
Reviewer #1:  

We thank the reviewer for his/her constructive comments on our manuscript and provide point-
by-point response hereafter. 

There was an initial reaction upon studying the manuscript: 40 patterns?? Are you serious??  

Yes, we are. Number 40 for the number of classes is not unusual (Philipp et al., 2009). We give 
various reasons in the discussion (p 17f) and in chapter 3.2 for choosing this number of classes. 
Among others, we need high stratification of variables for a multi-variate weather generator, 
which will be subsequently used for global model downscaling. This is best apporoached by a high 
number of classes. The availability of a long daily time series of daily climate observations (111 
years) in the Rhine catchment further justifies our selection. 

Then another question arose: Are pressure fields as classification a good basis for the 
stratification of data? There is good experience with using relative topography instead (Spekat et 
al., 2010 – reference is given at the end).  

No doubt, there are other suitable variables to be used for a classification besides pressure fields. 
By the way, our ‘optimal’ classification is based on a combination of sea level pressure, 
temperature and humidity.  As we stated in chapter 3.2: “However our selection was restricted 
to variables that are also available from the GCM outputs.” Since the classification is to be used 
for an attribution study later on, we need to select variables for classification that are available 
for “historical” and “historicalNat” runs of the CMIP5 project. To date geopotential height is only 
available for 3 Models (10 runs in total) of the historicalNat experiment and 9 Models of the 
historical experiment. Thus, we would reduce our data base considerably if we decided to use 
geopotential height or any parameter derived from that. Geopotential height is related to 
temperature and pressure. We show in Fig. 6 that a classification that uses geopotential height 
(among other variables) does not perform better than our ‘optimal’ classification, which includes 
mean sea level pressure and temperature.  

The authors do not go into seasonality when analyzing their data. There is contrary experience 
from the COST733 Action on classification methods (in the meantime, the results of that COST 
Action have been made publicly available, see reference at the end). Plus there is experience 
towards great usefulness of seasonality in classification, indicated, e.g., in Spekat et al. (2010).  

We do mention (and evaluate) the seasonality of our patterns (chapter 4.1.1 p 10). We show a 
distinct pattern seasonality due to the use of temperature as classification variable. By using 
absolute temperature (not anomalies) and a relatively large number of patterns, we achieve 
seasonal pattern stratification. We do not establish one classification per season, i.e. we “allow” 
our patterns to assign to their respective season by themselves (and to move within the year 
under the effect of climate change, if necessary). To make it short: we account for seasonality 
implicitly (in contrast to other studies that use one separate classification per pre-defined 
season). 

Thanks for pointing out to the COST733 Action final report. Many (most) results of the report 
have been already published some years ago and we are well aware of them (many being cited 
in the manuscript). 

Usage of E-OBS data – Fig. 1 only shows 8 E-OBS grid points. Text mentions 10. Moreover in Fig. 
1: Poor choice of colours for dots.  

The figure has been adapted, thanks for pointing this out. Regarding the 10 E-OBS points: it is 10, 
just two of them are very close to the dark red line denoting the Rhine catchment – probably they 
have been overseen with the previous set of colours. 

From page 5 on the line numbering is irritatingly confusing. Just look at the repetition of line 
number 5 on page 5…  



True… the manuscript has been compiled using HESS’ Latex template. Apparently something went 
wrong. It is fixed now. 

Section 3.2 page 7 line 12: Maybe relative topography is not directly available, but contributing 
geopotentials can be easily extracted and the retop could be easily computed.  

See answer to the second comment. 

Page 7 line 14 – and I mean the second appearance of this line (sigh…) beginngin with “(extents 
“ it must be made more clear that these numbers refer to geographic degrees of latitude and 
longitude.  

This has been adapted now in the text (last paragraph of 3.2) and in the caption of figure 2. 

Page 10 figure 3: Not clear what the numbers “12” , “14” and “33” on the right-hand side of the 
array of figures mean. I would furthermore recommend to deliberately use different colour 
schemes for different parameters, so they can be better distinguished. Even if the authors would 
not follow this suggestion at least they should reverse the assignment of the colours (left side 
red, right side blue) for PREC and HUMID since blue would then point to wet condition which 
suits the intuition better. More a thought than a substantial comment: All selected patterns are 
rather cold/have rather low radiation, so perhaps one would like to see examples for classes 
which denote different conditions.  

The numbers 12, 14, and 33 indicate the pattern number that have been selected. This has been 
pointed out now in the text (second last paragraph of 3.3) and in the caption of figure 3. 

The colour scales have been adapted. 

Regarding the comment concerning pattern selection: the point of this selection is to show 
patterns that are very similar in some variables (in this case temperature and radiation), but differ 
in other variables (here: precipitation and humidity). This aims at pointing out the need of multi-
variate classification as we describe in the second last paragraph of 3.3. 

Page 10 line 8 I have doubts if retaining the absolute values is a good approach when you have 
season-specific classes. Particularly temperature is way different from season to season. So au 
contraire to what the authors write, anomalies are a good way forward because they cover a 
similar value range in all seasons. Moreover, there is the experience that a further reduction in 
the number of classes is possible by using anomalies (this would be favourable in the light of the 
big set of 40 classes used by the authors). 

We would like to refer  the reviewer to our answer to his/her third comment. We do not define 
the patterns explicitly for each season. This is basically achieved through using the absolute 
values for temperature as classification variable. The advantage is that we have a continuous 
sequence of patterns. The fact that each pattern occurs only in a rather limited number of months 
is solely due to the usage of absolute temperature values for classification. We do know that 
anomalies are used in many other papers and we are well aware that the annual signal of 
temperature dominates our classification. See e.g. second paragraph of 4.1.1. Nevertheless, 
regarding the future use of that classification (downscaling tool in climate change attribution), 
we appreciate the seasonal restriction of patterns. 

Page 11 figure 4: I suggest to add y-axis labels on the right-hand side, too. Further suggestion: 
Use open triangle and open circles which are better visible in case of overlaps, and those do 
appear frequently.  

The figure have been updated using open symbols now. However, we would like to refrain from 
adding a second y axis. The grid lines in the plots should be sufficient to guide the reader’s eye. 

Page 12 figure 5: It would be could to have the results for four different class number shown at 
least for one more extent (or domain size, as one might better call it).  



We would prefer to refrain from that as well. The parameter selection follows a clear strategy, as 
we point out in the last paragraph of 3.2: 1. Select variable, 2. Select spatial domain, 3. Select 
number of classes. Adding further information into the figures would jeopardize its clarity. 

Page 12 line 14: “increasing EV” - this is very minute if you look at it. Therefore I suggest to write 
“almost no change”.  

The mentioned paragraph states: “(…) confirming the general tendency (increasing EV, decreasing 
PF values for increasing number of classes), although the improvement of EV seems to level off 
for high number of classes, meaning that the gain in stratification skill is only minimal.” – 
Increasing tendency refers to the fact that a higher number of classes results in higher EV values 
(which is evident from figure 5). Of course, as the reviewer has mentioned, the difference in EV 
between the 40 and the 100 pattern classification is minute, that’s why we added “although the 
improvement of EV seems to level off for high number of classes”. But, we think in the presented 
context the statement is valid and we prefer to keep it as is. 

Page 14 figure 7: I am amazed how relatively even the frequency distribution is. Expectation 
would be that some classes would be quite rare. Furthermore: is the property displayed really 
the quotient of frequency and cumulative EV? Furtherfurthermore, what does the (-) at the end 
of the y axis label mean?  

Well, yes – frequency distribution ranges from 1.4 to 3.8. Which makes the most common pattern 
occurring more than twice as often as the rarest one, but that is still a rather narrow range. That 
behaviour originates from the optimisation algorithm used (SANDRA method). A classification 
using a leader algorithm would certainly result in a broader range of pattern frequencies. 

Regarding the furthermores: I see that the y axis label caused some confusion. Of course the 
property displayed is not a quotient. The figure has been adapted.  

