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Abstract. For understanding past flood changes in the Rhine catchment and in particular the role of anthropogenic climate

change for extreme flows, an attribution study relying on a proper GCM (General Circulation Model) downscaling is needed.

A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising approach. This ap-

proach assumes a strong link between weather patterns and local climate, and sufficient GCM skill in reproducing weather

pattern climatology. These presuppositions are unprecedentedly evaluated here using 111 years of daily climate data from 4905

stations in the Rhine basin and comprehensively testing the number of classification parameters and GCM weather pattern char-

acteristics. A classification based on a combination of mean sea level pressure, temperature, and humidity from the ERA20C

reanalysis of atmospheric fields over Central Europe with 40 weather types was found the most appropriate to stratify six local

climate variables. The corresponding skill is quite diverse though, ranging from good for radiation to poor for precipitation.

Especially for the latter it was apparent that pressure fields alone cannot sufficiently stratify local variability. To test the skill of10

the latest generation of GCMs from the CMIP5 ensemble in reproducing the frequency, seasonality, and persistence of the de-

rived weather patterns, output from 15 GCMs is evaluated. Most GCMs are able to capture these characteristics well, but some

models showed consistent deviations in all three evaluation criteria and should be excluded from further attribution analysis.

1 Introduction

The Rhine River is a trans-boundary river with a catchment area of 185 000 km2 and significant flood risk. Along the main15

river reach from Karlsruhe in south-west Germany to Rees at the Dutch-German border, an area of 14 600 km2 is at risk of

being flooded for an extreme scenario with a return period of 200 to 500 years (Thieken et al., 2015). This enormous economic

exposure to floods is accompanied by expectations that flood magnitudes will increase due to climate change (e.g. Dankers and

Feyen, 2009; te Linde et al., 2010; Bosshard et al., 2014). Further, the Rhine catchment has experienced increasing flood trends

during the second half of the 20th century (Petrow and Merz, 2009). It has been argued that climatic drivers, land use changes20

and river training may have contributed to the observed trends (Pinter et al., 2006; Petrow et al., 2009; Villarini et al., 2011;

Vorogushyn and Merz, 2013). Whereas the role of river training in the main Rhine channel has been quantified (Lammersen

et al., 2002; Vorogushyn and Merz, 2013), the effect of climatic and land use changes remains unclear. In particular, the
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contribution of anthropogenic climate change on flood trends is an open question. To understand the role of climatic drivers

for past changes in river flooding, rigorous attribution studies are needed (Merz et al., 2012).

Several studies tried to quantify the role of changes in meteorological variables on river flows using hydrological models with

alternative sets of climate drivers (Hamlet and Lettenmaier, 2007; Hamlet et al., 2007; Hundecha and Merz, 2012; Duethmann

et al., 2015). If an attribution of hydrological changes to changes in the atmospheric composition such as greenhouse gas5

concentration is attempted, output from GCMs (General Circulation Models), representing two different “worlds” with and

without anthropogenically induced climate change, are to be compared (Min et al., 2011). This requires that output of GCMs

is properly downscaled to a resolution compatible with hydrological models.

Different approaches are applied in the hydrological community for statistical downscaling (for a review see Fowler et al.,

2007; Maraun et al., 2010). Statistical downscaling approaches using weather generators offer the possibility to generate10

multiple realisations of long synthetic time series, e.g. 100 years of daily values, and are considered to have similar skills

compared to RCMs (Hewitson and Crane, 2006). This provides a basis for a more robust estimation of changes of hydrological

variables and moments of their distributions. They are particularly suited for quantifying rare floods and their impacts (e.g.

Falter et al., 2015), in case they are capable to represent the statistical behaviour of extreme events. Examples of using weather

generators to bridge the spatial gap between GCMs and hydrological impacts are widespread (e.g. Wilks, 1992; Katz, 1996;15

Semenov and Barrow, 1997; Fowler et al., 2000, 2005; Elshamy et al., 2006; Hewitson and Crane, 2006; Kilsby et al., 2007;

te Linde et al., 2010; Fatichi et al., 2011; Lu et al., 2015; Kim et al., 2015)

In order to represent different climate states, parameters of a weather generator can be conditioned on the climate model

output by applying a change factor (Kilsby et al., 2007) or on covariates such as weather patterns. The latter approach is

expected to better capture change in variability of the changing climate state. Weather patterns are classifications of atmospheric20

circulation fields or other synoptic fields (Huth et al., 2008). The underlying assumption of the downscaling based on weather

patterns is that the regional or local behaviour of climate variables is partly a response to the larger-scale, synoptic forcing.

The weather generator is then parameterised separately for each class of weather patterns (e.g. Bárdossy and Plate, 1991, 1992;

Corte-Real et al., 1999; Fowler et al., 2005; Haberlandt et al., 2015). Statistical downscaling tends to underestimate the variance

of regional or local climate if the contribution of local processes is not considered and may poorly represent extremes. Different25

methods have been proposed to rectify this problem: variable inflation (Karl et al., 1990), expanded downscaling (Bürger, 1996)

and randomisation (Kilsby et al., 1998). This problem typically occurs in downscaling approaches that are based on regression

models and weather patterns. It is circumvented when a weather generator is conditioned on weather patterns, provided that

the weather generator is able to adequately capture the tail behaviour of the surface climate variables.

A downscaling approach based on weather pattern classification builds on four assumptions. Firstly, local climate needs30

to be sufficiently explained by the classification of the large-scale synoptic situation. Bárdossy et al. (2002) summarise that

many studies have shown that there is a strong link between atmospheric circulation types derived from CTCs (circulation type

classifications) and surface variables such as near-surface temperature and precipitation. Even when the small-scale climate is

governed by mesoscale events such as convective systems, these are, in turn, conditional on the synoptic state (Goodess and

Jones, 2002). On the other hand, weather patterns can only be a proxy for local weather, due to the categorisation of continuous35
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data by the discrete classification, and more importantly, due to the fact that the large-scale situations do not fully represent

smaller-scale features. This so-called within-type variability (e.g. Huth et al., 2008) is caused, for instance, by small-scale

processes, such as orography-enhanced rainfall, or by variations in dynamic properties (pressure gradient, vorticity, intensity)

of weather patterns (Beck et al., 2007).

Secondly, the linkage between weather patterns and regional and local climate is assumed to be stationary. This means that5

climate change will mainly manifest itself as a change in the frequency, persistence and seasonality of these weather patterns.

