs. 1 to 6. The pressure head at 5 cm from the 232 

top of the column (Fig. 1) increases quickly from its initial hydrostatic negative value (-115 233 

cm) and reaches a plateau (-1.75 cm) during the injection period. After the injection is 234 

finished, it progressively decreases due to the drainage caused by the gravity effect. A similar 235 

behavior is observed for the water content at the same location (Fig. 2), where the value of the 236 

plateau is close to the saturation value. The cumulative outflow (Fig. 3) starts to increase at 237 

approximately 1000 min after the beginning of the injection. It shows an almost linear 238 

behavior until 5500 min. It then slowly increases with an asymptotic behavior due to the 239 

natural drainage after the end of the injection period. Fig. 4 displays the water saturation as a 240 

function of the pressure head. It is worth noting that only a few part of this curve is described 241 

during the infiltration experiment. Indeed, only moderate dry conditions are established 242 

because the minimum pressure head reached in the column is -120 cm, which corresponds to 243 

the initial pressure head at the top of the column. 244 

The breakthrough concentration curve (Fig. 5) shows a sharp front, which starts shortly after 245 

3000 min. Note that if the injection of both water and contaminant are stopped once the solute 246 

reaches the output, i.e., after an injection period of 3000 min, the breakthrough curve exhibits 247 

a smoother progression (Fig. 6). 248 

The observed data, which are used as conditioning information for model calibration, are also 249 

shown in Figs. 1 to 6. In Fig. 2, the water content seems to be more affected by the 250 

perturbation of data than the pressure head and cumulative outflow. This phenomenon is due 251 

to the relative importance of the measurement errors of the water content often observed with 252 

time-domain-reflectometry probes and (ii) the weak variation of the water content during the 253 
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infiltration experiment. The perturbation of the breakthrough curve is relatively small because 254 

of the low added noise since output concentrations can be accurately measured. The 255 

perturbations of the pressure head and cumulative outflow seem weak because of the large 256 

variation of these variables during the experiment. 257 

 258 

4.2. Results of the parameter estimation  259 

The uncertainty model parameters are assumed to be distributed uniformly over the ranges 260 

reported in Table 1. This table also lists the reference values used to generate data 261 

observations before perturbation. Seven scenarios are considered, corresponding to different 262 

sets of measurements for the estimation of the hydraulic and transport soil parameters (Table 263 

2). 264 

The MCMC results of the seven studied scenarios are given in Figs. 7 to 13. The "on-265 

diagonal" plots in these figures display the inferred parameter distributions, whereas the "off-266 

diagonal" plots represent the pairwise correlations in the MCMC sample. If the draws are 267 

independent, non-sloping scatterplots should be observed. However, if a good value of a 268 

given parameter is conditioned by the value of another parameter, then their pairwise 269 

scatterplot should show a narrow sloping stripe. The sensitivity of parameters is obtained by 270 

comparing prior to posterior parameter distribution. A significant difference between the two 271 

distributions for a parameter indicates high model sensitivity to that parameter (Dusek et al., 272 

2015). 273 

To facilitate the comparison between the different scenarios, Figs. 14 to 19 show the mean 274 

and the 95% confidence intervals of the final MCMC sample that adequately fit the model 275 

onto observations for each scenario, and Table 3 summarizes the pairwise parameter 276 

correlations. 277 
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Fig. 7 shows the inferred distributions of the parameters identified with the MCMC sampler 278 

using only the pressure and cumulative outflow measurements (scenario 1). The parameters 279 

sk ,   and n  are well estimated; their prior intervals of variation are strongly narrowed and 280 

they essentially show bell-shaped posterior distributions. This shows the high sensitivity of 281 

the model responses to these parameters.  282 

The parameter sk  is strongly correlated to   (0.94) and n  (-0.97). These results confirmed 283 

the results of Eching and Hopmans (1994) on multistep outflow experiments who found that 284 

the inverse solution technique is greatly improved when both cumulative outflow and pressure 285 

head data from some positions inside the column are used. The two water contents related 286 

parameters are strongly correlated (0.96) and cannot be identified accurately because the 287 

water retention relationship depends on the difference between s  and r  and only this 288 

difference is identifiable. Note that the prior intervals of r  and s  which are respectively 289 