Page 14 lines 30 and following as well as Fig. 8: It is remarkable and should be pointed out that 
for numerous classes the reanalyses (black dashes) mark either the lowest or the highest 
frequency so in those cases ALL GCMs are unanimously indicating either higher or lower 
frequencies, respectively. Isn’t that an odd behavior?  

Thanks for pointing this out. The described behaviour of GCMs (ALL being above or ALL being 
below the reanalysis) was observed for 7 patterns each. By having a closer look into this 
behaviour, it becomes apparent that particularly cold weather patterns (1, 12, 14, 21, 33, 34, 37) 
are underestimated, although the warm pattern 27 is also underestimated. Apparently, all GCMs 
have difficulties in reproducing these weather patterns. However, it goes beyond the scope of 
this manuscript to analyse the genesis of these weather patterns and why GCMs are not capable 
to capture them well. With regards to the overestimated patterns (3, 6, 7, 11, 20, 23, 35), they 
show a tendency towards average to above-average precipitation. But other, high precipitation 
patterns seem to be well-captured. The remaining 26 patterns enclose the reanalysis values in 
their range.  

Page 14/15 Section 4.2.2 I assume that Fig. 9 on Page 16 is meant to visualize this, right? Then 
make a reference to that figure!  

Thanks for that remark – the reference has been added. 

Section 4.2.2 again: A definition needed is needed as to what is considered a good reproduction. 
Imagine that there could be ties in the months of most frequent occurrences - or months with 
very similar frequency. Would that still be good/superior/inferior reproductions, then?  

We added the statement “A deviation of one month is considered an acceptably good 
performance.” to give a definition for a good performance. A deviation of one month should be 
accepted as good performance, but since pattern occurrence stretches only across a couple of 
month, the peak should be matched +-1 month, everything else is not acceptable 



Regarding ties (i.e. two months with an equal count of pattern occurrence) – this is observed only 
in pattern 9, model CNRM-CM5 where peak months are Jan and Dec. The resulting peak is marked 
in the middle between these two months, i.e. at 0.5. Usually there is a clear peak of occurrence - 
with substantially lower counts to the left and right of the peak month. 

Page 15 Section 4.2.3 The text points to Figure 8, wheras the reference should point to Figure 10.  

Thanks for pointing out the wrong reference – it has been corrected. 

Page 18 around line 35, the aspect of stratification skill was presented in Spekat et al. (2010), too. 
Perhaps this needs to be mentioned in the text.  

We mentioned papers that use a similar evaluation metric as we do (usually EV) to compare 
values. Spekat et al. (2010)  show the reduction of variance by using the geopotential height, 
which we do not use in our classification. However, the inclusion of temperature in the CEC-TC 
classification in Spekat et al. (2010) indeed delivers a clear seasonal stratification. This is exactly 
what is also achieved in our analysis, however, without an additional explicit seasonal separation 
of weather patterns a priori. 

Page 18 line 12 (bottom): More like a comment - this discussion opens up a whole philosophical 
can of worms, i.e., universality versus optimization. Should the goal be to find a classification able 
to cover “everything but with a variable degree of fidelity” or should the goal be to find a 
classification that is region- and variable-specific, yet has a high skill? Maybe the authors could 
be drawn into discussing this for a bit, too?  

Yes, the reviewer is right the classification should be rather site and purpose specific. This is also 
one of the conclusions in the COST733 report. To this end, we focus particularly on the Rhine 
basin, for which we attempt an end-to-end attribution of flood changes to changes in the 
greenhouse gas concentrations due to anthropogenic emissions. For this purpose, we intend to 
use a hydrological model driven by a set of climate parameters (P, T, radiation, humidity) 
produced by the weather generator. Hence, we require profound multi-variate stratification of 
weather patterns for all above-mentioned quantities. 

General comment on the “Discussion” section: It is rather long (no criticism concerning the 
length, mind you) and could benefit from the insertion of subsections.  

We follow the suggestion of the reviewer and separate the discussion into two blocks “on the 
‘optimal’ classification and “on the GCM skill”. 

Page 34 Table 1: Is it “Runs” or “Run”, i.e., did the authors use all 10 CNRM runs or all 10 CSIRO 
runs (for example) or did they use just a specific one of those? Then this particular run should be 
specified. This refers back to page 3 line 12 where it is ambiguous if ALL or SOME runs were 
analyzed in this paper.  

We used ALL available runs for the analyses. To make that point more clear, we added “Results 
from different runs of each GCM are averaged.” in chapter 4.2 and changed the last sentence in 
chapter 2 to “All available runs were analysed…”. 

General comment concerning Figs. 11 thru 16: It is amazing to me that those 40 classes, some of 
which are visually quite similar to each other, apparently constitute sets of necessary 
distinctiveness. Just from looking at them the, admittedly subjective, estimate would be that 
much fewer classes should be sufficient. 

The visual similarity of some classes is certainly correct. We partly cover that issue in chapter 3.3 
and figure 3, concerning multi-variate evaluation. Nevertheless, some patterns seem to be quite 
similar across all variables (e.g. patterns 28 and 39). But it should be noted, that figures 11-16 
show only the associated local variables, not the variables used for classification. They exhibit 
some differences in the underlying pattern, i.e. some patterns, although being different, generate 
similar local mean weather.  



We tested a classification with 36 classes as well (though not shown in the manuscript). The 
results align closely to the other classifications (i.e. EV are slightly lower than for 40 classes). 

General comment on the line numbering: It should be uninterrupted, starting with 1 and end in 
the high several hundreds. The numbering in the draft here is misguided and misguiding.  

See answer to fifth comment. HESS’ latex template apparently starts from 1 on each page again. 

General comment on the figure placement: Particularly for Figs. 7 thru 10, a better proximity to 
their mentioning in the text and respective paragraphs to which they belong should be found.  

Again, this is latex-specific and would anyway be adapted for the final production of a publication 
paper. Nevertheless, the figure placement has been adapted slightly. 

General comment on Literature – one could of course think of a “me too” effect… - but there is a 
paper from 2010 which covers or complements several aspects of the manuscripts’s reasoning: 
Spekat, A., F. Kreienkamp and W. Enke, 2010: An impact-oriented classification method for 
atmospheric patterns. – Physics and Chemistry of the Earth 35, 352-359. Also, perhaps unknown 
to the authors of the manuscript, the final report for the COST733 Action is now available. The 
link to the final report is: https://opus.bibliothek.uni-
augsburg.de/opus4/frontdoor/index/index/docId/3768  

Thanks for giving these references. Both have been covered in the other comments already. 

That link is permanent. The URN is urn:nbn:de:bvb:384-opus4-37682 (it can be found using a web 
search engine).  

So, bottom line: Something in between minor and major revision. Some reasoning needs to be 
better shaped, some needs to mention a bit more what alternative paths have been pursued. 
There is some potential to improve technical aspects (figures, mostly) and general 
understandability. 

We thank to the anonymous reviewer for the comments and careful examination of the 
manuscript, especially of the figures. This helped to improve some details using a new 
perspective.  
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Abstract. For understanding past flood changes in the Rhine catchment and in particular for quantifying the role of anthro-

pogenic climate change for extreme flows, an attribution study relying on a proper GCM (General Circulation Model) down-

scaling is needed. A downscaling based on conditioning a stochastic weather generator on weather patterns is a promising

approach given, among others, a strong link between weather patterns and local climate, and sufficient GCM skill in repro-

ducing weather pattern climatology. To test the first requirement, an objective classification scheme is applied and different5

classification variables, spatial domains and number of classes are evaluated. To this end, 111 years of daily climate data from

500 stations in the Rhine basin are used. A classification based on a combination of mean sea level pressure, temperature, and

humidity from the ERA20C reanalysis for a relatively small spatial domain over Central Europe with overall 40 weather type

classes is found most appropriate for stratifying six local climate variables. The skill in explaining local climate variability is

very different, from high for radiation to low for precipitation. Especially local precipitation and humidity are governed by10

processes that are not completely represented by the large-scale distribution of pressure, temperature and humidity. Before

applying the weather pattern based downscaling approach, it should therefore be investigated whether the link between the

large-scale synoptic situation and the local climate variable of interest is strong enough for the given purpose. Our analysis

suggests that it is advantageous to incorporate additional classification variables besides pressure fields. The use of tempera-

ture results in a very good stratification of weather patterns throughout the year. Hence, there is no need to provide different15

classifications for each season. To test the skill of the latest generation of GCMs in reproducing the frequency, seasonality,

and persistence of the derived weather patterns, output from 15 GCMs from the CMIP5 ensemble is evaluated. Most GCMs

are able to capture these characteristics well, but some models showed consistent deviations in all three evaluation criteria and

should be excluded from further attribution analysis.