The transfer function between synoptic state and regional and local climate thus remains constant. Land use and land cover

change, for example, could introduce a variable forcing on local climates (Hewitson and Crane, 2006). Using long observational

time series, it has been argued that the linkage between large-scale weather patterns and regional climates are characterised by

distinct variabilities (Beck et al., 2007).10

The third assumption is that GCMs are able to properly reproduce weather patterns. GCMs are often strongly biased in

variables such as precipitation (e.g. Sunyer et al., 2015), but are expected to reflect large-scale circulations well. This skill

in representing the synoptic situations compared to the poor skill in representing surface variables is utilised for statistical

downscaling. For example, Hewitson and Crane (2006) conclude that much of the discrepancy between GCM projections of

precipitation over South Africa may result from differences in their precipitation parametrisation schemes, whereas the synoptic15

dynamics are well simulated. It has been shown, however, that the skill of GCMs to reproduce weather pattern characteristics

such as geopotential height, sea level pressure etc. varies strongly (Brands et al., 2013; Wójcik, 2015).

Finally, to obtain meaningful input for the hydrological model, a weather generator has to adequately represent the space-

time dynamics of the catchment meteorology. This is a particular challenge for large river basins, where the correlation structure

of e.g. precipitation becomes difficult to capture over large distances.20

In the presented paper we evaluate the assumptions for weather pattern based downscaling for the Rhine catchment. This is a

prerequisite for conditioning a weather generator on circulation patterns for understanding the role of climatic drivers for past

and future flood changes in the Rhine basin. We focus on the first and third assumption here. The assumption of stationarity

of the linkage between weather patterns and local climate and the skill of the weather generator itself will be investigated

separately. In the future we intend to use a multi-site, multi-variate weather generator (Hundecha et al., 2009; Hundecha and25

Merz, 2012) for downscaling GCM output to drive a regional hydrological model. Extreme value statistic on the simulated

streamflow will then allow to quantify the role of climatic change on flood flows.

To underpin the first and third assumptions, we derive an “optimal” weather pattern classification and investigate (1) to which

extent weather patterns are able to stratify local climate variables, and (2) the skill of the GCMs to reproduce these weather

patterns. It has been argued that there is no “best” statistical downscaling approach but that the optimal classification depends30

on the application and region (Hewitson and Crane, 2006; Huth et al., 2008). We look specifically from the perspective of a

hydrological impact study for the Rhine catchment.

There is a significant body of literature on weather pattern classification. Our work extends these studies in several aspects.

Firstly, we test the skill of several classification variables. Often classifications are based on msl (mean sea level pressure)

only. We use, in addition, the synoptic temperature and humidity fields to classify weather patterns. Considering temperature35

3



as classification variable has the advantage that one classification can be used throughout the year. Secondly, we test the

ability of weather pattern classifications to stratify a comparatively large number of climate variables with daily resolution:

precipitation, minimum, mean, and maximum temperature, radiation, and relative humidity. Other studies often consider only

one or two variables (e.g. Beck et al., 2007; Kyselý, 2007; Anagnostopoulou et al., 2008; Beck and Philipp, 2010; Łupikasza,

2010; Haberlandt et al., 2015) and only few studies are available with an extended list of up to eight variables (e.g. Kidson,5

1994; Enke et al., 2005a; Cahynová and Huth, 2010). We use a comparatively long time period of 111 years. The periods

of other studies are typically much shorter, e.g. 11 to 50 years (Kidson, 1994; Brinkmann, 1999, 2000; Goodess and Jones,

2002; Hewitson and Crane, 2006; Anagnostopoulou et al., 2008; Beck and Philipp, 2010; Brisson et al., 2010; Łupikasza,

2010; Cahynová and Huth, 2010; Bettolli and Penalba, 2012), or 100 years (Kyselý, 2007). Beck et al. (2007) covers a longer

period, going back to 1780, however using only monthly resolution. Fourthly, our analysis covers a large, transboundary area10

of around 160 000 km2 and a very large number of climate stations (490). Weather pattern classifications typically work with a

comparatively low number of stations, ranging from e.g. one station for Prague (Kyselý, 2007) to 84 stations for New Zealand

(Kidson, 1994).

Further, we analyse the newest generation of climate models from the Coupled Model Intercomparison Project Phase 5

(CMIP5). We investigate their ability to reproduce frequency, persistence, and seasonality of weather patterns. Wójcik (2015)15

emphasises the need to assess the reliability of GCMs prior to any statistical downscaling approach. Whereas Perez et al.

(2014) analysed the frequency of patterns over the north-east Atlantic and Belleflamme et al. (2013) examined frequency and

persistence of patterns over Greenland, so far no other study analysed seasonality as done here. Particularly for understanding

the role of climate change on flood flows, matching the seasonality is essential.

2 Data20

For the workflow proposed here, three different sets of climate data are needed: (1) data to establish the weather pattern

classification on, (2) compatible output of climate models with different greenhouse gas (GHG) forcings, i.e. same variables

and spatial coverage as (1), (3) observations from local climate stations in the investigated area (Rhine catchment) for all

meteorological variables of interest, preferably covering the same time period as (1).

To investigate the suitability of different climate variables to establish the weather pattern classification, long-term reanalysis25

fields can be used. We utilised the newly available ERA-20C – a gridded reanalysis data set from the ERA-CLIM project (Poli

et al., 2013). This data set is a pilot reanalysis of the 20th-century assimilating surface observations only and being forced by

a HadISST2.1.0.0 ensemble of sea-surface temperature and sea-ice conditions, available for the period 1900–2010. The 3- or

6-hourly data, depending on the variable, were aggregated to daily averages for this study. The spatial resolution of 1◦× 1◦

was chosen. There are finer resolutions available for ERA-20C, but the resolution of GCMs is not finer than 1.25◦× 0.94◦.30

The skill of different weather pattern classifications was assessed according to their ability to stratify climate station data

located in the Rhine catchment (Figure 1). Sets of daily precipitation, temperature (mean, min, max), relative humidity, and

global radiation data for the period 1901–2010 were available from the national meteorological services and kindly processed
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and quality controlled by the Potsdam-Institute for Climate Impact Research (PIK) (Österle et al., 2006). For the German part of

the catchment 432 stations were available, nine stations for the Austrian part, and 49 stations for Switzerland and Liechtenstein.

To date no data of meteorological stations in France were available. This set of 490 climate stations allows for the classification

results to be compared to a large and dense station network.