 0.05,0.2  and  0.3,0.5  have changed to the posterior intervals  0.05,0.16  and  0.39,0.5  290 

because the target difference should be 0.34.s r    In the literature, van Genuchten and 291 

Nielsen (1985), Eching and Hopmans (1993) and Zurmühl (1996) considered that saturated 292 

water content is determined independently and considered only r  to be an empirical 293 

parameter that should be fitted to the data. 294 

The dispersivity coefficient la  has not been identified in this first scenario.  295 

The MCMC results in Fig. 8 show that water content measurements throughout the 296 

experiment (scenario 2) allow the estimation of both the residual and saturated water contents. 297 

The parameter r  strongly correlates to sk  (-0.94) and n  (0.98) and the parameter sk  remains 298 

strongly related to   (0.94) and n  (-0.98). Although the water content data are subject to 299 

relatively high measurement errors, a good estimation is obtained for s  and r . The 300 

parameters sk ,   and n  are estimated with the same accuracy as for the first scenario. All 301 
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parameters (except the dispersivity coefficient) are highly sensitive since their posterior 302 

intervals of variations are strongly reduced compared to the prior intervals. Moreover, the 303 

prior uniform distributions give place to almost Gaussian posterior distributions. These results 304 

show that, although Kool et al. (1985) and Kool and Parker (1988) suggested that the transient 305 

experiments should cover a wide range in water content, an appropriate estimation of all 306 

parameters can be obtained with the infiltration experiment even though a limited range in 307 

water content is covered. 308 

When the concentration measurements are also considered in the inversion (scenario 3), the 309 

results depicted in Fig. 9 show very significant correlations between sk  and r  (-0.94), sk  and 310 

  (0.91), sk  and n  (-0.97) and n  and r  (0.99). The posterior uncertainty ranges of sk ,  , 311 

n  and r  are similar to the previous scenarios. Those of s  and la  are strongly reduced, 312 

leading to a good identification of these parameters when using C  measurements (Figs. 15 313 

and 19). A better estimate of the saturated water content is obtained because advective 314 

transport is a function of this variable. 315 

In the inversion procedure of scenario 4, the measurements of the water content are not 316 

considered. This scenario leads to the same quality of the estimation for the parameters sk , r317 

,   and n  (Figs. 14, 16, 17, 18) and similar correlations between the parameters as in the 318 

previous scenario. This result shows that the intrusive water content measurements, which are 319 

subject to more significant measurement errors than the output concentration, are not required 320 

if the output concentration is measured. Compared with the results of scenario 2, it can be 321 

concluded that better parameter estimations are obtained using h , Q  and C  data than using 322 

h , Q  and   data, especially for s . Therefore, using C  instead of   measurements in 323 

combination with h  and Q  measurements allows the estimation of la  and yields better 324 

estimate of s . 325 
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The pressure head, cumulative outflow and concentration measurements are used in the 326 

estimation procedure of scenario 5, but the injection period is now reduced to 3000mininjT  . 327 

The obtained results (Fig. 11) show the same correlations between the parameters as for 328 

5000mininjT  . For the parameters sk , s , r ,   and n , almost the same mean estimates are 329 

obtained as for scenario 4. However, the parameters are better identified (Figs. 14 to 18). 330 

Indeed, the uncertainty of these parameters is smaller because the credible interval is reduced 331 

by a factor of 25% for sk , 8% for s , 26% for r , 10% for   and 25% for n  when compared 332 

to the results obtained using 5000mininjT  . The parameter la  is also much better estimated 333 

than in the previous scenario. Its mean value approaches the reference solution and the 334 

posterior uncertainty range is reduced by approximately 75% (Fig. 19). 335 

In scenario 6, the pressure head measurements are removed and only non-intrusive 336 

measurements ( Q  and C  data) are used for the calibration with an injection period of 337 