1 Introduction20

The Rhine River is a trans-boundary river with a catchment area of 185 000 km2 and significant flood risk. Along the main

river reach from Karlsruhe in south-west Germany to Rees at the Dutch-German border, an area of 14 600 km2 is at risk of

being flooded for an extreme scenario with a return period of 200 to 500 years (Thieken et al., 2015). This enormous economic

exposure to floods is accompanied by expectations that flood magnitudes will increase due to climate change (e.g. Dankers and
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Feyen, 2009; te Linde et al., 2010; Bosshard et al., 2014). Further, the Rhine catchment has experienced increasing flood trends

during the second half of the 20th century (Petrow and Merz, 2009). It has been argued that climatic drivers, land use changes

and river training may have contributed to the observed trends (Pinter et al., 2006; Petrow et al., 2009; Villarini et al., 2011;

Vorogushyn and Merz, 2013). Whereas the role of river training in the main Rhine channel has been quantified (Lammersen

et al., 2002; Vorogushyn and Merz, 2013), the effect of climatic and land use changes remains unclear. In particular, the5

contribution of anthropogenic climate change on flood trends is an open question. To understand the role of climatic drivers

for past changes in river flooding, rigorous attribution studies are needed (Merz et al., 2012).

Several studies tried to quantify the role of changes in meteorological variables on river flows using hydrological models with

alternative sets of climate drivers (Hamlet and Lettenmaier, 2007; Hamlet et al., 2007; Hundecha and Merz, 2012; Duethmann

et al., 2015). If an attribution of hydrological changes to changes in the atmospheric composition such as greenhouse gas10

concentration is attempted, output from GCMs (General Circulation Models), representing two different “worlds” with and

without anthropogenically induced climate change, are to be compared (Min et al., 2011). This requires that output of GCMs

is properly downscaled to a resolution compatible with hydrological models.

Different approaches are applied in the hydrological community for statistical downscaling (for a review see Fowler et al.,

2007; Maraun et al., 2010). Compared to dynamical downscaling using Regional Climate Models (RCMs), statistical ap-15

proaches are comparatively cheap, computationally efficient and relatively easy to apply (Fowler et al., 2005). They are consid-

ered to have similar skills compared to RCMs (Hewitson and Crane, 2006). Statistical downscaling approaches using weather

generators offer the possibility to generate multiple realisations of long synthetic time series, e.g. 100 years of daily values.

This provides a basis for a more robust estimation of changes of hydrological variables and moments of their distributions.

They are particularly suited for quantifying rare floods and their impacts (e.g. Falter et al., 2015), in case they are capable to20

represent the statistical behaviour of extreme events. Examples of using weather generators to bridge the spatial gap between

GCMs and hydrological impacts are widespread (e.g. Wilks, 1992; Katz, 1996; Semenov and Barrow, 1997; Fowler et al.,

2000, 2005; Elshamy et al., 2006; Hewitson and Crane, 2006; Kilsby et al., 2007; te Linde et al., 2010; Fatichi et al., 2011; Lu

et al., 2015; Kim et al., 2015)

In order to represent different climate states, parameters of a weather generator can be conditioned on the climate model25

output by applying a change factor (Kilsby et al., 2007) or on covariates such as weather patterns. The latter approach is

expected to better capture change in variability of the changing climate state. Weather patterns are classifications of atmospheric

circulation fields or other synoptic fields (Huth et al., 2008). The underlying assumption of the downscaling based on weather

patterns is that the regional or local behaviour of climate variables is a response to the larger-scale, synoptic forcing. The

weather generator is then parameterised separately for each class of weather patterns (e.g. Bárdossy and Plate, 1991, 1992;30

Corte-Real et al., 1999; Fowler et al., 2005; Haberlandt et al., 2015)). Statistical downscaling tends to underestimate the

variance of regional or local climate and may poorly represent extremes, and different methods have been proposed to rectify

this problem: variable inflation (Karl et al., 1990), expanded downscaling (Bürger, 1996) and randomisation (Kilsby et al.,

1998). This problem typically occurs in downscaling approaches that are based on regression models and weather patterns. It
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is circumvented when a weather generator is conditioned on weather patterns, provided that the weather generator is able to

adequately capture the tail behaviour of the surface climate variables.

A downscaling approach based on weather pattern classification builds on four assumptions. Firstly, local climate needs

to be sufficiently explained by the classification of the large-scale synoptic situation. Bárdossy et al. (2002) summarise that

many studies have shown that there is a strong link between atmospheric circulation types derived from CTCs (circulation type5

classifications) and surface variables such as near-surface temperature and precipitation. Even when the small-scale climate is

governed by mesoscale events such as convective systems, these are, in turn, conditional on the synoptic state (Goodess and

Jones, 2002). On the other hand, weather patterns can only be a proxy for local weather, due to the categorisation of continuous

data by the discrete classification, and more importantly, due to the fact that the large-scale situations do not fully represent

smaller-scale features. This so-called within-type variability (e.g. Huth et al., 2008) is caused, for instance, by small-scale10

processes, such as orography-enhanced rainfall, or by variations in dynamic properties (pressure gradient, vorticity, intensity)

of weather patterns (Beck et al., 2007).

Secondly, the linkage between weather patterns and regional and local climate is assumed to be stationary. This means that

climate change will mainly manifest itself as a change in the frequency, persistence and seasonality of these weather patterns.

The transfer function between synoptic state and regional and local climate thus remains constant. Land use and land cover15

change, for example, could introduce a variable forcing on local climates (Hewitson and Crane, 2006). Using long observational

time series, it has been argued that the linkage between large-scale weather patterns and regional climates are characterised by

distinct variabilities (Beck et al., 2007).

The third assumption is that GCMs are able to properly reproduce weather patterns. GCMs are often strongly biased in

variables such as precipitation (e.g. Sunyer et al., 2015), but are expected to reflect large-scale circulations well. This skill20

in representing the synoptic situations compared to the poor skill in representing surface variables is utilised for statistical

downscaling. For example, Hewitson and Crane (2006) conclude that much of the discrepancy between GCM projections of

precipitation over South Africa may result from differences in their precipitation parametrisation schemes, whereas the synoptic

dynamics are well simulated. It has been shown, however, that the skill of GCMs to reproduce weather pattern characteristics

such as geopotential height, sea level pressure etc. varies strongly (Brands et al., 2013; Wójcik, 2015).25

Finally, to obtain meaningful input for the hydrological model, a weather generator has to adequately represent the space-

time dynamics of the catchment meteorology. This is a particular challenge for large river basins, where the correlation structure

of e.g. precipitation becomes difficult to capture over large distances.

In the presented paper we evaluate the assumptions for weather pattern based downscaling for the Rhine catchment. This is a

prerequisite for conditioning a weather generator on circulation patterns for understanding the role of climatic drivers for past30

and future flood changes in the Rhine basin. We focus on the first and third assumption here. The assumption of stationarity

of the linkage between weather patterns and local climate and the skill of the weather generator itself will be investigated

separately. In the future we intend to use a multi-site, multi-variate weather generator (Hundecha et al., 2009; Hundecha and

Merz, 2012) for downscaling GCM output to drive a regional hydrological model. Extreme value statistic on the simulated

streamflow will then allow to quantify the role of climatic change on flood flows.35
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To underpin the first and third assumptions, we derive an “optimal” weather pattern classification and investigate (1) to which

extent weather patterns are able to stratify local climate variables, and (2) the skill of the GCMs to reproduce these weather

patterns. It has been argued that there is no “best” statistical downscaling approach but that the optimal classification depends

on the application and region (Hewitson and Crane, 2006; Huth et al., 2008). We look specifically from the perspective of a

hydrological impact study for the Rhine catchment.5

There is a significant body of literature on weather pattern classification. Our work extends these studies in several aspects.