For the assessment of the effect of anthropogenic GHG emissions on changes in floods, data from modelling experiments5

with two different GHG forcings representing (a) the historical (natural+anthropogenic) GHG concentrations (All-Hist) and

(b) only natural GHG concentrations (Nat-Hist) are required. These experiments are available from a number of GCMs of the

CMIP5 project (Taylor et al., 2012). An overview on the models and the number of runs available for the All-Hist experiment

used here is given in Table 1. The model output is available in daily time steps, mostly starting as early as the mid-19th

century. All available runs were analysed in relation to the ability of different GCMs to replicate the frequency, persistence,10

and seasonality of weather patterns.

3 Methods

3.1 Weather pattern classification

Within the COST Action 733 “Harmonisation and Applications of Weather Type Classifications of European Regions” a col-

lection of circulation type classification approaches was compiled and made available (cost733class software: http://cost733.15

geo.uni-augsburg.de/cost733class-1.2/, Philipp et al., 2016). Included, among others, is the SANDRA classification method

(simulated annealing and diversified randomisation) which is “a non-hierarchical technique for minimising the sum of Eu-

clidean Distances within the classes” (Philipp, 2009). The method is similar to k-means clustering, but is able to get closer to

the global optimum instead of getting trapped in a local one. A detailed description of the method can be found in Philipp et al.

(2007). Several studies found a good or even superior performance of SANDRA compared to other classification methods (e.g.20

Beck and Philipp, 2010; Huth, 2010; Huth et al., 2008; Philipp, 2009; Philipp et al., 2016, 2007).

Available in the cost733class software are also methods for assigning new data to an already existing classification. This was

used to apply the selected classification to GCM data. The method takes data of the same spatial domain and resolution and

compares every case, i.e. day, to the centroids of the existing classification. The class with the smallest Euclidean Distance to

the respective case is assigned. In this way a catalogue (i.e. time series) of weather patterns can be obtained for every GCM25

data set, which can then be analysed and compared to the catalogue derived from reanalysis data (see subsection 4.2). Since

the GCMs do not necessarily have the same spatial resolution as the classification input, they were first linearly re-interpolated

to the same grid as the ERA-20C data.

By employing a weather pattern classification we are aiming towards providing a stratification of observed weather variables

such as precipitation, temperature, relative humidity and solar radiation (as required for the hydrological model). For use with30

the weather generator, it is desired to obtain a classification that provides patterns that are preferably as distinct as possible

from each other in terms of local weather characteristics. To derive an optimal classification, different characteristic variables,

e.g. msl, geopotential height, temperature, humidity, different spatial domains and different numbers of weather type classes

5
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can be tested. Historically, first classification were based on sea level pressure. An improvement of classifications and variable

stratification can be achieved by additionally considering geopotential height (Spekat et al., 2010; Nied et al., 2014). Given

the further aim of this classification to be used for downscaling of historical runs of CMIP5 models, geopotential height is

available only in a few runs and is thus excluded from our consideration.

Note that the term “weather (pattern) classification” is used to contrast the difference to air mass classifications, since surface5

weather variables are used here instead of variables defined at different tropospheric levels (Huth et al., 2008).

3.2 Finding optimal classification parameters

Here we tested different combinations of variables for weather type classification. Classifications on mean sea level pressure

(msl) are commonly applied (e.g. Philipp, 2009; Wilby and Quinn, 2013; Masson and Frei, 2014). Other frequently used

variables include geopotential height of different levels, thickness between different levels, vorticity and temperature at certain10

levels, or total column water vapour (e.g. Bárdossy et al., 2002; Anagnostopoulou et al., 2008; Nied et al., 2014; Philipp et al.,

2016). However our selection was restricted to variables that are also available from the GCM outputs. Goodess and Jones

(2002) state that temperature and humidity are the two most important variables to be included when using a circulation-

type approach for downscaling of rainfall. Thus we included temperature in 2 m (temp) (used, among other variables, in e.g.

Kalkstein et al., 1987) and specific humidity (hus, as e.g. in Hewitson and Crane, 2006). This led to four combinations of15

variables: msl, temp, msl+temp, msl+temp+hus.

Different options for the selection of a spatial domain were tested here: one covering the whole of Europe, others being

considerably smaller, partly focussing on the Rhine catchment, see Figure 2. One domain is identical to domain D07 in Philipp

et al. (2010), another one is a westward shifted version of it. The domain from Nied et al. (2014) was included as well.

A wide range of number of classes was tested to assess the power of classification: 9, 18, 27 (all frequently used, e.g. in20

Philipp et al., 2010; Huth et al., 2016), 40 (as in Nied et al., 2014; Philipp, 2009; Bissolli and Dittmann, 2001). Many authors

(e.g. Huth, 2010) consider 40 already a very large number, but e.g. Jones and Lister (2009) use 6–11 patterns per season, in

total 34. Thus, when establishing a classification for the whole year a greater number of classes can be useful.

These different parameter sets allow for 120 possible combinations which poses an intractable computational problem. To

break this number down in a reasonable way that still yields reliable results, firstly, some parameter values were prioritised25

(domains (lon/lat in degrees) -27 : 45 / 33 : 74 and -8 : 15 / 43 : 58, 18 and 40 classes). Secondly, four classification variables

were combined with four prioritised parameters and the best-performing variable (combination) was selected. This variable

was then combined with all spatial domains finding the optimal one. Finally, all number of classes were evaluated with the best

variable and domain. This reduces the number of combinations to 26, which is still a rather large computational effort.

3.3 Evaluation of classifications30

First of all it has to be clear, if the classification itself should be evaluated (i.e. stratification of the input variables, such as msl)

or if the stratification of other variables, such as precipitation, that were observed on days with certain weather patterns should

be evaluated based on the developed classification. The latter is needed here. Hence, given a certain classification catalogue,
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data from weather stations can be assigned to the patterns that occurred at the same day, resulting in a distribution of values

associated with each pattern. The distribution of values linked to a pattern can then be compared to the original (complete)

population of values.

The quality of a given classification can be evaluated using different statistical metrics. For example, Huth et al. (2008) and

Beck and Philipp (2010) give various quality measures, among them the Explained Variation (EV), and the so-called Pseudo-F5

statistic (PF). These are chosen, because EV is frequently used in similar applications and is easily understood, while PF has

the advantage of considering the number of classes and cases per class.

The Explained Variation (Equation 1) is defined as the ratio of the sum of squared deviations from the mean within classes

(WSS) and the total sum of squared deviations from the overall mean (TSS). In Equation 3 and Equation 4 k denotes the

number of classes (i.e. patterns), m is the number of dimensions (i.e. variables), n is the number of cases (i.e. days), and Cj10

denotes class/pattern j. Thus EV ranges between zero (poor) and one (perfect stratification).