5000mininjT  . These kind of nonintrusive measures have been used by Mertens et al. (2009) 338 

to estimate some of hydraulic and pesticides leaching parameters. The results depicted in Fig. 339 

12 show high correlations only between sk  and n  (-0.95) and r  and n  (0.95). On the one 340 

hand, these results show that all the parameters are well estimated since, as compared to the 341 

prior intervals (given in Table 1), the confidence intervals of the estimated parameters (plotted 342 

in Figs. 14-19) are strongly reduced, especially for the parameters  , n  and s . On the other 343 

hand, compared to the results of scenario 4 which also considers pressure data, sk  is not as 344 

well estimated (the mean value is less close to the reference value and the confidence interval 345 

is 27% larger). The mean estimated values for r  and n  also degraded (less close to the 346 

reference solution), although their confidence intervals are similar to those of scenario 4 347 

(Figs. 16, 18). The estimated mean value of the parameter   is similar to that in scenario 4. 348 

However, its uncertainty is much larger because the credible interval is 77% larger (Fig. 19). 349 
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The parameters s  and la  are estimated as well as in scenario 4 (in terms of mean estimated 350 

value and credible interval). 351 

The last scenario (scenario 7) is similar to the previous one, but the injection period is reduced 352 

to 3000mininjT  . The results depicted in Fig. 13 show similar correlations between the 353 

parameters as for 5000mininjT  . However, a significant improvement is observed for the 354 

mean estimated values, which approach the reference solution for sk , r , n  and la  (Figs. 14, 355 

16, 18, 19). The uncertainties of sk ,   and la  are also reduced by approximately 40%, 15% 356 

and 70%, respectively. The parameter s  is estimated as well as in scenario 6. The 357 

improvement of the parameter estimation in this last scenario compared to the previous one 358 

can be explained by the fact that the injection of water and solute contaminant is stopped once 359 

the concentration reaches the column outlet. Hence, the injected volume (0.015x3000 = 360 

45cm
3
/cm

2
) is slightly less than the pore volume (120x0.43=51 cm

3
/cm

2
). Thus, when the 361 

injection is stopped, the column is not fully saturated and the outlet flux strongly reduces (see 362 

the asymptotic behavior of the cumulative outflow when the injection is stopped in Fig. 3). As 363 

a consequence, the concentration profile increases smoothly (see Fig. 6) until reaching its 364 

maximum value in contrast to the sharp front observed for 5000mininjT   in the scenario 6 365 

(see Fig. 5). Hence, the breakthrough curve obtained with 3000mininjT   is more affected by 366 

the hydraulic parameters than the breakthrough curve obtained with 5000mininjT  . This 367 

explains why a better estimation of the parameters is observed for the last scenario compared 368 

to the scenario 6. 369 

 370 
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5. Conclusions 371 

In this work, estimation of hydraulic and transport soil parameters have been investigated 372 

using synthetic infiltration experiments performed in a column filled with a sandy clay loam 373 

soil, which was subjected to continuous flow and solute injection over a period injT .  374 