Firstly, we test the skill of several classification variables. Often classifications are based on msl (mean sea level pressure)

only. We use, in addition, the synoptic temperature and humidity fields to classify weather patterns. Considering temperature

as classification variable has the advantage that one classification can be used throughout the year. Secondly, we test the

ability of weather pattern classifications to stratify a comparatively large number of climate variables with daily resolution:10

precipitation, minimum, mean, and maximum temperature, radiation, and relative humidity. Other studies often consider only

one or two variables (e.g. Beck et al., 2007; Kyselý, 2007; Anagnostopoulou et al., 2008; Beck and Philipp, 2010; Łupikasza,

2010; Haberlandt et al., 2015) and only few studies are available with an extended list of up to eight variables (e.g. Kidson,

1994; Enke et al., 2005a; Cahynová and Huth, 2010). We use a comparatively long time period of 111 years. The periods

of other studies are typically much shorter, e.g. 11 to 50 years (Kidson, 1994; Brinkmann, 1999, 2000; Goodess and Jones,15

2002; Hewitson and Crane, 2006; Anagnostopoulou et al., 2008; Beck and Philipp, 2010; Brisson et al., 2010; Łupikasza,

2010; Cahynová and Huth, 2010; Bettolli and Penalba, 2012), or 100 years (Kyselý, 2007). Beck et al. (2007) covers a longer

period, going back to 1780, however using only monthly resolution. Fourthly, our analysis covers a large, transboundary area

of around 160 000 km2 and a very large number of climate stations (500). Weather pattern classifications typically work with a

comparatively low number of stations, ranging from e.g. one station for Prague (Kyselý, 2007) to 84 stations for New Zealand20

(Kidson, 1994).

Further, we analyse the newest generation of climate models from the Coupled Model Intercomparison Project Phase 5

(CMIP5). We investigate their ability to reproduce frequency, persistence, and seasonality of weather patterns. Wójcik (2015)

emphasises the need to assess the reliability of GCMs prior to any statistical downscaling approach. Whereas Perez et al.

(2014) analysed the frequency of patterns over the north-east Atlantic and Belleflamme et al. (2013) examined frequency and25

persistence of patterns over Greenland, so far no other study analysed seasonality as done here. Particularly for understanding

the role of climate change on flood flows, matching the seasonality is essential.

2 Data

For the workflow proposed here three different sets of climate data are needed: (1) data to establish the weather pattern clas-

sification on, (2) compatible output of climate models with different greenhouse gas (GHG) forcings, i.e. same variables and30

spatial coverage as (1), (3) observations from local climate stations in the investigated area (Rhine catchment) for all meteoro-

logical variables of interest, preferably covering the same time period as (1).
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Figure 1. Locations of climate data stations used. See text for more details on single data sets. Dark red line shows Rhine catchment, black

lines denote state borders.

To investigate the suitability of different climate variables to establish the weather pattern classification, long-term reanalysis

fields can be used. We utilised the newly available ERA-20C – a gridded reanalysis data set from the ERA-CLIM project (Poli

et al., 2013). This data set is a pilot reanalysis of the 20th-century assimilating surface observations only and being forced by

a HadISST2.1.0.0 ensemble of sea-surface temperature and sea-ice conditions, available for the period 1900–2010. The 3- or

6-hourly data, depending on the variable, were aggregated to daily averages for this study. The spatial resolution of 1◦× 1◦5

was chosen. There are finer resolutions available for ERA-20C, but the resolution of GCMs is not finer than 1.25◦× 0.94◦.

The skill of different weather pattern classifications was assessed according to their ability to stratify climate station data

located in the Rhine catchment (Figure 1). Sets of daily precipitation, temperature (mean, min, max), relative humidity, and

global radiation data for the period 1901–2010 were available from the national meteorological services and kindly processed

and quality controlled by the Potsdam-Institute for Climate Impact Research (PIK) (Österle et al., 2006). For the German part of10

5



the catchment 432 stations were available, nine stations for the Austrian part, and 49 stations for Switzerland and Liechtenstein.

To date no data of meteorological stations in France were available, thus E-OBS data (Haylock et al., 2008) were used to cover

the French part of the catchment. Ten grid points with a spacing of 0.5◦× 0.5◦ for precipitation and temperature only were

included. This set of climate stations allows for the classification results to be compared to a large and dense station network.

For the assessment of the effect of anthropogenic GHG emissions on changes in floods, data from modelling experiments5

with two different GHG forcings representing (a) the historical (natural+anthropogenic) GHG concentrations (All-Hist) and

(b) only natural GHG concentrations (Nat-Hist) are required. These experiments are available from a number of GCMs of the

CMIP5 project (Taylor et al., 2012). An overview on the models and the number of runs available for the All-Hist experiment

used here is given in Table 1. The model output is available in daily time steps, mostly starting as early as the mid-19th century.

These data
:::
All

:::::::
available

::::
runs

:
were analysed in relation to the ability of different GCMs to replicate the frequency, persistence,10

and seasonality of weather patterns.

3 Methods

3.1 Weather pattern classification

Within the COST Action 733 “Harmonisation and Applications of Weather Type Classifications of European Regions” a col-

lection of circulation type classification approaches was compiled and made available (cost733class software: http://cost733.15

geo.uni-augsburg.de/cost733class-1.2/, Philipp et al., 2016). Included, among others, is the SANDRA classification method

(simulated annealing and diversified randomisation) which is “a non-hierarchical technique for minimising the sum of Eu-

clidean Distances within the classes” (Philipp, 2009). The method is similar to k-means clustering, but is able to get closer to

the global optimum instead of getting trapped in a local one. A detailed description of the method can be found in Philipp et al.

(2007). Several studies found a good or even superior performance of SANDRA compared to other classification methods (e.g.20

Beck and Philipp, 2010; Huth, 2010; Huth et al., 2008; Philipp, 2009; Philipp et al., 2016, 2007).

Available in the cost733class software are also methods for assigning new data to an already existing classification. This was

used to apply the selected classification to GCM data. The method takes data of the same spatial domain and resolution and

compares every case, i.e. day, to the centroids of the existing classification. The class with the smallest Euclidean Distance to

the respective case is assigned. In this way a catalogue (i.e. time series) of weather patterns can be obtained for every GCM25

data set, which can then be analysed and compared to the catalogue derived from reanalysis data (see subsection 4.2). Since

the GCMs do not necessarily have the same spatial resolution as the classification input, they were first linearly re-interpolated

to the same grid as the ERA-20C data.

By employing a weather pattern classification we are aiming towards providing a stratification of observed weather variables

such as precipitation, temperature, relative humidity and solar radiation (as required for the hydrological model). For use with30

the weather generator, it is desired to obtain a classification that provides patterns that are preferably as distinct as possible

from each other in terms of local weather characteristics. To derive an optimal classification, different characteristic variables,

e.g. msl,
::::::::::
geopotential

::::::
height,

:
temperature, humidity, different spatial extents

:::::::
domains

:
and different numbers of weather type

6

http://cost733.geo.uni-augsburg.de/cost733class-1.2/
http://cost733.geo.uni-augsburg.de/cost733class-1.2/
http://cost733.geo.uni-augsburg.de/cost733class-1.2/
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Figure 2. Spatial domains of weather pattern classifications
::
in

:::::
degree

::
of

::::::::
geographic

:::::::::::::
longitude/latitude. Dark grey polygon shows location of

Rhine catchment. Domain 3 : 26 / 43 : 58 as in Philipp et al. (2010), region D07; -15 : 30 / 35 : 70 as in Nied et al. (2014).

classes can be tested.
:::::::::
Historically,

::::
first

:::::::::::
classification

::::
were

::::::
based

::
on

:::
sea

::::
level

::::::::
pressure.