The Pseudo-F statistic (PF, Equation 2) of Caliński and Harabasz (1974) is the ratio between the sum of squared deviations

between means of classes (BSS, Equation 5) and the sum of squared deviations within classes (WSS, Equation 4), weighted

by the number of classes and cases. A minimum of within-type variation (and maximum of distinction between types/classes)

is achieved by large values of PF, poor clustering is denoted by values close to zero.15

Both indices are usually applied to one meteorological variable at a time, thus evaluating the skill of the classification in

stratifying e.g. temperature or precipitation (Huth et al., 2016). When mapping each variable per weather pattern, it becomes

evident that some patterns might be very similar with regards to one (or more) variable(s), while being substantially different

in other variables. For example in Figure 3, the selected patterns no. 12, 14, and 33 have a very similar mean temperature for

the whole area but very different precipitation. A classification focussing only on one variable would neglect the variability of20

the others. We therefore evaluate the stratification with respect to both single- and multi-variate performance.

Each evaluation metric is applied to normalised climate data, derived separately for each station and aggregated as an area-

weighted average over the complete Rhine catchment.
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EV = 1− WSS

TSS
=

BSS

TSS
(1)

PF =
BSS/(k− 1)

WSS/(n− 1)
(2)

TSS =

n∑
i=1

m∑
l=1

(xil − x̄l)
2 (3)

WSS =

k∑
j=1

∑
i∈Cj

m∑
l=1

(xil − x̄jl)
2 (4)

BSS =

k∑
j=1

nj

m∑
l=1

(x̄jl − x̄l)
2 (5)5

4 Results

4.1 Stratification of local climate variables

4.1.1 Selection of classification variables

For selecting the classification variables, both evaluation metrics (EV and PF) point to the same choice (see Figure 4). The

multi-variate evaluation clearly suggests a classification including temperature (EV around 0.5). This preference is even10

stronger for single-variate evaluations of temperature (Tav, Tmin, Tmax) with explained variation (EV) around 0.75. For pre-

cipitation (PREC) the temp-only classification performs worst, though EV values are low for all classifications (EV < 0.2).

From the literature there is no evidence that other studies acquire considerably better results in similar analyses, but surpris-

ingly the exact values of their evaluation criteria are typically not given. Nevertheless this low skill needs to be discussed further

(see also subsubsection 4.1.3 and 5). Any classification including msl improves the stratification of precipitation compared to15

the classification based on temperature only. Thus a classification including both, temperature and mean sea level pressure

should be chosen to obtain a reasonably good stratification of all variables.

For relative humidity (HUMID) and global radiation (RAD) the same relation between classifications as for temperature

was found (classification including temp better than msl only), although the differences between classifications for HUMID

are small. Including specific humidity as classification variable slightly improves the stratification of all variables. Thus the20

classification on msl+temp+hus was finally selected. This selection holds the additional advantage of a strong seasonal restric-

tion of pattern occurrence. While patterns from a msl-only classification show only weak seasonality (i.e. each patterns might

occur in any month throughout the year), the use of raw values (i.e. no anomalies) of temperature and specific humidity con-
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fines each pattern to a specific season with a clear peak of occurrence in a certain month. This allows to use one classification

for the whole year instead of using separate classifications for each season, as frequently done in other studies.

For both metrics and all meteorological variables the smaller spatial domains deliver better results (Figure 5). The three

smallest domains (coloured in purple, orange, yellow) differ only in their exact location, but are of roughly the same size. The

orange domain, gives slightly better results for all variables and was chosen for further analysis.5

The choice of an optimal number of classes is less obvious (Figure 5). The analysis of the EV shows a slight tendency

for a greater number of classes, whereas PF prefers a lower number. However, for the use with a weather generator, a high

number of classes with consequently narrow distributions for each class are preferred. At the same time a sufficient amount

of observations per class are needed for fitting the distributions. Considering this tradeoff a classification with 40 classes was

selected here.10

Average values of meteorological variables per pattern of the final classification are shown in Appendix A Figure 11–16.

4.1.2 Comparison to other classifications

The selected classification was compared with the Hess-Brezowsky-Grosswetterlagen (GWL) catalogue of circulation patterns,

to the classification after Nied et al. (2014), and to two experiments where only one parameter of the selected classifcation was

modified (Figure 6): A classification based on a coarse grid (2.5◦× 2.5◦ instead of 1◦× 1◦), and one using 100 classes (as in15

Perez et al., 2014). A comparison to the well-established Hess-Brezowsky-Grosswetterlagen (GWL) (applied in e.g. Kyselý,

2007; Fleig et al., 2015) shows that GWL performs inferior to our classification with EV values not exceeding 0.1. The

stratification skill obtained by GWL is best comparable to a classification based on msl only, but is inferior when including

other variables into the classification scheme. The classification based on 500 hPa geopotential height, 500 hPa temperature

and total column water vapour as used by Nied et al. (2014) performs equally well as the selected classification with only20

slightly lower skill values.

ERA-20C data were originally used with 1◦×1◦ resolution. A coarser resolution of 2.5◦×2.5◦ results in an identically good

stratification. Hence small-scale features that might be present in a high-resolution reanalysis data set do not distort the results,

which is also true for a classification extent covering all of Europe (not shown here).

A last test was dedicated to the number of patterns: 100 patterns as in Perez et al. (2014) were tested, confirming the general25

tendency (increasing EV, decreasing PF values for increasing number of classes), although the improvement of EV seems to

level off for high number of classes, meaning that the gain in stratification skill is only minimal.

4.1.3 Stratification skill for precipitation

The stratification skill (i.e. EV and PF values) is rather low for precipitation, but maps of mean pattern precipitation (Figure 12)

indicate distinct precipitation patterns. Therefore a more detailed investigation of explained variance for individual patterns was30

done. EV can be expressed as the sum of EV values for individual patterns weighted by the respective relative frequency of the
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pattern (nj/n):

EV =

k∑
j=1

nj

n
·EVj ; with (6)

EVj =
(x̄j − x̄)2

TSS/n
(7)

This allows to analyse the contribution of each pattern to the overall EV value. Figure 7 shows the cumulated EVj values of each

pattern. In an idealised case where mean precipitation and frequency of occurrence are uniformly distributed among all types5

Equation 6 describes (as an integral over a square) a cubic function with a saddle point at the overall mean precipitation. Patterns

associated with the tails of the distribution would contribute most to the overall EV, while average types have contributions

close to zero (because their mean is close to the overall mean, thus the deviation between both is small, resulting in near-zero

EVj).