The saturated hydraulic conductivity, the saturated and residual water contents, the Mualem-375 

van Genuchten shape parameters and the longitudinal dispersivity are estimated in a Bayesian 376 

framework using the Markov Chain Monte Carlo (MCMC) sampler. Parameter estimation is 377 

performed for different scenarios of data measurements.  378 

The results reveal the following conclusions: 379 

1. All hydraulic and transport parameters can be appropriately estimated from the 380 

described infiltration experiment. However, the accuracy differs and depends on the 381 

type of measurement and the duration of the injection injT , even if the water content 382 

remains close to saturated conditions.  383 

2. The use of concentration measurements at the column outflow, in addition to 384 

traditional measured variables (water content, pressure head and cumulative outflow), 385 

reduces the correlation between the hydraulic parameters and their uncertainties, 386 

especially that of the saturated water content. 387 

3. The saturated hydraulic conductivity is estimated with the same order of accuracy, 388 

independent of the observed variables. 389 

4. The estimation of the dispersivity is sensitive to the injection duration. 390 

5. A better identifiability of the soil parameters is obtained using C  instead of   391 

measurements, in combination with h  and Q  data. 392 

6. Using only non-intrusive measurements (cumulative outflow and output 393 

concentration) yields satisfactory estimation of all parameters. The uncertainty of the 394 
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parameters significantly decreases when the injection of water and solute is 395 

maintained for a limited period.  396 

This last point has practical applications for designing simple experimental setups dedicated 397 

to the estimation of hydrodynamic and transport parameters for unsaturated flow in soils. The 398 

setup has to be appropriately equipped to measure the cumulative water outflow (e.g., 399 

weighing machine) and the solute breakthrough at the column outflow (e.g., flow through 400 

electrical conductivity). The injection should be stopped as soon as the solute concentration 401 

reaches the outflow. The accuracy of the estimation of r ,   and n  improves by adding 402 

pressure measurements inside the column, close to the injection. 403 

 404 

These results are of course related to the models and experimental conditions we used. This 405 

work can be extended to different types of soils, water retention and/or relative permeability 406 

functions to evaluate the interest of coupling flow and transport for parameter identification. 407 

This work can also be extended to reactive solutes.  408 

 409 

 410 

Acknowledgments 411 

The authors are grateful to the French National Research Agency, which funded this work 412 

through the program AAP Blanc - SIMI 6 project RESAIN (n◦ANR-12-BS06-0010-02). 413 

 414 



 28 

 

 

References 

 
Ades A.E., G. Lu. 2003. Correlations between parameters in risk models: estimation and 

propagation of uncertainty by Markov Chain Monte Carlo. Risk Anal. 23(6):1165-72. 

Carrera J., and S.P. Neuman. 1986. Estimation of aquifer parameters under transient and 

steady conditions: 2. Uniqueness, stability and solution algorithms. Water Resour. Res., 

22, 211–227. 

Durner W., B. Schultze, T. Zurmühl. 1999. State-of-the-art in inverse modeling of 

inflow/outflow experiments. p661-681. In M.Th. van Genuchten et al. (ed.) 

Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous 

Media, Proc. Int. Worksh. Riverside, CA. Univ. of California, Riverside. 

Durner W., S.C. Iden. 2011. Extended multistep outflow method for the accurate 

determination of soil hydraulic properties near water saturation. Water Resour. Res. 

47:W08526. doi: 10.1029/2011WR010632 

Dusek J, M. Dohnal, M. Snehota, M. Sobotkova, C. Ray, T. Vogel. 2015. Transport of 

bromide and pesticides through an undisturbed soil column: a modeling study with 

global optimization analysis. J Contam Hydrol. Apr-May;175-176:1-16. doi: 

10.1016/j.jconhyd.2015.02.002. 

Eching S.O., J.W. Hopmans. 1993. Optimization of hydraulic functions from transient 

outflow and soil water pressure data. Soil Sci. Soc. Am. J. 57:1167-1175. 

doi:10.2136/sssaj1993.03615995005700050001x 

Eching S.O., J.W. Hopmans, O. Wendroth. 1994. Unsaturated Hydraulic Conductivity from 

Transient Multistep Outflow and Soil Water Pressure Data. Soil Sci. Soc. Am. J. 58: 

687-95 doi:10.2136/sssaj1994.03615995005800030008x 

Fahs M., A. Younes, F. Lehmann. 2009. An easy and efficient combination of the Mixed 