:::
An

:::::::::::
improvement

:::
of

:::::::::::
classifications

::::
and

::::::
variable

:::::::::::
stratification

:::
can

:::
be

:::::::
achieved

:::
by

::::::::::
additionally

::::::::::
considering

:::::::::::
geopotential

:::::
height

::::::::::::::::::::::::::::::::
(Spekat et al., 2010; Nied et al., 2014).

:::::
Given

:::
the

::::::
further

:::
aim

::
of

::::
this

:::::::::::
classification

::
to

::
be

::::
used

:::
for

:::::::::::
downscaling

::
of

::::::::
historical

::::
runs

::
of

::::::
CMIP5

:::::::
models,

::::::::::
geopotential

::::::
height

:
is
::::::::
available

::::
only

::
in

:
a
::::
few

::::
runs

:::
and

::
is

::::
thus

::::::::
excluded

::::
from

:::
our

::::::::::::
consideration.

Note that the term “weather (pattern) classification” is used to contrast the difference to air mass classifications, since surface5

weather variables are used here instead of variables defined at different tropospheric levels (Huth et al., 2008).

3.2 Finding optimal classification parameters

Here we tested different combinations of variables for weather type classification. Classifications on mean sea level pressure

(msl) are commonly applied (e.g. Philipp, 2009; Wilby and Quinn, 2013; Masson and Frei, 2014). Other frequently used

variables include geopotential height of different levels, thickness between different levels, vorticity and temperature at certain10

levels, or total column water vapour (e.g. Bárdossy et al., 2002; Anagnostopoulou et al., 2008; Nied et al., 2014; Philipp et al.,

2016). However our selection was restricted to variables that are also available from the GCM outputs. Goodess and Jones

(2002) state that temperature and humidity are the two most important variables to be included when using a circulation-

7



type approach for downscaling of rainfall. Thus we included temperature in 2 m (temp) (used, among other variables, in e.g.

Kalkstein et al., 1987) and specific humidity (hus, as e.g. in Hewitson and Crane, 2006). This led to four combinations of

variables: msl, temp, msl+temp, msl+temp+hus.

Different options for the selection of a spatial domain were tested here: one covering the whole of Europe, others being

considerably smaller, partly focussing on the Rhine catchment, see Figure 2. One domain is identical to domain D07 in Philipp5

et al. (2010), another one is a westward shifted version of it. The domain from Nied et al. (2014) was included as well.

A wide range of number of classes was tested to assess the power of classification: 9, 18, 27 (all frequently used, e.g. in

Philipp et al., 2010; Huth et al., 2016), 40 (as in Nied et al., 2014; Philipp, 2009; Bissolli and Dittmann, 2001). Many authors

(e.g. Huth, 2010) consider 40 already a very large number, but e.g. Jones and Lister (2009) use 6–11 patterns per season, in

total 34. Thus, when establishing a classification for the whole year a greater number of classes can be useful.10

These different parameter sets allow for 120 possible combinations which poses an intractable computational problem.

To break this number down in a reasonable way that still yields reliable results, firstly, some parameter values were priori-

tised (extents
:::::::
domains

::::::
(lon/lat

::
in

:::::::
degrees)

:
-27 : 45 / 33 : 74 and -8 : 15 / 43 : 58, 18 and 40 classes). Secondly, four classification

variables were combined with four prioritised parameters and the best-performing variable (combination) was selected. This

variable was then combined with all spatial extents
:::::::
domains

:
finding the optimal one. Finally, all number of classes were eval-15

uated with the best variable and extent
::::::
domain. This reduces the number of combinations to 26, which is still a rather large

computational effort.

3.3 Evaluation of classifications

First of all it has to be clear, if the classification itself should be evaluated (i.e. stratification of the input variables, such as msl)

or if the stratification of other variables, such as precipitation, that were observed on days with certain weather patterns should20

be evaluated based on the developed classification. The latter is needed here. Hence, given a certain classification catalogue,

data from weather stations can be assigned to the patterns that occurred at the same day, resulting in a distribution of values

associated with each pattern. The distribution of values linked to a pattern can then be compared to the original (complete)

population of values.

The quality of a given classification can be evaluated using different statistical metrics. For example, Huth et al. (2008) and25

Beck and Philipp (2010) give various quality measures, among them the Explained Variation (EV), and the so-called Pseudo-F

statistic (PF). These are chosen, because EV is frequently used in similar applications and is easily understood, while PF has

the advantage of considering the number of classes and cases per class.

The Explained Variation (Equation 1) is defined as the ratio of the sum of squared deviations from the mean within classes

(WSS) and the total sum of squared deviations from the overall mean (TSS). In Equation 3 and Equation 4 k denotes the30

number of classes (i.e. patterns), m is the number of dimensions (i.e. variables), n is the number of cases (i.e. days), and Cj

denotes class/pattern j. Thus EV ranges between zero (poor) and one (perfect stratification).

The Pseudo-F statistic (PF, Equation 2) of Caliński and Harabasz (1974) is the ratio between the sum of squared deviations

between means of classes (BSS, Equation 5) and the sum of squared deviations within classes (WSS, Equation 4), weighted

8
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Figure 3. Average daily values of meteorological variables for selected patterns
::::::
example

::::::
patterns

:::
12,

:::
14,

::::
and

::
33to emphasise the need

of multi-variate evaluation of weather pattern classifications (Tav – average temperature, PREC – precipitation, RAD – global radiation,

HUMID – relative humidity).

by the number of classes and cases. A minimum of within-type variation (and maximum of distinction between types/classes)

is achieved by large values of PF, poor clustering is denoted by values close to zero.

Both indices are usually applied to one meteorological variable at a time, thus evaluating the skill of the classification in

stratifying e.g. temperature or precipitation (Huth et al., 2016). When mapping each variable per weather pattern, it becomes

evident that some patterns might be very similar with regards to one (or more) variable(s), while being substantially different5

in other variables. For example in Figure 3, the selected patterns
:::
no.

:::
12,

:::
14,

:::
and

:::
33

:
have a very similar mean temperature for

the whole area but very different precipitation. A classification focussing only on one variable would neglect the variability of

the others. We therefore evaluate the stratification with respect to both single- and multi-variate performance.

9
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Figure 4. Evaluation metrics for the selection of classification variables (x-axis). Weather variables from station data in columns. Note log

scaling of PF.

Each evaluation metric is applied to normalised climate data, derived separately for each station and aggregated as an area-

weighted average over the complete Rhine catchment.

EV = 1− WSS

TSS
=

BSS

TSS
(1)

PF =
BSS/(k− 1)

WSS/(n− 1)
(2)

TSS =

n∑
i=1

m∑
l=1

(xil − x̄l)
2 (3)5

WSS =

k∑
j=1

∑
i∈Cj

m∑
l=1

(xil − x̄jl)
2 (4)

BSS =

k∑
j=1

nj

m∑
l=1

(x̄jl − x̄l)
2 (5)
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Figure 5. Evaluation metrics for the chosen classification variables, combining results of selection steps 2 and 3. Aims at selecting (a) best

spatial domain (colour scale), then (b) selecting best number of classes (point shapes).

4 Results

4.1 Stratification of local climate variables

4.1.1 Selection of classification variables

For selecting the classification variables, both evaluation metrics (EV and PF) point to the same choice (see Figure 4). The

multi-variate evaluation clearly suggests a classification including temperature (EV around 0.5). This preference is even5

stronger for single-variate evaluations of temperature (Tav, Tmin, Tmax) with explained variation (EV) around 0.75. For pre-

cipitation (PREC) the temp-only classification performs worst, though EV values are low for all classifications (EV < 0.2).

From the literature there is no evidence that other studies acquire considerably better results in similar analyses, but surpris-

ingly the exact values of their evaluation criteria are typically not given. Nevertheless this low skill needs to be discussed further

(see also subsubsection 4.1.3 and 5). Any classification including msl improves the stratification of precipitation compared to10

the classification based on temperature only. Thus a classification including both, temperature and mean sea level pressure

should be chosen to obtain a reasonably good stratification of all variables.