However, in the case of precipitation, patterns with below-average mean precipitation contribute only little to the overall10

EV, because the overall mean is rather small (2.4 mm) and hence the deviation between the mean of low-precipitation patterns

and the overall mean is small. This applies to more than half of all patterns (24 out of 40). Most EV contribution is gained by

patterns with very high precipitation – 50% of total EV is contributed by the seven patterns with highest precipitation. This

behaviour is clearly originating from the strongly right skewed distribution of precipitation. Thus, the small skill values can be

considered inherent to precipitation.15

Additionally analysing precipitation frequency and intensity per pattern (not shown) reveals that the variations in Figure 12

are mainly caused by pattern-specific precipitation frequency.

4.2 Performance of GCMs

After selecting the most appropriate classification, all GCMs (15 models with up to 10 runs for experiment All-Hist) were

assigned to the centroids of the final classification, resulting in a catalogue (i.e. time series) of patterns for each GCM run.20

These time series were compared to the catalogue derived from the reanalysis data to assess the ability of GCMs to reproduce

the weather pattern climatology in terms of frequency, seasonality, and persistence as suggested e.g. by Bárdossy et al. (2002).

Seasonality is evaluated by the first, last, and peak month of pattern occurrence. All patterns show a distinct seasonality. Each

season is characterised by a limited number of consecutive months in which a pattern occurs. We evaluate the beginning (i.e.

first month) and end (i.e. last month) of pattern occurrence. The peak month is defined as the month with highest number25

of days with pattern occurrence. Some patterns show two distinct seasons. In this case both seasons are evaluated separately.

Results from different runs of each GCM are averaged.

4.2.1 Frequency of patterns

The frequency of patterns as obtained from each GCM run was compared to pattern frequencies in the reanalyses data (Fig-

ure 8). The time series are compared for the whole period, i.e. no separation by seasons or individual years was done. Especially30
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for patterns with high mean daily precipitation a good agreement between reanalysis and GCM (All-Hist) would be desirable

(maps of average daily values in the Appendix A, Figure 11-16). Frequencies for different runs of one GCM were averaged,

but differences between runs are much smaller (usually less than 0.5 %) than between GCMs. The deviations between reanal-

yses and GCM frequencies are highly diverse for different patterns, e.g. pattern 30 – a high-precipitation pattern with more

than 6 mm per day on average (see Appendix A, Figure 12) is well-reproduced, while some GCMs have difficulties to match5

e.g. patterns 11 or 39. No clear season-specific deviations were found – some models have higher deviations in winter, oth-

ers in summer (not shown). For eight patterns all GCMs underestimate the frequency found in the reanalysis and for other

seven patterns all GCMs overestimate the frequency. By having a closer look into this behaviour, it becomes apparent that

particularly cold weather patterns (1, 12, 14, 21, 33, 34, 37) are underestimated, although the warm pattern 27 is also underesti-

mated. Apparently, all GCMs have difficulties in reproducing these weather patterns. However, it goes beyond the scope of this10

manuscript to analyse the genesis of these weather patterns and why GCMs are not capable to capture them well. With regards

to the overestimated patterns (3, 6, 7, 11, 20, 23, 35), they show a tendency towards average to above-average precipitation.

But other, high precipitation patterns seem to be well-captured. The remaining 25 patterns enclose the reanalysis values in

their range. Among the models with an overall good performance in terms of frequency are CNRM-CM5, GFDL-CM3, and

HadGEM2-ES, while the models BCC-CSM1.1, CCSM4, IPSL-CM5A-LR, MIROC-ESM, and MIROC-ESM-CHEM show15

highest deviations from the reanalyses. In the work of Belleflamme et al. (2014) which uses a similar set of GCMs, three of

these bad performing models were found to have best rankings in reproducing pattern frequency (in summer), which shows

that statements about GCM performance are somewhat depending on the actual application and its geographic focus.

4.2.2 Seasonality

The seasonality of patterns in terms of the earliest and last months of occurrence in the course of the year, and the most frequent20

month of occurrence is generally well reproduced, even for patterns with two peaks (Figure 9). While start and end are often

matched perfectly, the peak months deviate more often, but usually by not more than one or two months. A deviation of one

month is considered an acceptably good performance. This good reproduction of pattern seasonality is certainly due to the use

of variables with a strong seasonal cycle (temperature and specific humidity) for classification – near-surface temperature and

its gradient between continent and sea gives very season-specific patterns that are beneficial for the seasonal stratification of25

weather patterns.

Most GCMs are able to reproduce the correct start months in 16 to 34 patterns, the highest amount of mismatched patterns

(20 or more) are found in BCC-CSM1.1, BNU-ESM, MIROC-ESM, and MIROC-ESM-CHEM. The correct end months are

reproduced in 18 to 32 patterns. Only one GCM with more than 20 mismatched patterns was found (BCC-CSM1.1) and 15 or

more mismatches occurred in BNU-ESM and CESM1-CAM5. Models BCC-CSM1.1, BNU-ESM, IPSL-CM5A-LR, MIROC-30

ESM, MIROC-ESM-CHEM, and MRI-CGCM3 fail in more than half of all patterns to match the peak months. All GCMs are

generally slightly better in capturing the correct start and end month of summer or winter patterns compared to spring/autumn

patterns.
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4.2.3 Persistence

Finally the persistence of patterns is assessed as the number of consecutive days with the same weather pattern. In Figure 10

the average duration in reanalysis data is compared to the duration in GCMs. The mean duration of patterns is mainly around

2 days, which is usually well represented by the GCMs. Deviations from the persistence of reanalysis data that are greater than

1 day were only found in very few patterns (14, 39), usually mean persistence deviates by less than 1 day.5

Best agreement between reanalyses and GCMs was found for CESM1-CAM5, CNRM-CM5, GFDL-CM3, and HadGEM2-

ES, while greatest deviations occurred for BCC-CSM1.1, CSIRO-Mk3.6.0, IPSL-CM5A-LR, MIROC-ESM, and MIROC-

ESM-CHEM. There is no general difference in deviation from reanalysis for different seasons, though most GCMs are match-

ing persistence of spring/autumn patterns slightly better than persistence of summer or winter patterns. Other studies found

patterns to last longer than in our case (e.g. Kyselý, 2007, who found mean persistence for Hess-Brezowsky-Grosswetterlagen10

of 4.3–5.2 (and up to 6.2) days), which might be due to our comparatively large number of patterns.

5 Discussion

5.1 On the optimal classification

This study derives an “optimal” weather pattern classification for the Rhine catchment and investigates to which extent weather

patterns are able to stratify local climate variables. Furthermore, the ability of the latest GCM generation to reproduce these15

weather patterns is evaluated in terms of frequency, seasonality and persistence. The particularities of this study, compared to

past studies on weather pattern classifications, include (1) the investigation of the skill of several classification variables, (2)

the large number of local weather variables used for classification evaluation, (3) the large study area (160 000 km2) and the

very high number of climate stations (490), and (4) the use of long time series (111 years).