Finite Element Method and the Method of Lines for the resolution of Richards’ 

Equation. Environmental Modelling & Software ;24:1122–1126. 

doi:10.1016/j.envsoft.2009.02.010 

Fahs M., A. Younes, P. Ackerer. 2011. An efficient implementation of the method of lines for 

multicomponent reactive transport equations. Water air and soil pollution, 

vol. 215, no1-4, pp. 273-283. doi:10.1007/s11270-010-0477-y 

http://dx.doi.org/10.1016/j.envsoft.2009.02.010


 29 

Farthing M.W., C.E. Kees, C.T. Miller. 2003. Mixed finite element methods and higher order 

temporal approximations for variably saturated groundwater flow. Adv. in Water 

Resour. 26:373-394. doi: 10.1016/S0309-1708(02)00187-2 

Gelman A., J.B. Carlin, H.S. Stren, D.B. Rubin. 1997. Bayesian data analysis, Chapmann and 

Hall, London. 

Gelman A., D.B. Rubin. 1992. Inference from iterative simulation using multiple sequences. 

Stat. Sci. 7:457-472. 

Hopmans J.W., J. Simunek, N. Romano, W. Durner. 2002. Simultaneous determination of 

water transmission and retention properties. Inverse Methods. p963-1008. In J.H. Dane 

and G.C. Topp (ed.) Methods of Soil Analysis. Part 4. Physical Methods. Soil Science 

Society of America Book Series No. 5. 

Hudson D.B., P.J. Wierenga, R.G. Hills 1996. Unsaturated hydraulic properties from upward 

flow into soil cores. Soil Sci Soc Am J;60:388±96. 

Inoue M., J. Šimůnek J.W. Hopmans, and V. Clausnitzer. 1998. In situ estimation of soil 

hydraulic functions using a multistep soil-water extraction technique. Water Resour. 

Res. 34:1035–1050. 

Inoue M., J. Šimůnek, S. Shiozawa, J.W. Hopmans. 2000. Simultaneous estimation of soil 

hydraulic and solute transport parameters from transient infiltration experiments, Adv. 

in Water Resour. 23 (7). Doi : 10.1016/S0309-1708(00)00011-7. 

Kahl G.M., Y. Sidorenko, B. Gottesbüren. 2015. Local and global inverse modelling 

strategies to estimate parameters for pesticide leaching from lysimeter studies. Pest 

Manag Sci. Apr;71(4):616-31. doi: 10.1002/ps.3914. 

Kool J.B., J.C. Parker, M.Th van Genuchten. 1985. Determining soil hydraulic properties 

from one-step outflow experiments by parameter estimation: I. Theory and numerical 

studies. Soil Sci Soc Am J;49:1348±54. 

Kool J.B., and J.C. Parker. 1988. Analysis of the inverse problem for transient unsaturated 

flow. Water Resour. Res. 24:817–830. 

Laloy E., J.A. Vrugt. 2012. High-dimensional posterior exploration of hydrologic models 

using multiple-try DREAM(ZS) and high-performance computing, Water Resour. Res., 

48, W01526. doi:10.1029/2011WR010608 

Li H., M.W. Farthing, C.N. Dawson, C.T. Miller. 2007. Local discontinuous Galerkin 

approximations to Richards’ equation. Adv. in Water Resour. 30:555–575. doi: 

10.1016/j.advwatres.2006.04.011 

 

http://dx.doi.org/10.1016/j.advwatres.2006.04.011


 30 

Marquardt DW. 1963. An algorithm for least-squares estimation of nonlinear parameters. 

SIAM J Appl Math;11:431±41. 