For relative humidity (HUMID) and global radiation (RAD) the same relation between classifications as for temperature

was found (classification including temp better than msl only), although the differences between classifications for HUMID

are small. Including specific humidity as classification variable slightly improves the stratification of all variables. Thus the15

classification on msl+temp+hus was finally selected. This selection holds the additional advantage of a strong seasonal restric-

tion of pattern occurrence. While patterns from a msl-only classification show only weak seasonality (i.e. each patterns might

occur in any month throughout the year), the use of raw values (i.e. no anomalies) of temperature and specific humidity con-

11
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Figure 6. Comparison of selected classification from subsubsection 4.1.1 (original) and other classifications: Hess-Brezowsky-

Grosswetterlagen (GWL), classification variables as in Nied et al. (2014), a classification on a coarse grid, and one with 100 classes.

fines each pattern to a specific season with a clear peak of occurrence in a certain month. This allows to use one classification

for the whole year instead of using separate classifications for each season, as frequently done in other studies.

For both metrics and all meteorological variables the smaller spatial domains deliver better results (Figure 5). The three

smallest domains (coloured in purple, orange, yellow) differ only in their exact location, but are of roughly the same size. The

orange domain, gives slightly better results for all variables and was chosen for further analysis.5

The choice of an optimal number of classes is less obvious (Figure 5). The analysis of the EV shows a slight tendency

for a greater number of classes, whereas PF prefers a lower number. However, for the use with a weather generator, a high

number of classes with consequently narrow distributions for each class are preferred. At the same time a sufficient amount

of observations per class are needed for fitting the distributions. Considering this tradeoff a classification with 40 classes was

selected here.10

Average values of meteorological variables per pattern of the final classification are shown in Appendix A Figure 11
:::
–16.

4.1.2 Comparison to other classifications

The selected classification was compared to the Hess-Brezowsky-Grosswetterlagen (GWL) catalogue of circulation patterns,

to the classification after Nied et al. (2014), and to two experiments where only one parameter of the selected classifcation

was modified (Figure 6): A classification based on a coarse grid (2.5◦× 2.5◦ instead of 1◦× 1◦), and one using 100 classes15

(as in Perez et al., 2014). A comparison to the well-established Hess-Brezowsky-Grosswetterlagen (GWL) (applied in e.g.

Kyselý, 2007; Fleig et al., 2015) shows that GWL performs inferior to our classification with EV values not exceeding 0.1. The

stratification skill obtained by GWL is best comparable to a classification based on msl only, but is inferior when including

other variables into the classification scheme. The classification based on [500]hPa geopotential height, [500]hPa temperature

12
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Figure 7. Precipitation intensity of patterns in relation to pattern frequency (bars), and cumulated explained variation per pattern (dots). The

pattern number is given at the bottom of the bars. Grey horizontal line denotes average frequency to aid distinction of rare and frequent

patterns.

and total column water vapour as used by Nied et al. (2014) performs equally well as the selected classification with only

slightly lower skill values.

ERA-20C data were originally used with 1◦×1◦ resolution. A coarser resolution of 2.5◦×2.5◦ results in an identically good

stratification. Hence small-scale features that might be present in a high-resolution reanalysis data set do not distort the results,

which is also true for a classification extent covering all of Europe (not shown here).5

A last test was dedicated to the number of patterns: 100 patterns as in Perez et al. (2014) were tested, confirming the general

tendency (increasing EV, decreasing PF values for increasing number of classes), although the improvement of EV seems to

level off for high number of classes, meaning that the gain in stratification skill is only minimal.

4.1.3 Stratification skill for precipitation

The stratification skill (i.e. EV and PF values) is rather low for precipitation, but maps of mean pattern precipitation (Figure 12)10

indicate distinct precipitation patterns. Therefore a more detailed investigation of explained variance for individual patterns was

done. EV can be expressed as the sum of EV values for individual patterns weighted by the respective relative frequency of the

13



pattern (nj/n):

EV =

k∑
j=1

nj

n
·EVj ; with (6)

EVj =
(x̄j − x̄)2

TSS/n
(7)

This allows to analyse the contribution of each pattern to the overall EV value. Figure 7 shows the cumulated EVj values of each

pattern. In an idealised case where mean precipitation and frequency of occurrence are uniformly distributed among all types5

Equation 6 describes (as an integral over a square) a cubic function with a saddle point at the overall mean precipitation. Patterns

associated with the tails of the distribution would contribute most to the overall EV, while average types have contributions

close to zero (because their mean is close to the overall mean, thus the deviation between both is small, resulting in near-zero

EVj).

However, in the case of precipitation, patterns with below-average mean precipitation contribute only little to the overall10

EV, because the overall mean is rather small (2.4 mm) and hence the deviation between the mean of low-precipitation patterns

and the overall mean is small. This applies to more than half of all patterns (24 out of 40). Most EV contribution is gained by

patterns with very high precipitation – 50% of total EV is contributed by the seven patterns with highest precipitation. This

behaviour is clearly originating from the strongly right skewed distribution of precipitation. Thus, the small skill values can be

considered inherent to precipitation.15

4.2 Performance of GCMs

After selecting the most appropriate classification, circulation patterns in all GCMs (15 models with up to 10 runs for ex-

periment All-Hist) were identified resulting in daily pattern series. These time series were compared to the catalogue derived

from the reanalysis data to assess the ability of GCMs to reproduce the weather pattern climatology in terms of frequency,

seasonality, and persistence as suggested e.g. by Bárdossy et al. (2002).20

::::::
Results

::::
from

::::::::
different

::::
runs

::
of

::::
each

:::::
GCM

:::
are

::::::::
averaged.

:

4.2.1 Frequency of patterns

The frequency of patterns as obtained from each GCM run was compared to pattern frequencies in the reanalyses data (Fig-

ure 8). The time series are compared for the whole period, i.e. no separation by seasons or individual years was done. Especially

for patterns with high mean daily precipitation a good agreement between reanalysis and GCM (All-Hist) would be desirable25

(maps of average daily values in Appendix A). Frequencies for different runs of one GCM were averaged, but differences

between runs are much smaller (usually less than 0.5 %) than between GCMs. The deviations between reanalyses and GCM

frequencies are highly diverse for different patterns, e.g. pattern 30 – a high-precipitation pattern with almost 7 mm per day on

average (see Appendix A, Figure 12) is well-reproduced, while some GCMs have difficulties to match e.g. patterns 11 or 39. No

clear season-specific deviations were found – some models have higher deviations in winter, others in summer (not shown).
:::
For30
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Figure 8. Relative frequency of patterns in GCMs (coloured dashes) compared to frequency in reanalysis data (black dashes).

::::
eight

:::::::
patterns

::
all

::::::
GCMs

:::::::::::
underestimate

:::
the

:::::::::
frequency

:::::
found

::
in

:::
the

::::::::
reanalysis

:::
and

:::
for

::::
other

:::::
seven

:::::::
patterns

::
all

::::::
GCMs

:::::::::::
overestimate

::
the

:::::::::
frequency.

:::
By

::::::
having

:
a
:::::
closer

::::
look

::::
into

:::
this

:::::::::
behaviour,

:
it
::::::::
becomes

:::::::
apparent

:::
that

::::::::::
particularly

::::
cold

:::::::
weather

::::::
patterns

:::
(1,

:::
12,

:::
14,

:::
21,

::
33,

:::
34,

:::
37)

:::
are

:::::::::::::
underestimated,

::::::::
although

:::
the

:::::
warm

::::::
pattern

::
27

::
is

::::
also

:::::::::::::
underestimated.

:::::::::
Apparently,

:::
all

::::::
GCMs

::::
have

:::::::::
difficulties

::
in

::::::::::
reproducing

:::::
these

:::::::
weather

:::::::
patterns.