It has been argued that there is no “best” classification and that the optimal solution depends on the specific application20

and region. The best classification for the Rhine catchment was achieved with a combination of mean sea level pressure,

temperature and specific humidity as classification variables. Often, weather patterns are classified on pressure fields only.

Our results suggest that adding humidity and temperature, which exhibits a distinct seasonal cycle, as classification variable

improves the stratification of local climate variables considerably and support the findings of Goodess and Jones (2002).

Including temperature as classification variable, yields a very good stratification of weather patterns throughout the year, i.e.25

weather patterns also show a distinct seasonality. In this way a single classification can be used for the whole year, and there is

no need to provide different classifications for each season separately contrary to classifications based solely on mean sea level

pressure.

Concerning the number of classes, our results do not give a clear indication about the optimal number. We have selected a

comparatively large number, i.e. 40 patterns. This selection is in line with other studies that compared classifications. Philipp30

(2009) found for SANDRA classifications that best skills are reached for class numbers greater than 30. Tveito (2010) com-

pared 73 classifications from the COST733 collection of classifications catalogues and found best performances for high
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numbers of classes; generally for the same classification method a solution with more types performed better. The ten best

classifications had at least 26 classes and the best three classifications had 30, 40, and 29 types, respectively. Of course, the

decision about the number of classes is guided by the purpose of the classification and the data availability. The stratification

of local climate variables into a large number of classes requires sufficient amount of data. Our sensitivity analysis with 100

weather patterns clearly indicated worse performance compared to the classification based on 40 patterns. But in general, a5

larger number of classes is advisable if not limited by the amount of available data.

In terms of spatial domain, the best results are obtained for rather small classification areas covering the target area. Increas-

ing the classification domain covering the whole of Europe slightly aggravates the stratification of local variables, particularly

of temperature. It is however, difficult to draw generalisations with regards to the selection of the spatial domain given our

results.10

The “optimal” classification is only partially able to stratify local climate variable, i.e. the classification explains a modest

share of the local climate variability. EV values, averaged across all 490 stations in the Rhine catchment, are in the range

of 10–20% for precipitation, 70–80% for temperature, 10–20% for humidity and 40% for radiation. Hence, especially local

precipitation and humidity are governed by processes that are not completely represented by the large-scale distribution of

pressure, temperature and humidity. This result questions the widespread downscaling approaches that are based on weather15

pattern classification. The within-type variability dominates versus the between-type variability, at least for local precipitation

and humidity. Before applying the weather pattern based downscaling approach, it should therefore be investigated whether the

link between the large-scale synoptic situation and the local climate variable of interest is strong enough for the given purpose.

Although downscaling approaches based on weather patterns are widespread, there are not many studies that have assessed

the skill of weather patterns for stratifying local climate variables. The available studies report skill values that are comparable20

to our results. For example, Osborn and Jones (2000) found large residuals between precipitation predicted from circulation

indices and observed precipitation. Enke and Spekat (1997) obtained 20.5% of explained variation for precipitation and 80.9%

for mean temperature. Huth et al. (2016) compared a large number of classifications from COST ACTION 733 using different

classification methods, numbers of patterns, spatial domains, classification variables, sequence lengths of 1 or 4 days. For all

domains and classification settings they obtained EV values of max. 0.33 for precipitation and max. 0.46 for mean temperature.25

The much higher values for temperature in our study can be explained by the use of 2 m temperature as additional classification

variable. Our classification using only sea level pressure obtains similarly low values. For those classifications that are best

comparable to our study, i.e. method SANDRA, whole year, 1-day sequence, classification on sea level pressure, 9, 18, or

27 types, comparable spatial domain, they obtain EV values of 0.07–0.28 for temperature and 0.08–0.27 for precipitation.

These results are averages across all seasons, whereas the results for the winter are generally better. The study of Enke et al.30

(2005b) suggested that classifications that are highly optimised towards a certain local climate variable, such as precipitation,

may have significantly better skill than classifications for several variables. However, highly optimised classifications have the

disadvantage that their skill deteriorates when applied for other target variables.

Downscaling using the weather pattern approach is based on the assumption of a time-constant relationship between patterns

and local climate variables. Instationarities in the relationship between weather types and local variables is a long-debated issue35
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in downscaling (IPCC, 2007), and several studies indicated their presence (e.g. Widmann and Schär, 1997; Beck et al., 2007;

Haberlandt et al., 2015). Those classifications were, however, based on sea level pressure only (Beck et al., 2007; Haberlandt

et al., 2015) or additionally included geopotential height (Widmann and Schär, 1997). The addition of temperature and specific

humidity might provide a better classification also in terms of capturing transient changes in local climate by changes in

weather pattern sequencing. This suggestion is supported by the regional climate simulations of Schär et al. (1996). For the5

European Alps, they found that increased warming can lead to larger moisture fluxes and larger precipitation rates even when

the synoptic situation remains unchanged. Thus, it should be further investigated whether classifications that are based on

additional variables besides pressure fields show less instationarity in the link between synoptic situation and local climate.

5.2 On the skill of GCMs

Concerning the skill of the latest generation of GCMs to reproduce these weather patterns, we find that the main characteristics10

of weather patterns derived from ERA20C reanalysis data are well represented in GCMs that are forced with observed GHG

concentrations. Interestingly, the performance of GCMs is usually similar for a certain GCM for the analysed characteristics, i.e.

frequency, seasonality, or persistence of patterns. This result suggests that some GCMs are much better suited for downscaling

based on weather pattern classifications. Others should be excluded or their results should at least be interpreted with greatest

care. From the results obtained, it would be advisable not to consider the models BCC-CSM1.1, MIROC-ESM, and MIROC-15

ESM-CHEM. This would leave 12 GCMs with acceptable performance. However, it should be noted that the skill of GCMs

may depend on the specific classification, i.e. the classification variables and the region. Another classifications might result in

a different ranking of GCMs.

6 Conclusions

In the scope of an attribution study aimed at quantifying the role of climate change, in particular the contribution of anthro-20

pogenic climate change, to changes in flood flows in the Rhine catchment, we developed a weather pattern classification.