Mertens J., G. Kahl, B. Gottesbüren, J. Vanderborght. 2009. Inverse Modeling of Pesticide 

Leaching in Lysimeters: Local versus Global and Sequential Single-Objective versus 

Multiobjective Approaches Vadose Zone J. 8(3). doi: 10.2136/vzj2008.0029 

Miller C.T., G.A. Williams, C.T. Kelly, M.D. Tocci. 1998. Robust solution of Richards’ 

equation for non uniform porous media. Water Resour. Res. 34:2599–2610. doi: 

10.1029/98WR01673 

Miller C.T., C. Abhishek, M. Farthing. 2006. A spatially and temporally adaptive solution of 

Richards’ equation. Adv. in Water Resour. 29:525–545. doi: 

10.1016/j.advwatres.2005.06.008 

Mishra S., J.C. Parker. 1989. Parameter estimation for coupled unsaturated flow and 

transport. Water Resour Res. 25(3). doi: 10.1029/WR025i003p00385 

Mualem Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated 

porous media. Water Resour. Res. 12:513–522. doi:10.1029/WR012i003p00513 

Nasta P., S. Huynh, J.W. Hopmans. 2011. Simplified Multistep Outflow Method to Estimate 

Unsaturated Hydraulic Functions for Coarse-Textured Soil Sci. Soc. Am. J. 75, p.418. 

doi:10.2136/sssaj2010.011 

Šimůnek, J., and M.Th. van Genuchten. 1997. Estimating unsaturated soil hydraulic 

properties from multiple tension disc infiltrometer data. Soil Sci. 162:383–398. 

Tocci M.D., C.T. Kelly, C.T. Miller. 1997. Accurate and economical solution of the pressure-

head form of Richards’ equation by the method of lines. Adv. in Water Resour. 20:1–

14. doi: 10.1016/S0309-1708(96)00008-5 

van Dam J.C., J.N.M. Stricker, P. Droogers. 1992. Inverse method for determining soil 

hydraulic functions from one-step outflow experiment. Soil Sci Soc Am J. 56:1042±50. 

van Dam J.C., J.N.M. Stricker, P. Droogers. 1994. Inverse method to determine soil hydraulic 

functions from multistep outflow experiments. Soil Sci. Soc. Am. J. 58:647-652. 

doi:10.2136/sssaj1994.03615995005800030002x 

van Genuchten M.Th. 1980. A closed form equation for predicting the hydraulic conductivity 

of unsaturated soils. Soil Sci. Soc. Am. J. 44(5):892-898. 

doi:10.2136/sssaj1980.03615995004400050002x 

Van Genuchten M.Th. and D.R. Nielsen. 1985. On describing and predicting the hydraulic 

properties of unsaturated soils. Annales Geophysicae, 1985, 3, 615–628. 

https://www.researchgate.net/journal/1539-1663_Vadose_Zone_Journal
https://www.research.gov/research-portal/exit.jsp?link=http%3A%2F%2Fdx.doi.org%2F10.2136%2Fsssaj2010.011


 31 

Vrugt J.A., W. Bouten. 2002. Validity of first-order approximations to describe parameter 

uncertainty in soil hydrologic models. Soil. Sci. Soc. Am. J. 66:1740-1751. 

doi:10.2136/sssaj2002.1740 

Vrugt J.A., W. Bouten, H.V. Gupta, J.W. Hopmans. 2003a. Toward improved identifiability 

of soil hydraulic parameters: On the selection of a suitable parametric model. Vadose 

Zone J. 2:98–113. doi: 10.2113/2.1.98 

Vrugt J.A., H.V. Gupta, W. Bouten, S. Sorooshian. 2003b. A shuffled complex evolution 

Metropolis algorithm for optimization and uncertainty assessment for hydrologic model 

parameters. Water Resour. Res. 39(8):1201, doi:10.1029/2002WR001642. 