::::::::
However,

::
it
::::
goes

:::::::
beyond

:::
the

:::::
scope

::
of

::::
this

:::::::::
manuscript

::
to
:::::::

analyse
:::
the

:::::::
genesis

::
of

:::::
these

::::::
weather

:::::::
patterns

::::
and

::::
why

:::::
GCMs

:::
are

:::
not

:::::::
capable

::
to

:::::::
capture

::::
them

:::::
well.

::::
With

::::::
regards

::
to
:::
the

::::::::::::
overestimated

:::::::
patterns

:::
(3,

::
6,

::
7,

:::
11,5

:::
20,

:::
23,

:::
35),

::::
they

:::::
show

:
a
::::::::
tendency

:::::::
towards

:::::::
average

::
to

::::::::::::
above-average

:::::::::::
precipitation.

:::
But

:::::
other,

:::::
high

::::::::::
precipitation

:::::::
patterns

:::::
seem

::
to

::
be

::::::::::::
well-captured.

::::
The

::::::::
remaining

:::
25

::::::
patterns

:::::::
enclose

:::
the

::::::::
reanalysis

::::::
values

::
in

::::
their

::::::
range. Among the models with an overall

good performance in terms of frequency are CNRM-CM5, GFDL-CM3, and HadGEM2-ES, while the models BCC-CSM1.1,

CCSM4, IPSL-CM5A-LR, MIROC-ESM, and MIROC-ESM-CHEM show highest deviations from the reanalyses. In the work

of Belleflamme et al. (2014) which uses a similar set of GCMs, three of these bad performing models were found to have best10

rankings in reproducing pattern frequency (in summer), which shows that statements about GCM performance are somewhat

depending on the actual application and its geographic focus.
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Figure 9. Comparison of seasonality of patterns in GCMs (coloured vertical dashes) and reanalysis data (black horizontal dashes). Seasonality

is presented as start month(s) (upper panel), peak month(s) (middle panel) and end month(s) (lower panel) of occurrence of patterns. Dashes

for GCMs are only vertical to avoid overlapping – each symbol denotes one distinct month. If pattern occurs in two distinct seasons, both are

shown.

4.2.2 Seasonality

The seasonality of patterns in terms of the earliest and last months of occurrence in the course of the year, and the most frequent

month of occurrence is generally well reproduced, even for patterns with two peaks
:
(Figure 9). While start and end are often

matched perfectly, the peak months deviate more often, but usually by not more than one or two months.
:
A

::::::::
deviation

::
of

::::
one

:::::
month

::
is

:::::::::
considered

::
an

::::::::::
acceptably

::::
good

:::::::::::
performance.

:
This good reproduction of pattern seasonality is certainly due to the use5

of variables with a strong seasonal cycle (temperature and specific humidity) for classification – near-surface temperature and

its gradient between continent and sea gives very season-specific patterns that are beneficial for the seasonal stratification of

weather patterns.

Most GCMs are able to reproduce the correct start months in 16 to 34 patterns, the highest amount of mismatched patterns

(20 or more) are found in BCC-CSM1.1, BNU-ESM, MIROC-ESM, and MIROC-ESM-CHEM. The correct end months are10

reproduced in 18 to 32 patterns. Only one GCM with more than 20 mismatched patterns was found (BCC-CSM1.1) and 15 or
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Figure 10. Persistence of patterns (mean number of consecutive days with same pattern) in GCMs (coloured dashes) compared to persistence

on reanalysis data (black dashes).

more mismatches occurred in BNU-ESM and CESM1-CAM5. Models BCC-CSM1.1, BNU-ESM, IPSL-CM5A-LR, MIROC-

ESM, MIROC-ESM-CHEM, and MRI-CGCM3 fail in more than half of all patterns to match the peak months. All GCMs are

generally slightly better in capturing the correct start and end month of summer or winter patterns compared to spring/autumn

patterns.

4.2.3 Persistence5

Finally the persistence of patterns is assessed as the number of consecutive days with the same weather pattern. In Figure 10

the average duration in reanalysis data is compared to the duration in GCMs. The mean duration of patterns is mainly around

2 days, which is usually well represented by the GCMs. Deviations from the persistence of reanalysis data that are greater than

1 day were only found in very few patterns (14, 39), usually mean persistence deviates by less than 1 day.

Best agreement between reanalyses and GCMs was found for CESM1-CAM5, CNRM-CM5, GFDL-CM3, and HadGEM2-10

ES, while greatest deviations occurred for BCC-CSM1.1, CSIRO-Mk3.6.0, IPSL-CM5A-LR, MIROC-ESM, and MIROC-

ESM-CHEM. There is no general difference in deviation from reanalysis for different seasons, though most GCMs are match-

ing persistence of spring/autumn patterns slightly better than persistence of summer or winter patterns. Other studies found
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patterns to last longer than in our case (e.g. Kyselý, 2007, who found mean persistence for Hess-Brezowsky-Grosswetterlagen

of 4.3–5.2 (and up to 6.2) days), which might be due to our comparatively large number of patterns.

5 Discussion

5.1
::

On
:::
the

:::::::
optimal

::::::::::::
classification

This study derives an “optimal” weather pattern classification for the Rhine catchment and investigates to which extent weather5

patterns are able to stratify local climate variables. Furthermore, the ability of the latest GCM generation to reproduce these

weather patterns is evaluated in terms of frequency, seasonality and persistence. The particularities of this study, compared to

past studies on weather pattern classifications, include (1) the investigation of the skill of several classification variables, (2)

the large number of local weather variables used for classification evaluation, (3) the large study area (160 000 km2) and the

very high number of climate stations (500), and (4) the use of long time series (111 years).10

It has been argued that there is no “best” classification and that the optimal solution depends on the specific application

and region. The best classification for the Rhine catchment was achieved with a combination of mean sea level pressure,

temperature and specific humidity as classification variables. Often, weather patterns are classified on pressure fields only.

Our results suggest that adding humidity and temperature, which exhibits a distinct seasonal cycle, as classification variable

improves the stratification of local climate variables considerably and support the findings of Goodess and Jones (2002).15

Including temperature as classification variable, yields a very good stratification of weather patterns throughout the year, i.e.

weather patterns also show a distinct seasonality. In this way a single classification can be used for the whole year, and there is

no need to provide different classifications for each season separately contrary to classifications based solely on mean sea level

pressure.

Concerning the number of classes, our results do not give a clear indication about the optimal number. We have selected a20

comparatively large number, i.e. 40 patterns. This selection is in line with other studies that compared classifications. Philipp

(2009) found for SANDRA classifications that best skills are reached for class numbers greater than 30. Tveito (2010) com-

pared 73 classifications from the COST733 collection of classifications catalogues and found best performances for high

numbers of classes; generally for the same classification method a solution with more types performed better. The ten best

classifications had at least 26 classes and the best three classifications had 30, 40, and 29 types, respectively. Of course, the25

decision about the number of classes is guided by the purpose of the classification and the data availability. The stratification

of local climate variables into a large number of classes requires sufficient amount of data. Our sensitivity analysis with 100

weather patterns clearly indicated worse performance compared to the classification based on 40 patterns. But in general, a

larger number of classes is advisable if not limited by the amount of available data.

In terms of spatial domain, the best results are obtained for rather small classification areas covering the target area. Increas-30

ing the classification domain covering the whole of Europe slightly aggravates the stratification of local variables, particularly

of temperature. It is however, difficult to draw generalisations with regards to the selection of the spatial domain given our

results.
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The “optimal” classification is only partially able to stratify local climate variable, i.e. the classification explains a modest

share of the local climate variability. EV values, averaged across all 500 stations in the Rhine catchment, are in the range

of 10–20% for precipitation, 70–80% for temperature, 10–20% for humidity and 40% for radiation. Hence, especially local

precipitation and humidity are governed by processes that are not completely represented by the large-scale distribution of

pressure, temperature and humidity. This result questions the widespread downscaling approaches that are based on weather5

pattern classification. The within-type variability dominates versus the between-type variability, at least for local precipitation

and humidity. Before applying the weather pattern based downscaling approach, it should therefore be investigated whether the

link between the large-scale synoptic situation and the local climate variable of interest is strong enough for the given purpose.