This classification is intended to be used for downscaling of general circulation model outputs with a multi-site, multi-variate

weather generator. An optimal classification was selected by evaluating four different combinations of classification variables

based on the ERA20C reanalysis data, by testing six spatial domains and four numbers of classes. The best stratification of

local variables (daily precipitation, humidity, radiation, and mean, minimum, and maximum temperature) was obtained when25

using 40 classes from the SANDRA classification, with sea level pressure, temperature and specific humidity combined over a

relatively small Central European domain. The performance of different classifications was assessed with Explained Variation

(EV) and Pseudo-F statistic. The optimal classification showed rather high EV (similar to Pseudo-F statistic) for single vari-

ables except precipitation and humidity. A multi-variate evaluation demonstrates that the classification is reasonable, although

single variables are not very well stratified. Different weather patterns can be similar in one variable (e.g. temperature), but30

exhibit very distinct behaviour in others (e.g. precipitation). Often, weather patterns are classified on pressure fields only. Our

results suggest that adding humidity and temperature as classification variables improves the stratification considerably. This
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results in a very good stratification of weather patterns throughout the year. In this way a single classification can be used for

the whole year, and there is no need to provide different classifications for each season. Adding further classification variables

to pressure fields may also alleviate the often encountered problem that the link between the synoptic situation and the local

climate is not constant in time.

GCMs should properly reproduce the climatology of weather patterns in order to be applicable for the attribution of flood5

changes. Hence, the performance of 15 GCMs from the CMIP5 project in matching the climatology of ERA20C reanalysis in

terms of frequency, seasonality (month of occurrence) and persistence (number of consecutive days) of weather patterns was

evaluated. The frequency of weather patterns is matched well by the majority of GCMs with a few GCMs showing systematic

deviations. No season-specific deviations were found. Due to the use of temperature for pattern classification, the seasonality

of weather patterns matched well in most of the GCMs. All GCMs were found able to better capture the seasonality of summer10

and winter patterns compared to spring and autumn ones. The mean duration of patterns was about 2 days with most GCMs

being able to reproduce this persistence. Overall, three GCMs BCC-CSM1.1, MIROC-ESM, and MIROC-ESM-CHEM were

found to systematically deviate from the reanalysis weather pattern climatology. The variation between different realisations

of one GCM was found small compared to the difference between various GCMs.

Appendix A: Maps of meteorological mean values for each pattern15

Author contributions. All authors contributed to the experiment design and the manuscript. A. Murawski performed the computations and

created the figures.

Acknowledgements. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is respon-

sible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model

output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating sup-20

port and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. (from

http://cmip-pcmdi.llnl.gov/cmip5/citation.html)

The ECMWF ERA-20C Reanalysis data used in this study were obtained from the ECMWF Data Server (http://www.ecmwf.int).

We gratefully appreciate the provision of data by the national meteorological services of Germany, Austria, and Switzerland, kindly

provided and processed by the Potsdam-Institute for Climate Impact Research (PIK).25

Help and discussion on the classification software cost733class by Dr. Tobias Pardowitz (FU Berlin) is greatly appreciated.

A. Murawski acknowledges funding by Climate KIC.

15

http://cmip-pcmdi.llnl.gov/cmip5/citation.html
http://www.ecmwf.int


References

Anagnostopoulou, C., Tolika, K., Maheras, P., Kutiel, H., and Flocas, H. A.: Performance of the general circulation HadAM3P model in

simulating circulation types over the Mediterranean region, International Journal of Climatology, 28, 185–203, doi:10.1002/joc.1521,

2008.

Bárdossy, A. and Plate, E. J.: Modeling daily rainfall using a semi-Markov representation of circulation pattern occurrence, Journal of Hy-5

drology, 122, 33–47, doi:10.1016/0022-1694(91)90170-M, http://www.sciencedirect.com/science/article/pii/002216949190170M, 1991.

Bárdossy, A. and Plate, E. J.: Space-time model for daily rainfall using atmospheric circulation patterns, Water Resources Research, 28,

1247–1259, doi:10.1029/91WR02589, 1992.

Bárdossy, A., Stehlík, J., and Caspary, H.-J.: Automated objective classification of daily circulation patterns for precipitation and temperature

downscaling based on optimized fuzzy rules, Climate Research, 23, 11–22, 2002.10

Beck, C. and Philipp, A.: Evaluation and comparison of circulation type classifications for the European domain, Physics and Chemistry of

the Earth, 35, 374–387, doi:10.1016/j.pce.2010.01.001, 2010.

Beck, C., Jacobeit, J., and Jones, P. D.: Frequency and within-type variations of large-scale circulation types and their effects on low-

frequency climate variability in central europe since 1780, International Journal of Climatology, 27, 473–491, doi:10.1002/joc.1410,

2007.15

Belleflamme, A., Fettweis, X., Lang, C., and Erpicum, M.: Current and future atmospheric circulation at 500 hPa over Greenland simulated

by the CMIP3 and CMIP5 global models, Climate Dynamics, 41, 2061–2080, doi:10.1007/s00382-012-1538-2, 2013.

Belleflamme, A., Fettweis, X., and Erpicum, M.: Do global warming-induced circulation pattern changes affect temperature and precipitation

over Europe during summer?, International Journal of Climatology, 35, 1484–1499, doi:10.1002/joc.4070, 2014.

Bettolli, M. L. and Penalba, O. C.: Synoptic sea level pressure patterns-daily rainfall relationship over the Argentine Pampas in a multi-model20

simulation, Meteorological Applications, 21, 376–383, doi:10.1002/met.1349, 2012.

Bissolli, P. and Dittmann, E.: The objective weather type classification of the German Weather Service and its possibilities of application

to environmental and meteorological investigations, Meteorologische Zeitschrift, 10, 253–260, doi:10.1127/0941-2948/2001/0010-0253,

2001.

Bosshard, T., Kotlarski, S., Zappa, M., and Schär, C.: Hydrological Climate-Impact Projections for the Rhine River: GCM–RCM Uncertainty25

and Separate Temperature and Precipitation Effects, Journal of Hydrometeorology, 15, 697–713, doi:10.1175/jhm-d-12-098.1, 2014.

Brands, S., Herrera, S., Fernández, J., and Gutiérrez, J. M.: How well do CMIP5 Earth System Models simulate present climate conditions

in Europe and Africa?, Climate Dynamics, 41, 803–817, doi:10.1007/s00382-013-1742-8, 2013.

Brinkmann, W. A. R.: Within-type variability of 700 hPa winter circulation patterns over the Lake Superior basin, International Journal of

Climatology, 19, 41–58, 1999.30

Brinkmann, W. A. R.: Modification of a correlation-based circulation pattern classification to reduce within-type variability of temperature

and precipitation, International Journal of Climatology, 20, 839–852, 2000.