Vrugt J.A., C.J.F. ter Braak, M.P. Clark, J.M. Hyman, B.A. Robinson. 2008. Treatment of 

input uncertainty in hydrologic modeling: Doing hydrology backward with Markov 

chain Monte Carlo simulation. Water Resour. Res., 44, W00B09. doi: 

10.1029/2007WR006720 

Younes A., M. Fahs, S. Ahmed. 2009. Solving density driven flow problems with efficient 

spatial discretizations and higher-order time integration methods. Advances in Water 

Resources 2009, 32 (3) pp 340-352, doi:10.1016/j.advwatres.2008.11.003 

Younes A., T.A. Mara, N. Fajraoui, F. Lehmann, B. Belfort, H. Beydoun. 2013. Use of 

Global Sensitivity Analysis to Help Assess Unsaturated Soil Hydraulic Parameters. 

Vadose Zone J. 12. doi:10.2136/vzj2011.0150 

Zurmühl T. 1996. Evaluation of different boundary conditions for independent determination 

of hydraulic parameters using outflow methods. In Parameter Identification and Inverse 

Problems in Hydrology, Geology and Ecology, eds. J.Gottlieb and P. DuChateau. 

Kluwer, Dordrecht, 1996, pp.165–184. 

  

http://vzj.geoscienceworld.org/


 32 

 

List of table captions 

 

Table 1. Prior lower and upper bounds of the uncertain parameters and reference values. 

 

Table 2. Measurement sets and injection periods for the different scenarios. The pressure head 

h  and the water content   are measured at 5 cm from the top of the column. The cumulative 

outflow Q  and the concentration C  are measured at the exit of the column.   

 

Table 3. Summary of the pairwise parameter correlations. 
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Parameters Lower bounds Upper bounds Reference values 

sk  [cm min
-1

] 0.025 0.1 0.0347 

s  [-] 0.3 0.5 0.43 

r  [-] 0.05 0.2 0.09 

  [cm
-1

] 0.01 0.3 0.04 

n  [-] 1.2 5 1.4 

la  [cm] 0.05 0.6 0.2 

 

Table 1. Prior lower and upper bounds of the uncertain parameters and reference values. 

 

 

 

 

Scenario Measured variables Injection period 

 h    Q  C  5000mininjT   3000mininjT   

1       

2       

3       

4       

5       

6       

7       

 

Table 2. Measurement sets and injection periods for the different scenarios. The pressure head 

h  and the water content   are measured at 5 cm from the top of the column. The cumulative 

outflow Q  and the concentration C  are measured at the exit of the column.   
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Scenario      

1  , 0.97sk n     , 0.94sk       , 0.96r s    

2  , 0.98sk n     , 0.94sk     , 0.94s rk      , 0.98r n    

3  , 0.97sk n     , 0.91sk     , 0.94s rk      , 0.99r n    

4  , 0.98sk n     , 0.95sk     , 0.96s rk      , 0.99r n    

5  , 0.96sk n     , 0.93sk     , 0.91s rk      , 0.98r n    

6  , 0.95sk n       , 0.95r n    

7  , 0.95sk n       , 0.94r n    

Table 3. Summary of the pairwise parameter correlations. 
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List of figure captions 

Fig. 1. Reference pressure head at 5 cm from the soil surface. Solid lines represent model 

outputs and dots represent the sets of perturbed data serving as conditioning information for 

model calibration. 

Fig. 2. Reference water content at 5 cm from the soil surface [see Fig. 1 caption ]. 

Fig. 3. Reference cumulative outflow [see Fig. 1 caption ].  

Fig. 4. Reference retention curve for the infiltration experiment [see Fig. 1 caption ]. 

Fig. 5. Reference breakthrough output concentration for Tinj = 5000. [see Fig. 1 caption ]. 

Fig. 6. Reference breakthrough output concentration for Tinj= 3000 min. [see Fig. 1 caption ]. 

Fig. 7. MCMC solutions for the transport scenario 1. The diagonal plots represent the inferred 

posterior probability distribution of the model parameters. The off-diagonal scatterplots 

represent the pairwise correlations in the MCMC drawing.  

Fig. 8. MCMC solutions for transport scenario 2 [see Fig. 7 caption ]. 