Although downscaling approaches based on weather patterns are widespread, there are not many studies that have assessed

the skill of weather patterns for stratifying local climate variables. The available studies report skill values that are comparable10

to our results. For example, Osborn and Jones (2000) found large residuals between precipitation predicted from circulation

indices and observed precipitation. Enke and Spekat (1997) obtained 20.5% of explained variation for precipitation and 80.9%

for mean temperature. Huth et al. (2016) compared a large number of classifications from COST ACTION 733 using different

classification methods, numbers of patterns, spatial domains, classification variables, sequence lengths of 1 or 4 days. For all

domains and classification settings they obtained EV values of max. 0.33 for precipitation and max. 0.46 for mean temperature.15

The much higher values for temperature in our study can be explained by the use of 2 m temperature as additional classification

variable. Our classification using only sea level pressure obtains similarly low values. For those classifications that are best

comparable to our study, i.e. method SANDRA, whole year, 1-day sequence, classification on sea level pressure, 9, 18, or

27 types, comparable spatial domain, they obtain EV values of 0.07–0.28 for temperature and 0.08–0.27 for precipitation.

These results are averages across all seasons, whereas the results for the winter are generally better. The study of Enke et al.20

(2005b) suggested that classifications that are highly optimised towards a certain local climate variable, such as precipitation,

may have significantly better skill than classifications for several variables. However, highly optimised classifications have the

disadvantage that their skill deteriorates when applied for other target variables.

Downscaling using the weather pattern approach is based on the assumption of a time-constant relationship between patterns

and local climate variables. Instationarities in the relationship between weather types and local variables is a long-debated issue25

in downscaling (IPCC, 2007), and several studies indicated their presence (e.g. Widmann and Schär, 1997; Beck et al., 2007;

Haberlandt et al., 2015). Those classifications were, however, based on sea level pressure only (Beck et al., 2007; Haberlandt

et al., 2015) or additionally included geopotential height (Widmann and Schär, 1997). The addition of temperature and specific

humidity might provide a better classification also in terms of capturing transient changes in local climate by changes in

weather pattern sequencing. This suggestion is supported by the regional climate simulations of Schär et al. (1996). For the30

European Alps, they found that increased warming can lead to larger moisture fluxes and larger precipitation rates even when

the synoptic situation remains unchanged. Thus, it should be further investigated whether classifications that are based on

additional variables besides pressure fields show less instationarity in the link between synoptic situation and local climate.
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5.2
::

On
:::
the

::::
skill

:::
of

::::::
GCMs

Concerning the skill of the latest generation of GCMs to reproduce these weather patterns, we find that the main characteristics

of weather patterns derived from ERA20C reanalysis data are well represented in GCMs that are forced with observed GHG

concentrations. Interestingly, the performance of GCMs is usually similar for a certain GCM for the analysed characteristics, i.e.

frequency, seasonality, or persistence of patterns. This result suggests that some GCMs are much better suited for downscaling5

based on weather pattern classifications. Others should be excluded or their results should at least be interpreted with greatest

care. From the results obtained, it would be advisable not to consider the models BCC-CSM1.1, MIROC-ESM, and MIROC-

ESM-CHEM. This would leave 12 GCMs with acceptable performance. However, it should be noted that the skill of GCMs

may depend on the specific classification, i.e. the classification variables and the region. Another classifications might result in

a different ranking of GCMs.10

6 Conclusions

In the scope of an attribution study aimed at quantifying the role of climate change, in particular the contribution of anthro-

pogenic climate change, to changes in flood flows in the Rhine catchment, we developed a weather pattern classification.

This classification is intended to be used for downscaling of general circulation model outputs with a multi-site, multi-variate

weather generator. An optimal classification was selected by evaluating four different combinations of classification variables15

based on the ERA20C reanalysis data, by testing six spatial domains and four numbers of classes. The best stratification of

local variables (daily precipitation, humidity, radiation, and mean, minimum, and maximum temperature) was obtained when

using 40 classes from the SANDRA classification, with sea level pressure, temperature and specific humidity combined over a

relatively small Central European domain. The performance of different classifications was assessed with Explained Variation

(EV) and Pseudo-F statistic. The optimal classification showed rather high EV (similar to Pseudo-F statistic) for single vari-20

ables except precipitation and humidity. A multi-variate evaluation demonstrates that the classification is reasonable, although

single variables are not very well stratified. Different weather patterns can be similar in one variable (e.g. temperature), but

exhibit very distinct behaviour in others (e.g. precipitation). Often, weather patterns are classified on pressure fields only. Our

results suggest that adding humidity and temperature as classification variables improves the stratification considerably. This

results in a very good stratification of weather patterns throughout the year. In this way a single classification can be used for25

the whole year, and there is no need to provide different classifications for each season. Adding further classification variables

to pressure fields may also alleviate the often encountered problem that the link between the synoptic situation and the local

climate is not constant in time.

GCMs should properly reproduce the climatology of weather patterns in order to be applicable for the attribution of flood

changes. Hence, the performance of 15 GCMs from the CMIP5 project in matching the climatology of ERA20C reanalysis in30

terms of frequency, seasonality (month of occurrence) and persistence (number of consecutive days) of weather patterns was

evaluated. The frequency of weather patterns is matched well by the majority of GCMs with a few GCMs showing systematic

deviations. No season-specific deviations were found. Due to the use of temperature for pattern classification, the seasonality
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of weather patterns matched well in most of the GCMs. All GCMs were found able to better capture the seasonality of summer

and winter patterns compared to spring and autumn ones. The mean duration of patterns was about 2 days with most GCMs

being able to reproduce this persistence. Overall, three GCMs BCC-CSM1.1, MIROC-ESM, and MIROC-ESM-CHEM were

found to systematically devivate from the reanalysis weather pattern climatology. The variation between different realisations

of one GCM was found small compared to the difference between various GCMs.5

Appendix A: Maps of meteorological mean values for each pattern
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Figure 11. Average (over all days with the respective pattern) mean temperature for all weather patterns. Black lines denote state borders,

grey line Rhine catchment.
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Figure 12. As in Figure 11, but for daily precipitation.
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Figure 13. As in Figure 11, but for global radiation.
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Figure 14. As in Figure 11, but for relative humidity.
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Figure 15. As in Figure 11, but for daily maximum temperature.
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Figure 16. As in Figure 11, but for daily minimum temperature.
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Table 1. Overview on GCMs used (http://esgf-data.dkrz.de/).

Resolution

Model Institute ID Country Period Lon × Lat Runs

BCC-CSM1.1 BCC China 1850 – 2012 2.8 × 2.8 3

BNU-ESM GCESS China 1950 – 2005 2.8 × 2.8 1

CanESM2 CCCMA Canada 1850 – 2005 2.8 × 2.8 5

CESM1-CAM5 NSF-DOE-NCAR USA 1850 – 2005 1.2 × 0.9 1

CNRM-CM5 CNRM-CERFACS France 1850 – 2005 1.4 × 1.4 10

CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 1850 – 2005 1.9 × 1.9 10

GFDL-CM3 NOAA-GFDL USA 1860 – 2005 2.5 × 2.0 3

GFDL-ESM2 M NOAA-GFDL USA 1861 – 2005 2.5 × 2.0 1

HadGEM2-ES MOHC UK 1859 – 2005 1.9 × 1.2 4

IPSL-CM5A-LR IPSL France 1850 – 2005 3.8 × 1.9 6

IPSL-CM5A-MR IPSL France 1850 – 2005 2.5 × 1.3 3

MIROC-ESM MIROC Japan 1850 – 2005 2.8 × 2.8 3

MIROC-ESM-CHEM MIROC Japan 1850 – 2005 2.8 × 2.8 1

MRI-CGCM3 MRI Japan 1850 – 2005 1.1 × 1.1 5

NorESM1-M NCC Norway 1850 – 2005 2.5 × 1.9 3
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