Brisson, E., Demuzere, M., Kwakernaak, B., and Van Lipzig, N. P. M.: Relations between atmospheric circulation and precipitation in

Belgium, Meteorology and Atmospheric Physics, 111, 27–39, doi:10.1007/s00703-010-0103-y, 2010.

Bürger, G.: Expanded downscaling for generating local weather scenarios, Climate Research, 7, 111–128, https://www.35

researchgate.net/profile/Gerd_Buerger/publication/250221495_Expanded_downscaling_for_generating_local_weather_scenarios/links/

02e7e52c52c9d80ad5000000.pdf, 1996.

16

http://dx.doi.org/10.1002/joc.1521
http://dx.doi.org/10.1016/0022-1694(91)90170-M
http://www.sciencedirect.com/science/article/pii/ 002216949190170M
http://dx.doi.org/10.1029/91WR02589
http://dx.doi.org/10.1016/j.pce.2010.01.001
http://dx.doi.org/10.1002/joc.1410
http://dx.doi.org/10.1007/s00382-012-1538-2
http://dx.doi.org/10.1002/joc.4070
http://dx.doi.org/10.1002/met.1349
http://dx.doi.org/10.1127/0941-2948/2001/0010-0253
http://dx.doi.org/10.1175/jhm-d-12-098.1
http://dx.doi.org/10.1007/s00382-013-1742-8
http://dx.doi.org/10.1007/s00703-010-0103-y
https://www.researchgate.net/profile/Gerd_Buerger/ publication/ 250221495_Expanded_downscaling_for_generating_local_weather_scenarios/links/02e7e52c52c9d80ad5000000.pdf
https://www.researchgate.net/profile/Gerd_Buerger/ publication/ 250221495_Expanded_downscaling_for_generating_local_weather_scenarios/links/02e7e52c52c9d80ad5000000.pdf
https://www.researchgate.net/profile/Gerd_Buerger/ publication/ 250221495_Expanded_downscaling_for_generating_local_weather_scenarios/links/02e7e52c52c9d80ad5000000.pdf
https://www.researchgate.net/profile/Gerd_Buerger/ publication/ 250221495_Expanded_downscaling_for_generating_local_weather_scenarios/links/02e7e52c52c9d80ad5000000.pdf
https://www.researchgate.net/profile/Gerd_Buerger/ publication/ 250221495_Expanded_downscaling_for_generating_local_weather_scenarios/links/02e7e52c52c9d80ad5000000.pdf


Cahynová, M. and Huth, R.: Circulation vs. climatic changes over the Czech Republic: A comprehensive study based on the COST733

database of atmospheric circulation classifications, Physics and Chemistry of the Earth, 35, 422–428, doi:10.1016/j.pce.2009.11.002,

2010.
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Figure 1. Locations of climate data stations used. See text for more details on single data sets. Dark red line shows Rhine catchment, black

lines denote state borders.
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Figure 2. Spatial domains of weather pattern classifications in degree of geographic longitude/latitude. Dark grey polygon shows location of

Rhine catchment. Domain 3 : 26 / 43 : 58 as in Philipp et al. (2010), region D07; -15 : 30 / 35 : 70 as in Nied et al. (2014).
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Figure 3. Average daily values of meteorological variables for example patterns 12, 14, and 33 to emphasise the need of multi-variate

evaluation of weather pattern classifications (Tav – average temperature, PREC – precipitation, RAD – global radiation, HUMID – relative

humidity). Black line show state borders, grey outline denotes Rhine catchment.
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Figure 4. Evaluation metrics for the selection of classification variables (x-axis). Weather variables from station data in columns. Note log

scaling of PF.
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Figure 6. Comparison of selected classification from subsubsection 4.1.1 (original) and other classifications: Hess-Brezowsky-

Grosswetterlagen (GWL), classification variables as in Nied et al. (2014), a classification on a coarse grid, and one with 100 classes.
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Figure 8. Relative frequency of patterns in GCMs (coloured dashes) compared to frequency in reanalysis data (black dashes).

Table 1. Overview on GCMs used (http://esgf-data.dkrz.de/).

Resolution

Model Institute ID Country Period Lon × Lat Runs

BCC-CSM1.1 BCC China 1850 – 2012 2.8 × 2.8 3

BNU-ESM GCESS China 1950 – 2005 2.8 × 2.8 1

CanESM2 CCCMA Canada 1850 – 2005 2.8 × 2.8 5

CESM1-CAM5 NSF-DOE-NCAR USA 1850 – 2005 1.2 × 0.9 1

CNRM-CM5 CNRM-CERFACS France 1850 – 2005 1.4 × 1.4 10

CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 1850 – 2005 1.9 × 1.9 10

GFDL-CM3 NOAA-GFDL USA 1860 – 2005 2.5 × 2.0 3

GFDL-ESM2 M NOAA-GFDL USA 1861 – 2005 2.5 × 2.0 1

HadGEM2-ES MOHC UK 1859 – 2005 1.9 × 1.2 4

IPSL-CM5A-LR IPSL France 1850 – 2005 3.8 × 1.9 6

IPSL-CM5A-MR IPSL France 1850 – 2005 2.5 × 1.3 3

MIROC-ESM MIROC Japan 1850 – 2005 2.8 × 2.8 3

MIROC-ESM-CHEM MIROC Japan 1850 – 2005 2.8 × 2.8 1

MRI-CGCM3 MRI Japan 1850 – 2005 1.1 × 1.1 5

NorESM1-M NCC Norway 1850 – 2005 2.5 × 1.9 3
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Figure 9. Comparison of seasonality of patterns in GCMs (coloured vertical dashes) and reanalysis data (black horizontal dashes). Seasonality

is presented as start month(s) (upper panel), peak month(s) (middle panel) and end month(s) (lower panel) of occurrence of patterns. Dashes

for GCMs are only vertical to avoid overlapping – each symbol denotes one distinct month. If pattern occurs in two distinct seasons, both are

shown.
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Figure 10. Persistence of patterns (mean number of consecutive days with same pattern) in GCMs (coloured dashes) compared to persistence

on reanalysis data (black dashes).
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Figure 11. Average (over all days with the respective pattern) mean temperature for all weather patterns. Black lines denote state borders,

grey line Rhine catchment.
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Figure 12. As in Figure 11, but for daily precipitation.
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Figure 13. As in Figure 11, but for global radiation.
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Figure 14. As in Figure 11, but for relative humidity.
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Figure 15. As in Figure 11, but for daily maximum temperature.
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Figure 16. As in Figure 11, but for daily minimum temperature.
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