Fig. 9. MCMC solutions for transport scenario 3 [see Fig. 7 caption ]. 

Fig. 10. MCMC solutions for transport scenario 4 [see Fig. 7 caption ]. 

Fig. 11. MCMC solutions for transport scenario 5 [see Fig. 7 caption ]. 

Fig. 12. MCMC solutions for transport scenario 6 [see Fig. 7 caption ]. 

Fig. 13. MCMC solutions for transport scenario 7 [see Fig. 7 caption ]. 

Fig. 14. Posterior mean values and 95% confidence intervals of the saturated hydraulic 

conductivity for the different scenarios. 

Fig. 15. Posterior mean values and 95% confidence intervals of the saturated water content for 

the different scenarios. 

Fig. 16. Posterior mean values and 95% confidence intervals of the residual water content for 

the different scenarios. 

Fig. 17. Posterior mean values and 95% confidence intervals of the shape parameter  for the 

different scenarios. 

Fig. 18. Posterior mean values and 95% confidence intervals of the shape parameter n for the 

different scenarios. 

Fig. 19. Posterior mean values and 95% confidence intervals of dispersivity for the different 

scenarios. 
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Fig. 1. Reference pressure head at 5 cm from the soil surface. Solid lines represent model 

outputs and dots represent the sets of perturbed data serving as conditioning information for 

model calibration. 
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Fig. 2. Reference water content at 5 cm from the soil surface [see Fig. 1 caption]. 
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Fig. 3. Reference cumulative outflow [see Fig. 1 caption].  
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Fig. 4. Reference retention curve for the infiltration experiment [see Fig. 1 caption]. 
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Fig. 5. Reference breakthrough output concentration for Tinj = 5000. [see Fig. 1 caption]. 
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Fig. 6. Reference breakthrough output concentration for Tinj= 3000 min. [see Fig. 1 caption]. 
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Fig. 7. MCMC solutions for the transport scenario 1. The diagonal plots represent the inferred posterior probability distribution of the model 

parameters. The off-diagonal scatterplots represent the pairwise correlations r in the MCMC draws.  
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Fig. 8. MCMC solutions for transport scenario 2 [see Fig. 7 caption ]. 



 41 

 
Fig. 9. MCMC solutions for transport scenario 3 [see Fig. 7 caption ]. 
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Fig. 10. MCMC solutions for transport scenario 4 [see Fig. 7 caption ]. 
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Fig. 11. MCMC solutions for transport scenario 5 [see Fig. 7 caption ]. 
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Fig. 12. MCMC solutions for transport scenario 6 [see Fig. 7 caption ]. 
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Fig. 13. MCMC solutions for transport scenario 7 [see Fig. 7 caption ]. 
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Fig. 14. Posterior mean values and 95% confidence intervals of the saturated hydraulic 

conductivity for the different scenarios. 

0.425

0.426

0.427

0.428

0.429

0.430

0.431

0.432

0.433

0.434

0.435

0 1 2 3 4 5 6 7

 Scenario number

S
a

tu
ra

te
d

 w
a
te

r 
c
o

n
te

n
t 

[-
]

Fig. 15. Posterior mean values and 95% confidence intervals of the saturated water content for 

the different scenarios. 
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Fig. 16. Posterior mean values and 95% confidence intervals of the residual water content for 

the different scenarios. 

0.037

0.038

0.039

0.040

0.041

0.042

0.043

0.044

0 1 2 3 4 5 6 7

 Scenario number

S
h

a
p
e

 p
a

ra
m

a
te

r

[
c
m

-1
]

 
Fig. 17. Posterior mean values and 95% confidence intervals of the shape parameter  for the 

different scenarios. 
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Fig. 18. Posterior mean values and 95% confidence intervals of the shape parameter n for the 

different scenarios. 
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Fig. 19. Posterior mean values and 95% confidence intervals of dispersivity for the different 

scenarios. 
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